JAEA-Technology 2024-002 DOI:10.11484/jaea-technology-2024-002

C

原子炉級黒鉛の照射挙動解明のための 簡易モデルの提案

Proposal of Simple Model for Investigating Irradiation Behavior of Nuclear-grade Graphite

西條 友章	水田 直紀	長谷川 俊成	菅沼 拓朗
島﨑 洋祐	石原 正博	飯垣 和彦	

Tomoaki SAIJO, Naoki MIZUTA, Toshinari HASEGAWA, Takuro SUGANUMA Yosuke SHIMAZAKI, Masahiro ISHIHARA and Kazuhiko IIGAKI

> 高速炉・新型炉研究開発部門 大洗研究所 高温ガス炉研究開発センター 高温工学試験研究炉部

Department of HTTR HTGR Research and Development Center Oarai Research and Development Institute Sector of Fast Reactor and Advanced Reactor Research and Development

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートはクリエイティブ・コモンズ表示 4.0 国際 ライセンスの下に提供されています。 本レポートの成果(データを含む)に著作権が発生しない場合でも、同ライセンスと同様の 条件で利用してください。(<u>https://creativecommons.org/licenses/by/4.0/deed.ja</u>) なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>) より発信されています。本レポートに関しては下記までお問合せください。

国立研究開発法人日本原子力研究開発機構 研究開発推進部 科学技術情報課 〒 319-1112 茨城県那珂郡東海村大字村松 4 番地 49 E-mail: ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency.

This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.en).

Even if the results of this report (including data) are not copyrighted, they must be used under the same terms and conditions as CC-BY.

For inquiries regarding this report, please contact Library, Institutional Repository and INIS Section, Research and Development Promotion Department, Japan Atomic Energy Agency.

4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1112, Japan

E-mail: ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2024

原子炉級黒鉛の照射挙動解明のための簡易モデルの提案

日本原子力研究開発機構 高速炉・新型炉研究開発部門 大洗研究所 高温ガス炉研究開発センター 高温工学試験研究炉部

西條 友章、水田 直紀、長谷川 俊成、菅沼 拓朗、島﨑 洋祐、石原 正博、飯垣 和彦

(2024年3月13日受理)

HTTR(高温工学試験研究炉)の炉心には、耐熱性に優れた原子炉級黒鉛材料が使用されている。 この黒鉛材料は、温度や中性子照射により物性値が変化するとともに、照射変形やクリープ変形など 複雑な挙動を示すため、黒鉛用の応力解析コードを開発してきた。これを用いて、中性子照射とともに 蓄積する残留ひずみによる炉停止時応力などを評価してきたが、温度や中性子照射によるヤング率、 熱膨張係数等の物性値の変化が炉停止時応力等に与える影響については、十分に把握されていな い。そこで、物性値の変化や複雑な変形が及ぼす運転時及び原子炉停止時に発生する応力への影 響を明らかにし、黒鉛構造物の長寿命化開発等に資することを目的として、簡易はりモデルを基にした 評価モデルを開発した。本報告書では、本モデルを用いて、600℃から 800℃の温度域にある黒鉛構 造物について、物性値の照射変化による運転時応力及び炉停止時応力への影響を明らかにした。

大洗研究所:〒311-1393 茨城県東茨城郡大洗町成田町 4002

JAEA-Technology 2024-002

Proposal of Simple Model for Investigating Irradiation Behavior of Nuclear-grade Graphite

Tomoaki SAIJO, Naoki MIZUTA, Toshinari HASEGAWA, Takuro SUGANUMA, Yosuke SHIMAZAKI, Masahiro ISHIHARA and Kazuhiko IIGAKI

Department of HTTR, HTGR Research and Development Center, Oarai Research and Development Institute, Sector of Fast Reactor and Advanced Reactor Research and Development, Japan Atomic Energy Agency Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received March 13, 2024)

Nuclear-grade graphite is used for core components of High Temperature Engineering Test Reactor (HTTR) due to excellent heat resistant properties. The physical properties of this graphite change with temperature and neutron irradiation, as well as exhibit complex behavior such as irradiation deformation and creep deformation. Then, stress analysis code has been developed for the graphite. In previous study, the code has been used to evaluate the shutdown stress by residual strain that accumulates with neutron irradiation. However, the effects of change in physical properties such as Young's modulus and thermal expansion-coefficient on shutdown stress have not been fully understood. Therefore, an evaluation model based on a simplified beam model was developed to clarify the effects of changes in physical properties and complex deformations on stresses occurring during operation and reactor shutdown, and to contribute to the development of graphite structures with longer lifetimes. As an application example, the effects of changes on various physical properties on operational and shutdown stresses were clarified for graphite components in the temperature range from 600 to 800°C.

Keywords: IG-110 Graphite, Stress Analysis, Young's Modulus, Thermal Expansion Coefficient, Steady State Creep Coefficient, Irradiation Dimensional Changes, Residual Stress, Creep Deformation

目次

1. はじめに1
2. HTTR の黒鉛構造物
2.1 炉心黒鉛構造物2
2.2 炉心支持黒鉛構造物2
3. 評価方法
3.1 黒鉛の変形モデル
3.2 簡易はりモデルによる評価4
3.3 標準ケースによる検討7
4. 運転時及び炉停止時応力に及ぼす物性値の影響
4.1 縦弾性係数の影響
4.2 熱膨張率の影響
4.3 定常クリープ係数の影響11
4.4 照射寸法変化の影響12
4.5 全ての物性値の影響を考慮した解析13
5. まとめ
謝辞17
参考文献
付録1 標準ケースの解析結果49
付録2 縦弾性係数の効果についての解析結果57
付録3 熱膨張係数の効果についての解析結果65
付録4 定常クリープ係数の効果についての解析結果73
付録 5 照射ひずみの効果についての解析結果81
付録 6 物性値の影響を全て考慮した場合の解析結果

Contents

1. Introduction1
2. Graphite components of HTTR2
2.1 Core graphite components
2.2 Core support graphite components
3. Evaluation method
3.1 Deformation model of graphite
3.2 Evaluation by using simple beam model4
3.3 Study of standard case7
4. Effect of physical properties against on stress during reactor operation and shutdown
4.1 Effect of Young's modulus
4.2 Effect of thermal expansion coefficient
4.3 Effect of steady state creep coefficient11
4.4 Effect of irradiation dimensional changes12
4.5 Evaluation considered all physical properties change effect
5. Conclusion
Acknowledgements
References
Appendix 1 Analysis results of standard case
Appendix 2 Analysis results of Young's modulus effect case
Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case
Appendix 4 Analysis results of steady creep coefficient effect case73
Appendix 5 Analysis results of irradiation dimensional change effect case
Appendix 6 Analysis results of considered all physical properties change effect case

1. はじめに

日本原子力研究開発機構(原子力機構)の HTTR(高温工学試験研究炉: High Temperature engineering Test Reactor)は、高温ガス炉技術基盤の確立と高度化等を目的として原子力機構大洗研究所に建設された日本初の高温ガス炉である^{1),2)}。

HTTR は、炉内構造物が耐熱性に優れた黒鉛で構成されている^{3)、4)}。この黒鉛材料は、中性子照 射により次第に収縮し、その後さらに中性子照射をすると膨張に転じる挙動を示す。また、2000℃以上 の高温でないと現れないクリープ変形挙動が、中性子照射下では 400℃程度の温度域から現れる。さ らに、黒鉛の物性値やひずみ量などは、中性子照射される温度により異なるため、複雑な挙動となって いる^{5)、6)、7)、8)}。このため、黒鉛構造物の設計においては、クリープ挙動、照射収縮挙動を考慮した FEM (Finite Element Method)コード「VIENUS」を開発し、これを用いて様々な解析・検討を行ってきた^{9)、10}。

黒鉛構造物に発生する応力として、「運転時応力(Operational stress)」と「炉停止時応力(Shutdown stress)」の2つのモードがある¹¹⁾。運転時応力は、運転初期が高く、その発生要因は熱応力である。これは、運転とともにクリープ変形により緩和され、次第に減少する特徴がある。このため、運転時応力は運転初期の応力状態に注意する必要がある。一方、炉停止時応力は、クリープ変形などで黒鉛構造物内に蓄積された残留ひずみが、炉停止時に構造物が冷却され熱ひずみが解放されると発生し、運転とともに増加する特徴がある。黒鉛構造物の温度は約400℃から1200℃と広範囲な温度域であるため、黒鉛の照射挙動が大きく異なり、これら応力の運転に伴う変化については、例えば照射収縮が支配的なものかどうかなどといった検討が十分行われていない。このため、黒鉛構造物の長寿命化などを目指した発生応力低減化等の検討には、黒鉛構造物の運転時応力及び炉停止時応力の挙動の十分な把握が必要である。

そこで、黒鉛構造物に発生するこれら応力の挙動を評価できる簡易粘弾性評価モデルを開発した。 本報告では、この簡易粘弾性評価モデルについて述べるとともに、600℃から 800℃の温度域にある黒 鉛構造物を対象とし、物性値の照射変化による運転時応力及び炉停止時応力への影響について述 べる。

2. HTTR の黒鉛構造物

HTTR は炉心が高温となるため、炉内構造物は主に原子炉級黒鉛及び炭素により製作された構造物により構成されている。このうち、黒鉛構造物は、その機能及び交換の可能性等を考慮して、炉心黒鉛構造物と炉心支持黒鉛構造物に分類される^{6,12)}。炉心の断面図をFig.2.1 に示す。

2.1 炉心黒鉛構造物

炉心黒鉛構造物(Core graphite components)は、燃料体(Fuel assembly)の黒鉛ブロック、制御棒案 内ブロック(Control rod guide block)及び可動反射体ブロック(Replaceable reflector block)から構成さ れる。炉心黒鉛構造物は、原子炉の運転中、一定期間使用後に交換が想定されている構造物である。 HTTR の炉心黒鉛構造物には、耐放射性及び耐腐食性に優れ、高強度を有する原子炉級微粒等方 性黒鉛 IG-110(東洋炭素株式会社製)が使用されている。

2.2 炉心支持黒鉛構造物

炉心支持黒鉛構造物 (Core support graphite components) は、固定反射体ブロック (Permanent reflector block)、高温プレナムブロック (Hot plenum block)、サポートポスト (Support post)、炉床部断熱層から構成される。炉心支持黒鉛構造物は、原子炉の運転中の交換が想定されていない構造物である。HTTR の炉心支持黒鉛構造物のうち、高強度が要求されるサポートポスト、ポストシート及びキーには、耐放射性及び耐腐食性に優れ、高強度を有する原子炉級微粒等方性黒鉛 IG-110 が使用されている。また、固定反射体ブロック、高温プレナムブロック及び炉床部断熱層には、大型の構造物の製作が可能な原子炉級準等方性黒鉛 PGX (米国 UCAR 社製)が使用されている。さらに、炉床部断熱層の一部には、断熱性と長期にわたって寸法安定性に優れた ASR-ORB 炭素 (ドイツ SIGRI 社製)が使用されている。

3. 評価方法

Fig.3.1(1)に六角柱状の燃料体ブロックを上面からみた概略図を示す。相対的に中央の高温領域が 熱膨張により延びる一方、周囲の低温領域は収縮する。このため典型的なひずみ拘束型の熱応力が 発生し、中央の高温領域は圧縮応力、周辺の低温領域は引張応力となる。

このひずみ拘束型の熱応力について、2本のはりモデルで定式化し、中性子照射による黒鉛材料の 複雑な特性値変化を考慮して運転時応力及び炉停止時応力の挙動を評価できる簡易はりモデルを提 案する。

Fig.3.1(2)は、簡易はりモデルの概念を示したもので、高温と低温の 2 本のはりが一体化されその熱 ひずみ差のつり合い点で保たれ、高温側に圧縮ひずみ、低温側に引張ひずみが生じている状況を示 している。運転時の応力評価では、高温側及び低温側それぞれについてクリープ変形させるとともに照 射変形を考慮し、それぞれの応力の運転に伴う変化を解析する。一方、炉停止時の応力評価では、残 留ひずみとして蓄積するクリープひずみ及び照射変形による照射ひずみを求め、原子炉を停止して熱 応力が解放された時の炉停止時応力の運転に伴う変化を解析する。

3.1 黒鉛の変形モデル

Fig.3.2 は高温側及び低温側それぞれのはりに適用する変形モデルを示している。ここで使用する各種物性値は黒鉛構造設計方針 ^{5)、6)}で規定されているものを用いる。弾性ひずみは縦弾性係数の中性子照射温度及び中性子照射量の影響を考慮して解析する。クリープひずみは、定常クリープひずみ及び過渡クリープひずみにより解析する。クリープひずみ ε^C(γ)は、応力が Fig.3.3(1)のようにステップ状に変化する場合は Eq.(1)、Fig3.3(2)のように連続的に変化する場合は、Eq.(2)により評価される⁷⁾。

 $\varepsilon(\gamma) = \Delta \sigma_1 \varphi(t - t_1) + \Delta \sigma_2 \varphi(t - t_2) + \Delta \sigma_3 \varphi(t - t_3) + \cdots \qquad (1)$ $\varepsilon^{\mathsf{C}}(\gamma) = \int_{-\infty}^{\gamma} \varphi(\gamma - \gamma_i) \frac{\mathrm{d}\sigma(\gamma_i)}{\mathrm{d}\nu_i} \mathrm{d}\gamma_i \qquad (2)$

ここで、γ : 中性子照射量 [×10²⁵n/m²] φ(γ) : クリープ関数 [MPa⁻¹]

σ:応力 [MPa]

なお、φ(γ)は、黒鉛構造設計方針で規定された下式を用いる。

 $\varphi(\gamma) = M^{S} \gamma + a[1 - \exp(-b\gamma)] \qquad (3)$

ここで、M^s : 定常クリープ係数 [(MPa×10²⁵n/m²)⁻¹] a,b: 遷移クリープパラメータ a=1.0×10⁻⁴ [MPa⁻¹]、 b=4.5×10 [(×10²⁵n/m²)⁻¹]

また、熱ひずみ、照射ひずみは、中性子照射温度及び中性子照射量の影響を考慮して解析する。 これらについても、黒鉛構造設計方針において値が規定されている。 3.2 簡易はりモデルによる評価

Fig.3.4(1)~(3)は、はりモデルを用いた応力評価についてまとめたものである。図中、高温側を下付き添え字 H、低温側を C で示す。また、熱ひずみを上付き添え字 Th、クリープひずみを C、照射ひずみを I で示す。

(1) 初期熱応力

Fig.3.4(1)は、初期熱応力について示したものである。図のように、単一長さで単一断面積の高温側及び低温側のはりの熱ひずみ($\epsilon^{Th}_{H}, \epsilon^{Th}_{C}$)が、荷重 P_Hと P_C のつりあい点(Balance Point)でバランスしているものとすると、

 $P_{H} = A_{H} \cdot \sigma_{H} = \sigma_{H}$ (4) $P_{C} = A_{C} \cdot \sigma_{C} = \sigma_{C}$ (5)

