

DOI:10.11484/jaea-technology-2017-016

ウラン・プルトニウム混合酸化物 (MOX) 粉末の同位体希釈質量分析用 ウラン・プルトニウム混合スパイク調製の最適化

Preparation of Uranium and Plutonium Mixed Spike Optimized for MOX Analysis by Isotope Dilution Mass Spectrometry

堀籠 和志 田口 茂郎 山本 昌彦 久野 剛彦 駿河谷 直樹

Kazushi HORIGOME, Shigeo TAGUCHI, Masahiko YAMAMOTO, Takehiko KUNO and Naoki SURUGAYA

バックエンド研究開発部門 核燃料サイクル工学研究所 再処理技術開発センター 施設管理部

Technical Services Department
Tokai Reprocessing Technology Development Center
Nuclear Fuel Cycle Engineering Laboratories
Sector of Decommissioning and Radioactive Waste Management

July 2017

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp) より発信されています。

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Institutional Repository Section,

Intellectual Resources Management and R&D Collaboration Department, Japan Atomic Energy Agency.

2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2017

ウラン・プルトニウム混合酸化物(MOX)粉末の同位体希釈質量分析用 ウラン・プルトニウム混合スパイク調製の最適化

> 日本原子力研究開発機構 バックエンド研究開発部門 核燃料サイクル工学研究所 再処理技術開発センター 施設管理部

堀籠 和志、田口 茂郎、山本 昌彦、久野 剛彦、駿河谷 直樹

(2017年4月26日受理)

使用済核燃料の再処理工程を経て得られたウラン・プルトニウム混合酸化物(MOX)粉末溶解液の同位体希釈質量分析によるウラン、プルトニウムの含有量測定に最適化したスパイクを調製した。スパイクの母液として、ウランとプルトニウムの重量比が 1:2 となるウラン、プルトニウム混合溶液を、金属ウラン NBL CRM-116 と金属プルトニウム NBL CRM-126 をそれぞれ、重量法により正確に溶解して調製し、最終的に、本混合溶液をガラスバイアルに一定量ずつ分取してスパイクとした。本混合溶液のウラン及びプルトニウム調製値は、それぞれ 1.0530 ± 0.0008 mg/g (k=2) (235U: 93.114 wt%), 2.0046 ± 0.0019 mg/g (k=2) (239Pu: 97.934 wt%)であった。バリデーションとして、233U、242Pu をトレーサーとする逆 IDMS による濃度検定並びに、硝酸ウラニル溶液と硝酸プルトニウム溶液を混合調製した模擬 MOX 溶解液の平行分析により、調製濃度の妥当性を評価し、本スパイクが問題なく調製されていることを確認した。本スパイクは、MOX 粉末の溶解液の同位体希釈質量分析法によるウラン及びプルトニウムの含有量の測定に適用した。

核燃料サイクル工学研究所:〒319-1194 茨城県那珂郡東海村村松 4-33

Preparation of Uranium and Plutonium Mixed Spike Optimized for MOX Analysis by Isotope Dilution Mass Spectrometry

Kazushi HORIGOME, Shigeo TAGUCHI, Masahiko YAMAMOTO, Takehiko KUNO and Naoki SURUGAYA

Technical Services Department, Tokai Reprocessing Technology Development Center
Nuclear Fuel Cycle Engineering Laboratories,
Sector of Decommissioning and Radioactive Waste Management,
Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken

(Received April 26, 2017)

Uranium and plutonium mixed spikes have been prepared for the determination of uranium and plutonium in dissolved MOX solution by isotope dilution mass spectrometry. Mother solution was prepared gravimetrically by dissolving enriched uranium metal NBL CRM-116 and plutonium metal NBL CRM-126. Dissolved uranium and plutonium solutions were mixed, and then divided into individual vials. The uranium and plutonium concentrations after preparation given based on certified values of metals were 1.0530 ± 0.0008 mg/g (k=2) of uranium with a 235 U relative mass fraction of 93.114 wt% and 2.0046 ± 0.0019 mg/g (k=2) of plutonium with a 239 Pu relative mass fraction of 97.934 wt%, respectively. The concentrations of uranium and plutonium were confirmed by reverse isotope dilution mass spectrometry using tracer of 233 U and 242 Pu. Finally, the prepared spike was validated by parallel analysis of simulated sample of dissolved MOX solution. This spike was applied to measure the uranium and plutonium amount content of dissolved MOX solutions using isotope dilution mass spectrometry.

Keywords: MOX, IDMS, Isotope Dilution Mass Spectrometry, Spike

JAEA-Technology 2017-016

目 次

1. $\verb"dic"$ $"dic"$ $"$
2. 実験 · · · · · · · · · 2
2.1 試薬及びスパイク
2.1.1 試薬
2.1.2 スパイク・・・・・・・・・・・・・・・・・・・・・・・2
2.2 模擬 MOX 溶解液試料····· 3
2.3 使用機器
2.4 スパイク調製操作
2.4.1 標準物質
2.4.2 調製操作
2.5 分析操作 · · · · · · · 4
2.5.1 電位規制クーロメトリー・・・・・・・・・・・・・・・・・ 4
2.5.2 逆 IDMS······ 4
2.5.3 従来スパイク(LSD スパイク)の IDMS · · · · · · · 5
$2.5.4$ 本研究で調製した混合スパイクの IDMS $\cdots \cdots 5$
3. 結果及び考察 ······ 6
3.1 MOX 溶解液とスパイクの最適混合比の評価 · · · · · · · 6
3.2 プルトニウム標準母液の調製濃度の確認 $\cdots 6$
3.3 スパイク溶液のウラン及びプルトニウム濃度と同位体比の評価 \cdots 8
3.3.1 ウラン及びプルトニウム濃度とその不確かさ 8
$3.3.2$ ウラン及びプルトニウム同位体比とその不確かさ $\cdots \cdots 9$
3.4 スパイク溶液の調製濃度の妥当性確認 10
3.4.1 逆 IDMS による濃度確認 · · · · · · · · 10
3.4.2 模擬 MOX 溶解液の IAEA-LSD-21 スパイクとの平行分析 · · · · · · · 10
4. まとめ・・・・・・・・・・・11
参考文献 · · · · · · · · · · · · · · · · · · ·

