JAEA-Technology 2014-027

放射光ビームラインにおける "スクロールポンプ動作状況監視システム(SCP-MS)" の開発

Development of a "Scroll Pump Operation Status Monitoring System(SCP-MS)" for Use at a Synchrotron Radiation Beamline

> 山岡 慎吾 清水 由佳 福田 義博 菖蒲 敬久 小西 啓之

Shingo YAMAOKA, Yuka SHIMIZU, Yoshihiro FUKUDA, Takahisa SHOBU and Hiroyuki KONISHI

関西光科学研究所 プロジェクト推進室

Project Promotion Office Kansai Photon Science Institute

August 2014

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency. 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2014

JAEA-Technology 2014-027

放射光ビームラインにおける"スクロールポンプ動作状況監視システム(SCP-MS)"の開発

日本原子力研究開発機構 関西光科学研究所 プロジェクト推進室** 山岡 慎吾**1・清水 由佳**1・福田 義博**1・菖蒲 敬久・小西 啓之

(2014年5月22日受理)

SPring-8の放射光ビームラインにおいて、放射光源から実験ステーションまでの輸送部の真空 維持・管理は欠かせないものである。真空維持には、ターボ分子ポンプとスクロールポンプで構 成される真空排気ユニットを用いている。しかし、BL22XUにおいて真空排気ユニットの一部で あるスクロールポンプの動作不良のために、予定外のユーザー実験の中断が生じていた。そこで 今回、スクロールポンプの動作不良を早期発見する為、"スクロールポンプ動作状況監視システム (SCP-MS)"の開発を行った。本システムは、スクロールポンプの真空度とモータ電流値を同時測 定しモニタリングできる為、今まで目視では捉えられなかったスクロールポンプの状況を遮蔽ハ ッチ外からでも捉えることが可能である。実際に真空排気セクションで使用しているスクロール ポンプに "スクロールポンプ動作状況監視システム(SCP-MS)"を導入したところ、動作状況を把 握するのに十分な真空度とモータ電流値の変化を捉えることが出来た。本稿では、その詳細につ いて記述する。

関西光科学研究所:〒679-5148 兵庫県佐用郡佐用町光都 1-1-1

* 原子力科学研究部門 関西光科学研究所 プロジェクト推進室(2014年4月1日 改組)

- *1 技術開発協力員(スプリングエイトサービス株式会社)
- *1 スプリングエイトサービス株式会社

JAEA-Technology 2014-027

Development of a "Scroll Pump Operation Status Monitoring System(SCP-MS)" for Use at a Synchrotron Radiation Beamline

Shingo YAMAOKA^{**1}, Yuka SHIMIZU^{*1}, Yoshihiro FUKUDA^{*1}, Takahisa SHOBU and Hiroyuki KONISHI

> Project Promotion Office Kansai Photon Science Institute^{**} Japan Atomic Energy Agency Sayo-cho, Sayo-gun, Hyogo-ken

> > (Received May 22, 2014)

At SPring-8 synchrotron radiation beamlines, it is essential to maintain a vacuum between the radiation source and the experimental stations. This is achieved by using scroll pumps and turbo molecular pumps. However, scroll pump malfunctions at BL22XU give rise to unscheduled downtime during the user experiments. To facilitate the early detection of scroll pump malfunctions, we have developed a "scroll pump operating status monitoring system (SCP-MS)". The system simultaneously measures motor current and vacuum pressure at the scroll pump. It is possible to monitor pumps from outside of the shielding hutch, something which was not possible until now. The SCP-MS has been installed to monitor scroll pumps in actual operation, to monitor the change of the motor current value and vacuum pressure. We report on the detail of the system.

Keywords : Scroll Pump, BL22XU, SPring-8, Synchrotron Radiation, Beamline, Vacuum System

^{**}Project Promotion Office, Kansai Photon Science Institute, Sector of Nuclear Science Research from April 1st, 2014.

^{**1} Collaborating Engineer (SPring-8 Service CO. Ltd.)