ここで、A_H(=1):高温側はりの断面積

A_C(=1): 低温側はりの断面積

σ_H:高温側はりの応力

σc:低温側はりの応力

である。つりあい点($P_H=P_C$)では、高温側に圧縮ひずみ ϵ_H 、低温側に引張ひずみ ϵ_C が生じるので、 Eq.(4)及び Eq.(5)から、

$\sigma_{H}(=E_{H}\boldsymbol{\cdot}\boldsymbol{\epsilon}_{H})=\sigma_{C}(=E_{C}\boldsymbol{\cdot}\boldsymbol{\epsilon}_{C})$	(6)
$\boldsymbol{\epsilon}_{H} {=} \frac{\boldsymbol{E}_{C}}{\boldsymbol{E}_{H}} \boldsymbol{\epsilon}_{C} , \boldsymbol{\epsilon}_{C} {=} \frac{\boldsymbol{E}_{H}}{\boldsymbol{E}_{C}} \boldsymbol{\epsilon}_{H}$	

Fig.3.4(1) のひずみの関係とつりあい条件 Eq.(7)より、高温側の圧縮ひずみ ε Η は、

 $\epsilon_{\rm H}^{\rm Th} - \epsilon_{\rm C}^{\rm Th} = \epsilon_{\rm H} + \epsilon_{\rm C}$ $= \epsilon_{\rm H} + \frac{E_{\rm H}}{E_{\rm C}} \epsilon_{\rm H}$ $= \epsilon_{\rm H} \left(1 + \frac{E_{\rm H}}{E_{\rm C}} \right) \quad \cdots \qquad (8)$ $\epsilon_{\rm H} = \frac{\epsilon_{\rm H}^{\rm Th} \cdot \epsilon_{\rm C}^{\rm Th}}{1 + E_{\rm H} / E_{\rm C}} \quad \cdots \qquad (9)$

ここで、負の値を圧縮ひずみとすると、εHは圧縮ひずみ(εH<0)で、符号を考慮すると Eq.(9)は、

高温側の発生応力は、縦弾性係数 E_Hとの積により求める。

 $\sigma_{H} = E_{H} \cdot \epsilon_{H}$ (11)

一方、低温側の引張ひずみ ε c は、

$$\begin{split} \epsilon_{H}^{Th} \text{-} \epsilon_{C}^{Th} \text{=} \epsilon_{H} \text{+} \epsilon_{C} \\ \text{=} \frac{E_{C}}{E_{H}} \epsilon_{C} \text{+} \epsilon_{C} \end{split}$$

また、低温側の発生応力は、下式により求める。

 $\sigma_{\rm C} = E_{\rm C} \cdot \epsilon_{\rm C}$ (13)

(2) 運転時応力

Fig.3.4(2)は、運転時応力について示したものである。運転時には、高温側では初期熱ひずみ(ϵ^{Th}_{H}) が圧縮変形によるクリープひずみ(ϵ^{C}_{H})と照射収縮による照射ひずみ(ϵ^{I}_{H})により縮められ、拘束がなけ れば図中高温側の自由点(Free point)の位置となる。一方、低温側では、初期熱ひずみ(ϵ^{Th}_{C})が引張 り変形によるクリープひずみ(ϵ^{C}_{C})により延ばされるとともに照射収縮による照射ひずみ(ϵ^{I}_{C})により縮め られ、拘束がなければ図中低温側の自由点の位置となる。これら高温側及び低温側が拘束されて、つ りあい点でバランスしているものとすると、前述のEq.(4)~Eq.(7)が成り立つ。したがって、Fig.3.4(2)のひ ずみの関係(自由点のひずみ差= $\epsilon_{H}+\epsilon_{C}$)とつり合い条件 Eq.(7)より、

ここで、負の値を圧縮ひずみとすると、 ϵ^{C}_{H} 、 ϵ^{I}_{H} 、 ϵ^{I}_{C} は圧縮ひずみ($\epsilon^{C}_{H} < 0$ 、 $\epsilon^{I}_{H} < 0$ 、 $\epsilon^{I}_{C} < 0$)で、符号 を考慮すると Eq.(14)は、

 $\varepsilon_{\rm H} + \varepsilon_{\rm C} = (\varepsilon_{\rm H}^{\rm Th} + \varepsilon_{\rm H}^{\rm C} + \varepsilon_{\rm H}^{\rm I}) \cdot (\varepsilon_{\rm C}^{\rm Th} + \varepsilon_{\rm C}^{\rm C} + \varepsilon_{\rm C}^{\rm I}) \qquad (15)$

Eq.(7)を考慮すると ε H は、

ε_Hは圧縮ひずみ(ε_H<0)で、符号を考慮するとEq.(16)は、

一方、低温側の引張ひずみ Ec は、Eq.(15)と Eq.(7)より

$$\begin{split} \boldsymbol{\epsilon}_{H} + \boldsymbol{\epsilon}_{C} &= \frac{E_{C}}{E_{H}} \boldsymbol{\epsilon}_{C} + \boldsymbol{\epsilon}_{C} \\ &= & \left(\boldsymbol{\epsilon}_{H}^{Th} + \boldsymbol{\epsilon}_{H}^{C} + \boldsymbol{\epsilon}_{H}^{I}\right) - \left(\boldsymbol{\epsilon}_{C}^{Th} + \boldsymbol{\epsilon}_{C}^{C} + \boldsymbol{\epsilon}_{C}^{I}\right) \end{split}$$

また、高温側及び低温側の発生応力は、Eq.(11)及び Eq.(13)で求める。

(3) 炉停止時応力

Fig.3.4(3)は、残留ひずみにより生じる炉停止時応力について示したものである。高温側の残留ひず みは、初期熱ひずみ(ϵ^{Th}_{H})の圧縮変形によるクリープひずみ(ϵ^{C}_{H})と照射収縮による照射ひずみ(ϵ^{I}_{H}) で、拘束がなければ図中高温側の自由点の位置となる。一方、低温側の残留ひずみは、初期熱ひず み(ϵ^{Th}_{C})の引張り変形によるクリープひずみ(ϵ^{C}_{C})と照射収縮による照射ひずみ(ϵ^{I}_{C})で、拘束がなけれ ば図中低温側の自由点の位置となる。これら高温側及び低温側が拘束されて、つりあい点でバランス しているものとすると、前述の Eq.(4)~Eq.(7)が成り立つ。したがって、Fig.3.4(3)のひずみの関係(自由 点のひずみ差= $\epsilon_{H}+\epsilon_{H}$)とつり合い条件 Eq.(7)より、

 $\varepsilon_{\rm H} + \varepsilon_{\rm C} = \left(\varepsilon_{\rm C}^{\rm C} - \varepsilon_{\rm C}^{\rm I}\right) - \left(-\varepsilon_{\rm H}^{\rm C} - \varepsilon_{\rm H}^{\rm I}\right) \qquad (19)$

ここで、負の値を圧縮ひずみとすると、 ϵ^{C}_{H} 、 ϵ^{I}_{L} 、 ϵ^{I}_{C} は圧縮ひずみ($\epsilon^{C}_{H} < 0$ 、 $\epsilon^{I}_{H} < 0$ 、 $\epsilon^{I}_{C} < 0$)で、 符号を考慮すると Eq.(19)は、

 $\epsilon_{\rm H} + \epsilon_{\rm C} = \left(\epsilon_{\rm C}^{\rm C} + \epsilon_{\rm C}^{\rm I}\right) - \left(\epsilon_{\rm H}^{\rm C} + \epsilon_{\rm H}^{\rm I}\right) \qquad (20)$

Eq.(7)を考慮すると EH は、

また、Eq.(7)を考慮するとεcは、

ここで、ECは圧縮ひずみ(EH<0)で、符号を考慮するとEq.(22)は、

なお、高温側及び低温側の発生応力は、Eq.(11)及び Eq.(13)で求める。

3.3 標準ケースによる検討

標準ケースとして、HTTR の燃料体黒鉛ブロック(IG-110)の中温域の温度を考慮して、高温側のは りの温度を 800℃、低温側を 600℃とし、照射収縮による寸法変化を考慮せず、初期熱応力の中性子 照射によるクリープ緩和を解析した。解析に用いる材料物性値を Table 3.1 に示す。縦弾性係数と平均 熱膨張係数は、IG-110 黒鉛の典型的な値⁸⁾とした。また、定常クリープ係数は、600℃と 800℃の中間 温度 700℃の値^{5)、6)}とした。

具体的には、運転時応力解析では、Eq.(17)及び Eq.(18)において、E_H=E_c、 $\epsilon_{H}^{I}=\epsilon_{c}^{I}=0$ とし、Eq.(11) 及び Eq.(13)よりそれぞれの応力を求めた。また、炉停止時応力解析では、Eq.(21)及び Eq.(23)におい て、E_H=E_c、 $\epsilon_{H}^{I}=\epsilon_{c}^{I}c=0$ とし、Eq.(11)及び Eq.(13)より計算した。ここで、Eq.(1)によるクリープひずみの計 算について、Fig.3.5 に示す。解析では、中性子照射量を逐次増加させ、J=1から J=I までのステップ状 の負荷応力 $\Delta \sigma_{I} \sim \Delta \sigma_{I}$ を計算して Eq.(1)によりクリープひずみを計算する。解析の流れを Fig.3.6 に示 す。まず、材料物性値などの値を設定後、初期熱応力を計算して負荷応力 $\Delta \sigma_{I}$ を求める。この初期熱 応力に対して中性子照射量を 1/100(×10²⁵n/m²)ずつ増加させて、黒鉛構造設計方針で規定する最 大照射量 3×10²⁵n/m²までの応力挙動を計算する。

Fig.3.7 は、運転時応力の高温側及び低温側の照射に伴う挙動を示したものである。高温側で圧縮、低温側で引張の初期熱応力が、クリープ変形により緩和され次第に σ=0 に漸近している。Fig.3.8 は、 炉停止時応力の高温側及び低温側の照射に伴う挙動を示したもので、運転時応力とは逆に σ=0 から 照射とともに急激に増加し、高温側で引張、低温側で圧縮の応力となり、初期熱応力の値に漸近して いる。運転初期及び末期(中性子照射量:3×10²⁵n/m²)の運転時応力及び炉停止時応力とこれらに対 応するひずみを Table 3.2 に示す。また、高温側及び低温側の運転時応力、炉停止時応力、運転時ひ ずみ、炉停止時ひずみの解析結果を Appendix 1 に示す。 ここでは、前述の標準ケースと縦弾性係数などの物性値の温度や照射量による変化を考慮した解析ケースを比較し、物性値の影響を検討する。

4.1 縦弾性係数の影響

縦弾性係数の温度効果の検討では、黒鉛構造設計方針で規定する5,6下式を用いる。

 $E(t) = E_{20} \cdot f_E(t)$ (24)

ここで、E(t):温度tにおける縦弾性係数(GPa)

E₂₀:室温(20℃)時の縦弾性係数(GPa)

f_E(t):温度 t における縦弾性係数の変化率

 $f_E(t) = C_0 + C_1 \cdot t + C_2 \cdot t^2 + C_3 \cdot t^3 + C_4 \cdot t^4 + C_5 \cdot t^5$

C₀=1.0

 $C_1 = 1.3328 \times 10^{-5}$

$$C_2 = -1.5281 \times 10^{-7}$$

 $C_2 = 4.4335 \times 10^{-10}$

$$C_3 = -4.4333 \times 10^{-13}$$

 $C_4 = -2.5016 \times 10^{-13}$

$$C_5 = 4.8723 \times 10^{-17}$$

t:温度(℃) 20≦t≦1700

温度に対する縦弾性係数の変化を Fig.4.1 に示す。600℃(低温側)と800℃(高温側)を比較する と、3%程度高温側の縦弾性係数が高くなっている。

また、縦弾性係数の照射効果の検討では、黒鉛構造設計方針で規定する5,6下式を用いる。

ここで、E(t,γ,T):照射材(高速中性子照射量 γ、照射温度 T)の使用温度 t 時の縦弾性係数(GPa) E(t):未照射材の使用温度 t における縦弾性係数(GPa)

ΔE(t,γ,T): 未照射材の室温(20°C)に対する照射後(高速中性子照射量 γ、照射温度 T) の縦弾性係数の変化率

 $\Delta E(t,\gamma,T)=E(t,\gamma,T)/E_{20}-1$

 $=\! \sum_{i=1}^5 a_i \cdot (\gamma^{1\over 2})^i$

E20:未照射材の室温(20℃)時の縦弾性係数(GPa)

γ:高速中性子照射量(×10²⁵n/m²)(γ≦3)

t:使用温度(℃)

T:照射温度

T=600℃の時

 $\begin{array}{l} a_1 \!\!=\!\! 9.18521 \times \! 10^{\text{-1}} \\ a_2 \!\!=\!\! 4.66177 \times \! 10^{\text{-1}} \\ a_3 \!\!=\!\! -1.14053 \\ a_4 \!\!=\!\! 5.90802 \times \! 10^{\text{-1}} \\ a_5 \!\!=\!\! -9.76594 \times \! 10^{\text{-2}} \end{array}$

T=800℃の時

 $\begin{array}{l} a_1{=}6.66703\times10^{-1}\\ a_2{=}2.21082\times10^{-1}\\ a_3{=}{-}6.43065\times10^{-1}\\ a_4{=}3.26913\times10^{-1}\\ a_5{=}{-}5.13699\times10^{-2} \end{array}$

縦弾性係数について、T=600℃及び T=800℃の照射変化を Fig.4.2 に示す。600℃と 800℃を比較 すると、照射量が 3×10²⁵n/m² では 600℃の方が 11%程度高い縦弾性係数となっている。

縦弾性係数の影響解析に用いる材料物性値を Table 4.1 に示す。Fig.4.3 と Fig.4.4 に運転時応力と 炉停止時応力の高温側及び低温側の解析結果を示す。実線は縦弾性係数の温度及び照射変化を 考慮したものである。一方、破線は標準ケースの結果を示したものである。運転時応力は照射とともに 応力が減少しゼロに漸近するため、標準ケースとの違いが明瞭に現れないが、炉停止時応力では縦 弾性係数の照射による影響が大きく現れ、中性子照射量が 3×10²⁵n/m²では標準ケースに対して 75% 増加している。これは、縦弾性係数が照射とともに高温側では 50%、低温側では 70%程度増加すると ともに、温度効果による 3%程度の増加が関係している。運転時応力及び炉停止時応力とこれらに対 応するひずみを Table 4.2 に示す。また、高温側及び低温側の運転時応力、炉停止時応力、運転時ひ ずみ、炉停止時ひずみの解析結果を Appendix 2 に示す。

4.2 熱膨張率の影響

熱膨張係数の温度効果の検討では、黒鉛構造設計方針で規定する5,6下式を用いる。

 $\alpha(t) = \alpha_{400} \cdot f_{\alpha}(t)$ (26)

