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Metallic fuel, U-Pu(TRU)-Zr, is a fuel candidate for Sodium-cooled fast reactor (SFR) selected as a
possible promising future nuclear reactor system in Generation-IV international forum (GIF). Design
studies were performed in the Japanese feasibility study on commercialized fast reactor cycle system,
and the irradiation behavior of metallic fuel is under investigation through analytical fuel performance
code calculations with preliminary analytical models. Some calculations of U-Pu(TRU)-Zr fuel
irradiation performance were conducted by a simplified calculation grogram developed in JAEA. The
fuel temperatures during irradiation with two kinds of effective fuel thermal conductivity, with and
without sodium ingress into the fuel slug were calculated.

Calculated fuel temperature during steady state operation of the core was low enough to avoid fuel
melting even with the former effective fuel thermal conductivity which gives higher temperature
conservative enough for reactor license application. In case of the latter effective fuel thermal
conductivity, the fuel temperature had more margin to the fuel melting. Axial profile of fuel pin
centerline temperature in case of the latter effective fuel thermal conductivity revealed that its peak
axial position is over X/L=0.7, whereas it is below X/L=0.7 in case of the former effective fuel thermal
conductivity. Based on the irradiation test results, the axial temperature profile of the latter effective
fuel thermal conductivity fits well with actual fuel micro structures after the irradiation. The effective

fuel thermal conductivity with sodium ingress is suitable for the irradiation behavior investigation.

Keywords : Fast Reactor, Metallic Fuel, Fuel Temperature, Calculation Code
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1. Introduction

Sodium-cooled fast reactors (SFR) were selected in Generation-IV international forum (GIF) as a
possible promising future nuclear reactor system with superior safety, sustainability and economic
competitiveness.”  Fuel candidates for SFR in GIF collaborative program include U-Pu(TRU)-Zr metallic
fuel as well as oxide fuel.”

Design studies of metallic fuel core for SFR were performed in the Japanese feasibility study on
commercialized fast reactor cycle systems. The significant outcome of the studies is an attractive core and
fuel concept which achieves high burnup and high outlet temperature of reactor vessel.”)  The irradiation
behavior of metallic fuel of the design studies is under investigation through analytical fuel performance
code calculations with preliminary analytical models of metallic fuel.

In the present work, analytical code calculations of metallic fuel pin irradiation performance are
conducted with major interest on fuel temperatures during irradiation.

The irradiation behavior models and fuel properties for the analytical code were selected based on the
information of metallic fuel characteristics including fuel properties and irradiation behavior obtained from
open literatures and collaborative research activities with the Central Research Institute of Electric Power

Industry.
2. Outline of calculation program

A simplified calculation program for U-Pu(TRU)-Zr metallic fuel pin performance analysis has been
developed. This program is an R-Z system and models the thermal behaviors of a fuel pin during irradiation
using 10 axial nodes, each having 26 radial nodes, 20 of which are for the fuel region and 6 for the cladding
region. Mass transports in the direction are not taken into account, except for FP gases released into the gas
plenum of the fuel pin. The program is limited to analyses of fuel pins having a smear density not over
around 75%TD. Table 1 shows the evaluated behaviors. Some conservative and simplified models as
follows were incorporated into the program,;

1) for the FP gas release, the fractional release rate under irradiation was taken as the constant value of
90 %,

2) for the fuel and cladding mechanical analyses, the fuel-cladding contact pressure under irradiation was
taken as the constant value of zero, because it was reported that no considerable contacts between fuel and
cladding were obtained in the case of fuels having a smear density of less or equal to 75%TD." Only the
stress-strain analysis of cladding due to the plenum gas pressure were conducted,

3) for the fuel restructuring and fuel constituents migrations, they were not taken into account,

4) for the fuel thermal conductivity, metallic fuel slug effective thermal conductivity is considered. The
effective thermal conductivity model consists of solid fuel slug thermal conductivity with 100% TD and
contribution of porous fuel microstructure filled with gas and liquid sodium due to gas swelling and sodium

ingress under irradiation. The correlations of solid fuel thermal conductivity and contribution of porous fuel
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. 5.7
microstructure are found elsewhere.””

The volume fractions of gas-filled porosity and sodium-infiltrated
porosity are treated as variants in the present work. The specific conditions in the calculation are
described later.

The finite difference analysis procedure is applied to the thermal analysis, and the stress-strain analysis
procedure based on the generalized plane strain is applied to the mechanical analysis of cladding. Figures 1

and 2 show the geometrical model and flow chart of the program, respectively.