^{*1} SPring-8 Service CO. Ltd

目次

1. はじめに	Ĺ
2. BL22XU におけるスクロールポンプの運用状況	2
2. 1 BL22XUの概要	2
2. 2 真空排気ユニットの概要	3
2.3 スクロールポンプの構造と運転状況	1
3. スクロールポンプ動作状況監視システム	3
3. 1 はじめに	3
3. 2 装置構成	10
3. 3 測定プログラム	12
4. ビームラインへの導入	17
4. 1 システムの設置状況	17
4. 2 測定結果	18
4. 3 考察	20
5. 今後の計画	20
参考文献	20

Contents

1. Ir	ntroc	luction	1
2. U	sage	e situation of the scroll pump	2
2.	1	Outline of BL22XU	2
2.	2	Outline of the vacuum exhaustion units	•3
2.	3	Design and operational status of a scroll pump	4
3. M	lonit	oring system of an operational status for a scroll pump	-8
3.	1	Outline	8
3.	2	Equipment composition	10
3.	3	Software	12
4. Ir	ntroc	luce the system in BL22XU	17
4.	1	Setting of equipment	$\cdot 17$
4.	2	Results	18
4.	3	Discussion	20
5. F	utur	e plans	·20
Refere	ence	s	·20

1. はじめに

大型放射光施設 SPring-8の JAEA 専用ビームライン BL22XU の輸送部では、真空を維持する為に 真空排気ユニットを常時運転させている。真空排気ユニットはターボ分子ポンプとスクロールポンプ で構成されているが、運転中にスクロールポンプの動作不良により運転不能に陥るという問題がしば しば発生している。運転不能に陥った場合は、速やかに代替のスクロールポンプに交換し、真空排気 ユニットの運転を再開しなくてはならない。しかし、ほとんどの真空排気ユニットは遮蔽ハッチ内に 設置されており、かつ各真空排気セクションの真空度はインターロックシステムにより監視されてい るため、ユーザー実験を行っている場合は実験の中断を余儀なくされる。また、動作不良のまま運転 し続けることでスクロールポンプ自体の重篤な損傷に繋がり動作不能になる危険性もある。図 1.1 に スクロールポンプの動作状況における真空度、モータ電流値の時間変化を示す。過去の統計より、ス クロールポンプの動作不良時に発生する現象として、真空排気セクションの真空度低下、異音(金属 接触音)の発生が挙げられる。そこで今回は、動作不良を起こす際に変動すると思われる、スクロー ルポンプの真空度とモータ電流値に着目し、二つの値をモニタリングする為の"スクロールポンプ動 作状況監視システム"の開発に着手した。本システムについては、"SCP-MS (SCroll Pump operation status Monitoring System)"と称することとする。SCP-MSの開発と放射光ビームラインへの導入 によってスクロールポンプ動作不良の早期発見が可能になる。これは、ユーザー実験に影響を及ぼさ ないタイミングで代替機に交換でき、ユーザー実験に負担をかけることなく真空の維持・管理が可能 になり、またスクロールポンプ自体の効率的な運用も期待できる。本稿では、SCP-MSの開発とその 測定結果を記述する。

真空度とモータ電流値の時間変化

2. BL22XU におけるスクロールポンプの運用状況

2.1 BL22XUの概要

BL22XU は、SPring-8 標準タイプの真空封止型アンジュレータを光源とするビームラインである [1]。図 2.1 に BL22XU 全体の装置配置図を示す。蓄積リングで発生した放射光は、フロントエンド を経て蓄積リング棟内の光学ハッチ内に設置された低エネルギー分光器(3-37 keV)または高エネルギ ー分光器(35-70 keV)によって単色化され、蓄積リング棟内と RI 棟内の実験ハッチに供給される。こ こで、フロントエンド以降から実験ハッチまでは「輸送部」と呼ばれ、ゲートバルブによって複数の 真空排気セクションに分割されており、各セクションは真空排気ユニットおよび真空計によって適切 な真空度に維持・管理されている。BL22XU のような硬 X 線を使用するビームラインにおける輸送 部の真空度は、一般的に約 10⁵から 10⁴ Pa である。