ここで、α(t):室温(20°C)から温度tまでの平均熱膨張係数(°C⁻¹)

α₄₀₀:室温(20℃)から400℃までの平均熱膨張係数(℃⁻¹)

$\alpha_{400}=4.06 \times 10^{-6}$

f_a(t):温度 t における平均熱膨張係数の変化率

$$\begin{split} f_{\alpha}(t) = & C_0 + C_1 \cdot t + C_2 \cdot t^2 \\ & C_0 = & 0.853157 \\ & C_1 = & 4.26564 \times 10^{-4} \\ & C_2 = & -1.42894 \times 10^{-7} \\ & t : & \mathbb{E} \text{ (°C)} \quad 100 \leq t \leq & 1500 \end{split}$$

平均熱膨張係数の温度変化を Fig.4.5 に示す。600℃(低温側)と 800℃(高温側)では、4%程度高 温側の平均熱膨張係数が高くなっている。

また、平均熱膨張係数の中性子照射効果の検討では、黒鉛構造設計方針で規定する^{5)、6)}下式を 用いる。

ここで、α(t,γ,T):照射材(高速中性子照射量 γ、照射温度 T)の使用温度 t の室温(20℃)から使用 温度tまでの平均熱膨張係数(℃⁻¹)

α(t):未照射材の室温(20℃)から使用温度 t までの平均熱膨張係数(℃-1)

Δα(t,γ,T): 未照射材と照射材 (高速中性子照射量 γ、照射温度 T)の室温(20℃) 時から 使用温度 t までの平均熱膨張係数の変化率

 $\Delta \alpha(t,\gamma,T) = \alpha(t,\gamma,T)/\alpha(t) - 1$

 $=\sum_{i=1}^{5} a_i \cdot \gamma^i$

γ:高速中性子照射量(×10²⁵n/m²)(γ≤3)

t:使用温度(℃)

T:照射温度

T=600℃の時、400℃と800℃の線形補間より

 $\begin{array}{l} a_1 \!\!=\!\! 1.56849 \times \! 10^{\text{-1}} \\ a_2 \!\!=\!\! -5.26726 \times \! 10^{\text{-2}} \\ a_3 \!\!=\!\! -2.85710 \times \! 10^{\text{-3}} \\ a_4 \!\!=\!\! 3.57563 \times \! 10^{\text{-3}} \\ a_5 \!\!=\!\! -4.21774 \times \! 10^{\text{-4}} \end{array}$

T=800℃の時

 $\begin{array}{l} a_1 {=} 2.04390 \times 10^{-1} \\ a_2 {=} {-} 1.12636 \times 10^{-1} \\ a_3 {=} 2.64706 \times 10^{-2} \\ a_4 {=} {-} 2.98755 \times 10^{-3} \\ a_5 {=} 1.28728 \times 10^{-4} \end{array}$

平均熱膨張係数の T=600℃及び T=800℃の照射変化を Fig.4.6 に示す。中性子照射量が 2× 10²⁵n/m²以上では600℃も800℃も同程度の値となっており、図からわかるように照射効果として照射量 が 1.5×10²⁵n/m² で最大 1.13 倍程増加している。

平均熱膨張係数の影響解析に用いる材料物性値を Table 4.3 に示す。Fig.4.7 と Fig.4.8 に運転時 応力と炉停止時応力の高温側及び低温側の解析結果を示す。実線は平均熱膨張係数の温度及び照 射変化を考慮したもので、破線は標準ケースの結果を示したものである。運転時応力は照射とともに減 少し、標準ケースより高い応力値を示し、中性子照射量が 0.5×10²⁵n/m² では約 1.5 倍となっている。ま た、炉停止時応力も増加し、運転末期(照射量 3×10²⁵n/m²)で比較すると、標準ケースに対して 1.4 倍 (本ケースの高温側炉停止時応力(4.4MPa)/標準ケースの高温側炉停止時応力(3.2MPa))となって いる。これらには、二つの因子が考えられる。一つ目は平均熱膨張係数の違いで生じるもので、Fig.4.9 に示すように高温側及び低温側で生じる熱ひずみを両ケースで比較すると、本モデルが 1.2 倍程度大 きくなっている。二つ目は平均熱膨張係数の照射効果で、標準ケースでは照射による変化を考慮して いないが、本ケースでは Fig.4.6 に示したように照射により約 1.13 倍増加している。これら両因子を考慮 すると、本ケースは標準ケースより 1.4~1.5 倍程度(因子1(1.2 倍)×因子 2(1.13 倍))高くなることが 理解される。運転時応力及び炉停止時応力とこれらに対応するひずみを Table 4.4 に示す。また、高温 側及び低温側の運転時応力、炉停止時応力、運転時ひずみ、炉停止時ひずみの解析結果を Appendix 3 に示す。ここで運転時応力に着目すると、照射量 3.0×10^{25} n/m²では応力の方向が逆転し ている。標準ケースでは、熱ひずみを緩和するようにクリープひずみが生じるため、応力は 0 に漸近し ていく。しかし、本ケースでは熱膨張係数の中性子照射効果を考慮しており、Fig.4.6 に示すように熱膨 張係数は極大を示したあと減少する。そのため、熱ひずみは運転中に増加傾向から減少傾向に転じ、 運転末期では ϵ Th < ϵ ^C となり、応力の方向が逆転する。

4.3 定常クリープ係数の影響

定常クリープ係数の検討では、黒鉛構造設計方針で規定する^{5)、6)}下式を用いる。

ここで、M^S:照射温度 T 時の定常クリープ係数(MPa)⁻¹(10²⁵n/m²、中性子エネルギーE>29fJ)⁻¹ T:照射温度(℃)(400≦T≦1400)

 $C_1 = 1.2 \times 10^{-4}$

 $C_2 = 5.37 \times 10^{-4}$

 $C_3 = 0.736$

定常クリープ係数の温度変化をFig.4.10 に示す。500℃から800℃の温度域では、定常クリープ係数はほぼ線形に増加している。

定常クリープ係数の影響解析に用いる材料物性値を Table 4.5 に示す。Fig.4.11 と Fig.4.12 に運転 時応力と炉停止時応力の高温側及び低温側の解析結果を示す。これらの解析結果は標準ケースと同 じであった。これは、定常クリープ係数を 700℃の値(3.7×10⁻⁴ (MPa)⁻¹·(10²⁵n/m²)⁻¹)で高温側及び低 温側のクリープ解析(標準ケース)を行っても、高温側を 800℃の値(3.9×10⁻⁴ (MPa)⁻¹·(10²⁵n/m²)⁻¹)、 低温側を 600℃の値(3.5×10⁻⁴ (MPa)⁻¹·(10²⁵n/m²)⁻¹)でクリープ解析を行っても、高温側と低温側のク リープひずみの差は同じことを示している。また、高温側及び低温側の運転時応力、炉停止時応力、 運転時ひずみ、炉停止時ひずみの解析結果を Appendix 4 に示す。 4.4 照射寸法変化の影響

照射寸法変化の検討では、黒鉛構造設計方針で規定する5,6下式を用いる。

 $\varepsilon(\gamma, T) = \sum_{i=1}^{5} a_i \cdot r^i \qquad (29)$

ここで、ε(γ,T):照射材(高速中性子照射量γ、照射温度T)の照射後室温時の寸法変化率 (照射ひずみ)

γ:高速中性子照射量(×10²⁵n/m²、中性子エネルギーE>29fJ))(γ≤3)

T:照射温度(℃)

T=600℃の時

 $\begin{array}{l} a_1 = -6.42060 \times 10^{-4} \\ a_2 = -2.52533 \times 10^{-4} \\ a_3 = -6.95441 \times 10^{-5} \\ a_4 = 1.98859 \times 10^{-5} \\ a_5 = -1.4396 \times 10^{-6} \end{array}$

T=800℃の時

 $\begin{array}{l} a_1 = -4.82929 \times 10^{-4} \\ a_2 = -2.32468 \times 10^{-4} \\ a_3 = 1.68841 \times 10^{-5} \\ a_4 = -9.2599 \times 10^{-7} \\ a_5 = 0.0 \end{array}$

T=600℃及び T=800℃の照射寸法変化を Fig.4.13 に示す。中性子照射とともに 600℃と 800℃の照射ひずみの差が大きくなっている。すなわち、中性子照射に伴い高温側と低温側に残留ひずみが蓄積される。

照射寸法変化の影響解析に用いる材料物性値を Table 4.6 に示す。高温側及び低温側について、 Fig.4.14 に運転時応力、Fig.4.15 に炉停止時応力の解析結果を示している。Fig.4.14 からわかるように、 運転時応力は中性子照射とともに減少するものの標準ケースと比較すると高温側の圧縮応力が増加し、 低温側の引張応力も増加している。この傾向は、Fig.4.16 に示す高温側及び低温側の熱ひずみ、クリ ープひずみ、照射ひずみの中性子照射による変化のうち、値の大きな熱ひずみと照射ひずみを考慮 することで概ね理解される。すなわち、Fig.4.17(1)のように両ひずみを考慮すると、高温側と低温側の 初期の熱ひずみ差 $\Delta \epsilon_1$ が照射収縮により変化し、 $\epsilon_{800} < \epsilon_{600}$ のためひずみ差が $\Delta \epsilon_1 < \Delta \epsilon_2$ となり、これ により応力が増加する。

ー方、炉停止時の応力は、Fig.4.15 に示すように照射とともに高温側の引張応力及び低温側の圧縮 応力が増加し、中性子照射量が 1.2×10^{25} n/m² あたりで極大点を示し、その後両応力は減少に転じて いる。この応力の減少については、炉停止時では熱ひずみが無いためクリープひずみと照射ひずみを 考慮して Fig.4.17(2)のように理解される。すなわち、運転初期の高温側の圧縮クリープ変形と低温側の 引張クリープ変形の差 $\Delta \epsilon_1$ が照射収縮($\epsilon_{800}^{I} < \epsilon_{600}^{I}$)により変化し、 $\Delta \epsilon_2 < \Delta \epsilon_1$ となり応力が減少する。 運転時応力及び炉停止時応力とこれらに対応するひずみを Table 4.7 に示す。また、高温側及び低 温側の運転時応力、炉停止時応力、運転時ひずみ、炉停止時ひずみの解析結果を Appendix 5 に示 す。

4.5 全ての物性値の影響を考慮した解析

全ての物性値の影響を考慮した解析に用いる材料物性値を Table 4.8 に示す。Fig.4.18 及び Fig.4.19 は運転時応力及び炉停止時応力の解析結果を示したものである。同図には標準ケースの解 析結果も破線で示している。運転時応力は、標準ケースではクリープ変形により高温側、低温側ともに 単調に減少しているが、全てを考慮したケースでは減少から増加に転じている。これは、前項で述べた 照射収縮による影響である。一方、炉停止時応力は、標準ケースではクリープ変形により単調に増加し ているが、全てを考慮したケースでは増加から減少に転じており、これも照射収縮による影響である。

標準ケースと全てを考慮したケースについて、運転時応力と炉停止時応力の最大値を Table 4.9 に 示す(最大となる照射量は表中の下端に付記)。全てを考慮したケースでは、運転時応力が標準ケー スの 1.3 倍(=4.1/3.2)、炉停止時応力が 2.2 倍(=6.9/3.2)となっている。これについて、以下で考察す る。

(1) 運転時応力の増加

運転時応力の最大値は初期熱応力(照射量=0)であるので、縦弾性係数と熱ひずみ(=α・ΔT)が関 与する。

(i) 縦弾性係数

標準ケースでは Table 3.1 に示したように、E=7.9GPa を用いている。一方、全てを考慮したケースでは、縦弾性係数の温度効果(Eq.(24))を考慮している。高温側と低温側の中間温度(700℃)として評価すると、ヤング率の温度効果は 1.03 倍となる。

(ii) 熱ひずみ

標準ケースと全てを考慮したケースの熱ひずみの比は下式で評価できる。

ここで、[a₆₀₀]_{SD}=[a₈₀₀]_{SD}=4.06×10⁻⁶

 $[\alpha_{600}]_{ALL} = 4.29 \times 10^{-6}$

 $[\alpha_{800}]_{ALL} = 4.48 \times 10^{-6}$

 $\Delta T_1 = 780^{\circ}C$

 $\Delta T_2 = 580^{\circ}C$

Eq.(30)より熱ひずみの比を評価すると、1.23倍となる。

したがって、縦弾性係数と熱ひずみの比から、運転時応力の増加割合は 1.27 倍 (=1.03×1.23)とな リ、解析結果(1.3 倍)とほぼ一致する。また、運転時応力の増加には熱ひずみの影響が大きいことがわ かる。これは、最大の運転時応力が初期熱応力であることからも、熱ひずみが支配的であることが想像 される。 (2) 炉停止時応力の増加

Table 4.9 に示した炉停止時応力の最大値は中性子照射量が 1.6×10²⁵n/m² であるので、縦弾性係数、クリープひずみ及び照射ひずみが関与すると考えられる。

(i) 縦弾性係数

Table 3.1 に示したように、標準ケースでは E=7.9GPa を用いている。一方、全てを考慮したケースでは、縦弾性係数の中性子照射効果(Eq.(25))を考慮している。なお、炉停止時応力は室温(20℃)状態で生じているので、縦弾性係数の温度効果は考えない。ここでは、高温側と低温側の中間温度(700℃)で評価すると、ヤング率は=1.68 倍となる。

(ii) クリープひずみ

Fig.4.20 は標準ケースと全てを考慮したケースについて、クリープひずみの中性子照射による変化を 図示したものである。高温側で圧縮クリープひずみ、低温側で引張りクリープひずみを生じている。残 留ひずみに起因した炉停止応力は、既に Fig.3.4(3)に示している。図から、クリープひずみによる炉停 止時応力は、ヤング率の中性子照射効果(×1.68)を考慮して、

ここで、ε^C_H=-8.3×10⁻⁴

 $\epsilon^{C}_{C} = 7.5 \times 10^{-4}$

E₂₀:室温での縦弾性係数(=7.9×10³(MPa))

である。(31)により計算すると、炉停止時応力は σ^{C}_{H} =10.5(MPa)、 σ^{C}_{C} =-10.5(MPa)となる。

(iii) 照射ひずみ

高温側及び低温側の照射ひずみは Eq.(29)により計算し、クリープひずみと同様 Fig.3.4(3)を参考に評価する。図から、照射ひずみによる炉停止時応力は、ヤング率の中性子照射効果(×1.68)を考慮して、

ここで、 ϵ^{I}_{H} =-1.30×10⁻³

 $\epsilon^{I}_{C} = -1.84 \times 10^{-3}$

E₂₀:室温での縦弾性係数(=7.9×10³(MPa))