Contents

1. INTRODUCTION····································
2. EXPERIMENTAL······ 2
2.1 Reagents and spike $\cdots 2$
2.1.1 Reagents · · · · · 2
2.1.2 Spike · · · · · 2
$2.2 Simulated \ sample \\ \cdots \\ 3$
$2.3 Apparatus \cdots 3$
2.4 Spike preparation $\cdots 3$
2.4.1 Standard material 3
$2.4.2 \text{Preparation procedure} \cdots \qquad \qquad 3$
$2.5 \text{Analytical procedure} \cdot \cdot$
$2.5.1 \text{Controlled-potential coulometry} \cdot \cdot$
2.5.2 Reverse isotope dilution mass spectrometry $\cdots \qquad \qquad 4$
2.5.3 Isotope dilution mass spectrometry using conventional spike (LSD spike)
5
2.5.4 Isotope dilution mass spectrometry using mixed spike prepared by this
study · · · · · · 5
B. RESSULTS and DISCUSSION····· 6
3.1 Evaluation of optimum mix ratio of dissolved MOX solution and spike · · · · · · 6
3.2 Verification of prepared concentration of plutonium standard solution · · · · · · 6
3.3 Evaluation of concentrations and isotope ratios of uranium and plutonium in
spike 8
3.3.1 Concentrations and uncertainty of uranium and plutonium
3.3.2 Isotope ratios and uncertainty of uranium and plutonium
3.4 Verification of prepared concentrations of spike solution
3.4.1 Verification of concentrations by reverse isotope dilution mass spectrometry
3.4.2 Parallel analysis of simulated dissolved MOX solution by IAEA-LSD-21 spike
4. CONCLUSIONS
REFERENCES · · · · · · · · · · · · · · · · · · ·

JAEA-Technology 2017-016

表リスト

表 1	模擬 MOX 溶解液試料の組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
表 2	EMF 評価に使用した MOX 溶解液及びスパイクの同位体比・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
表 3	電子天秤による重量測定の不確かさ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
表 4	プルトニウム金属及びプルトニウム標準溶液秤量時の浮力補正係数と不確かさ・・・	13
表 5	プルトニウム標準母液のプルトニウム調製濃度の不確かさ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
表 6	スパイク溶液調製における各秤量値の浮力補正係数と不確かさ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
表 7	スパイク溶液のウラン及びプルトニウム濃度の不確かさ	15
表 8	スパイク溶液のウラン及びプルトニウムの同位体比	16
表 9	逆 IDMS によるスパイク溶液の分析結果 · · · · · · · · · · · · · · · · · · ·	16
表 10	本研究で調製した混合スパイクの組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
表 11	混合スパイクと IAEA-LSD-21 スパイクによる模擬 MOX 溶解液の分析値の比較	
		16
	図リスト	
図 1		1 \square
13d O	スパイクの調製フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
図 2	従来スパイク (LSD スパイク) を用いた分析フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
図 3	従来スパイク (LSD スパイク) を用いた分析フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18 18
	従来スパイク (LSD スパイク) を用いた分析フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18 18
図 3	従来スパイク (LSD スパイク) を用いた分析フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18 18 19 19

This is a blank page.

1. はじめに

東海再処理施設のプルトニウム転換技術開発施設(以下、転換施設)は、使用済核燃料から分離・回収した硝酸ウラニル溶液と硝酸プルトニウム溶液の混合溶液から、プルトニウム・ウラン混合酸化物粉末(以下、MOX)を製造する施設である。転換施設で製造された MOX については、核物質の量を正確に把握する計量管理を目的に MOX 中のウラン及びプルトニウムの含有量の分析が必要となる。ウラン及びプルトニウムの分析には、MOX を溶解した後、絶対分析法の一つである同位体希釈質量分析法(Isotope Dilution Mass Spectrometry, 以下 IDMS)1~3)が適用されている。IDMS は、分析対象試料に、同位体組成の異なるスパイクとよばれる標準試料を既知量添加し、スパイク添加前後の試料の同位体組成を質量分析計にて測定し、その同位体組成の変化から濃度を求める手法である。本分析法は、極めて高精度な分析結果が得られることから、ウラン、プルトニウムの核物質計量管理のための分析法としても国際的にも広く認知されている手法である。

IDMS における精度は、同位体比の測定精度、特にスパイクと分析対象試料の混合物の同位 体比の測定精度に支配される。そのため、高精度な分析を行うためには、混合物の同位体比測 定の不確かさが最小となるスパイクを適用することが重要となる。これまで、MOX 溶解液を 対象とした IDMS では、ウラン数十 mg (²³⁵U 含有率約 20%)、プルトニウム数 mg (²³⁹Pu 含有率約 98%) を 1 つのバイアル内に乾燥し、固着させた LSD (Large-Sized Dried) スパイ ク ∜と呼ばれるスパイクを適用してきた。しかし、LSD スパイクは、試料中のウランとプルト ニウムの濃度比が 100:1 程度の使用済燃料溶解液の IDMS 用に最適化されたものであり、プ ルトニウムに対するウランの含有比が高い。そのため、LSD スパイクと MOX 溶解液の混合物 のプルトニウムの測定不確かさが最小になる割合で LSD スパイクと MOX 溶解液を混合した 場合、混合物中のウランの混合比が最適とならず、測定不確かさが大きくなる。そのため、 MOX 溶解液に LSD スパイクを適用する場合は、2本の LSD スパイクを用意し、ウラン、プ ルトニウムのそれぞれについて、測定不確かさが最小となる割合で、MOX 溶解液と LSD スパ イクを混合する必要があり、前処理操作が煩雑となった。この課題を解決するため、スパイク と MOX 溶解液を混合した際に、一つのスパイクでウランとプルトニウムともに測定不確かさ が最小となるウラン、プルトニウムの含有比を有するウラン、プルトニウム混合スパイクを新 たに調製した。

2. 実験

2.1 試薬及びスパイク

2.1.1 試薬

・抽出クロマトグラフィー Eichrom TEVA-resin 100-150 μm

・陰イオン交換樹脂 Bio-Rad AG1-X2 200-400 mesh

• 硝酸

関東化学 試薬特級 60-61%

· 過酸化水素水 関東化学 30-33.5%

• 硫酸

和光純薬 試薬特級 95%

フッ化水素酸 関東化学 試薬特級 60-61%

・硫酸第一鉄・7 水和物 関東化学 試薬特級 99.0%-102.0%

・アミド硫酸関東化学 試薬特級 >99.5%

・亜硝酸ナトリウム関東化学 試薬特級 >98.5%

・L-アスコルビン酸 関東化学 試薬特級

• 純水

純水水製造装置 RFD240NA (ADVANTEC) で精製したイオン交換水を、さらに Milli-Q Academic A10 (Merck Millipore Corp.) で精製したものを使用した。

2.1.2 スパイク

・IRMM-046 スパイク

IRMM, 242 Pu abundance : 94.3049 %(mass), 242 Pu/ 239 Pu atomic ratio : 451.843 233 U abundance : 98.0053 %(mass), 233 U/ 238 U atomic ratio : 121.158