図 2.1 BL22XUの装置配置図

2. 2 真空排気ユニットの概要

輸送部の真空排気ユニットは、ターボ分子ポンプとスクロールポンプの組み合わせが基本仕様となっている[2]。BL22XUでは、エドワーズ製ターボ分子ポンプ(型式 STP-301)とアネスト岩田製スクロールポンプ(型式 ISP-250)を組み合わせて運用している。ターボ分子ポンプは、内部に固定されたブレードと回転するブレードが交互に配置されており、気体分子を一方向に移動させることで高真空まで排気することができるが、単独では直接排気することはできない。ターボ分子ポンプによって圧縮された気体分子を大気へ排気する為には、補助ポンプとして粗排気ポンプの併用が必須である。なお、粗排気ポンプとして最も使用されているのは、油回転式(ロータリー)ポンプであるが、施設内をクリーンに保つ為、SPring-8ではオイルフリーであるスクロールポンプが使用されている。エドワーズ製ターボ分子ポンプの粗排気ポンプとして必要な真空度は約 13Pa であり、アネスト岩田製スクロールポンプはこの条件を十分に満たしている[3]。

上述の真空排気ユニットを常時運転することにより、輸送部の真空チャンバは約 10⁵から 10⁴ Pa の真空度を保持している。図 2.2 は、BL22XU の真空排気セクションの一例である。真空計の圧力値 は BL インターロックシステムによって常時監視されており、予め設定された閾値より真空度が悪く なった場合は、アラームが発報される。ひとたびアラームが発報されると、その重篤度に応じて真空 排気セクション両端のゲートバルブの閉操作や MBS の閉操作が行われ、実験が中断される。

図 2.2 真空排気セクション

2.3 スクロールポンプの構造と運転状況

2.3.1 スクロールポンプの構造

スクロールポンプは、同じ形をした2個のスクロールが中心を少しずらして壁が互いに線接触する (接触部分には、チップシールというシール材が取り付けられている)状態で、固定スクロールに対 して揺動スクロールが相対的に歳差運動を行う。その結果、三日月型の空間に閉じ込められた気体が 中心部に向かって圧縮され、中心部の穴から吐出される。排気部の構造の模式図を図2.3に示す。ア ネスト岩田製スクロールポンプの到達真空度は1.6 Paであり、単相200 V 仕様のモータでロータを 駆動させている。スクロールポンプの排気部は、機械接触により気体を封止して排気する構造の為、 連続運転によってチップシールの磨耗や駆動部分の部品の損耗が発生する。一年間ビームラインで通 常運転されたスクロールポンプの運転時間は約7000時間に達する。そのような状態でも排気性能を 維持する為、年一度のメンテナンスを実施し、8000時間毎にチップシールの交換および16000時間 毎にベアリング等の交換を必須としている。しかしながら、年一度のメンテナンスを待たずして動作 不良に陥るスクロールポンプも少なくない。

図 2.3 スクロールポンプ排気部の構造の模式図

2.3.2 スクロールポンプの運転状況

図 2.4 は BL22XU 輸送部における真空排気セクションの模式図である。輸送部の主要光学素子と、 ゲートバルブおよび真空排気セクション名を示す。各セクションにターボ分子ポンプとスクロールポ ンプを組み合わせた真空排気ユニット、もしくはスクロールポンプのみの真空排気ユニットが整備さ れており、図下の 〇 がそれを表している。VG9 及び VG10 には 1 つの真空チェンバーに 2 つの真 空排気ユニットが設置されている。VG16 には、4 枚の集光ミラー (M1, M2, M3, M4) が設置さ れており、M1 ミラー (VG16a)、M3 ミラー (VG16b) と M4 ミラー (VG16c) の各チャンバに真 空排気ユニットが設置されている。BL22XU では合計 21 台のスクロールポンプが常時又は適時運転 している。