である。(32)により計算すると、炉停止時応力は σ^{I}_{H} =-3.6(MPa)、 σ^{I}_{C} =3.6(MPa)となる。

したがって、クリープひずみ及び照射ひずみの検討から、全てを考慮したケースの炉停止時応力は、

 $\sigma_{\rm H}^{\rm Sh} = \sigma_{\rm H}^{\rm C} + \sigma_{\rm H}^{\rm I}$ $\sigma_{\rm C}^{\rm Sh} = \sigma_{\rm C}^{\rm C} + \sigma_{\rm C}^{\rm I} \qquad (33)$

で評価できる。Eq.(33)で計算すると、高温側及び低温側の炉停止時応力は、σ^{sh}H=6.9(MPa)、σ^{sh}c= -6.9(MPa)となり、Table 4.9 の値となる。ここで、それぞれのひずみの寄与に着目すると、クリープひずみ は炉停止時応力を増加させる方向、照射ひずみは減少する方向に働いていることがわかる。これは、 照射ひずみが 800℃と 600℃では、ε^I800 < ε^I600 で熱ひずみとは逆に温度が高いほど小さくなっているた めである。

なお、運転時応力及び炉停止時応力とこれらに対応するひずみを Table 4.10 に示す。また、高温側 及び低温側の運転時応力、炉停止時応力、運転時ひずみ、炉停止時ひずみの解析結果を Appendix 6 に示す。

5. まとめ

HTTR の炉内黒鉛構造物の温度は、約400℃から1200℃と広範囲で黒鉛の照射挙動が大きく異なるため、構造物に発生するひずみ拘束型の二次応力の挙動が複雑となっている。一方、黒鉛構造物の長寿命化などを目指した発生応力低減化等の技術開発のためには、黒鉛構造物に発生する応力の挙動を十分に把握することが必要である。

そこで、黒鉛構造物に発生する応力の挙動を評価するため、高温側及び低温側の 2 本のはりを一体化したはりモデルを採用し、黒鉛の粘弾性変形モデルを適用して黒鉛構造物特有の運転時応力及び炉停止時応力が評価できる簡易粘弾性評価モデルを開発した。この簡易粘弾性評価モデルを用いて、単純な標準ケース(低温側600℃、高温側800℃で縦弾性係数、平均熱膨張係数が炉内黒鉛(IG-110 黒鉛)の典型的な一定値で、照射寸法変化を考慮しないケース)で応力挙動を調べたところ、定性的に理解される以下の挙動を示した。

- ・ 運転時応力は、高温側で圧縮、低温側で引張応力となり、初期熱応力がクリープ変形により緩 和され、次第に応力値がゼロに漸近する。
- 一方、炉停止時応力は、運転時応力とは逆に高温側で引張応力、低温側で圧縮応力となり、
 応力値がゼロから中性子照射とともに急増し、初期熱応力値に漸近する。

また、低温側 600℃、高温側 800℃の場合について、物性値の温度、中性子照射による変化を考慮 した場合と単純な標準ケースと比較した結果、以下を確認した。

- ・ 縦弾性係数の変化を考慮すると、運転時応力は中性子照射とともに減少してゼロに漸近し、標 準ケースとの違いがあまり現れない。一方、炉停止時応力は中性子照射とともに増加し、中性 子照射量が3×10²⁵n/m²で標準ケースの1.75 倍となる。
- ・ 平均熱膨張係数の変化を考慮すると、運転時応力は中性子照射とともに減少するものの、標準 ケースより高い応力値を示し、中性子照射量が 0.5×10²⁵n/m²で約 1.5 倍となる。一方、炉停止 時応力は、中性子照射量が 3×10²⁵n/m²で比較すると、標準ケースの 1.4 倍となる。
- ・ 照射寸法変化を考慮したケースでは、運転時応力は中性子照射とともに減少するものの標準 ケースより高温側の圧縮応力が増加し、低温側の引張応力も増加している。一方、炉停止時の 応力は、中性子照射とともに高温側の引張応力及び低温側の圧縮応力が増加し、中性子照射 量が1.2×10²⁵n/m²あたりで極大点を示し、その後両応力は減少している。
- 物性値の変化を全て考慮したケースでは、中性子照射による寸法変化の影響により、運転時応力は減少から増加に、炉停止時応力は増加から減少に変化する。

今後、開発した簡易粘弾性評価モデルを用いて、様々な温度条件で使用される炉内黒鉛構造物の 運転時応力及び照射応力の挙動を検討し、黒鉛構造物の長寿命化などを目指した発生応力低減化 等の技術開発に活用していく。

謝辞

本報告書をまとめるに当たり、高速炉・新型炉研究開発部門大洗研究所高温ガス炉研究開発センター高温工学試験研究炉部 堀直彦 次長に貴重なご意見を頂いた。以上、記して謝意を表します。

参考文献

- 日本原子力研究開発機構,"日本原子力研究所大洗研究所設置変更許可申請書(完本)[本文]" (2021).
- 2) S. Saito et al., "Design of High Temperature Engineering Test Reactor (HTTR)", JAERI 1332, (1994), 247p.
- 3) 角田淳弥他, "HTTR 炉心の初装荷 IG-110 黒鉛の特性値", JAEA-Technology 2006-048, (2006), 19p.
- 4) T. Takeda et al., "High Temperature Gas-cooled Reactors", JSME Series in Thermal and Nuclear Power Generation, Volume 5, Elsevier publications, (2001), 464p.
- 5) 大洗研究所高温工学試験研究炉設計室他,"高温工学試験研究炉の黒鉛構造設計方針", JAERI-M 89-006, (1989), 37p.
- 6) 石原正博他, "高温工学試験研究炉・炉心黒鉛構造設計方針における設計用データの解説", JAERI-M 91-153, (1991), 51p.
- 7) 畑中元弘, 高端宏直, "応用力学(Ⅱ)", 彰国社, (1970), pp.348-349.
- 8) T. Iyoku et al., "Graphite Core Structures and Their Structural Design Criteria in the HTTR", Nuclear Engineering and Design, 132, (1991), pp.23-30.
- T. Iyoku et al., "Development of Thermal/Irradiation Stress Analysis Code "VIENUS" for HTTR Graphite Block", Journal of Nuclear Science and Technology, 28:10, (1991), pp.921-931.
- 10) 伊与久達夫他, "黒鉛ブロックの熱・照射応力解析コード VIENUS の検証", JAERI-M 92-019, (1992), 64p.
- 11) 奥達雄他, "原子力用炭素·黒鉛材料-基礎と応力-", 三恵社, (2017), pp.192-193.
- 12) 石原正博他, "高温工学試験研究炉・炉心支持黒鉛構造設計方針における設計用データの解 説", JAERI-M 91-154, (1991), 39p.

記号詞	長
γ	中性子照射量
σ, σ(γ)	応力
$\sigma_{\rm H}$	高温側の応力
$\sigma_{\rm C}$	低温側の応力
σ_{op}	運転時応力
$\sigma_{ m sh}$	炉停止時応力
$\Delta\sigma_{\rm I}$	I番目の付加応力
$\epsilon, \epsilon(\gamma)$	ひずみ
$\epsilon_{\rm H}$	高温側のひずみ
$\epsilon_{\rm C}$	低温側のひずみ
$\epsilon^{\rm E}$	弾性ひずみ
ϵ^{CS}	定常クリープひずみ
ε ^{CT}	遷移クリープひずみ
$\epsilon^{C}(\gamma)$	クリープひずみ
$\epsilon^{\rm C}_{\ \rm H}$	高温側のクリープひずみ
ϵ^{C}_{C}	低温側のクリープひずみ
$\epsilon^{I}, \epsilon^{I} \ (\gamma, T)$	照射ひずみ
$\epsilon^{\rm I}_{\rm H}$	高温側の照射ひずみ
ϵ^{I}_{C}	低温側の照射ひずみ
$\epsilon^{Th}, \epsilon^{Th}(\gamma, T)$	熱ひずみ
$\epsilon^{\mathrm{Th}}_{\mathrm{H}}$	高温側の熱ひずみ
ϵ^{Th}_{C}	低温側の熱ひずみ
Т	照射温度
$T_{\rm H}$	高温側の照射温度
T _C	低温側の照射温度
t	使用温度
t _H	高温側の使用温度
$t_{\rm C}$	低温側の使用温度
M ^S	定常クリープ係数
a, b, E^{T}, M^{T}	遷移クリープパラメータ
φ(γ)	クリープ関数
$L_{\rm H}$	高温側のはり長さ
L _C	低温側のはり長さ
$A_{ m H}$	高温側のはり断面積
A_{C}	低温側のはり断面積
P _H	高温側のはり荷重
P _C	低温側のはり荷重
α	平均熱膨張係数
$\alpha_{\rm H}$	高温側の平均熱膨張係数
$\alpha_{\rm C}$	低温側の平均熱膨張係数
E, E(t)	縦弾性係数
E_{H}	高温側の縦弾性係数
E _C	低温側の縦弾性係数

Property	value	
Young's modulus, E	7.9 (GPa) ⁸⁾	
Mean-thermal-expansion-coefficien	t, α 4.06 (10 ⁻⁶ /°C) (20°C~400°C) ⁸⁾	
Steady creep coefficient, M ^s	$3.7 \times 10^{-4} (\text{MPa})^{-1} (10^{25} \text{n/m}^2)^{-1} (700^{\circ}\text{C})^{-5}$	
Transition creep parameters		
а	1×10 ⁻⁴ (MPa) ^{-1 6)}	
b	$4.5 \times 10^1 (10^{25} \text{n/m}^2)^{-6}$	

Table 3.1 Material properties used in standard case

Table 3.2 Analysis results of standard case

Fluence	Stress (MPa)*		Strain **	
$(\times 10^{25} \text{n/m}^2)$	Hot region	Cold region	Hot region	Cold region
0.0	-3.2 / 0.0	3.2 / 0.0	-4.1×10 ⁻⁴ / 0.0	4.1×10 ⁻⁴ / 0.0
3.0	-0.01 / 3.2	0.01 / -3.2	-1.7×10 ⁻⁶ / 4.0×10 ⁻⁴	1.7×10 ⁻⁶ / -4.0×10 ⁻⁴

* : Operational stress / Shutdown stress** : Operational strain / Shutdown strain

Property	value
Young's modulus, E	Eq.(24) and Eq.(25)
Mean-thermal-expansion-coefficient, α	4.06 (10 ⁻⁶ /°C) (20°C~400°C) ⁸)
Steady creep coefficient, M^s	$3.7 \times 10^{-4} (MPa)^{-1} (10^{25} n/m^2)^{-1} (700 °C)^{-5}$
Transition creep parameters	
a	1×10 ⁻⁴ (MPa) ⁻¹ 6)
b	$4.5 \times 10^1 (10^{25} \text{n/m}^2)$ 6)

Table 4.1 Material properties used in Young's modulus effect case

Table 4.2 Analysis results of young's modulus effect case

Fluence	Stre	Stress (MPa)*		Strain **	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	
0.0	-3.3 / 0.0	3.3 / 0.0	-4.0×10 ⁻⁴ / 0.0	4.1×10 ⁻⁴ / 0.0	
3.0	-4.6×10 ⁻³ / 5.6	4.6×10 ⁻³ / -5.6	-3.4×10 ⁻⁷ / 4.3×10 ⁻⁴	3.1×10 ⁻⁷ / -3.8×10 ⁻⁴	

* : Operational stress/Shutdown stress ** : Operational strain/Shutdown strain

Property		value
Young's modulus, E		7.9 (GPa) ⁸⁾
Mean-thermal-expansion-coefficient, α		Eq.(26) and Eq.(27)
Steady creep coefficient, M ^s		$3.7 \times 10^{-4} (MPa)^{-1} (10^{25} n/m^2)^{-1} (700 °C)^{-5}$
Transition creep parameters		
	a	1×10 ⁻⁴ (MPa) ^{-1 6)}
	b	$4.5 \times 10^1 (10^{25} \text{n/m}^2)^{-6}$

Table 4.3 Material properties used in mean-thermal-expansion-coefficient effect case

Table 4.4 Analysis results of mean-thermal-expansion-coefficient effect case

Fluence	Stress (MPa)*		Strain **	
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region
0.0	-4.0 / 0.0	4.0 / 0.0	-5.0×10 ⁻⁴ / 0.0	5.0×10 ⁻⁴ / 0.0
3.0	0.02 / 4.4	-0.02 / -4.4	3.0×10 ⁻⁶ / 5.5×10 ⁻⁴	-3.0×10 ⁻⁶ / -5.5×10 ⁻⁴

* : Operational stress / Shutdown stress** : Operational strain / Shutdown strain

Property		value
Young's modulus, E		7.9 (GPa) ⁸⁾
Mean-thermal-expansion-coefficient, α		4.06 (10 ⁻⁶ /°C) (20°C~400°C) ⁸⁾
Steady creep coefficient, M^s		Eq.(28)
Transition creep parameters		
а	l.	1×10 ⁻⁴ (MPa) ^{-1 6)}
b)	$4.5 \times 10^1 (10^{25} \text{n/m}^2)^{-6}$

Table 4.5 Material properties used in steady creep coefficient effect case

Table 4.6 Material properties used in irradiation dimensional change effect case

Property		value	
Young's modulus, E		7.9 (GPa) ⁸⁾	
Mean-thermal-expansion-coefficient, α		4.06 (10 ⁻⁶ /°C) (20°C∼400°C) ⁸⁾	
Steady creep coefficient, M ^s		3.7×10 ⁻⁴ (MPa) ⁻¹ (10 ²⁵ n/m ²) ⁻¹ (700°C) ⁵)	
Transition creep parameters			
	a	1×10 ⁻⁴ (MPa) ^{-1 6)}	
	b	$4.5 \times 10^1 (10^{25} \text{n/m}^2)^{-6}$	
Irradiation strain		Eq.(29)	

Fluence	Stress	Stress (MPa)*		Strain **	
$(\times 10^{25} \text{n/m}^2)$	Hot region	Cold region	Hot region	Cold region	
0.0	-3.2 / 0.0	3.2 / 0.0	-4.1×10 ⁻⁴ / 0.0	5.0×10 ⁻⁴ / 0.0	
3.0	-1.1 / 2.1	1.1 / -2.1	-1.4×10 ⁻⁴ / 2.7×10 ⁻⁴	1.4×10 ⁻⁴ / -2.7×10 ⁻⁴	

Table 4.7 Analysis results of irradiation dimensional change effect case

* : Operational stress/Shutdown stress ** : Operational strain/Shutdown strain

Table 4.8 Material properties used in all considered effect case

Property		value	
Young's modulus, E		Eq.(24) and Eq.(25)	
Mean-thermal-expansion-coefficient, α		Eq.(26) and Eq.(27)	
Steady creep coefficient, M ^s		Eq.(28)	
Transition creep parameters			
	a	1×10 ⁻⁴ (MPa) ^{-1 6)}	
	b	$4.5 \times 10^1 (10^{25} \text{n/m}^2)^{-6}$	
Irradiation strain		Eq.(29)	

