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In order to evaluate integrity limiting parameters of fuel pins during fast reactor core transient events,
such as fuel center line temperature and cladding maximum temperature, fuel pin behavior calculations
were made using the fast reactor fuel pin performance code CEDAR. The temperature histories of fuel
pins during a loss of flow (LOF) type transient events was calculated based on Ross & Stoute type gap
conductance model and constant gap conductance model, which is used in a core transient calculation
code like HIPRAC.

The calculated maximum temperatures of cladding and adjacent coolant channel were lower in the
case with Ross & Stoute type model than in the case of constant gap conductance model due to the
dynamic change of gap conductance of former case. It is indicated that core transient calculations with
constant gap conductance give conservative cladding and coolant temperatures than that with Ross &

Stoute type gap conductance model which is thought to be realistic.
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1. Introduction

In fast reactor core transient events, fuel centerline temperature and cladding maximum temperature are
integrity limiting parameters of fuel pins. In reactor design studies, fuel and cladding temperatures during

D2 in which the core

reactor core transients are evaluated using calculational tools, such as HIPRAC
neutronics analysis is based on the point-kinetics and thermal hydraulic calculation is based on
multi-channel model with simplified heat transfer equations to calculate fuel, cladding and coolant
temperaturesz). On the other hand, fuel pin performance codes are available to calculate these
temperatures with detailed thermo-mechanical models. The fast reactor fuel pin performance code
CEDAR? is a typical tool for analyses of fuel pin behavior including temperatures in a fuel pin with
detailed models such as a Ross & Stoute type fuel-cladding gap conductance model”, thermal expansions
of fuel and cladding, their mechanical deformations and compositions of gaseous phase in a fuel pin,
whereas HIPRAC applies constant fuel - cladding gap conductance through a calculation of single channel
without analyses of fuel pin mechanical behavior and gas composition in a fuel - cladding gap.

It is worth to evaluate fuel pin performance during the fast reactor core transient event using a fuel in
performance code applying power histories obtained by a reactor core transient calculation code such as

HIPRAC and to look into the deference of temperatures between simplified and detailed calculations. The

result will show the margin of temperatures calculated by simplified model in a reactor core transient code.

2. Evaluation method

The JSFR 1500MWe core”™® with oxide fuel is selected for the transient calculation. Initiator of the
core transient in the present study is a flow rate decrease of the primary circuit as a typical loss-of-flow
type transient. Major characteristics of the core and a reactor system modeling are found elsewhere."
Transient fuel pin behavior calculations were made using CEDAR code. The fuel pin specifications of
JSFR core is indicated in Table 1 > and the histories of fuel pin power and coolant flow rate were taken
from HIPRAC calculation results" as indicated in Fig.1. CEDAR code calculated the temperatures of fuel,
cladding and coolant. For (U,Pu) oxide fuel pins, two kinds of calculation are made using CEDAR code
changing the fuel-cladding gap conductance model.  One is with Ross & Stoute type gap conductance
model, and the other is with constant gap conductance which is identical with HIPRAC calculation of
simplified model. These two results are compared to understand the difference between detailed modeling
and simplified modeling. For Ross & Stoute type gap conductance model, fuel and cladding thermal
expansions are predominant factors to determine the fuel to cladding gap width during transient. In the
present study, thermal expansion correlation of austenitic steel is applied to the cladding tube on the
assumption that the modified type 316 stainless steel (PNC316) is used for cladding material.

To investigate the contribution of minor actinide, identical calculation was made with Ross & Stoute

type gap conductance model. Minor actinide(MA) content was set to 5% in heavy metal (HM) as a
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sensitivity study and the MA content was considered in the fuel thermal conductivity. The result was

compared with that of (U,Pu) oxide fuel.

3. Results of calculation and discussions

3.1 Calculation results of (U,Pu) Oxide fuel pins

At first, a benchmark calculation was made to compare the results of CEDAR code and a core safety
analysis code using a model case of LOF type transient in which the power and flow rate histories are
different from those in Fig.1. Figure 2 shows the average fuel temperature history for the case of constant
gap conductance. A solid line indicated the average fuel temperature by CEDAR code.

At the time = 0 (sec), flow rate reduction starts and fuel temperature becomes gradually high since heat
removal reduces due to coolant flow rate reduction outside of the fuel pin.

At about two second, reactor scram occurred by low flow rate signal of reactor protection system. Then,
fuel temperature goes down with time due to the rapid reduction of reactor power and fuel pin power after
the reactor scram.

The result of CEDAR code agrees well with that of core safety analysis code indicated by closed circles
in the figure.

This benchmark calculation was followed by analytical calculation using the power and flow rate
histories in Fig.1. Figure 3 shows calculated fuel centerline temperatures and fuel - cladding gap
conductances. The broken line shows the temperature with constant gap conductance and the solid line
shows one with Ross & Stoute type fuel-cladding gap conductance model. The values of gap conductance
are equal to each other at the beginning of the transient, time=0, and Ross & Stoute type gap conductance
decreases during the transient. This is due to the change of thermal expansions of fuel and cladding,
which results in the change of fuel cladding gap width or fuel-cladding contact pressure. Before the scram,
the gap conductance decreases mainly due to the increase of cladding thermal expansion. After the scram,
it decreases mainly due to the decrease of fuel thermal expansion because of fuel pin power and fuel
temperature decrease. As a result, fuel temperature of the Ross & Stoute type gap conductance case is
higher than that of constant gap conductance case after the reactor scram, since heat transport from fuel to
cladding is less in the former case than in the later case. This mechanism also affects the cladding and
coolant temperatures.