図 2.4 BL22XU 輸送部における各真空セクションの模式図

記録に基づき、2009年から2013年までのスクロールポンプ動作不良の発生件数と内容を、真空排 気セクション別に統計を取った。セクション別のスクロールポンプ動作不良発生件数を図 2.5 に示す。 スクロールポンプの動作不良は、特定の真空排気セクションにおいて発生している。これらの真空排 気セクションに共通していることは、チャンバが大容量である、真空度の変動がある、使用頻度の高 い光学素子がある、温度が制御されていない環境にあるなど、真空排気ユニットに対して負荷の大き い状態にあることが挙げられる。なかでも動作不良発生件数が最も多いセクションが、低エネルギー 分光器(L_mono)を排気するセクションである。低エネルギー分光器は最も使用頻度の高い光学素 子であり、高エネルギー分光器(H_mono)との切り替えの際には、内部配管への液体窒素の注入・ 排出が行われるため、チャンバ内の真空度が大きく変動(10⁵から10² Pa)する。また、高エネルギ ー分光器の真空排気セクションにおいても、同じ理由でスクロールポンプの動作不良が発生している。 次に動作不良発生件数が多いのは、ミラーセクションである。分光器セクションと同じく光学素子を 格納しており、大容量のチャンバであることが原因となっている可能性がある。蓄積リング棟最下流 のセクションはパイプ状のチャンバを排気しているが、このチャンバは屋外に設置されており、大容 量かつ気温変化の影響が非常に大きい。これらのセクションで動作不良に陥ったスクロールポンプの 内部を確認すると、ほとんどの場合、スクロール内部に大量の白い粉が付着している。図 2.6 に異音 発生で回収されたスクロールポンプ内部の写真を示す。

図 2.5 BL22XU のスクロールポンプ動作不良発生件数

図 2.6 動作不良のスクロールポンプ内部

3. スクロールポンプ動作状況監視システム

3.1 はじめに

スクロールポンプが動作不良に陥る主な原因は、チップシールが異常に削れることによって発生す る白い粉がスクロール部に付着し、動作抵抗が増大するためである。その結果、正常運転時には接触 しないはずの金属部が接触して異音が発生する。このような状態で運転し続けると、モータに過負荷 が生じ駆動電流の増加に繋がる。また、チップシールが著しく磨耗した状態では、大気を効率よく排 気することが出来ない為、仕様で定められた真空度に達しない。

図 3.1 に、正常動作するスクロールポンプと動作不良のスクロールポンプについて、大気圧から運転し排気を行った場合の真空度とモータ電流値の時間変化を示す。この動作不良のスクロールポンプは、VG18 に設置し通常運転していたが、金属音が生じた為に撤去されたものである。動作不良のスクロールポンプを長時間運転させることは、周辺の機器にも大きな負荷がかかる為、真空度とモータ電流値の変化がある程度安定したと思われる運転開始から 10 分後まで測定を行った。運転開始後 10 分間における到達真空度は、正常動作しているスクロールポンプが 7.2 Pa に対し、動作不良のものは 52.8 Pa とはるかに高い値であった。後者のスクロールポンプの到達真空度は、真空排気ユニットにおいてターボ分子ポンプの補助ポンプとして使用するにはやや高く、ターボ分子ポンプの負荷を高める程度の値である。なお、正常動作しているスクロールポンプの到達真空度が仕様上の最高真空度 1.6 Pa に達していないのは測定が短時間である為で、約1時間後には 1.6 Pa を下回ることを確認している。またモータ電流値は、正常動作のスクロールポンプが 1.7 A 付近で安定しているのに対し動作不良のものは 2.5 A 付近と大きな値であった。これらの結果から、動作不良のスクロールポンプは真空度、モータ電流値ともに正常時より増大していることが確認され、正確な値も得ることができた。

以上の測定結果は、今回開発した SCP-MS を用いて測定したものである。次節より本システムについて説明する。

図 3.1 正常動作のスクロールポンプと動作不良のスクロールポンプの比較 (a)真空度、(b)電流値

3.2 装置構成

SCP-MSの装置概要を図 3.2 に示す。本システムは、放射光遮蔽ハッチ外からスクロールポンプの 動作不良を早期発見する為に開発したシステムである。計測対象は、スクロールポンプの真空度とモ ータ電流値であり、この二つの値を同時に連続測定する。これにより、ビームライン運転中であって も動作不良の兆候を捉えることが可能となる。表 3.1 に構成機器一覧を示す。

図 3.2 SCP-MS の装置概要

スクロールポンプの真空度を測定するために、吸気口の直上に表 3.1 中の1 に記す真空計を設置した。真空計で測定された真空度は専用のケーブルを介して表 3.1 中の2 に記す真空度表示器に入力され、電圧信号として外部出力される。