Case	Region	Operational stress (MPa)	Shutdown stress (MPa)
	Hot	- 3.2 ^{**1}	3.2 **2
Standard	Cold	3.2 ^{×1}	-3.2 ^{**2}
	Hot	-4.1 ^{%1}	6.9 ^{**3}
All considered	Cold	4.1 ^{**1}	-6.9 ^{**3}

Table 4.9 Comparison of standard case and all considered case

%1 : Initial thermal stress (Fluence = 0)

 $\begin{array}{l} & \approx 2 : \text{Fluence} = 3 \times 10^{25} \, \text{n/m}^2 \\ & \approx 3 : \text{Fluence} = 1.6 \times 10^{25} \, \text{n/m}^2 \end{array}$

Table 4.10 marysis results of all considered effect case
--

Fluence	Stress (MPa)*		Strain **		
$(\times 10^{25} \text{n/m}^2)$	Hot region	Cold region	Hot region	Cold region	
0.0	-4.1 / 0.0	4.1 / 0.0	-4.9×10 ⁻⁴ / 0.0	5.1×10 ⁻⁴ / 0.0	
3.0	-1.1 / 6.5	1.1 / -6.5	-8.3×10 ⁻⁵ / 5.0×10 ⁻⁴	7.4×10 ⁻⁵ / -4.4×10 ⁻⁴	

* : Operational stress / Shutdown stress ** : Operational strain / Shutdown strain

Fig.2.1 Arrangement of graphite and carbon components of HTTR

(2) Simple beam model

Fig.3.1 Simple beam model for secondary stress evaluation

Fig.3.2 Deformation model of graphite⁹⁾

Fig.3.3 Creep strain analysis

(1) Initial thermal stress

(2) Operational stress

(3) Shutdown stress

Fig.3.4 Stress evaluation using beam model

Fig.3.5 Creep strain analysis by Eq. (1)

Fig.3.6 Analysis flow of operational and shutdown stresses

Fig.3.7 Behavior of operational stress for standard case

Fig.3.8 Behavior of shutdown stress for standard case

Fig.4.1 Temperature effect on Young's modulus

Fig.4.2 Irradiation effect on Young's modulus for T=600°C and T=800°C

Fig.4.3 Behavior of operational stress for young's modulus effect case

Fig.4.4 Behavior of shutdown stress for young's modulus effect case

Fig.4.5 Temperature effect on mean-thermal-expansion coefficient

Fig.4.6 Irradiation effect on mean-thermal-expansion coefficient for T=600°C and T=800°C

Fig.4.7 Behavior of operational stress for mean-thermal-expansion-coefficient effect case

Fig.4.8 Behavior of shutdown stress for mean-thermal-expansion-coefficient effect case

(1) Mean thermal expansion coefficient effect case

Fig.4.9 Difference in thermal strain in both cases

Fig.4.10 Irradiation Temperature effect on steady creep coefficient

Fig.4.11 Behavior of operational stress for steady creep coefficient effect case

Fig.4.12 Behavior of shutdown stress for steady creep coefficient effect case

Fig.4.13 Change in irradiation strain for T=600°C and T=800°C

Fig.4.14 Behavior of operational stress for irradiation dimensional change effect case

Fig.4.15 Behavior of shutdown stress for irradiation dimensional change effect case

Fig.4.16 Change in strain at hot region and cold region

 $\varepsilon_{600}^{I} > \varepsilon_{800}^{I} \to \Delta \varepsilon_{2} > \Delta \varepsilon_{1}$

(1) Operational stress

(2) Shutdown stress

Fig.4.17 Operational and shutdown stress under irradiation

Fig.4.18 Behavior of operational stress for all considered effect case

Fig.4.19 Behavior of shutdown stress for all considered effect case

Fig.4.20 Creep strain change with irradiation

This is a blank page.

Appendix Analysis results

- Appendix 1 Analysis results of standard case
- Appendix 2 Analysis results of Young's modulus effect case
- Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case
- Appendix 4 Analysis results of steady creep coefficient effect case
- Appendix 5 Analysis results of irradiation dimensional change effect case
- Appendix 6 Analysis results of considered all physical properties change effect case

This is a blank page.

Fluence	uence Operational stress (MPa)		Shutdown s	tress (MPa)	Operatio	rational strain Shutdown strain		
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.00	-3.207	3.207	0.000	0.000	-4.060E-04	4.060E-04	0.000E+00	0.000E+00
0.01	-2.195	2.195	1.012	-1.012	-2.779E-04	2.779E-04	1.281E-04	-1.281E-04
0.02	-1.836	1.836	1.372	-1.372	-2.323E-04	2.323E-04	1.737E-04	-1.737E-04
0.03	-1.696	1.696	1.511	-1.511	-2.147E-04	2.147E-04	1.913E-04	-1.913E-04
0.04	-1.632	1.632	1.575	-1.575	-2.066E-04	2.066E-04	1.994E-04	-1.994E-04
0.05	-1.593	1.593	1.614	-1.614	-2.017E-04	2.017E-04	2.043E-04	-2.043E-04
0.06	-1.564	1.564	1.644	-1.644	-1.979E-04	1.979E-04	2.081E-04	-2.081E-04
0.07	-1.537	1.537	1.670	-1.670	-1.946E-04	1.946E-04	2.114E-04	-2.114E-04
0.08	-1.512	1.512	1.695	-1.695	-1.914E-04	1.914E-04	2.146E-04	-2.146E-04
0.09	-1.488	1.488	1.720	-1.720	-1.883E-04	1.883E-04	2.177E-04	-2.177E-04
0.10	-1.464	1.464	1.744	-1.744	-1.853E-04	1.853E-04	2.207E-04	-2.207E-04
0.11	-1.440	1.440	1.767	-1.767	-1.823E-04	1.823E-04	2.237E-04	-2.237E-04
0.12	-1.417	1.417	1.790	-1.790	-1.794E-04	1.794E-04	2.266E-04	-2.266E-04
0.13	-1.395	1.395	1.813	-1.813	-1.765E-04	1.765E-04	2.295E-04	-2.295E-04
0.14	-1.372	1.372	1.835	-1.835	-1.737E-04	1.737E-04	2.323E-04	-2.323E-04
0.15	-1.350	1.350	1.857	-1.857	-1.709E-04	1.709E-04	2.351E-04	-2.351E-04
0.16	-1.329	1.329	1.879	-1.879	-1.682E-04	1.682E-04	2.378E-04	-2.378E-04
0.17	-1.307	1.307	1.900	-1.900	-1.655E-04	1.655E-04	2.405E-04	-2.405E-04
0.18	-1.287	1.287	1.921	-1.921	-1.629E-04	1.629E-04	2.431E-04	-2.431E-04
0.19	-1.266	1.266	1.941	-1.941	-1.603E-04	1.603E-04	2.457E-04	-2.457E-04
0.20	-1.246	1.246	1.962	-1.962	-1.577E-04	1.577E-04	2.483E-04	-2.483E-04
0.21	-1.226	1.226	1.982	-1.982	-1.552E-04	1.552E-04	2.508E-04	-2.508E-04
0.22	-1.206	1.206	2.001	-2.001	-1.527E-04	1.527E-04	2.533E-04	-2.533E-04
0.23	-1.187	1.187	2.021	-2.021	-1.502E-04	1.502E-04	2.558E-04	-2.558E-04
0.24	-1.168	1.168	2.040	-2.040	-1.478E-04	1.478E-04	2.582E-04	-2.582E-04
0.25	-1.149	1.149	2.058	-2.058	-1.455E-04	1.455E-04	2.605E-04	-2.605E-04
0.26	-1.131	1.131	2.077	-2.077	-1.431E-04	1.431E-04	2.629E-04	-2.629E-04
0.27	-1.113	1.113	2.095	-2.095	-1.408E-04	1.408E-04	2.652E-04	-2.652E-04
0.28	-1.095	1.095	2.113	-2.113	-1.386E-04	1.386E-04	2.674E-04	-2.674E-04
0.29	-1.077	1.077	2.130	-2.130	-1.364E-04	1.364E-04	2.696E-04	-2.696E-04
0.30	-1.060	1.060	2.147	-2.147	-1.342E-04	1.342E-04	2.718E-04	-2.718E-04
0.31	-1.043	1.043	2.164	-2.164	-1.320E-04	1.320E-04	2.740E-04	-2.740E-04
0.32	-1.026	1.026	2.181	-2.181	-1.299E-04	1.299E-04	2.761E-04	-2.761E-04
0.33	-1.010	1.010	2.197	-2.197	-1.279E-04	1.279E-04	2.781E-04	-2.781E-04
0.34	-0.994	0.994	2.214	-2.214	-1.258E-04	1.258E-04	2.802E-04	-2.802E-04
0.35	-0.978	0.978	2.229	-2.229	-1.238E-04	1.238E-04	2.822E-04	-2.822E-04
0.36	-0.962	0.962	2.245	-2.245	-1.218E-04	1.218E-04	2.842E-04	-2.842E-04
0.37	-0.947	0.947	2.260	-2.260	-1.199E-04	1.199E-04	2.861E-04	-2.861E-04
0.38	-0.932	0.932	2.276	-2.276	-1.179E-04	1.179E-04	2.881E-04	-2.881E-04
0.39	-0.917	0.917	2.291	-2.291	-1.161E-04	1.161E-04	2.899E-04	-2.899E-04
0.40	-0.902	0.902	2.305	-2.305	-1.142E-04	1.142E-04	2.918E-04	-2.918E-04

Appendix 1 Analysis results of standard case (1/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	on al strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.41	-0.888	0.888	2.320	-2.320	-1.124E-04	1.124E-04	2.936E-04	-2.936E-04
0.42	-0.874	0.874	2.334	-2.334	-1.106E-04	1.106E-04	2.954E-04	-2.954E-04
0.43	-0.860	0.860	2.348	-2.348	-1.088E-04	1.088E-04	2.972E-04	-2.972E-04
0.44	-0.846	0.846	2.362	-2.362	-1.071E-04	1.071E-04	2.989E-04	-2.989E-04
0.45	-0.832	0.832	2.375	-2.375	-1.053E-04	1.053E-04	3.007E-04	-3.007E-04
0.46	-0.819	0.819	2.388	-2.388	-1.037E-04	1.037E-04	3.023E-04	-3.023E-04
0.47	-0.806	0.806	2.402	-2.402	-1.020E-04	1.020E-04	3.040E-04	-3.040E-04
0.48	-0.793	0.793	2.414	-2.414	-1.004E-04	1.004E-04	3.056E-04	-3.056E-04
0.49	-0.780	0.780	2.427	-2.427	-9.877E-05	9.877E-05	3.072E-04	-3.072E-04
0.50	-0.768	0.768	2.440	-2.440	-9.719E-05	9.719E-05	3.088E-04	-3.088E-04
0.51	-0.755	0.755	2.452	-2.452	-9.563E-05	9.563E-05	3.104E-04	-3.104E-04
0.52	-0.743	0.743	2.464	-2.464	-9.410E-05	9.410E-05	3.119E-04	-3.119E-04
0.53	-0.731	0.731	2.476	-2.476	-9.259E-05	9.259E-05	3.134E-04	-3.134E-04
0.54	-0.720	0.720	2.488	-2.488	-9.111E-05	9.111E-05	3.149E-04	-3.149E-04
0.55	-0.708	0.708	2.499	-2.499	-8.965E-05	8.965E-05	3.163E-04	-3.163E-04
0.56	-0.697	0.697	2.510	-2.510	-8.822E-05	8.822E-05	3.178E-04	-3.178E-04
0.57	-0.686	0.686	2.522	-2.522	-8.681E-05	8.681E-05	3.192E-04	-3.192E-04
0.58	-0.675	0.675	2.533	-2.533	-8.542E-05	8.542E-05	3.206E-04	-3.206E-04
0.59	-0.664	0.664	2.543	-2.543	-8.405E-05	8.405E-05	3.219E-04	-3.219E-04
0.60	-0.653	0.653	2.554	-2.554	-8.271E-05	8.271E-05	3.233E-04	-3.233E-04
0.61	-0.643	0.643	2.564	-2.564	-8.138E-05	8.138E-05	3.246E-04	-3.246E-04
0.62	-0.633	0.633	2.575	-2.575	-8.008E-05	8.008E-05	3.259E-04	-3.259E-04
0.63	-0.623	0.623	2.585	-2.585	-7.880E-05	7.880E-05	3.272E-04	-3.272E-04
0.64	-0.613	0.613	2.595	-2.595	-7.754E-05	7.754E-05	3.285E-04	-3.285E-04
0.65	-0.603	0.603	2.605	-2.605	-7.630E-05	7.630E-05	3.297E-04	-3.297E-04
0.66	-0.593	0.593	2.614	-2.614	-7.508E-05	7.508E-05	3.309E-04	-3.309E-04
0.67	-0.584	0.584	2.624	-2.624	-7.387E-05	7.387E-05	3.321E-04	-3.321E-04
0.68	-0.574	0.574	2.633	-2.633	-7.269E-05	7.269E-05	3.333E-04	-3.333E-04
0.69	-0.565	0.565	2.642	-2.642	-7.153E-05	7.153E-05	3.345E-04	-3.345E-04
0.70	-0.556	0.556	2.651	-2.651	-7.038E-05	7.038E-05	3.356E-04	-3.356E-04
0.71	-0.547	0.547	2.660	-2.660	-6.926E-05	6.926E-05	3.367E-04	-3.367E-04
0.72	-0.538	0.538	2.669	-2.669	-6.815E-05	6.815E-05	3.379E-04	-3.379E-04
0.73	-0.530	0.530	2.678	-2.678	-6.706E-05	6.706E-05	3.389E-04	-3.389E-04
0.74	-0.521	0.521	2.686	-2.686	-6.599E-05	6.599E-05	3.400E-04	-3.400E-04
0.75	-0.513	0.513	2.694	-2.694	-6.493E-05	6.493E-05	3.411E-04	-3.411E-04
0.76	-0.505	0.505	2.703	-2.703	-6.389E-05	6.389E-05	3.421E-04	-3.421E-04
0.77	-0.497	0.497	2.711	-2.711	-6.287E-05	6.287E-05	3.431E-04	-3.431E-04
0.78	-0.489	0.489	2.719	-2.719	-6.186E-05	6.186E-05	3.441E-04	-3.441E-04
0.79	-0.481	0.481	2.727	-2.727	-6.087E-05	6.087E-05	3.451E-04	-3.451E-04
0.80	-0.473	0.473	2.734	-2.734	-5.990E-05	5.990E-05	3.461E-04	-3.461E-04