・IAEA-LSD-21 スパイク

IAEA, LSD (SAL-8565)

 $U\ concentration \div 8.1833\ wt\%,\ Pu\ concentration \div 0.39973\ wt\%$ $^{235}U\ abundance \div 19.495\ wt\%,\ ^{239}Pu\ abundance \div 97.765\ wt\%$

 235 U/ 238 U atomic ratio : 0.246151, 240 Pu/ 239 Pu atomic ratio : 0.022428

2.2 模擬 MOX 溶解液試料

東海再処理施設において使用済燃料から回収された硝酸プルトニウム溶液と硝酸ウラニル溶液を、ウランとプルトニウムの質量比が1になるように混合して模擬 MOX 溶解液試料を調製した。組成を表1に示す。

2.3 使用機器

(1)電子天秤

MS204S (METTLER TOLEDO)

(2)表面電離型質量分析計

TRITON (Thermo Fisher Scientific)

(3)電位規制クーロメトリー装置 (クーロメーター、電解セル)

米国サバンナリバー国立研究所で開発された ISO12183⁵に準拠したクーロメトリー装置を使用した。本装置は、測定に先立ち、SI 単位系にトレーサブルな基準器を用いた校正を実施した。

2.4 スパイク調製操作

2.4.1 標準物質

本研究で調製したスパイクの標準物質には、以下に示す NBL (<u>N</u>ew <u>B</u>runswick <u>L</u>aboratory) 製の標準金属(金属ウラン及び金属プルトニウム)を使用した。

金属ウラン NBL CRM-116

 99.967 ± 0.006 wt% (k=2)

²³⁵U: 93.114 wt%

金属プルトニウム NBL CRM-126

 99.866 ± 0.018 wt% (k=2)

²³⁹Pu: 97.934 wt%

Atomic ratio: ²⁴⁰Pu/²³⁹Pu 0.20959 (2014年12月時点で半減期補正)

2.4.2 調製操作

スパイクの調製フローを図 1 に示す。 235 U 約 93%の標準物質である金属ウラン NBL CRM-116 を硝酸(8 35 mol/dm³)に浸漬し、金属表面の酸化被膜を除去した。その後、純水及びアセトンを用いて金属表面の洗浄を行い、ろ紙上で風乾した後、正確に秤量し、それをウラン金属重量とした。このウラン金属を石英製の三角フラスコ内に入れ、硝酸(8 35 mol/dm³)を添加し、 35 5 35 0のホットプレート上で約 3 日間加熱・溶解した。溶解後、室温まで放冷して硝酸(3 35 mol/dm³)で約 50 35 mLまで希釈し、ウラン標準母液(約 35 mol/dm³)で約 50 35 mLまで希釈し、ウラン標準母液(約 35 mol/dm³)とした。 35 Pu 約 35 mol/mp が 35 mol/mp である金属プルトニウム NBL CRM-126 を白金るつぼに入れ、 35 mol/mp で 3

ウム金属を、石英製の三角フラスコ内に入れ、フッ化水素酸 (0.1 mol/dm^3) と硝酸 (8 mol/dm^3) の混酸を添加し、 95 ± 5 $^{\circ}$ Cのホットプレート上で約7日間加熱し、溶解した。溶解後、室温まで放冷して硝酸 (3 mol/dm^3) で約100 mL に希釈し、プルトニウム標準母液 (約 8.94 mg/g) とした。

ウラン標準母液をメスフラスコに一定量採取、秤量し、さらにプルトニウム標準母液を添加して秤量した。次に硝酸($3 \, mol/dm^3$)により約 $1 \, L$ まで希釈し、その溶液重量を正確に秤量してスパイク溶液とした。本スパイク溶液は、ガラスバイアルに約 $1.1 \, g$ ずつ正確に分取、秤量し、溶液のまま保管した。

2.5 分析操作

2.5.1 電位規制クーロメトリー

2.5.2 逆 IDMS

逆 IDMS は以下のとおり実施した。はじめに、混合スパイク溶液の一定量を分取し、電子 天秤により正確に秤量した後、233U、242Puをトレーサーとするスパイク(IRMM・046b)の一定量を添加し、電子天秤により正確に秤量した。この試料をマグネチックスターラーにより、撹拌して完全に混合した後、硫酸第一鉄とアミド硫酸を添加してプルトニウムの原子価を Pu(III)に還元し、次に亜硝酸ナトリウムを添加してプルトニウムの原子価を Pu(IV)に調整した。次に、酸濃度を調整するため、この溶液をホットプレート上で乾固寸前まで濃縮した後、硝酸(8 mol/dm³)で希釈した。これを陰イオン交換樹脂(AG1-X2)によりウランとプルトニウムを逐次分離した。分離したプルトニウム溶液については、さらに固相抽出樹脂(TEVA-resin)により、混入しているウランを除去した。ウランとプルトニウムの各溶液は、それぞれ、乾固寸前まで蒸発・濃縮した後、硝酸(1 mol/dm³)で希釈してウラン、プルトニウム濃度を調整後、フィラメントに塗布し、表面電離型質量分析計によりウラン及びプルトニウムの各同位体比を測定してウラン及びプルトニウム濃度を算出した。ウラン及びプルトニウムの同位体組成については、スパイクを添加していない試料に対して、上述と同様の前

処理を行い、ウランとプルトニウムを相互分離した後、表面電離型質量分析計により各同位 体比を測定して同位体組成を算出した。

2.5.3 従来スパイク (LSD スパイク) の IDMS

LSD スパイクによる模擬 MOX 溶解液のウラン及びプルトニウムの分析フローを図 2 に示す。プルトニウムの分析は、LSD スパイクのガラスバイアルに模擬 MOX 溶解液を約 1.1 g 添加し、電子天秤により添加量を正確に秤量した。この試料をホットプレートにより加熱した後、マグネチックスターラーを用いて撹拌して、LSD スパイクと模擬 MOX 溶解液を完全に混合した。このガラスバイアルから一部を分取し、2.5.2 項と同様にウランとプルトニウムの分離を行い、表面電離型質量分析計により同位体比を測定してウラン及びプルトニウム濃度を算出した。

ウランの分析は、LSD スパイクに硝酸を添加し、ホットプレートを用いて溶解した後、約 25 倍に希釈した溶液を LSD スパイク溶解液として約 $1.1\,g$ をガラスバイアルに分取し、電子 天秤により正確に秤量した。これに模擬 MOX 溶解液を同量の約 $1.1\,g$ 添加し、電子天秤により添加量を正確に秤量した。この試料をマグネチックスターラーを用いて撹拌して、LSD スパイク溶解液と模擬 MOX 溶解液を完全に混合した。このガラスバイアルから一部を分取し、2.5.2 項と同様にウランとプルトニウムの分離を行い、表面電離型質量分析計により同位体比を測定してウラン及びプルトニウム濃度を算出した。