3. Calculation conditions
3.1 Fuel pin specifications and irradiation conditions

Table 2 shows fuel specifications and irradiation conditions for this investigation. A fuel pin having a
metallic U-Pu-Zr slug with the ODS cladding was taken for this investigation. The bonding material filling
the fuel-cladding gap was sodium. The level of bonding sodium was up to the top of the fuel column. The
irradiation time was taken as 2205 days ( 3 cycles ). The maximum neutron fluence was taken as 5.50 X
10”n-cm™, then the maximum local burnup was evaluated to be as 140 GWd/t. The coolant inlet
temperature was taken as 668K. Calculations were conducted at the following 5 axial positions; X/L = 0.9,
0.7, 0.5, 0.3, and 0.1. Axial distribution conditions at BOL and EOL of LHR and cladding midwall
temperature are shown in Figs. 3 and 4, respectively. Profile conditions of LHR and cladding midwall
temperature at each axial position of the calculations are shown in Figs. 5 and 6, respectively.

These conditions are based on the current results of feasibility studies on a commercialized fast reactor

cycle system in Japan.”

3.2 Effective thermal conductivity models of metallic fuel

As described above, the effective thermal conductivity model consists of solid fuel slug thermal
conductivity with 100% TD and contribution of porous fuel microstructure filled with gas and liquid
sodium. The fraction of swelled volume filled with sodium was reported to be from 0.25 to 0.28 in some
case of U-Pu-Zr fuel. In the present study, following two cases are selected aiming at a sensitivity study.
One is 0.25 of the fraction as a case of sodium ingress and the other is no sodium ingress as conservative

case.
4. Results and discussions

From Fig. 7 to Fig. 11, the evaluated fuel temperature histories using the effective thermal conductivity
with sodium ingress are shown. It is easily seen that fuel temperature increased with burnup in the early
stage of each cycle and slightly decreased with burnup in the later stage of each cycle. The evaluated gap
width between fuel and cladding at each axial position are shown in Fig.12. It is easily seen that the gap
between fuel and cladding closed in the early stage of the irradiation. After that, the gap conductance was

so high that it had little contribution to the fuel temperature. Then, the obtained temperature profiles were
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attributed to the profile conditions of LHR.

Figures 13 and 14 show the evaluated fuel temperature histories of X/L=0.5 and 0.7 using the effective
thermal conductivity without sodium ingress. The fuel temperatures are high in comparison with those in
Figs. 8 and 9 due to the low effective thermal conductivity.

Figures 15 through 18 show the radial temperature distributions of both thermal conductivities at EOL of
X/L=0.5 and 0.7. In case of the effective thermal conductivity without sodium ingress, temperature
gradient in the fuel surface becomes steep due to the low thermal conductivity.

Figure 19 shows the evaluated history of pressure on the cladding inner surface due to the plenum gases.
Figure 20 shows the evaluated cladding deformation after the irradiation. The results show that the fuel pin
had enough plenum volume not to cause considerable cladding deformations by plenum gas pressure.

Therefore, it is concluded that the metallic U-Pu-Zr fuel pin having the specifications and irradiation
conditions used in this investigation would be irradiated moderately up to approximately 140GWd/t with
well integrity.

Figures 21 and 22 show the fuel centerline temperatures of 0.4%Am(in heavy metal) bearing fuel with
the effective thermal conductivity with sodium ingress at X/L=0.5 and 0.7. In this calculation Am
contribution was assumed to be same as it of Pu. Therefore, fuel thermal conductivity slightly decreases
and fuel centerline temperature of Am bearing fuels slightly higher than that of U-Pu-Zr fuel, as shown in
these figures. The difference of these temperatures is limited within one degree C. The contribution of
Am inclusion may not be significant when the Am content is less than 1% of heavy metal.

Figures 23 and 24 show axial distributions of fuel centerline temperature. The fuel centerline
temperatures of thermal conductivity without sodium ingress are more conservative than those with sodium
ingress by about 100 degree C. In viewpoint of axial position of fuel maximum temperature, it is over
X/L=0.7 in case of the thermal conductivity with sodium ingress, whereas it is between X/L=0.5 and 0.7 in
case of the thermal conductivity without sodium ingress. In irradiation tests of metallic fuel, the fuel
micro structures observed in post irradiation examinations tell that axial position of maximum fuel
centerline temperature must be close to the top region of fuel column rather than the axial center region.
In this view, the case of thermal conductivity with sodium ingress may be more realistic as far as the axial

distribution of fuel temperature is concerned.

5. Conclusion

Some calculations of metallic fuel irradiation performance were conducted by a simplified calculation
program developed in JAEA to understand the behavior of a U-Pu(TRU)-Zr fuel pin. The major interest
of the investigation is calculated fuel temperatures during irradiation with two kinds of effective fuel
thermal conductivity, with and without sodium ingress into the fuel slug.

Calculated fuel temperature during steady state operation of the core was low enough to avoid fuel
melting even with the former effective fuel thermal conductivity which gives higher temperature

conservative enough for reactor license application. In case of the latter effective fuel thermal
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conductivity, the fuel temperature had more margin to the fuel melting.  Axial profile of fuel pin centerline
temperature in case of the latter effective fuel thermal conductivity revealed that its peak axial position is
over X/L=0.7, whereas it is below X/L=0.7 in case of the former effective fuel thermal conductivity.
Based on the irradiation test results, the axial temperature profile of the latter effective fuel thermal
conductivity fits well with actual fuel micro structures after the irradiation. The effective fuel thermal
conductivity with sodium ingress is suitable for the irradiation behavior investigation.