Appendix 1 Analysis results of standard case (2/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shutdo		Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.466	0.466	2.742	-2.742	-5.894E-05	5.894E-05	3.471E-04	-3.471E-04
0.82	-0.458	0.458	2.749	-2.749	-5.800E-05	5.800E-05	3.480E-04	-3.480E-04
0.83	-0.451	0.451	2.757	-2.757	-5.707E-05	5.707E-05	3.489E-04	-3.489E-04
0.84	-0.444	0.444	2.764	-2.764	-5.615E-05	5.615E-05	3.498E-04	-3.498E-04
0.85	-0.437	0.437	2.771	-2.771	-5.526E-05	5.526E-05	3.507E-04	-3.507E-04
0.86	-0.430	0.430	2.778	-2.778	-5.437E-05	5.437E-05	3.516E-04	-3.516E-04
0.87	-0.423	0.423	2.785	-2.785	-5.350E-05	5.350E-05	3.525E-04	-3.525E-04
0.88	-0.416	0.416	2.792	-2.792	-5.265E-05	5.265E-05	3.534E-04	-3.534E-04
0.89	-0.409	0.409	2.798	-2.798	-5.180E-05	5.180E-05	3.542E-04	-3.542E-04
0.90	-0.403	0.403	2.805	-2.805	-5.097E-05	5.097E-05	3.550E-04	-3.550E-04
0.91	-0.396	0.396	2.811	-2.811	-5.016E-05	5.016E-05	3.558E-04	-3.558E-04
0.92	-0.390	0.390	2.817	-2.817	-4.936E-05	4.936E-05	3.566E-04	-3.566E-04
0.93	-0.384	0.384	2.824	-2.824	-4.857E-05	4.857E-05	3.574E-04	-3.574E-04
0.94	-0.378	0.378	2.830	-2.830	-4.779E-05	4.779E-05	3.582E-04	-3.582E-04
0.95	-0.371	0.371	2.836	-2.836	-4.702E-05	4.702E-05	3.590E-04	-3.590E-04
0.96	-0.366	0.366	2.842	-2.842	-4.627E-05	4.627E-05	3.597E-04	-3.597E-04
0.97	-0.360	0.360	2.848	-2.848	-4.553E-05	4.553E-05	3.605E-04	-3.605E-04
0.98	-0.354	0.354	2.853	-2.853	-4.480E-05	4.480E-05	3.612E-04	-3.612E-04
0.99	-0.348	0.348	2.859	-2.859	-4.409E-05	4.409E-05	3.619E-04	-3.619E-04
1.00	-0.343	0.343	2.865	-2.865	-4.338E-05	4.338E-05	3.626E-04	-3.626E-04
1.01	-0.337	0.337	2.870	-2.870	-4.269E-05	4.269E-05	3.633E-04	-3.633E-04
1.02	-0.332	0.332	2.876	-2.876	-4.200E-05	4.200E-05	3.640E-04	-3.640E-04
1.03	-0.327	0.327	2.881	-2.881	-4.133E-05	4.133E-05	3.647E-04	-3.647E-04
1.04	-0.321	0.321	2.886	-2.886	-4.067E-05	4.067E-05	3.653E-04	-3.653E-04
1.05	-0.316	0.316	2.891	-2.891	-4.002E-05	4.002E-05	3.660E-04	-3.660E-04
1.06	-0.311	0.311	2.896	-2.896	-3.938E-05	3.938E-05	3.666E-04	-3.666E-04
1.07	-0.306	0.306	2.901	-2.901	-3.875E-05	3.875E-05	3.673E-04	-3.673E-04
1.08	-0.301	0.301	2.906	-2.906	-3.813E-05	3.813E-05	3.679E-04	-3.679E-04
1.09	-0.296	0.296	2.911	-2.911	-3.752E-05	3.752E-05	3.685E-04	-3.685E-04
1.10	-0.292	0.292	2.916	-2.916	-3.692E-05	3.692E-05	3.691E-04	-3.691E-04
1.11	-0.287	0.287	2.920	-2.920	-3.633E-05	3.633E-05	3.697E-04	-3.697E-04
1.12	-0.282	0.282	2.925	-2.925	-3.574E-05	3.574E-05	3.703E-04	-3.703E-04
1.13	-0.278	0.278	2.930	-2.930	-3.517E-05	3.517E-05	3.708E-04	-3.708E-04
1.14	-0.273	0.273	2.934	-2.934	-3.461E-05	3.461E-05	3.714E-04	-3.714E-04
1.15	-0.269	0.269	2.938	-2.938	-3.406E-05	3.406E-05	3.719E-04	-3.719E-04
1.16	-0.265	0.265	2.943	-2.943	-3.351E-05	3.351E-05	3.725E-04	-3.725E-04
1.17	-0.260	0.260	2.947	-2.947	-3.297E-05	3.297E-05	3.730E-04	-3.730E-04
1.18	-0.256	0.256	2.951	-2.951	-3.245E-05	3.245E-05	3.736E-04	-3.736E-04
1.19	-0.252	0.252	2.955	-2.955	-3.193E-05	3.193E-05	3.741E-04	-3.741E-04
1.20	-0.248	0.248	2.959	-2.959	-3.142E-05	3.142E-05	3.746E-04	-3.746E-04

Appendix 1 Analysis results of standard case (3/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	on al strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.21	-0.244	0.244	2.963	-2.963	-3.091E-05	3.091E-05	3.751E-04	-3.751E-04
1.22	-0.240	0.240	2.967	-2.967	-3.042E-05	3.042E-05	3.756E-04	-3.756E-04
1.23	-0.236	0.236	2.971	-2.971	-2.993E-05	2.993E-05	3.761E-04	-3.761E-04
1.24	-0.233	0.233	2.975	-2.975	-2.945E-05	2.945E-05	3.765E-04	-3.765E-04
1.25	-0.229	0.229	2.978	-2.978	-2.898E-05	2.898E-05	3.770E-04	-3.770E-04
1.26	-0.225	0.225	2.982	-2.982	-2.852E-05	2.852E-05	3.775E-04	-3.775E-04
1.27	-0.222	0.222	2.986	-2.986	-2.806E-05	2.806E-05	3.779E-04	-3.779E-04
1.28	-0.218	0.218	2.989	-2.989	-2.761E-05	2.761E-05	3.784E-04	-3.784E-04
1.29	-0.215	0.215	2.993	-2.993	-2.717E-05	2.717E-05	3.788E-04	-3.788E-04
1.30	-0.211	0.211	2.996	-2.996	-2.674E-05	2.674E-05	3.793E-04	-3.793E-04
1.31	-0.208	0.208	3.000	-3.000	-2.631E-05	2.631E-05	3.797E-04	-3.797E-04
1.32	-0.205	0.205	3.003	-3.003	-2.589E-05	2.589E-05	3.801E-04	-3.801E-04
1.33	-0.201	0.201	3.006	-3.006	-2.547E-05	2.547E-05	3.805E-04	-3.805E-04
1.34	-0.198	0.198	3.009	-3.009	-2.507E-05	2.507E-05	3.809E-04	-3.809E-04
1.35	-0.195	0.195	3.013	-3.013	-2.466E-05	2.466E-05	3.813E-04	-3.813E-04
1.36	-0.192	0.192	3.016	-3.016	-2.427E-05	2.427E-05	3.817E-04	-3.817E-04
1.37	-0.189	0.189	3.019	-3.019	-2.388E-05	2.388E-05	3.821E-04	-3.821E-04
1.38	-0.186	0.186	3.022	-3.022	-2.350E-05	2.350E-05	3.825E-04	-3.825E-04
1.39	-0.183	0.183	3.025	-3.025	-2.312E-05	2.312E-05	3.829E-04	-3.829E-04
1.40	-0.180	0.180	3.028	-3.028	-2.275E-05	2.275E-05	3.832E-04	-3.832E-04
1.41	-0.177	0.177	3.031	-3.031	-2.239E-05	2.239E-05	3.836E-04	-3.836E-04
1.42	-0.174	0.174	3.033	-3.033	-2.203E-05	2.203E-05	3.840E-04	-3.840E-04
1.43	-0.171	0.171	3.036	-3.036	-2.168E-05	2.168E-05	3.843E-04	-3.843E-04
1.44	-0.169	0.169	3.039	-3.039	-2.133E-05	2.133E-05	3.847E-04	-3.847E-04
1.45	-0.166	0.166	3.042	-3.042	-2.099E-05	2.099E-05	3.850E-04	-3.850E-04
1.46	-0.163	0.163	3.044	-3.044	-2.065E-05	2.065E-05	3.853E-04	-3.853E-04
1.47	-0.161	0.161	3.047	-3.047	-2.032E-05	2.032E-05	3.857E-04	-3.857E-04
1.48	-0.158	0.158	3.049	-3.049	-2.000E-05	2.000E-05	3.860E-04	-3.860E-04
1.49	-0.155	0.155	3.052	-3.052	-1.968E-05	1.968E-05	3.863E-04	-3.863E-04
1.50	-0.153	0.153	3.054	-3.054	-1.936E-05	1.936E-05	3.866E-04	-3.866E-04
1.51	-0.151	0.151	3.057	-3.057	-1.905E-05	1.905E-05	3.869E-04	-3.869E-04
1.52	-0.148	0.148	3.059	-3.059	-1.875E-05	1.875E-05	3.873E-04	-3.873E-04
1.53	-0.146	0.146	3.062	-3.062	-1.845E-05	1.845E-05	3.876E-04	-3.876E-04
1.54	-0.143	0.143	3.064	-3.064	-1.815E-05	1.815E-05	3.878E-04	-3.878E-04
1.55	-0.141	0.141	3.066	-3.066	-1.786E-05	1.786E-05	3.881E-04	-3.881E-04
1.56	-0.139	0.139	3.069	-3.069	-1.758E-05	1.758E-05	3.884E-04	-3.884E-04
1.57	-0.137	0.137	3.071	-3.071	-1.729E-05	1.729E-05	3.887E-04	-3.887E-04
1.58	-0.134	0.134	3.073	-3.073	-1.702E-05	1.702E-05	3.890E-04	-3.890E-04
1.59	-0.132	0.132	3.075	-3.075	-1.675E-05	1.675E-05	3.893E-04	-3.893E-04
1.60	-0.130	0.130	3.077	-3.077	-1.648E-05	1.648E-05	3.895E-04	-3.895E-04

Appendix 1 Analysis results of standard case (4/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	on al strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.128	0.128	3.079	-3.079	-1.621E-05	1.621E-05	3.898E-04	-3.898E-04
1.62	-0.126	0.126	3.081	-3.081	-1.595E-05	1.595E-05	3.900E-04	-3.900E-04
1.63	-0.124	0.124	3.083	-3.083	-1.570E-05	1.570E-05	3.903E-04	-3.903E-04
1.64	-0.122	0.122	3.085	-3.085	-1.545E-05	1.545E-05	3.906E-04	-3.906E-04
1.65	-0.120	0.120	3.087	-3.087	-1.520E-05	1.520E-05	3.908E-04	-3.908E-04
1.66	-0.118	0.118	3.089	-3.089	-1.496E-05	1.496E-05	3.910E-04	-3.910E-04
1.67	-0.116	0.116	3.091	-3.091	-1.472E-05	1.472E-05	3.913E-04	-3.913E-04
1.68	-0.114	0.114	3.093	-3.093	-1.448E-05	1.448E-05	3.915E-04	-3.915E-04
1.69	-0.113	0.113	3.095	-3.095	-1.425E-05	1.425E-05	3.917E-04	-3.917E-04
1.70	-0.111	0.111	3.097	-3.097	-1.402E-05	1.402E-05	3.920E-04	-3.920E-04
1.71	-0.109	0.109	3.098	-3.098	-1.380E-05	1.380E-05	3.922E-04	-3.922E-04
1.72	-0.107	0.107	3.100	-3.100	-1.358E-05	1.358E-05	3.924E-04	-3.924E-04
1.73	-0.106	0.106	3.102	-3.102	-1.336E-05	1.336E-05	3.926E-04	-3.926E-04
1.74	-0.104	0.104	3.104	-3.104	-1.315E-05	1.315E-05	3.929E-04	-3.929E-04
1.75	-0.102	0.102	3.105	-3.105	-1.294E-05	1.294E-05	3.931E-04	-3.931E-04
1.76	-0.101	0.101	3.107	-3.107	-1.273E-05	1.273E-05	3.933E-04	-3.933E-04
1.77	-0.099	0.099	3.108	-3.108	-1.253E-05	1.253E-05	3.935E-04	-3.935E-04
1.78	-0.097	0.097	3.110	-3.110	-1.233E-05	1.233E-05	3.937E-04	-3.937E-04
1.79	-0.096	0.096	3.112	-3.112	-1.213E-05	1.213E-05	3.939E-04	-3.939E-04
1.80	-0.094	0.094	3.113	-3.113	-1.193E-05	1.193E-05	3.941E-04	-3.941E-04
1.81	-0.093	0.093	3.115	-3.115	-1.174E-05	1.174E-05	3.943E-04	-3.943E-04
1.82	-0.091	0.091	3.116	-3.116	-1.155E-05	1.155E-05	3.944E-04	-3.944E-04
1.83	-0.090	0.090	3.118	-3.118	-1.137E-05	1.137E-05	3.946E-04	-3.946E-04
1.84	-0.088	0.088	3.119	-3.119	-1.119E-05	1.119E-05	3.948E-04	-3.948E-04
1.85	-0.087	0.087	3.120	-3.120	-1.101E-05	1.101E-05	3.950E-04	-3.950E-04
1.86	-0.086	0.086	3.122	-3.122	-1.083E-05	1.083E-05	3.952E-04	-3.952E-04
1.87	-0.084	0.084	3.123	-3.123	-1.066E-05	1.066E-05	3.953E-04	-3.953E-04
1.88	-0.083	0.083	3.125	-3.125	-1.049E-05	1.049E-05	3.955E-04	-3.955E-04
1.89	-0.082	0.082	3.126	-3.126	-1.032E-05	1.032E-05	3.957E-04	-3.957E-04
1.90	-0.080	0.080	3.127	-3.127	-1.016E-05	1.016E-05	3.958E-04	-3.958E-04
1.91	-0.079	0.079	3.128	-3.128	-9.993E-06	9.993E-06	3.960E-04	-3.960E-04
1.92	-0.078	0.078	3.130	-3.130	-9.833E-06	9.833E-06	3.962E-04	-3.962E-04
1.93	-0.076	0.076	3.131	-3.131	-9.676E-06	9.676E-06	3.963E-04	-3.963E-04
1.94	-0.075	0.075	3.132	-3.132	-9.521E-06	9.521E-06	3.965E-04	-3.965E-04
1.95	-0.074	0.074	3.133	-3.133	-9.369E-06	9.369E-06	3.966E-04	-3.966E-04
1.96	-0.073	0.073	3.135	-3.135	-9.219E-06	9.219E-06	3.968E-04	-3.968E-04
1.97	-0.072	0.072	3.136	-3.136	-9.071E-06	9.071E-06	3.969E-04	-3.969E-04
1.98	-0.071	0.071	3.137	-3.137	-8.926E-06	8.926E-06	3.971E-04	-3.971E-04
1.99	-0.069	0.069	3.138	-3.138	-8.783E-06	8.783E-06	3.972E-04	-3.972E-04
2.00	-0.068	0.068	3.139	-3.139	-8.643E-06	8.643E-06	3.974E-04	-3.974E-04