2.5.4 本研究で調製した混合スパイクの IDMS

本研究で調製した混合スパイク溶液による模擬 MOX 溶解液のウラン及びプルトニウムの分析フローを図3に示す。はじめに、混合スパイク溶液の約1.1gが分取(分取量は、予め秤量してある)されているガラスバイアルに模擬 MOX 溶解液を約1.1g添加し、電子天秤により添加量を正確に秤量した。この試料をマグネチックスターラーを用いて撹拌して、混合スパイク溶液と模擬 MOX 溶解液を完全に混合した。このガラスバイアルから一部を分取し、2.5.2 項と同様にウランとプルトニウムの分離を行い、表面電離型質量分析計により同位体比を測定した。

3. 結果及び考察

3.1 MOX 溶解液とスパイクの最適混合比の評価

IDMS は、試料とスパイク及びその混合液の同位体比の見かけの変化から各元素の濃度を算 出する方法であるため、高精度な分析値を得るためには、試料とは同位体組成が大きく異なる スパイクを適用し、同位体比の見かけの変化を大きくすることで、測定の不確かさを最小化す ることができる。本研究では、ウラン、プルトニウムのそれぞれについて、同位体希釈法の理 論式を元に偏微分した以下の式(1)から、MOX 溶解液とスパイクの混合比(原子数比)に対 する誤差の大きさ EMF(Error Magnificent Factor)を評価し、MOX 溶解液とスパイクの最 適混合比を求めた 7。本評価に使用した MOX 溶解液及びスパイクの同位体比を表 2 に示す。 MOX 溶解液の同位体比は東海再処理施設の代表的な MOX 溶解液の同位体比を、スパイクの 同位体比は金属ウラン(NBL CRM-116)及び金属プルトニウム(NBL CRM-126)の認証値 を使用した。MOX 溶解液とスパイクの原子数比(q)と EMF の関係を図 4 に示す。ウランに ついては、q が $0.1\sim1$ の範囲において EMF は最小値となり、プルトニウムについては、q が 約3.5において EMF は最小値となった。本調製における最適混合比は、ウランについては、 EMF が最小値となる q = 0.5 (試料:スパイク=1:0.5)、プルトニウムについては、q が 1 ~12 の範囲で、スパイク中のプルトニウムの標準物質の使用量が最も少なくできる q = 1 (試料:スパイク=1:1) とした。本スパイクを適用する MOX 溶解液は、ウランとプルトニ ウムの質量比が 1:1 であることから、スパイク中のウランとプルトニウムの質量比を 1:2 と したウラン、プルトニウム混合溶液をスパイク溶液として調製することとした。

$$\left[\frac{\sigma(q)}{q}\right]^{2} = \frac{(1+q)^{2}(1+R_{x})^{2}}{q^{2}(R_{y}-R_{x})^{2}(1+R_{y})^{2}} \varepsilon^{2}R_{y}^{2} + \frac{(1+q)^{2}(1+R_{y})^{2}}{(R_{y}-R_{x})^{2}(1+R_{x})^{2}} \varepsilon^{2}R_{x}^{2} + \frac{\left[qR_{x}(1+R_{y}) + R_{y}(1+R_{x})\right]^{2} \left[q(1+R_{y}) + (1+R_{x})\right]^{2}}{q^{2}(R_{y}-R_{x})^{2}(1+R_{x})^{2}(1+R_{y})^{2}} \varepsilon^{2} \tag{1}$$

ここで、

 $\sigma(q):q$ の標準偏差

R_x: MOX 溶解液の同位体比の測定値

R_v:スパイクの同位体比の測定値

q : 試料とスパイクの原子数 (モル) の比 (スパイク/試料)

ε:同位体比測定の相対標準偏差

3.2 プルトニウム標準母液の調製濃度の確認

プルトニウム標準母液の調製濃度は、溶解前に予め秤量した金属プルトニウムの重量に基づき算出することから、溶解時に金属プルトニウムが全量溶解していることが調製濃度を正確に評価するうえで重要となる。金属プルトニウムは黒色であり、その溶解液も濃黒褐色で

あることから、金属プルトニウムが完全に溶解していることを目視により判断することが難しい。そこで、プルトニウム標準母液の一部を分取し、1次分析法である電位規制クーロメトリーによりプルトニウム濃度を測定し、調製濃度との比較により、金属プルトニウムが完全に溶解していることを確認することとした。

プルトニウム標準母液の調製濃度とクーロメトリーによる測定値とを比較するにあたり、 プルトニウム標準母液の調製濃度の不確かさを評価した 6 。プルトニウム標準母液の調製濃度の不確かさは、プルトニウム標準母液の調製に係わる、①電子天秤による秤量値 6 (W)、②標準金属の純度 6 (P1)、③秤量値の浮力補正係数 6 (K)の各標準不確かさを評価し、これらの標準不確かさを合成し求めた。不確かさの算出には 6 ISO-GUM 8 を使用した。各標準不確かさの評価結果を以下に示す。

$$Sample_{Pu}(WT\%) = \left(\frac{WPu \times P_1 \times K_1}{WT_1 \times K_2}\right)$$
 (2)

ここで

WPu: 金属プルトニウムの重量(g)

 P_1 : 金属プルトニウムの純度(%)

 $WT_1: プルトニウム標準溶液の希釈重量(g)$

K₁:金属プルトニウムの浮力補正係数

K2: プルトニウム標準溶液の浮力補正係数

① 電子天秤による秤量値(W)の不確かさ

電子天秤による秤量値の不確かさの構成要素として、A. 校正用分銅の不確かさ、B. 天秤の繰り返し精度、C. 最小有効数字の丸め、D. 天秤の直線性、E. 校正用分銅の経年劣化、F. 空気の浮力補正を考慮した。 $A\sim D$ については、使用した電子天秤のメーカーの公称値を参照し、E、F については、参考文献 9,10 を参考に評価を行った。電子天秤の秤量値に対する合成標準不確かさを表 3 に示す。A から F までの各不確かさ要因を合成した電子天秤による秤量値の合成標準不確かさは、 ± 0.26 mg であった。スパイク調製における各秤量値は、全て本不確かさを有するものとして評価した。