In case of 0.4%Am bearing fuel, calculation result shows that fuel centerline temperature becomes high,
but increase from U-Pu-Zr fuel is insignificant.

Other characteristics of fuel irradiation performance such as fuel pin internal gas pressure history and

cladding deformation show that the fuel pin keeps its integrity through its irradiation duration.
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Table 1 Behaviors evaluated by the calculation program

Evaluated fuel behaviors

Temperature distribution
Thermal expansion
Fission gas release -

Swelling

Evaluated cladding behaviors

Temperature distribution

Thermal expansion

Void swelling

Creep deformation due to plenum gas pressure
Cladding corrosion due to FPs

Cladding liquid phase penetration

Creep damage

Table 2 Designed fuel specifications and irradiation conditions

Item Unit Value
Fuel Type Slug
Outer diameter mm 6.496
Density %TD 100
Pu cont.(including MA) wt.% 11.47
Zr cont. wt.% 6.0
Fuel colum length mm 750
Plenum | upper mm 1350
Cladding | Material ODS
Inner diameter mm 7.5
Outer diameter mm 8.5
Thickness mm 0.5
Bonding | Material Sodium
Filling level mm up to fuel column
Irradiation duration day 2205
(lcycle : 735)
Max. LHR Wi/cm 347
Max. Cladding midwall temperature K 878
Max. Neutron fluence(>0.1MeV) n/em’ 5.50E23
Max. Burnup ( local position ) GWD/t 140
Coolant | Material Sodium
Inlet temperature K 668
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Gas plenum

Cladding

Gap Z

(sodum ) | (1, 4ding

Fig.1 Geometrical model of the calculation program

— | Burnup calculation (amounts of U, Pu, FPs)

i

FP gas release and plenum gas pressure

!

Temperature distribution

Fuel deformation due to swelling and thermal expansion

iteration - -
Cladding deformation due to

swelling, creep, and thermal expansion

!

Cladding corrosion

Time step Plenum volume change by extrusion of bonding sodium
due to the fuel-cladding gap plugging by deformation

i

Cladding damage
I

Fig.2 Flow chart of the calculation program
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Fig.12 Profiles of gap width up to 1x10* hour
(From 1E4 hr to the end of irradiation, the gap was found to be plugged at each axial position.)

_11_



Temperature / K

Temperature / K

JAEA-Technology 2013-010

1200 ‘ ‘ ‘ : :
: : | m——- Fuel center
3 3 : © Fuel outer surface
1100 Lo 7777777777777777777 7777777777777777777 Cl‘adding inngr surface | |
s B
1000 £ e o e e e R -
3 ‘ ' ' ' i
i
i i i i o
900 b Rt i e R T e =
3 : : : o
, , 1
00ceceotoeeeooy, . aaa s DD sool
oof L
700 i i i i i
0 1E+4 2E+4 3E+4 4E+4 S5E+4 6E+4
Time / hr
Fig.13 Temperature profiles at X/L=0.7
(Effective thermal conductivity model without sodium ingress into the fuel)
1200 ‘ ‘ ‘ : :
: : | m——- Fuel center
3 3 3 © Fuel outer surface
1100 L 7777777777777777777 7777777777777777777 Cl‘adding inngr surface | |
NSO TSNS S S
s .= s Lamm=res TEEEE
1000 .-'/- rrrrrrrrrrr e e e e e .
. . . . . :
]
]
: : : : : 1
3 3 3 3 o
900 f — — — —— -
. . . . : :
o
800 joceeeeee eoooe tosoooesss soooroo00 coof §
700 i i i i i
0 1E+4 2E+4 3E+4 4E+4 S5E+4 6E+4

Time / hr

Fig.14 Temperature profiles at X/L=0.5
(Effective thermal conductivity model without sodium ingress into the fuel)
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Fig.15 Radial distribution of fuel temperature at X/L=0.7
(Effective thermal conductivity model with sodium ingress into the fuel)
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Fig.16 Radial distribution of fuel temperature at X/L=0.7
(Effective thermal conductivity model without sodium ingress into the fuel)
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Fig.17 Radial distribution of fuel temperature at X/L=0.5

(Effective thermal conductivity model with sodium ingress into the fuel)
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Fig.18 Radial distribution of fuel temperature at X/L=0.5

(Effective thermal conductivity model without sodium ingress into the fuel)
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Fig.20 Cladding deformation after the irradiation
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Fig.21 History of fuel center temperature at X/L=0.5
(Effective thermal conductivity model with sodium ingress into the fuel)
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Fig.22 History of fuel center temperature at X/L=0.7
(Effective thermal conductivity model with sodium ingress into the fuel)
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Ky : Effective thermal conductivity model without sodium ingress into the fuel
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Fig.24 Axial distributions of U-Pu-Am-Zr fuel center temperatures at the maximum power (8856h)
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