スクロールポンプのモータには、一定の回転数を保つ為に必要な電流が流れており、電流値は、ス クロール部分の摩擦などの回転抵抗を反映する値である。スクロール部分に摩擦が生じれば電流値は 大きくなる。電流値は、単相 200V 電源ケーブルの非接地線の一方に表 3.1 中の 3 に記すクランプメ ータを設置して測定される。出力コネクタは BNC コネクタであり、分岐 BNC 端子と BNC ケーブル を使用して電圧信号を外部出力する。

取り込まれた電圧信号のデータは、表 3.1 中の4 に記す電圧信号集録用デバイスを介してパソコンに 取り込まれる。

	機器名 型番	メーカー	出力電圧	写真
1	真空計 APG-M	EDWARDS	DC 電圧 2~10V	
2	真空度表示器 AGD コントローラ	EDWARDS		
3	クランプメータ CLAMP ON SENSOR 9675	HIOKI	AC 電圧 100mV/A	
4	電圧信号集録用デバイス NI USB-6008	National Instruments		

表 3.1 構成機器一覧

3.3 測定プログラム

本測定プログラムは、真空度の排気圧力値と電流値の連続測定を行いながら、測定データをファイルに随時書き込むものである。開発は、LabVIEW8.5を用いて行った。図 3.3 に 2 つの値の電圧信号 集録から測定データグラフ表示までのシーケンスとプログラム開発環境を示す。

図 3.3 測定シーケンス

本プログラムは、制御用プログラムと電圧信号集録用プログラム、そして測定データのモニタリン グプログラムで構成されている。制御用プログラムによって、測定条件等の設定(初期設定)を行い、 測定開始および終了の操作を行う。図 3.4 に制御用プログラム画面を示す。

操作手順を以下に示す。

- 1. 測定するスクロールポンプを選択。(図 3.4 内の 1:SP_1,SP_2,SP_3,SP_4 のいずれかを選択、 選択完了時は、左の緑ランプが点灯する。)
- 2. データ蓄積用ファイルを選択(図 3.4 内の 2:ファイルマークを押すと選択画面が表示される。)
- 3. 測定間隔を秒単位で入力(図 3.4 内の 3: 測定間隔(s))
- 4. 測定開始(図 3.4 内の 4: 測定開始ボタンを押す。)

図 3.4 制御用プログラム画面

測定を開始すると、計測器より出力された電圧信号が電圧信号集録用デバイスに取り込まれる。初 期設定されたレート(Hz)とサンプル数に従って電圧信号の測定が行われる。図 3.5 は、電圧信号集録 用プログラム画面であり、電圧測定の結果がグラフと数値で表示されている。真空計は DC 電圧を出 力するので電圧値は平均電圧値(DC)、クランプメータは AC 電圧を出力するので、測定結果より実効 値(RMS)を算出し電圧値として用いる。これらの電圧値から真空度とモータ電流値に変換する。なお、 測定中は、電圧信号集録プログラム画面は表示されず、真空度(Pa)とモータ電流値(A)がグラフと数値 で表示される。図 3.6 は真空度(Pa)とモータ電流値(A)を指定した時間間隔で収集した測定データのモ ニタリング画面である。真空度への変換は、今回用いた EDWARDS 社製の真空計(APG-M)の取扱説 明書内に記載されている電圧値に対応する真空度の対応表を利用した。図 3.7 中の表と〇はその対応 表を抜粋したものであり、3 次関数によるフィッティングを行うことにより電圧と真空度の関係式を 導出した(図 3.7 中の右下の表)。そして電流値の算出は、出力電圧が AC100mV/A であることによ り、実効値を 10 倍することで行われる。