- ② 金属プルトニウムの純度 (P_1) の不確かさ 標準金属の純度の不確かさは、NBL が保証する不確かさ±0.018 wt% (k=2)を適用した。
- ③ 浮力補正係数 (K) の算出と不確かさ 浮力補正係数の算出式を以下に示すっ。

$$K = \left(1 - \frac{\rho_A}{\rho_C}\right) / \left(1 - \frac{\rho_A}{\rho_S}\right) \tag{3}$$

$$\rho_{\rm A} = (3.48444 \times P - (0.00252 \times t - 0.020582) \times h)/(273.15 + t)/1000 \tag{4}$$

ここで

 ρ_A : 空気の密度 (g/cm^3)

P: 気圧(hPa)

t:温度(°C)

h:湿度(%)

 ρ_c : 分銅の密度 (g/cm^3) ρ_s : 秤量物の密度 (g/cm^3)

気温、湿度、気圧は、それぞれ秤量時における実測値を使用し、その不確かさは ± 10 $^{\circ}$ $^{\circ}$ ± 10 $^{\circ}$ $^{\circ}$

クーロメトリーによる分析値と調製値の比較を図 5 に示す。プルトニウム標準母液の調製値 8.9403 ± 0.0082 mgPu/g (k=2)に対して、クーロメトリーによる分析値は 8.9414 ± 0.0036 mgPu/g (k=2)であり、両者の分析値は、不確かさの範囲内で良好に一致した。したがって、金属プルトニウムは完全に溶解していたと判断し、プルトニウム標準母液の調製 濃度を、そのままプルトニウム標準母液の濃度とした。

3.3 スパイク溶液のウラン及びプルトニウム濃度と同位体比の評価

3.3.1 ウラン及びプルトニウム濃度とその不確かさ

図 1 に示す調製フローに従い調製したスパイク溶液中のウラン及びプルトニウム濃度はそれぞれ、式(5)、式(6)から算出される。スパイク溶液のウラン及びプルトニウム濃度の合成標準不確かさは、スパイク溶液中のウラン及びプルトニウム濃度の算出に係わる、秤量値、標準金属の純度及び浮力補正係数の各標準不確かさを求め、それらを合成して求めた。

電子天秤による秤量値(W)の不確かさは 3.2 ①で評価した値を使用した。標準金属の純度(U1、P1)の不確かさは、NBL の保証値の不確かさを使用した。秤量時の浮力補正係数(K)の不確かさは 3.2 ③と同様の方法により秤量物毎に求めた(表 6)。スパイク溶液中のプルトニウム濃度及びウラン濃度の標準不確かさのバジェット表を表 7 に示す。その結果、ウラン濃度とその不確かさは 1.0530 ± 0.0008 mg/g (k=2)、プルトニウム濃度とその不確かさは 2.0046 ± 0.0019 mg/g (k=2)であった。なお、スパイク溶液のウラン及びプルトニウム濃度の合成標準不確かさの約 90 %が、標準金属の秤量値に起因するものであった。

$$Spike_{U}(wt\%) = \left(\frac{WU \times U_{1} \times K_{5}}{WT_{2} \times K_{6}}\right) \times WC \times K_{7} \times \frac{1}{WD \times K_{8}} \times WE \times K_{9}$$

$$\times \frac{1}{WB \times K_{4}} \tag{5}$$

ここで

WU: 金属ウランの重量(g)

U₁: 金属ウランの純度(%)

 WT_2 : ウラン標準溶液の希釈重量(g)

WC: ウラン(2次)標準溶液へのウラン標準溶液の添加量(g)

WD: ウラン(2次)標準溶液の定量重量(a)

WE: スパイク溶液へのウラン標準溶液の添加量(g)

WB : スパイク溶液の定量重量(g)

K4:スパイク溶液調製時の浮力補正係数

K₅: 金属ウランの浮力補正係数

K6: ウラン標準溶液の浮力補正係数

K₇: ウラン標準溶液添加時の浮力補正係数

K₈: ウラン (2次) 標準溶液調製時の浮力補正係数

Ko: ウラン(2次)標準溶液添加時の浮力補正係数

$$Spike_{Pu}(wt\%) = \left(\frac{WPu \times P_1 \times K_1}{WT_1 \times K_2}\right) \times WA \times K_3 \times \frac{1}{WB \times K_4}$$
(6)

ここで

WPu: 金属プルトニウムの重量(g)

P₁: 金属プルトニウムの純度(%)

 $WT_2:$ プルトニウム標準溶液の希釈重量(g)

WA: U, Pu スパイク溶液へのプルトニウム標準溶液の添加量(g)

WB: U, Pu スパイク溶液の定量重量(g)

K₁:金属プルトニウムの浮力補正係数

K2:プルトニウム標準溶液の浮力補正係数

K₃:プルトニウム標準溶液添加時の浮力補正係数

K₄:スパイク溶液調製時の浮力補正係数

3.3.2 ウラン及びプルトニウム同位体比とその不確かさ

スパイク溶液のウラン及びプルトニウムの同位体比は、表面電離型質量分析計による全量蒸発(TE)法により測定して決定した。TE法により測定された同位体比の不確かさは、繰返し

測定の標準偏差から算出し、校正に係わる不確かさは、認証標準物質の同位体比測定結果が、認証値に対して有意な差があるとは言えないので無視した。測定に先立つウラン及びプルトニウムの分離操作は n=3 で行い、それぞれ分離した試料について n=2 で測定し、計 6 回分の測定結果を得た。結果を表 8 に示す。 235 U/ 238 U の拡張不確かさは 0.047 % (k=2) であり、 240 Pu/ 239 Pu の拡張不確かさは 0.023 % (k=2) であった。

3.4 スパイク溶液の調製濃度の妥当性確認

3.4.1 逆 IDMS による濃度確認

スパイク溶液のウラン及びプルトニウムの調製濃度の妥当性を確認するため、スパイク溶液のウラン及びプルトニウム濃度を逆 IDMS により測定した。逆 IDMS による分析結果を表 9 に、調製値との比較を図 6 に示す。調製値と逆 IDMS による各分析値は、ウラン、プルトニウムともに、不確かさの範囲内で良好に一致した。したがって、本スパイクの調製に係わる一連の操作には問題はないと言えることから、調製値をそのままスパイク溶液のウラン、プルトニウム濃度とした。スパイク溶液の調製値を表 10 に示す。