Appendix 1 Analysis results of standard case (5/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shutdown strain			vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.01	-0.067	0.067	3.140	-3.140	-8.504E-06	8.504E-06	3.975E-04	-3.975E-04
2.02	-0.066	0.066	3.141	-3.141	-8.368E-06	8.368E-06	3.976E-04	-3.976E-04
2.03	-0.065	0.065	3.142	-3.142	-8.234E-06	8.234E-06	3.978E-04	-3.978E-04
2.04	-0.064	0.064	3.143	-3.143	-8.103E-06	8.103E-06	3.979E-04	-3.979E-04
2.05	-0.063	0.063	3.144	-3.144	-7.973E-06	7.973E-06	3.980E-04	-3.980E-04
2.06	-0.062	0.062	3.145	-3.145	-7.846E-06	7.846E-06	3.982E-04	-3.982E-04
2.07	-0.061	0.061	3.146	-3.146	-7.720E-06	7.720E-06	3.983E-04	-3.983E-04
2.08	-0.060	0.060	3.147	-3.147	-7.596E-06	7.596E-06	3.984E-04	-3.984E-04
2.09	-0.059	0.059	3.148	-3.148	-7.475E-06	7.475E-06	3.985E-04	-3.985E-04
2.10	-0.058	0.058	3.149	-3.149	-7.355E-06	7.355E-06	3.986E-04	-3.986E-04
2.11	-0.057	0.057	3.150	-3.150	-7.237E-06	7.237E-06	3.988E-04	-3.988E-04
2.12	-0.056	0.056	3.151	-3.151	-7.122E-06	7.122E-06	3.989E-04	-3.989E-04
2.13	-0.055	0.055	3.152	-3.152	-7.007E-06	7.007E-06	3.990E-04	-3.990E-04
2.14	-0.054	0.054	3.153	-3.153	-6.895E-06	6.895E-06	3.991E-04	-3.991E-04
2.15	-0.054	0.054	3.154	-3.154	-6.785E-06	6.785E-06	3.992E-04	-3.992E-04
2.16	-0.053	0.053	3.155	-3.155	-6.676E-06	6.676E-06	3.993E-04	-3.993E-04
2.17	-0.052	0.052	3.155	-3.155	-6.570E-06	6.570E-06	3.994E-04	-3.994E-04
2.18	-0.051	0.051	3.156	-3.156	-6.465E-06	6.465E-06	3.995E-04	-3.995E-04
2.19	-0.050	0.050	3.157	-3.157	-6.361E-06	6.361E-06	3.996E-04	-3.996E-04
2.20	-0.049	0.049	3.158	-3.158	-6.259E-06	6.259E-06	3.997E-04	-3.997E-04
2.21	-0.049	0.049	3.159	-3.159	-6.159E-06	6.159E-06	3.998E-04	-3.998E-04
2.22	-0.048	0.048	3.160	-3.160	-6.061E-06	6.061E-06	3.999E-04	-3.999E-04
2.23	-0.047	0.047	3.160	-3.160	-5.964E-06	5.964E-06	4.000E-04	-4.000E-04
2.24	-0.046	0.046	3.161	-3.161	-5.868E-06	5.868E-06	4.001E-04	-4.001E-04
2.25	-0.046	0.046	3.162	-3.162	-5.774E-06	5.774E-06	4.002E-04	-4.002E-04
2.26	-0.045	0.045	3.163	-3.163	-5.682E-06	5.682E-06	4.003E-04	-4.003E-04
2.27	-0.044	0.044	3.163	-3.163	-5.591E-06	5.591E-06	4.004E-04	-4.004E-04
2.28	-0.043	0.043	3.164	-3.164	-5.501E-06	5.501E-06	4.005E-04	-4.005E-04
2.29	-0.043	0.043	3.165	-3.165	-5.413E-06	5.413E-06	4.006E-04	-4.006E-04
2.30	-0.042	0.042	3.165	-3.165	-5.327E-06	5.327E-06	4.007E-04	-4.007E-04
2.31	-0.041	0.041	3.166	-3.166	-5.241E-06	5.241E-06	4.008E-04	-4.008E-04
2.32	-0.041	0.041	3.167	-3.167	-5.158E-06	5.158E-06	4.008E-04	-4.008E-04
2.33	-0.040	0.040	3.167	-3.167	-5.075E-06	5.075E-06	4.009E-04	-4.009E-04
2.34	-0.039	0.039	3.168	-3.168	-4.994E-06	4.994E-06	4.010E-04	-4.010E-04
2.35	-0.039	0.039	3.169	-3.169	-4.914E-06	4.914E-06	4.011E-04	-4.011E-04
2.36	-0.038	0.038	3.169	-3.169	-4.835E-06	4.835E-06	4.012E-04	-4.012E-04
2.37	-0.038	0.038	3.170	-3.170	-4.758E-06	4.758E-06	4.012E-04	-4.012E-04
2.38	-0.037	0.037	3.170	-3.170	-4.681E-06	4.681E-06	4.013E-04	-4.013E-04
2.39	-0.036	0.036	3.171	-3.171	-4.607E-06	4.607E-06	4.014E-04	-4.014E-04
2.40	-0.036	0.036	3.172	-3.172	-4.533E-06	4.533E-06	4.015E-04	-4.015E-04

Appendix 1 Analysis results of standard case (6/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	on al strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.035	0.035	3.172	-3.172	-4.460E-06	4.460E-06	4.015E-04	-4.015E-04
2.42	-0.035	0.035	3.173	-3.173	-4.389E-06	4.389E-06	4.016E-04	-4.016E-04
2.43	-0.034	0.034	3.173	-3.173	-4.319E-06	4.319E-06	4.017E-04	-4.017E-04
2.44	-0.034	0.034	3.174	-3.174	-4.250E-06	4.250E-06	4.018E-04	-4.018E-04
2.45	-0.033	0.033	3.174	-3.174	-4.182E-06	4.182E-06	4.018E-04	-4.018E-04
2.46	-0.033	0.033	3.175	-3.175	-4.115E-06	4.115E-06	4.019E-04	-4.019E-04
2.47	-0.032	0.032	3.175	-3.175	-4.049E-06	4.049E-06	4.020E-04	-4.020E-04
2.48	-0.031	0.031	3.176	-3.176	-3.984E-06	3.984E-06	4.020E-04	-4.020E-04
2.49	-0.031	0.031	3.176	-3.176	-3.921E-06	3.921E-06	4.021E-04	-4.021E-04
2.50	-0.030	0.030	3.177	-3.177	-3.858E-06	3.858E-06	4.021E-04	-4.021E-04
2.51	-0.030	0.030	3.177	-3.177	-3.796E-06	3.796E-06	4.022E-04	-4.022E-04
2.52	-0.030	0.030	3.178	-3.178	-3.735E-06	3.735E-06	4.023E-04	-4.023E-04
2.53	-0.029	0.029	3.178	-3.178	-3.675E-06	3.675E-06	4.023E-04	-4.023E-04
2.54	-0.029	0.029	3.179	-3.179	-3.617E-06	3.617E-06	4.024E-04	-4.024E-04
2.55	-0.028	0.028	3.179	-3.179	-3.559E-06	3.559E-06	4.024E-04	-4.024E-04
2.56	-0.028	0.028	3.180	-3.180	-3.502E-06	3.502E-06	4.025E-04	-4.025E-04
2.57	-0.027	0.027	3.180	-3.180	-3.446E-06	3.446E-06	4.026E-04	-4.026E-04
2.58	-0.027	0.027	3.181	-3.181	-3.391E-06	3.391E-06	4.026E-04	-4.026E-04
2.59	-0.026	0.026	3.181	-3.181	-3.336E-06	3.336E-06	4.027E-04	-4.027E-04
2.60	-0.026	0.026	3.181	-3.181	-3.283E-06	3.283E-06	4.027E-04	-4.027E-04
2.61	-0.026	0.026	3.182	-3.182	-3.230E-06	3.230E-06	4.028E-04	-4.028E-04
2.62	-0.025	0.025	3.182	-3.182	-3.179E-06	3.179E-06	4.028E-04	-4.028E-04
2.63	-0.025	0.025	3.183	-3.183	-3.128E-06	3.128E-06	4.029E-04	-4.029E-04
2.64	-0.024	0.024	3.183	-3.183	-3.078E-06	3.078E-06	4.029E-04	-4.029E-04
2.65	-0.024	0.024	3.183	-3.183	-3.028E-06	3.028E-06	4.030E-04	-4.030E-04
2.66	-0.024	0.024	3.184	-3.184	-2.980E-06	2.980E-06	4.030E-04	-4.030E-04
2.67	-0.023	0.023	3.184	-3.184	-2.932E-06	2.932E-06	4.031E-04	-4.031E-04
2.68	-0.023	0.023	3.185	-3.185	-2.885E-06	2.885E-06	4.031E-04	-4.031E-04
2.69	-0.022	0.022	3.185	-3.185	-2.839E-06	2.839E-06	4.032E-04	-4.032E-04
2.70	-0.022	0.022	3.185	-3.185	-2.794E-06	2.794E-06	4.032E-04	-4.032E-04
2.71	-0.022	0.022	3.186	-3.186	-2.749E-06	2.749E-06	4.033E-04	-4.033E-04
2.72	-0.021	0.021	3.186	-3.186	-2.705E-06	2.705E-06	4.033E-04	-4.033E-04
2.73	-0.021	0.021	3.186	-3.186	-2.662E-06	2.662E-06	4.033E-04	-4.033E-04
2.74	-0.021	0.021	3.187	-3.187	-2.619E-06	2.619E-06	4.034E-04	-4.034E-04
2.75	-0.020	0.020	3.187	-3.187	-2.577E-06	2.577E-06	4.034E-04	-4.034E-04
2.76	-0.020	0.020	3.187	-3.187	-2.536E-06	2.536E-06	4.035E-04	-4.035E-04
2.77	-0.020	0.020	3.188	-3.188	-2.496E-06	2.496E-06	4.035E-04	-4.035E-04
2.78	-0.019	0.019	3.188	-3.188	-2.456E-06	2.456E-06	4.035E-04	-4.035E-04
2.79	-0.019	0.019	3.188	-3.188	-2.416E-06	2.416E-06	4.036E-04	-4.036E-04
2.80	-0.019	0.019	3.189	-3.189	-2.378E-06	2.378E-06	4.036E-04	-4.036E-04

Appendix 1 Analysis results of standard case (7/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	on al strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.81	-0.018	0.018	3.189	-3.189	-2.340E-06	2.340E-06	4.037E-04	-4.037E-04
2.82	-0.018	0.018	3.189	-3.189	-2.302E-06	2.302E-06	4.037E-04	-4.037E-04
2.83	-0.018	0.018	3.190	-3.190	-2.265E-06	2.265E-06	4.037E-04	-4.037E-04
2.84	-0.018	0.018	3.190	-3.190	-2.229E-06	2.229E-06	4.038E-04	-4.038E-04
2.85	-0.017	0.017	3.190	-3.190	-2.193E-06	2.193E-06	4.038E-04	-4.038E-04
2.86	-0.017	0.017	3.190	-3.190	-2.158E-06	2.158E-06	4.038E-04	-4.038E-04
2.87	-0.017	0.017	3.191	-3.191	-2.124E-06	2.124E-06	4.039E-04	-4.039E-04
2.88	-0.017	0.017	3.191	-3.191	-2.089E-06	2.089E-06	4.039E-04	-4.039E-04
2.89	-0.016	0.016	3.191	-3.191	-2.056E-06	2.056E-06	4.039E-04	-4.039E-04
2.90	-0.016	0.016	3.191	-3.191	-2.023E-06	2.023E-06	4.040E-04	-4.040E-04
2.91	-0.016	0.016	3.192	-3.192	-1.991E-06	1.991E-06	4.040E-04	-4.040E-04
2.92	-0.015	0.015	3.192	-3.192	-1.959E-06	1.959E-06	4.040E-04	-4.040E-04
2.93	-0.015	0.015	3.192	-3.192	-1.928E-06	1.928E-06	4.041E-04	-4.041E-04
2.94	-0.015	0.015	3.192	-3.192	-1.897E-06	1.897E-06	4.041E-04	-4.041E-04
2.95	-0.015	0.015	3.193	-3.193	-1.867E-06	1.867E-06	4.041E-04	-4.041E-04
2.96	-0.015	0.015	3.193	-3.193	-1.837E-06	1.837E-06	4.042E-04	-4.042E-04
2.97	-0.014	0.014	3.193	-3.193	-1.807E-06	1.807E-06	4.042E-04	-4.042E-04
2.98	-0.014	0.014	3.193	-3.193	-1.778E-06	1.778E-06	4.042E-04	-4.042E-04
2.99	-0.014	0.014	3.194	-3.194	-1.750E-06	1.750E-06	4.043E-04	-4.043E-04
3.00	-0.014	0.014	3.194	-3.194	-1.722E-06	1.722E-06	4.043E-04	-4.043E-04

Appendix 1 Analysis results of standard case (8/8)