図 3.5 電圧信号収録用プログラム画面

図 3.7 真空計の出力電圧(V)と真空度(Pa)のフィッティング結果

4. ビームラインへの導入

4.1 システムの設置状況

開発した SCP-MS をビームラインの特定の真空排気ユニットに設置して、システムの動作試験を行った。監視対象は、過去の統計より最も動作不良発生件数の多い、低エネルギー分光器(L_mono) が設置されている真空排気セクションである。監視対象のスクロールポンプに真空計とクランプメー タをそれぞれ取り付けた。ビームラインで使用されている真空排気ユニットはそのほとんどが放射光 遮蔽ハッチ内に設置されている。遮蔽ハッチの外からスクロールポンプの動作状況を監視する為に、 真空度とモータ電流値の計測機器に接続してある電圧信号用ケーブルを、ケーブルダクトを介して敷 設した。ハッチ外に設置した電圧信号集録用デバイスで出力された電圧信号を集録し、パソコンで測 定プログラムの制御を行った。図 4.1 に機器の模式図を示す。

図 4.1 ビームラインの真空排気ユニットに設置した SCP-MSの模式図

4.2 測定結果

この真空排気セクションには二台の真空排気ユニットが付属している。その内一台のスクロールポ ンプに本システムを設置しビームライン運転中に一ヶ月に及ぶ長期間の測定を行った。測定結果を図 4.2 に示す。上が通常インターロックシステムの中で測定している L_mono チャンバ内の真空度であ り、下の 2 つが今回導入したシステムで測定したスクロールポンプ直上の真空度及び電流値である。 また、一ヶ月のうちの一週間を抽出し、短期間の測定結果を図 4.3 に示す。

図 4.2 1ヶ月間のモニタリング測定結果

図 4.3 1週間のモニタリング測定結果

スクロールポンプの真空度は、数日中で 0.1 Pa 程度の変動があり、1ヶ月間の連続運転では、わず かな上昇傾向を示した。一方、L_mono チャンバ内の真空度はほとんど変化していない事から、スク ロールポンプ自体の性能低下の兆しが観測されたと考えられ、さらなる長期間測定の必要性及び本シ ステムの有効性が明らかになった。また、電流値については上記の2つの真空度との相関は見られず、 1日周期の変動が有るものの 0.05 V 程度の範囲で長期的に安定していることが分かった。

4.3 考察

本システムのビームライン導入による測定結果より、スクロールポンプの真空度に上昇傾向が見ら れるのは、スクロールポンプ内部のチップシールの磨耗によるものと考えられる。この変化は非常に わずかで緩やかであり、粗排気ポンプとして必要な真空度である 13Pa を十分に下回る性能を保持し ている為、ターボ分子ポンプの運転に影響するものではない。チップシールは 8000 時間に1 度交換 を必要とする部品である。監視対象のスクロールポンプは、前回メンテナンスより 2390 時間使用し ており、正常運転を行っている間、真空度が徐々に悪化していることが確認された。また、今回の測 定では、スクロールポンプの真空度の上昇と電流値は相関が見られなかったが、今後、測定を継続し ていくことにより、相関関係が明らかになると考えられる。なお、観測された1 日周期の変動の原因 については、現段階では不明である。今回の測定中にはチップシールの経年劣化以外の要因によるス クロールポンプの真空度、電流値、L_mono チャンバ内真空度の変化は確認されなかった。

本システムでの測定によって初めて排気ユニットを構成しているスクロールポンプのみの真空度を 長期間に渡り測定することに成功した。しかも非常に小さな真空度の変化をモニターすることができ るため、従来はスクロールポンプが動作不能に陥るまで発見できなかったが、このシステムを使用す れば動作不良の兆しが発生した時点で発見することができるようになった。

5. 今後の計画

本システムの目的は、スクロールポンプの動作不良の兆候をいち早く発見し、利用実験の中断を大幅に抑制することである。その為には、スクロールポンプの動作不良が発生する過程において、スクロールポンプの真空度とモータ電流値の変化をつぶさに捉えることが必要である。そこで得られたデータから、動作不良が発生したと判断される閾値を決定できれば、その閾値に測定値が上回るとアラームを発報するようなプログラムを構築することが可能になる。

その為には、動作不良の発生の瞬間を捉えるまで長期にわたり測定を継続していくことが必要であ る。今後も、比較的スクロールポンプの異常が発生する頻度の高い L_mono が付属している真空排気 セクションでモニタリング測定を継続していくのは勿論のこと、他のセクションでもモニタリング測 定を実施する計画である。距離の離れた複数の真空排気セクションでスクロールポンプの運転データ を収集可能にする為、使用機器の再選定、プログラムの改造等を行っていく予定である。