3.4.2 模擬 MOX 溶解液の IAEA-LSD-21 スパイクとの平行分析

本研究で調製した混合スパイクの MOX 溶解液への適用性を評価するため、本研究で調製した混合スパイクと IAEA において調製された LSD スパイク (IAEA-LSD-21) による模擬 MOX 溶解液の平行分析を行い、その分析値を比較した。IAEA-LSD-21 による分析は、IAEA-LSD-21 をウラン分析用とプルトニウム分析用に 6 本用意し、ウラン分析用については、IAEA-LSD-21 を予め約 25 倍に希釈したものを使用した。分析結果を表 11 に示す。 ウラン、プルトニウムともに、本研究で調製したスパイクと IAEA-LSD-21 によって得られた分析結果は良好に一致した。 両スパイクによる分析結果の等分散の検定(F 検定)を行った結果、各スパイクによる分析値の分析精度には、有意水準 5%で有意な差がある(分析精度が等しくない)とは言えないことを確認した。

また、本研究で調製した混合スパイクは、1 つのスパイクで MOX 溶解液中のウラン及びプルトニウムそれぞれに対して、IDMS における不確かさを最小にする最適な割合で混合することが可能である。そのため、本スパイクを適用した場合の MOX 溶解液とスパイクの混合操作から、ウランとプルトニウムを分離するまで一連の前処理操作は、図 3 に示すとおり、従来のLSD スパイクを使用した場合の前処理操作(図 2)と比較して簡略化でき、前処理時間の短縮を図ることができた。

4. まとめ

本研究では、MOX 溶解液の IDMS によるウラン及びプルトニウムの含有量測定に最適化したウランとプルトニウムの質量比 (Pu/U) が約2となるウラン・プルトニウム混合スパイクを調製した。本混合スパイクについては、233U、242Pu をトレーサーとする逆 IDMS によるウラン及びプルトニウム濃度の検定並びに本スパイクと IAEA-LSD-21 スパイクによる模擬 MOX溶解液試料の平行分析を行い、本スパイクは問題なく調製されていることを確認した。

本混合スパイクについては、東海再処理施設で製造された MOX の溶解液の IDMS 用のスパイクとして適用し、従来の LSD スパイクと比較して MOX 溶解液とスパイクの混合からウランとプルトニウムを分離する一連の前処理操作の簡略化、分析時間の短縮化を図ることができた。

参考文献

- 1) S.K. Aggarwal et al., Determination of the Plutonium concentration by isotope dilution mass spectrometry using ²³⁹Pu as a Spike, J. Radioanal. Nucl. Chem., vol. 93, no.3, 1985, pp.141-152.
- 2) W. Lycke et al., NBS special publication, no.582, 1980, pp.93-97.
- 3) ASTM C1672-17, Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer.
- 4) Surugaya, N. et al, Preparation, Certification and Validation of a Stable Solid Spike of Uranium and Plutonium Coated with a Cellulose Derivative for the Measurement of Uranium and Plutonium Content in Dissolved Nuclear Fuel by Isotope Dilution Mass Spectrometry, ANAL. SCI., vol.24, 2008, pp.247-251.
- 5) ISO2010-040:2016, Nuclear fuel technology controlled potential coulometry assay of plutonium, Third Edition, ISO12183: 2016.
- 6) 山本昌彦ほか, 電位規制クーロメトリーによる硝酸プルトニウム溶液の精密分析と不確かさ評価, JAEA-Technology 2010-040, 2010, 28p.
- 7) 駿河谷直樹ほか, 酢酸セルロース化合物をコーティング剤としたウラン・プルトニウム分析用標準物質の開発, サイクル機構技報 18,2003, pp.83-90.
- 8) JCGM / WG1, Guide to the expression of uncertainty in measurement (GUM), JCGM100:2008.
- 9) 株式会社エーアンド・ディ, 「不確かさ」資料 http://www.aandd.co.jp/adhome/pdf/tech_doc/balance/uncertainty.pdf, (参照: 2016 年 10 月 25 日).
- 10) 都倉正洋ほか, 計測における不確かさの評価, 第71回日本分析化学会有機微量分析研究懇談会 第65回計測自動制御学会力学計測部会 合同シンポジウム講演要旨集, 2004.
- 11) 日本原子力学会: "プルトニウム燃料工学", 1998, p35.
- 12) 館盛勝一ほか, ウラン、プルトニウム溶液系の臨界計算・ I (溶液密度と原子個数密度の考察), JAERI-M 83-047, 1983, 66p.

表 1 模擬 MOX 溶解液試料の組成

²³⁵ U/ ²³⁸ U(原子数比)	0.0068733
²⁴⁰ Pu/ ²³⁹ Pu(原子数比)	0.4273141
U/Pu(質量比)	1.0588

表 2 EMF 評価に使用した MOX 溶解液及びスパイクの同位体比

	MOX	スパイク
²³⁵ U/ ²³⁸ U(原子数比)	0.0053	17.026
²⁴⁰ Pu/ ²³⁹ Pu(原子数比)	0.3614	0.0211

表3 電子天秤による重量測定の不確かさ

不確かさの要因	値 (mg)	確率分布	標準不確かさ (mg)
A:校正用分銅の不確かさ	0.2	正規	0.1
B: 天秤の繰り返し精度	0.1	正規	0.1
C:最小有効数字の丸め	0.1	三角	0.041
D:天秤の直線性	0.2	正規	0.2
E:校正分銅の経年劣化	0.1	一様	0.05
F:空気の浮力補正	0.1	一様	0.058
合成標準不確かさ			0.260
拡張不確かさ (<i>k</i> =2)	_	_	0.6%

[※]最小有効数字以下の値を切り上げた。

表 4 プルトニウム金属及びプルトニウム標準溶液秤量時の浮力補正係数と不確かさ

秤量対象	浮力補正係数	標準不確かさ (k=2)
K1:金属プルトニウム	0.999910	0.000017 (0.0017%)
K2:プルトニウム標準溶液	1.000911	0.000120 (0.012%)

表 5 プルトニウム標準母液のプルトニウム調製濃度の不確かさ

不確かさの要因	値	拡張不確かさ (<i>k</i> =2)	寄与率(%)
①電子天秤による秤量			
Pu	1.0057	0.00090	94.4
T1	112.2192	0.00090	0.0
②標準金属の純度			
P1	0.99859	0.00018	3.8
③浮力補正係数			
K1	0.999910	0.000017	0.0
K2	1.000911	0.000120	1.7
Pu 標準母液(mg/g)	8.9403	0.0082 (0.092%)	

[※]最小有効数字以下の値を切り上げた。

表 6 スパイク溶液調製における各秤量値の浮力補正係数と不確かさ

秤量対象	浮力補正係数	標準不確かさ (k=2)
K1:金属 Pu	0.999910	0.000017 (0.0017%)
K2 : Pu 標準溶液	1.000911	0.000120 (0.012%)
K3:Pu 標準溶液添加量	1.000917	0.000120 (0.012%)
K4:U、Pu スパイク溶液	1.000929	0.000120 (0.012%)
K5:金属 U	0.999913	$0.000017 \ (0.0017\%)$
K6: U 標準溶液	1.000780	0.000100 (0.010%)
K7:U標準溶液添加量	1.000780	0.000100 (0.010%)
K8: U 二次標準溶液	1.000834	0.000110 (0.011%)
K9:U二次標準添加量	1.000900	0.000120 (0.012%)

