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As a possible concept for commercialized Sodium-cooled fast reactor (SFR) core fuel, annular mixed
oxide (MOX) fuel with oxide dispersion strengthened ferritic steel (ODS) cladding was considered with
low breeding ratio as a standard, break-even breeding cores, and cores with high breeding ratio (high
breeding cores). Some calculations of fuel pin irradiation performance of (U,Pu) oxide fuel and minor
actinides bearing oxide fuel were conducted by a fuel performance analysis code CEDAR developed in
JAEA to understand the steady state irradiation behavior of fuel pins for the cores with high breeding
ratio.

The fuel temperature profiles, fuel and cladding deformation profiles, and radial temperature
distribution at end of life (EOL) were evaluated. Those results show that the MOX fuel pin having the
specifications and irradiation conditions used in this investigation would be irradiated moderately up to
approximately 250GWd/t with well integrity. The difference toward to 10.4 mm fuel pins, critical
behavior will not being estimated. The temperature of MA bearing oxide fuel was tended to be higher
than that of (U, Pu) oxide fuel. However, it is concluded that the effect of MA or difference toward to

fuel behavior is restrictive considering its obtained results.
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1. Introduction

The Fast Reactor Cycle Technology Development (FaCT) project has been being conducted in Japan. In
the FaCT project, fuel pin concepts consisting of MOX annular fuels and oxide dispersion strengthened
martensitic steel (ODS) cladding have been being considered to be one of possible concepts for the sodium
cooled reactor cores, which include standard cores with low breeding ratio, break-even breeding cores, and
cores with high breeding ratio (high breeding cores). The high breeding cores in the FaCT project have
thick axial blanket with shorter core fuel column length and smaller diameter driver fuel pins than those of
standard cores.

In this work, to understand the steady state irradiation behavior of the small diameter annular MOX fuel
pin, some calculations of fuel pin irradiation performance of (U,Pu) oxide fuel and minor actinides bearing

oxide fuel were conducted by a fuel performance analysis code CEDAR developed in JAEA.

2. Outline of CEDAR

A pellet type MOX fuel performance analysis code "CEDAR" (Code for Thermal and Deformation
Analysis of Reactor fuel pin) was used”. This code has been developed by JAEA. CEDAR is an R-Z
system code that has been verified by results obtained from irradiation tests in experimental reactors such
as Joyo; the range of burnup is ~130GWd/t, of LHR is ~440W/cm, and of cladding inner surface
temperature is ~923K. CEDAR models the thermochemical and mechanical behaviors of a fuel pin during
irradiation using 10 axial nodes, each having 26 radial nodes, 20 of which are for the fuel region and 6 for
the cladding region. Fuel property correlations in CEDAR code include (U,Pu) oxide fuel and minor
actinides bearing oxide fuel. Mass transports in the axial direction are not taken into consideration, except
for FP gases released into the plenum space and fuel-cladding gap. The stress-strain analysis procedure
based on the generalized plane strain is applied to the mechanical analysis, and the finite difference analysis
procedure is applied to the thermochemical analysis. Table 1 shows the evaluated behaviors. Fig.1 and

Fig.2 show the geometrical model and flow chart of CEDAR, respectively.

3. Calculation conditions

Table 2 shows designed fuel specifications and irradiation conditions in the case of high breeding core. A
fuel pin having annular type MOX pellets with the ODS cladding was taken for this investigation. This fuel
pin had lower and upper plenum regions. And the outer diameter is relatively small, 9.3 mm, compared
with previous evaluation condition (10.4 mm in diameter) *. The irradiation time was taken as 2557 days
( 4 cycles ). The maximum neutron fluence was taken as 5.02 X 10%n-cm™, then the maximum local

burnup was evaluated to be as 227 GWd/t. The condition of coolant inlet temperature was taken as 668 K.

_1_
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Calculations were conducted at the following 5 axial positions; X/L = 0.9, 0.7, 0.5, 0.3, and 0.1. Axial
distribution conditions at BOL and EOL of LHR and cladding midwall temperature are shown in Fig. 3 and
Fig. 4, respectively. Profile conditions of LHR and cladding midwall temperature at each axial position of
the calculations are shown in Fig. 5 and Fig. 6, respectively.

Fuels considered in the present study are MA bearing oxide fuel with 3% of Am content and (U,Pu)
oxide fuel.

These conditions are based on the current results of feasibility studies on a commercialized fast reactor

cycle system in J. apanz).