さらに、スクロールポンプが動作不良に陥る直接的な原因の探索も計画している。例えばスクロー ルポンプのフランジ内部の白い粉状の汚れを再現する為に、水蒸気を含んだ空気を吸気させる環境を バブラー等を利用して作り出し、動作不良を再現するといった実験である。動作不良が再現されれば、 そのような状態を引き起こす真空排気セクションの環境改善に役立てることが出来る。

多種多様な装置の集合体であるビームラインにおいては、スクロールポンプは一部の基本機器に過ぎない。しかしながら、スクロールポンプの特性をより理解し運用することで、より少ないリスク・ 労力でビームラインの安定稼動を実現させることが出来る。

参考文献

- Shobu, T., Tozawa, K., Shiwaku, H., Konishi, H., Inami, T. et. al., Wide band energy beamline using Si(111) crystal monochromators at BL22XU in SPring-8, AIP Conference Proc. 809, 2007, pp. 902-906.
- [2] Ohashi, H., Goto, S., Kishimoto, H., Murase, T., Isshiki, M., Suzuki, Y., Kimura, H., Takeshita, K. and Ishikawa, T., Vacuum system of X-ray beamlines of SPring-8, Nuclear Instruments and Methods in Physics Research A, 467-468, 2001, pp. 801-804.
- [3] 石川哲也 「3.2.1 移送式排気ポンプ」シンクロトロン放射光の基礎(大柳宏之編),丸善株式 会社,1996, pp. 150-178.

This is a blank page.

表 1. SI 基本単位						
甘大昌	SI 基本ì	単位				
盔半里	名称	記号				
長さ	メートル	m				
質 量	キログラム	kg				
時 間	秒	s				
電 流	アンペア	Α				
熱力学温度	ケルビン	Κ				
物質量	モル	mol				
光 度	カンデラ	cd				

表2.基本単位を用いて表されるSI組立単位の例						
如六星	SI 基本単位					
和立里	名称	記号				
面 積	平方メートル	m^2				
体積	立法メートル	m ³				
速 さ , 速 度	メートル毎秒	m/s				
加速 度	メートル毎秒毎秒	m/s^2				
波 数	毎メートル	m ⁻¹				
密度, 質量密度	キログラム毎立方メートル	kg/m ³				
面積密度	キログラム毎平方メートル	kg/m ²				
比 体 積	立方メートル毎キログラム	m ³ /kg				
電流密度	アンペア毎平方メートル	A/m^2				
磁界の強さ	アンペア毎メートル	A/m				
量濃度 ^(a) ,濃度	モル毎立方メートル	mol/m ⁸				
質量濃度	キログラム毎立法メートル	kg/m ³				
輝 度	カンデラ毎平方メートル	cd/m^2				
屈 折 率 ^(b)	(数字の) 1	1				
比透磁率的	(数字の) 1	1				
(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度						
(substance concentration) ともよばれる。						

(b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

	SI 旭立単位				
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方	
平 面 角	ラジアン ^(b)	rad	1 ^(b)	m/m	
立 体 角	ステラジアン ^(b)	sr ^(c)	1 (b)	m^{2/m^2}	
周 波 数	ヘルツ ^(d)	Hz	-	s ⁻¹	
力	ニュートン	Ν		m kg s ⁻²	
压力,応力	パスカル	Pa	N/m^2	$m^{-1} kg s^{-2}$	
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$	
仕 事 率 , 工 率 , 放 射 束	ワット	W	J/s	m ² kg s ⁻³	
電荷,電気量	クーロン	С		s A	
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$	
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$	
電気抵抗	オーム	Ω	V/A	m ² kg s ⁻³ A ⁻²	
コンダクタンス	ジーメンス	s	A/V	$m^{2} kg^{1} s^{3} A^{2}$	
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$	
磁束密度	テスラ	Т	Wb/m ²	$\text{kg s}^{2} \text{A}^{1}$	
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$	
セルシウス温度	セルシウス度 ^(e)	°C		K	
光東	ルーメン	lm	cd sr ^(c)	cd	
照度	ルクス	lx	lm/m^2	m ⁻² cd	
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹	
吸収線量,比エネルギー分与, カーマ	グレイ	Gy	J/kg	$m^2 s^2$	
線量当量,周辺線量当量,方向 性線量当量,個人線量当量	シーベルト ^(g)	Sv	J/kg	$m^2 s^{-2}$	
酸素活性	カタール	kat		s ⁻¹ mol	