表 7 スパイク溶液のウラン及びプルトニウム濃度の不確かさ

(a) プルトニウム

不確かさ要因	値	拡張不確かさ (<i>k</i> =2)	寄与率(%)
①電子天秤による秤量			
Pu	1.0057	0.00090	91.3
T1	112.2192	0.00090	0.0
A	104.649	0.000120	0.0
В	466.722	0.00090	0.0
②標準金属の純度			
P1	0.99859	0.00018	3.7
③浮力補正係数			
K1	0.999910	0.000017	0.0
K2	1.000911	0.000120	1.6
K3	1.000920	0.000120	1.6
K4	1.000930	0.000120	1.6
Pu 濃度(wt%)	2.0046	0.0019 (0.094%)	

(b)ウラン

不確かさ要因	値	拡張不確かさ (<i>k</i> =2)	寄与率(%)
①電子天秤による秤量			
U	1.2479	0.0009	88.1
T2	38.9606	0.0009	0.0
\mathbf{C}	38.4176	0.0009	0.0
D	54.6911	0.0009	0.0
E	21.8720	0.0009	0.3
В	466.722	0.0009	0.0
②標準金属の純度			
U1	0.99967	0.00006	0.6
③浮力補正係数			
K5	0.999913	0.000017	0.0
K6	1.000780	0.000100	1.7
K7	1.000780	0.000100	1.7
K8	1.000830	0.000120	2.4
K9	1.000900	0.000120	2.4
K4	1.000929	0.000120	2.4
U 濃度(wt%)	1.0530	0.00081 (0.077%)	

表8 スパイク溶液のウラン及びプルトニウムの同位体比

测点目存体	測定値	海滩/ 百兰	標準不確かさ	相対拡張不確かさ
測定同位体	定同位体 標準偏差 標 (n=6)	保事小惟川〇	/% (k=2)	
ウラン	17.265125	0.0098653	0.0080549	0.047
²³⁵ U/ ²³⁸ U(原子数比)	17.200120	0.0080000	0.0060549	0.047
プルトニウム	0.0209261	0.0000060	0.0000040	0.023
²⁴⁰ Pu/ ²³⁹ Pu(原子数比)	0.0209261	0.0000000	0.0000049	0.025

表 9 逆 IDMS によるスパイク溶液の分析結果

ウラン濃度	1.054±0.0028 mg/g (0.266%)	(k=2)
プルトニウム濃度	2.003±0.0026 mg/g (0.130%)	(k=2)

表 10 本研究で調製した混合スパイクの組成

20 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	
ウラン濃度	$1.0530~\mathrm{mg/g}$
プルトニウム濃度	$2.0046~\mathrm{mg/g}$
Pu/U (質量比)	1.903
235U 濃度	93.114 wt%
²³⁹ Pu 濃度	$97.934~\mathrm{wt}\%$
²³⁵ U/ ²³⁸ U (原子数比)	17.265125
²⁴⁰ Pu/ ²³⁹ Pu (原子数比)	0.0209361

表 11 混合スパイクと IAEA-LSD-21 スパイクによる模擬 MOX 溶解液の分析値の比較

7 .º / h	Pu	U
スパイク 	mgPu/g *	mgU/g *
混合スパイク	$2.302 \pm 0.0011 $ (n=5)	$2.434 \pm 0.0036 $ (n=5)
IAEA-LSD-21	2.303 ± 0.0013 (n=3)	2.434 ± 0.0046 (n=3)

^{*}平均値 ± 拡張標準不確かさ (k=2)

図1 スパイクの調製フロー

図 2 従来スパイク (LSD スパイク) を 用いた分析フロー

図 3 調製した混合スパイクを用いた 分析フロー

図 4 MOX 溶解液とスパイクの原子数比(q)を変数とした EMF

図 5 プルトニウム標準母液の調製値とクーロメトリー測定値

図6 スパイク溶液の調製値と逆 IDMS 分析値

国際単位系(SI)

表 1. SI 基本単位

基本量	SI 基本i	単位
巫平里	名称	記号
長 さ	メートル	m
質 量	キログラム	kg
時 間	秒	s
電 流	アンペア	A
熱力学温度	ケルビン	K
物質量	モル	mol
光 度	カンデラ	cd

表2. 基本単位を用いて表されるSI組立単位の例

組立量	SI 組立単位	
和工里	名称	記号
面	責 平方メートル	m ²
体		m^3
速 さ , 速 月	まメートル毎秒	m/s
加 速 月		m/s^2
波	毎メートル	m ⁻¹
密度,質量密度	ま キログラム毎立方メートル	kg/m ³
面積密度	ま キログラム毎平方メートル	kg/m ²
比 体 和	責 立方メートル毎キログラム	m³/kg
電流密度	まアンペア毎平方メートル	A/m ²
磁界の強き	アンペア毎メートル	A/m
量濃度 ^(a) ,濃厚	ま モル毎立方メートル	mol/m ³
質 量 濃 月	ま キログラム毎立方メートル	kg/m ³
輝		cd/m ²
出 切 半	b) (数字の) 1	1
比透磁率(^{b)} (数字の) 1	1

表3. 固有の名称と記号で表されるSI組立単位

	回作の名称と記り	7 (1)(0		
			SI 組立単位	
組立量	名称	記号	他のSI単位による	SI基本単位による
	10 M	記り	表し方	表し方
平 面 角	ラジアン ^(b)	rad	1 (p)	m/m
立 体 角	ステラジアン ^(b)	$sr^{(c)}$	1 (b)	m^2/m^2
周 波 数	(d)	Hz		s^{-1}
力	ニュートン	N		m kg s ⁻²
圧力,応力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー、仕事、熱量	ジュール	J	N m	m ² kg s ⁻²
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差 (電圧),起電力	ボルト	V	W/A	m ² kg s ⁻³ A ⁻¹
静 電 容 量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
	オーム	Ω	V/A	m ² kg s ⁻³ A ⁻²
コンダクタンス	ジーメンス	S	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁束	ウエーバ	Wb	Vs	m ² kg s ⁻² A ⁻¹
磁 束 密 度	テスラ	T	Wb/m ²	kg s ⁻² A ⁻¹
インダクタンス	ヘンリー	Н	Wb/A	m ² kg s ⁻² A ⁻²
セルシウス温度	セルシウス度 ^(e)	$^{\circ}\!\mathbb{C}$		K
光	ルーメン	lm	cd sr ^(c)	cd
	ルクス	lx	lm/m^2	m ⁻² cd
放射性核種の放射能 (f)	ベクレル ^(d)	Bq		s^{-1}
吸収線量, 比エネルギー分与,	グレイ	G	T/l	$m^2 s^{-2}$
カーマ	2 24	Gy	J/kg	m s
線量当量,周辺線量当量,	. (-)	_	7.0	9 -9
方向性線量当量, 個人線量当量	シーベルト ^(g)	Sv	J/kg	m ² s ⁻²
	カタール	kat		s ⁻¹ mol
Charlest Control of the Control of t			to the second second second	mm > f t = > >>f f t = >