4. Results and discussions
4.1 (U,Pu) oxide fuel

Deformation profiles of fuel outer radius and cladding inner radius during irradiation at X/L = (.5 are
shown in Fig.7. It was cleared that the fuel was contacted to cladding in the early stage of irradiation.
Figure 8 shows the cladding deformation by swelling or swelling with creep after irradiation. The swelling
defined as a ratio of diameter change. As shown in Fig. 8, maximum swelling was seen at X/L = 0.1, and
then no swelling was estimated at X/L = 0.5, 0.7, 0.9. On the other hand, the deformation by creep was
evaluated all the calculated position, the effect was depended on neutron fluence. Therefore, maximum
deformation of cladding with swelling and creep was expected at X/L = 0.3. The fuel-cladding mechanical
interaction (FCMI) was considered based on these results, it is expected that the contact pressure was not
strong to cause the considerable cladding deformation. Therefore, it is concluded that the MOX fuel pin
having the specifications and irradiation conditions used in this investigation would be irradiated

moderately up to approximately 250GWd/t with well integrity.
4.2 MA bearing oxide fuel (3% Am)

For calculation of MA bearing oxide fuel, 3% of Am content is newly applied as a calculation parameter on
the specification and irradiation condition of (U, Pu) oxide fuel shown in Table 3. Thermal effect would be
considered for the use of Am by using the thermal conductivity correlation that considered the effect of Am
contents *. As is shown in Fig. 9, thermal conductivity is apt to be decreased with increasing Am content.
Figure 10 shows temperature profile for fuel inner, outer and cladding inner surface at X/L = 0.5 during
irradiation. Figure 11 also shows deformation profiles of fuel outer and cladding inner radius at X/L = 0.5
during irradiation. It was cleared that the fuel was contacted to cladding in the early stage of irradiation,
and therefore, good correlation was seen in the behavior between gap closure and temperature change at
fuel outer surface position. It is the same tendency as (U, Pu) oxide fuel for the axial position at X/L = 0.5.

The cladding deformation after irradiation is shown in Fig. 12. Similarly, it was seen that the cladding

_2_
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deformation by swelling or swelling with creep were almost the same as (U, Pu) oxide fuel calculation
results shown in Fig. 8. In the meantime, fuel inner surface temperature of MA bearing oxide fuel (3% Am)
and (U, Pu) oxide fuel were compared and shown in Fig. 13. The temperature of MA bearing oxide fuel
was tended to be higher than that of (U, Pu) oxide fuel. However, it can be said that the effect toward to

fuel behavior is restrictive considering its Am content.

5. Conclusion

Some calculations of fuel pin irradiation performance of (U,Pu) oxide fuel and minor actinides bearing
oxide fuel were conducted by a fuel performance analysis code CEDAR developed in JAEA to understand
the steady state irradiation behavior of fuel pins for the cores with high breeding ratio.

The fuel temperature profiles, fuel and cladding deformation profiles, and radial temperature distribution
at EOL were evaluated. Those results show that the MOX fuel pin having the specifications and irradiation
conditions used in this investigation would be irradiated moderately up to approximately 250GWd/t with
well integrity. The difference toward to 10.4mm fuel pins, critical behavior will not being estimated. The
temperature of MA bearing oxide fuel was tended to be higher than that of (U, Pu) oxide fuel. However, it
is concluded that the effect of MA or difference toward to fuel behavior is restrictive considering its

obtained results.
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Table 1 Behaviors evaluated by CEDAR

Evaluated fuel behaviors

Temperature distribution

Stress-strain state

Restructuring (pore migration)

Fission gas release

Pu migration

Oxygen migration (O/M ratio distribution)

Chemical reaction between fuel components and FPs in the fuel-cladding gap
(JOG formation and its effect on gap conductance)

Swelling
Hot-pressing
Creep deformation

Cracking

Evaluated cladding behaviors

Temperature distribution
Stress-strain state

Void swelling

Creep deformation
Cladding wastage

Creep damage
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Table 2 Designed oxide fuel specifications and irradiation conditions (High breeding core)

[tem Unit Value
Fuel Type Annular pellet
Inner diameter mm 232
Outer diameter min 7.81
Density %ID 95
Pu cont. wt.% 23.1
O to M ratio - 1.95
Fuel column length mm 750
Plenum upper mm 100
lower NI 1100
Cladding | Material ODS
Inner diameter mm 8.02
Quter diameter mm 93
Thickness mm 0.64
- . 2556.8
Irradiation duration day (leyle:639.2)
Max. LHR W/em 419
Max. Cladding midwall temperature K 042
Max. Neutron fluence (>0.1MeV) n/cm? 5.02E23
Max. Burnup (local position) GWD/t 227
Material Sodium
Coolant
Inlet temperature [ x 668
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Table 3 Designed MA bearing fuel specifications and irradiation conditions (High breeding core)

Item | Unit Value
Fuel Type Annular pellet
Inner diameter mm 2.32
|_Outer diameter mim 781
Density %ID 05
Am cont. wt.% 3
O o M raliv - 1.95
Fuel column length mm 750
Plenum | Upper mimm 100
lower mm 1100
Cladding | Material 0DS
Inner diameter mm 8.02
QOuter diameter mm 9.3
Thickness mm 0.64
- . 2556.8
[rradiation duration Y| (eyele:639.2)
| Max. LHR W/cm 419
Max. Cladding midwall temperaturd K 942
|_Max, Neutron fluence (>0.1MeV) | n/om® | 5.02F23
Max. Burnup (local position) GWDVt 227
Material Sodium
Coolant ™\ et temperature [ x 668
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