Figure 4 shows the calculated cladding and coolant temperatures, Ross & Stoute type gap conductance
case of a solid and constant gap conductance case of a broken line. Before 20 seconds, cladding and
coolant temperatures of the Ross & Stoute type gap conductance case are lower than those of constant gap
conductance case, whereas they reverse each other after 20 seconds. This behavior is explained as
follows;

When transient starts, low gap conductance in Ross & Stoute type gap conductance case gives less heat
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transfer from fuel to cladding and coolant than that of constant gap conductance case. This results in
lower cladding and coolant temperatures in Ross & Stoute type gap conductance case in comparison with
constant gap conductance case. After certain time, more residual heat remains in the fuel of Ross &
Stoute type gap conductance case due to the low heat transfer from fuel to cladding. Then heat transfer
from fuel to cladding becomes larger in case of Ross & Stoute type gap conductance than in case of
constant gap conductance case.

As a result, cladding and coolant temperature changes in Ross & Stoute type gap conductance case are
benign. As simplified constant gap conductance is applied to core safety calculations, such simple model
includes some margin to cladding and coolant temperature in the evaluation results. This also means that,
if Ross & Stoute type gap conductance model is applied to core safety calculations, that gives wide design

window due to benign temperature change.

3.2 Contribution of minor actinides

The calculation result of 5%(in HM) MA bearing fuel pin is shown in Fig.5. Obtained temperature
history was similar to that of the (U,Pu) oxide fuel pin. The temperatures of MA bearing fuel pin were
slightly higher than that of (U,Pu) fuel pin. But in terms of a comparison between Ross & Stoute type gap
conductance model and constant gap conductance model, simplified constant gap conductance includes
some margin to cladding and coolant temperature in the evaluation results, even in a case of MA bearing

fuel.

4. Conclusions

Temperature histories of a fast reactor oxide fuel pin during a LOF type transient event were calculated
using a fuel pin performance code CEDAR. Ross & Stoute type gap conductance model and constant gap
conductance model used in a core transient calculation code like HIPRAC were applied. The calculated
maximum temperatures of cladding and adjacent coolant channel were lower in the case with Ross &
Stoute type gap conductance model than in the case of constant gap conductance model due to the dynamic
change of gap conductance of former case. It is indicated that core transient calculations with constant
gap conductance give conservative cladding and coolant temperatures than that with Ross & Stoute type
gap conductance model which is thought to be realistic. This is concluded to MA bearing oxide fuel pins

as well as (U,Pu) oxide fuel pins.



JAEA-Technology 2013-011

References

1) H. Hayashi, et al., "Design study on a large FBR plant enhancing passive safety," J. Atomic Energy
Society of Japan, vol.39, 11, pp.975-985 (1997) (in Japanese).

2) K.Kawashima, et.al., "Power Distribution Skewing Effects on Fuel Temperature during TOP in a Large
Commercial-Base Fast Reactor", GLOBAL2011, Makuhari, Japan (2011).

3) T. Mizuno, et al., "Fuel Pin Performance and reliability Analysis Code in PNC", Int. Conf. on Reliable
Fuels for Liquid Metal reactors, pp.5-28 —5-39, Tucson, AZ (1986).

4) AM.Ross and R.L.Stoute, "Heat Transfer Coefficient Between UO2 and Zircaloy-2", Report
CRFD-1075, Atomic Energy of Canada (1962).

5) T.Mizuno, T.Ogawa, M.Naganuma, T.Aida, "Advanced oxide fuel core design study for SFR in the
"Feasibility Study" in Japan", GLOBAL 2005, No.434, Tsukuba, Japan (2005).

6) S. Kotake, et al., "Feasibility Study on Commercialized Fast Reactor Cycle Systems / Current Status of
the FR System Design", GLOBAL 2005, No.435, Tsukuba, Japan (2005).



JAEA-Technology 2013-011

(mm)

Table 1 Core and fuel specifications of the large scale JSFR
Breeding Break Even
| tems Core Core

INominal full power
| (Mwe/mwt) |1 80073, 570 <
Coolant temperature
[outlet/inlet] (°c) 550/395 =
Primary coolant flow

(ke/s) | 18 200 <
Core height (cm) 100 «—
Axial blanket thickness
[upper/lower] (cm) 20/20 15/20
Number of fuel assembly _
[core/radial blanket] 562/96 562/
Envelope diameter of
iradial shielding (m) 6. 8 <
Fuel cladding outer 10. 4 -
diameter (mm) :
|Fuel cladding thickness

(mm) 0.71 =

;Number of fuel pin per 255 -
lassembly
|Wrapper tube outer
|[flat—flat width (mm) 201.6 <
Wrapper tube thickness 5. 0 -




Relative power and flow rate (-)

Relative power and flow rate (-)
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Fig.1 Histories of fuel pin power and coolant flow rate
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Fig.2 An example of fuel transient calculation (LOF type event)
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Fig.3(a) History of fuel centerline temperature
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Fig.4(a) History of cladding midwall temperature
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Fig.4(b) History of coolant temperature
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Fig.5(a) Cladding midwall temperature as a function of the time into the transient
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