- 酸素活性|カタール kat simple

 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはやコヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、患についての情報をつたえるために使われる。実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
 (c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。(d)へルソは周朝現象についてのみ、ペクレルは放射性接種の統計的過程についてのみ使用される。(d)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの単位の大きさは同一である。したがって、温度差や温度開局を表す数値はどもらの単位で表しても同じである。(f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。(g)単位シーベルト(PV,2002,70,205)についてはCIPM動告2(CI-2002)を参照。

表 4 単位の中に因有の名称と記号を含むSI組立単位の例

表 4. 単位 Ø)中に固有の名称と記号を含		立の例
	S.	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 力	ニュートン毎メートル	N/m	kg s ⁻²
	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m ²	kg s ⁻³
熱容量、エントロピー		J/K	$m^2 \text{ kg s}^{-2} \text{ K}^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	m ² s ⁻²
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
	クーロン毎立方メートル	C/m ³	m ⁻³ s A
	クーロン毎平方メートル	C/m ²	m ² s A
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² s A
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	m ² kg s ⁻² mol ⁻¹
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	m ² kg s ⁻² K ⁻¹ mol ⁻¹
照射線量 (X線及びγ線)	クーロン毎キログラム	C/kg	kg⁻¹ s A
吸 収 線 量 率	グレイ毎秒	Gy/s	m ² s ⁻³
放射 強度	ワット毎ステラジアン	W/sr	m4 m-2 kg s-3=m2 kg s-3
放 射 輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m³	m ⁻³ s ⁻¹ mol

表 5. SI 接頭語						
乗数	名称	記号	乗数	名称	記号	
10^{24}	ヨ タ	Y	10 ⁻¹	デ シ	d	
10^{21}	ゼタ	Z	10 ⁻²	センチ	c	
10^{18}	エクサ	E	10 ⁻³	₹ <i>リ</i>	m	
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ	
10^{12}	テラ	Т	10 ⁻⁹	ナーノ	n	
10^{9}	ギガ	G	10^{-12}	ピコ	p	
10^{6}	メガ	M	10^{-15}	フェムト	f	
10^{3}	丰 口	k	10 ⁻¹⁸	アト	a	
0			-01	18		

10-24 ヨクト

表6. SIに属さないが、SIと併用される単位			
名称	記号	SI 単位による値	
分	min	1 min=60 s	
時	h	1 h =60 min=3600 s	
目	d	1 d=24 h=86 400 s	
度	0	1°=(π/180) rad	
分	,	1'=(1/60)°=(π/10 800) rad	
秒	"	1"=(1/60)'=(π/648 000) rad	
ヘクタール	ha	1 ha=1 hm ² =10 ⁴ m ²	
リットル	L, l	1 L=1 l=1 dm ³ =10 ³ cm ³ =10 ⁻³ m ³	
トン	t	1 t=10 ³ kg	

da

表7. SIに属さないが、SIと併用される単位で、SI単位で 表される数値が実験的に得られるもの

名称 記号		SI 単位で表される数値	
電子ボルト	eV	1 eV=1.602 176 53(14)×10 ⁻¹⁹ J	
ダ ル ト ン	Da	1 Da=1.660 538 86(28)×10 ⁻²⁷ kg	
統一原子質量単位	u	1 u=1 Da	
天 文 単 位	ua	1 ua=1.495 978 706 91(6)×10 ¹¹ m	

表8. SIに属さないが、SIと併用されるその他の単位

名称	記号	SI 単位で表される数値
バール	bar	1 bar=0.1MPa=100 kPa=10 ⁵ Pa
		1 mmHg≈133.322Pa
オングストローム	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海里	M	1 M=1852m
バーン	b	1 b=100fm ² =(10 ⁻¹² cm) ² =10 ⁻²⁸ m ²
ノ ッ ト	kn	1 kn=(1852/3600)m/s
ネ ー パ	Np ¬	CI単位しの粉は的な関係は
ベル	В	SI単位との数値的な関係は、 対数量の定義に依存。
デ シ ベ ル	dB ~	7.7.7.4.4.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.

表 9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値
エルグ	erg	1 erg=10 ⁻⁷ J
ダ イ ン	dyn	1 dyn=10 ⁻⁵ N
ポアズ	P	1 P=1 dyn s cm ⁻² =0.1Pa s
ストークス	St	1 St =1cm ² s ⁻¹ =10 ⁻⁴ m ² s ⁻¹
スチルブ	sb	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²
フ ォ ト	ph	1 ph=1cd sr cm ⁻² =10 ⁴ lx
ガル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²
マクスウエル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$
ガ ウ ス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T
エルステッド ^(a)	Oe	1 Oe ≙ (10 ³ /4 π)A m ⁻¹

(a) 3元系のCGS単位系とSIでは直接比較できないため、等号「 △ 」 は対応関係を示すものである。

表10. SIに属さないその他の単位の例

	3	名利	ķ		記号	SI 単位で表される数値		
+	ユ		リ	ſ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
ν	ン	卜	ゲ	ン	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$		
ラ				k	rad	1 rad=1cGy=10 ⁻² Gy		
ν				ム	rem	1 rem=1 cSv=10 ⁻² Sv		
ガ		ン		7	γ	$1 \gamma = 1 \text{ nT} = 10^{-9} \text{T}$		
フ	æ.		ル	131		1フェルミ=1 fm=10 ⁻¹⁵ m		
メートル系カラット						1 メートル系カラット= 0.2 g = 2×10 ⁻⁴ kg		
卜				ル	Torr	1 Torr = (101 325/760) Pa		
標	準	大	気	圧	atm	1 atm = 101 325 Pa		
力	П		IJ	ĺ	cal	1 cal=4.1858J(「15℃」カロリー),4.1868J (「IT」カロリー),4.184J(「熱化学」カロリー)		
3	ク		口	ン	μ	1 μ =1μm=10 ⁻⁶ m		