酸素活性(カタール) kat [s¹ mol
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (a)へルツは周頻現象についてのみ、ペラレルは放射性核種の統計的過程についてのみ使用される。
 (a)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。やレシウス度とケルビンの
 (b)からさは同一である。したがって、温度差や理慮問摘を決す数値はどもらの単位で表しても同じである。
 (b)放射性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	SI 組立単位			
組立量	名称	記号	SI 基本単位による 表し方	
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹	
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²	
表 面 張 力	リニュートン毎メートル	N/m	kg s ⁻²	
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹	
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$	
熱流密度,放射照度	ワット毎平方メートル	W/m ²	kg s ⁻³	
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$	
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$	
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$	
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹	
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²	
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹	
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA	
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA	
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA	
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$	
透 磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²	
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$	
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$	
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA	
吸収線量率	ダレイ毎秒	Gy/s	$m^{2} s^{3}$	
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$	
放 射 輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	$m^2 m^{-2} kg s^{-3} = kg s^{-3}$	
酵素活性濃度	カタール毎立方メートル	kat/m ³	$m^{-3} s^{-1} mol$	

表 5. SI 接頭語						
乗数	接頭語	記号	乗数	接頭語	記号	
10^{24}	э 9	Y	10 ⁻¹	デシ	d	
10^{21}	ゼタ	Z	10 ⁻²	センチ	с	
10^{18}	エクサ	E	10 ⁻³	ミリ	m	
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ	
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n	
10^{9}	ギガ	G	10^{-12}	ピコ	р	
10^{6}	メガ	M	10^{-15}	フェムト	f	
10^3	+ 1	k	10 ⁻¹⁸	アト	а	
10^{2}	ヘクト	h	10^{-21}	ゼプト	z	
10^{1}	デカ	da	10^{-24}	ヨクト	v	

表6.SIに属さないが、SIと併用される単位						
名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
日	d	1 d=24 h=86 400 s				
度	۰	1°=(п/180) rad				
分	,	1'=(1/60)°=(п/10800) rad				
秒	"	1"=(1/60)'=(п/648000) rad				
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²				
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³				
トン	t	$1t=10^{3}$ kg				

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される剱値が実験的に待られるもの							
名称				記号	SI 単位で表される数値		
電	子 オ	ドル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J		
ダ	ル	F	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg		
統-	一原子	質量単	〔位	u	1u=1 Da		
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m		

表8. SIに属さないが、SIと併用されるその他の単位

名称	記号	SI 単位で表される数値
バール	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
水銀柱ミリメートル	mmHg	1mmHg=133.322Pa
オングストローム	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海 里	M	1 M=1852m
バーン	b	$1 \text{ b}=100 \text{ fm}^2=(10^{-12} \text{ cm})2=10^{-28} \text{m}^2$
ノット	kn	1 kn=(1852/3600)m/s
ネー バ	Np	の単位しの教徒的な関係は
ベル	В	対数量の定義に依存。
デジベル	dB -	

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{ m}^2 \text{ s}^{\cdot 1}$		
スチルブ	$^{\rm sb}$	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{m}^{\cdot 2}$		
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx		
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{-2} = 10^{-2} \text{ ms}^{-2}$		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ⁻¹		
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」				

は対応関係を示すものである。

表10. SIに属さないその他の単位の例					
名称				記号	SI 単位で表される数値
キ	ユ	IJ	-	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	ン	トゲ	ン	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ			ĸ	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		ン	7	γ	1 γ =1 nT=10-9T
フ	T.	ル	Ξ		1フェルミ=1 fm=10-15m
メー	ートル	系カラ	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ			ル	Torr	1 Torr = (101 325/760) Pa
標	準	大 気	圧	atm	1 atm = 101 325 Pa
力		IJ	-	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)
3	カ	17	~		$1 = 1 = 10^{-6}$ m