Fluence	Ope rational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shutdown strain			vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.00	-3.340	3.340	0.000	0.000	-3.995E-04	4.125E-04	0.000E+00	0.000E+00
0.01	-2.426	2.426	1.146	-1.146	-2.716E-04	2.735E-04	1.351E-04	-1.317E-04
0.02	-2.017	2.017	1.652	-1.652	-2.199E-04	2.192E-04	1.897E-04	-1.832E-04
0.03	-1.870	1.870	1.880	-1.880	-1.999E-04	1.978E-04	2.116E-04	-2.028E-04
0.04	-1.810	1.810	2.010	-2.010	-1.903E-04	1.872E-04	2.225E-04	-2.120E-04
0.05	-1.777	1.777	2.105	-2.105	-1.842E-04	1.803E-04	2.298E-04	-2.177E-04
0.06	-1.751	1.751	2.186	-2.186	-1.793E-04	1.747E-04	2.357E-04	-2.224E-04
0.07	-1.728	1.728	2.261	-2.261	-1.749E-04	1.697E-04	2.410E-04	-2.265E-04
0.08	-1.704	1.704	2.331	-2.331	-1.707E-04	1.650E-04	2.460E-04	-2.303E-04
0.09	-1.680	1.680	2.398	-2.398	-1.667E-04	1.607E-04	2.507E-04	-2.339E-04
0.10	-1.656	1.656	2.463	-2.463	-1.629E-04	1.565E-04	2.552E-04	-2.374E-04
0.11	-1.632	1.632	2.525	-2.525	-1.592E-04	1.525E-04	2.595E-04	-2.408E-04
0.12	-1.607	1.607	2.586	-2.586	-1.556E-04	1.487E-04	2.637E-04	-2.440E-04
0.13	-1.583	1.583	2.644	-2.644	-1.521E-04	1.450E-04	2.677E-04	-2.471E-04
0.14	-1.558	1.558	2.701	-2.701	-1.488E-04	1.415E-04	2.716E-04	-2.501E-04
0.15	-1.534	1.534	2.757	-2.757	-1.455E-04	1.381E-04	2.753E-04	-2.531E-04
0.16	-1.510	1.510	2.810	-2.810	-1.423E-04	1.348E-04	2.790E-04	-2.559E-04
0.17	-1.485	1.485	2.863	-2.863	-1.392E-04	1.316E-04	2.825E-04	-2.587E-04
0.18	-1.461	1.461	2.914	-2.914	-1.362E-04	1.285E-04	2.860E-04	-2.614E-04
0.19	-1.437	1.437	2.964	-2.964	-1.332E-04	1.255E-04	2.893E-04	-2.640E-04
0.20	-1.413	1.413	3.013	-3.013	-1.303E-04	1.226E-04	2.926E-04	-2.665E-04
0.21	-1.390	1.390	3.061	-3.061	-1.275E-04	1.197E-04	2.958E-04	-2.690E-04
0.22	-1.366	1.366	3.108	-3.108	-1.247E-04	1.170E-04	2.989E-04	-2.714E-04
0.23	-1.343	1.343	3.153	-3.153	-1.221E-04	1.143E-04	3.019E-04	-2.738E-04
0.24	-1.320	1.320	3.198	-3.198	-1.194E-04	1.117E-04	3.048E-04	-2.761E-04
0.25	-1.297	1.297	3.242	-3.242	-1.169E-04	1.092E-04	3.077E-04	-2.783E-04
0.26	-1.274	1.274	3.284	-3.284	-1.144E-04	1.067E-04	3.104E-04	-2.805E-04
0.27	-1.252	1.252	3.326	-3.326	-1.119E-04	1.043E-04	3.132E-04	-2.826E-04
0.28	-1.230	1.230	3.367	-3.367	-1.096E-04	1.020E-04	3.158E-04	-2.847E-04
0.29	-1.208	1.208	3.407	-3.407	-1.072E-04	9.969E-05	3.184E-04	-2.867E-04
0.30	-1.187	1.187	3.447	-3.447	-1.049E-04	9.747E-05	3.209E-04	-2.887E-04
0.31	-1.166	1.166	3.485	-3.485	-1.027E-04	9.530E-05	3.234E-04	-2.906E-04
0.32	-1.145	1.145	3.523	-3.523	-1.005E-04	9.319E-05	3.258E-04	-2.925E-04
0.33	-1.124	1.124	3.560	-3.560	-9.840E-05	9.113E-05	3.282E-04	-2.943E-04
0.34	-1.104	1.104	3.596	-3.596	-9.631E-05	8.912E-05	3.305E-04	-2.961E-04
0.35	-1.084	1.084	3.632	-3.632	-9.427E-05	8.716E-05	3.327E-04	-2.979E-04
0.36	-1.064	1.064	3.667	-3.667	-9.228E-05	8.524E-05	3.349E-04	-2.996E-04
0.37	-1.045	1.045	3.701	-3.701	-9.032E-05	8.337E-05	3.370E-04	-3.013E-04
0.38	-1.025	1.025	3.735	-3.735	-8.842E-05	8.155E-05	3.391E-04	-3.029E-04
0.39	-1.006	1.006	3.767	-3.767	-8.655E-05	7.977E-05	3.412E-04	-3.045E-04
0.40	-0.988	0.988	3.800	-3.800	-8.472E-05	7.803E-05	3.432E-04	-3.061E-04

Appendix 2 Analysis results of Young's modulus effect case (1/8)

Fluence	Operational	stress (MPa)	Shutdown s	stress (MPa)	Operatio	onal strain	Shutdov	wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.41	-0.970	0.970	3.831	-3.831	-8.293E-05	7.633E-05	3.451E-04	-3.076E-04
0.42	-0.952	0.952	3.862	-3.862	-8.118E-05	7.467E-05	3.470E-04	-3.091E-04
0.43	-0.934	0.934	3.893	-3.893	-7.947E-05	7.305E-05	3.489E-04	-3.106E-04
0.44	-0.916	0.916	3.922	-3.922	-7.780E-05	7.146E-05	3.507E-04	-3.120E-04
0.45	-0.899	0.899	3.952	-3.952	-7.616E-05	6.992E-05	3.525E-04	-3.134E-04
0.46	-0.882	0.882	3.980	-3.980	-7.456E-05	6.841E-05	3.543E-04	-3.148E-04
0.47	-0.866	0.866	4.008	-4.008	-7.299E-05	6.693E-05	3.560E-04	-3.161E-04
0.48	-0.849	0.849	4.036	-4.036	-7.145E-05	6.548E-05	3.576E-04	-3.174E-04
0.49	-0.833	0.833	4.063	-4.063	-6.995E-05	6.407E-05	3.593E-04	-3.187E-04
0.50	-0.817	0.817	4.089	-4.089	-6.848E-05	6.269E-05	3.609E-04	-3.200E-04
0.51	-0.802	0.802	4.115	-4.115	-6.704E-05	6.135E-05	3.624E-04	-3.212E-04
0.52	-0.786	0.786	4.141	-4.141	-6.563E-05	6.003E-05	3.640E-04	-3.224E-04
0.53	-0.771	0.771	4.166	-4.166	-6.425E-05	5.874E-05	3.655E-04	-3.236E-04
0.54	-0.757	0.757	4.190	-4.190	-6.291E-05	5.748E-05	3.669E-04	-3.247E-04
0.55	-0.742	0.742	4.215	-4.215	-6.158E-05	5.625E-05	3.683E-04	-3.258E-04
0.56	-0.728	0.728	4.238	-4.238	-6.029E-05	5.505E-05	3.697E-04	-3.269E-04
0.57	-0.714	0.714	4.261	-4.261	-5.903E-05	5.387E-05	3.711E-04	-3.280E-04
0.58	-0.700	0.700	4.284	-4.284	-5.779E-05	5.272E-05	3.724E-04	-3.290E-04
0.59	-0.687	0.687	4.306	-4.306	-5.658E-05	5.159E-05	3.738E-04	-3.301E-04
0.60	-0.673	0.673	4.328	-4.328	-5.539E-05	5.049E-05	3.750E-04	-3.311E-04
0.61	-0.660	0.660	4.350	-4.350	-5.423E-05	4.941E-05	3.763E-04	-3.321E-04
0.62	-0.647	0.647	4.371	-4.371	-5.309E-05	4.836E-05	3.775E-04	-3.330E-04
0.63	-0.635	0.635	4.391	-4.391	-5.198E-05	4.733E-05	3.787E-04	-3.340E-04
0.64	-0.622	0.622	4.412	-4.412	-5.089E-05	4.632E-05	3.799E-04	-3.349E-04
0.65	-0.610	0.610	4.432	-4.432	-4.982E-05	4.534E-05	3.810E-04	-3.358E-04
0.66	-0.598	0.598	4.451	-4.451	-4.878E-05	4.437E-05	3.822E-04	-3.367E-04
0.67	-0.587	0.587	4.470	-4.470	-4.776E-05	4.343E-05	3.833E-04	-3.375E-04
0.68	-0.575	0.575	4.489	-4.489	-4.676E-05	4.251E-05	3.843E-04	-3.384E-04
0.69	-0.564	0.564	4.508	-4.508	-4.578E-05	4.161E-05	3.854E-04	-3.392E-04
0.70	-0.553	0.553	4.526	-4.526	-4.482E-05	4.073E-05	3.864E-04	-3.400E-04
0.71	-0.542	0.542	4.543	-4.543	-4.388E-05	3.986E-05	3.874E-04	-3.408E-04
0.72	-0.531	0.531	4.561	-4.561	-4.296E-05	3.902E-05	3.884E-04	-3.416E-04
0.73	-0.521	0.521	4.578	-4.578	-4.206E-05	3.819E-05	3.894E-04	-3.424E-04
0.74	-0.511	0.511	4.595	-4.595	-4.118E-05	3.738E-05	3.903E-04	-3.431E-04
0.75	-0.500	0.500	4.611	-4.611	-4.032E-05	3.659E-05	3.912E-04	-3.438E-04
0.76	-0.491	0.491	4.627	-4.627	-3.948E-05	3.582E-05	3.922E-04	-3.446E-04
0.77	-0.481	0.481	4.643	-4.643	-3.865E-05	3.506E-05	3.930E-04	-3.453E-04
0.78	-0.471	0.471	4.659	-4.659	-3.784E-05	3.432E-05	3.939E-04	-3.459E-04
0.79	-0.462	0.462	4.674	-4.674	-3.705E-05	3.359E-05	3.948E-04	-3.466E-04
0.80	-0.453	0.453	4.689	-4.689	-3.628E-05	3.288E-05	3.956E-04	-3.473E-04

Appendix 2 Analysis results of Young's modulus effect case (2/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shu		Shutdov	vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.444	0.444	4.703	-4.703	-3.552E-05	3.219E-05	3.964E-04	-3.479E-04
0.82	-0.435	0.435	4.718	-4.718	-3.477E-05	3.151E-05	3.972E-04	-3.485E-04
0.83	-0.426	0.426	4.732	-4.732	-3.405E-05	3.084E-05	3.980E-04	-3.491E-04
0.84	-0.418	0.418	4.746	-4.746	-3.334E-05	3.019E-05	3.987E-04	-3.497E-04
0.85	-0.410	0.410	4.759	-4.759	-3.264E-05	2.956E-05	3.995E-04	-3.503E-04
0.86	-0.401	0.401	4.773	-4.773	-3.196E-05	2.893E-05	4.002E-04	-3.509E-04
0.87	-0.393	0.393	4.786	-4.786	-3.129E-05	2.832E-05	4.009E-04	-3.515E-04
0.88	-0.385	0.385	4.799	-4.799	-3.063E-05	2.773E-05	4.016E-04	-3.520E-04
0.89	-0.378	0.378	4.811	-4.811	-2.999E-05	2.714E-05	4.023E-04	-3.526E-04
0.90	-0.370	0.370	4.824	-4.824	-2.937E-05	2.657E-05	4.030E-04	-3.531E-04
0.91	-0.363	0.363	4.836	-4.836	-2.875E-05	2.601E-05	4.036E-04	-3.536E-04
0.92	-0.356	0.356	4.848	-4.848	-2.815E-05	2.546E-05	4.043E-04	-3.541E-04
0.93	-0.348	0.348	4.860	-4.860	-2.756E-05	2.493E-05	4.049E-04	-3.546E-04
0.94	-0.341	0.341	4.871	-4.871	-2.699E-05	2.440E-05	4.055E-04	-3.551E-04
0.95	-0.335	0.335	4.882	-4.882	-2.642E-05	2.389E-05	4.061E-04	-3.556E-04
0.96	-0.328	0.328	4.893	-4.893	-2.587E-05	2.339E-05	4.067E-04	-3.561E-04
0.97	-0.321	0.321	4.904	-4.904	-2.533E-05	2.289E-05	4.073E-04	-3.565E-04
0.98	-0.315	0.315	4.915	-4.915	-2.480E-05	2.241E-05	4.078E-04	-3.570E-04
0.99	-0.308	0.308	4.925	-4.925	-2.428E-05	2.194E-05	4.084E-04	-3.574E-04
1.00	-0.302	0.302	4.936	-4.936	-2.377E-05	2.148E-05	4.089E-04	-3.578E-04
1.01	-0.296	0.296	4.946	-4.946	-2.328E-05	2.103E-05	4.094E-04	-3.582E-04
1.02	-0.290	0.290	4.956	-4.956	-2.279E-05	2.059E-05	4.100E-04	-3.587E-04
1.03	-0.284	0.284	4.965	-4.965	-2.231E-05	2.016E-05	4.105E-04	-3.591E-04
1.04	-0.279	0.279	4.975	-4.975	-2.185E-05	1.973E-05	4.110E-04	-3.595E-04
1.05	-0.273	0.273	4.984	-4.984	-2.139E-05	1.932E-05	4.114E-04	-3.598E-04
1.06	-0.267	0.267	4.994	-4.994	-2.094E-05	1.891E-05	4.119E-04	-3.602E-04
1.07	-0.262	0.262	5.003	-5.003	-2.051E-05	1.852E-05	4.124E-04	-3.606E-04
1.08	-0.257	0.257	5.011	-5.011	-2.008E-05	1.813E-05	4.128E-04	-3.610E-04
1.09	-0.251	0.251	5.020	-5.020	-1.966E-05	1.775E-05	4.133E-04	-3.613E-04
1.10	-0.246	0.246	5.029	-5.029	-1.925E-05	1.737E-05	4.137E-04	-3.617E-04
1.11	-0.241	0.241	5.037	-5.037	-1.885E-05	1.701E-05	4.141E-04	-3.620E-04
1.12	-0.236	0.236	5.045	-5.045	-1.845E-05	1.665E-05	4.146E-04	-3.623E-04
1.13	-0.232	0.232	5.053	-5.053	-1.807E-05	1.630E-05	4.150E-04	-3.627E-04
1.14	-0.227	0.227	5.061	-5.061	-1.769E-05	1.596E-05	4.154E-04	-3.630E-04
1.15	-0.222	0.222	5.069	-5.069	-1.732E-05	1.563E-05	4.158E-04	-3.633E-04
1.16	-0.218	0.218	5.077	-5.077	-1.696E-05	1.530E-05	4.161E-04	-3.636E-04
1.17	-0.213	0.213	5.084	-5.084	-1.660E-05	1.498E-05	4.165E-04	-3.639E-04
1.18	-0.209	0.209	5.092	-5.092	-1.626E-05	1.466E-05	4.169E-04	-3.642E-04
1.19	-0.205	0.205	5.099	-5.099	-1.592E-05	1.436E-05	4.172E-04	-3.645E-04
1.20	-0.201	0.201	5.106	-5.106	-1.558E-05	1.406E-05	4.176E-04	-3.648E-04

Appendix 2 Analysis results of Young's modulus effect case (3/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shutd		Shutdov	vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.21	-0.197	0.197	5.113	-5.113	-1.526E-05	1.376E-05	4.179E-04	-3.650E-04
1.22	-0.193	0.193	5.120	-5.120	-1.494E-05	1.347E-05	4.183E-04	-3.653E-04
1.23	-0.189	0.189	5.127	-5.127	-1.463E-05	1.319E-05	4.186E-04	-3.656E-04
1.24	-0.185	0.185	5.133	-5.133	-1.432E-05	1.291E-05	4.189E-04	-3.658E-04
1.25	-0.181	0.181	5.140	-5.140	-1.402E-05	1.264E-05	4.192E-04	-3.661E-04
1.26	-0.177	0.177	5.146	-5.146	-1.373E-05	1.238E-05	4.195E-04	-3.663E-04
1.27	-0.174	0.174	5.152	-5.152	-1.344E-05	1.212E-05	4.198E-04	-3.666E-04
1.28	-0.170	0.170	5.159	-5.159	-1.316E-05	1.187E-05	4.201E-04	-3.668E-04
1.29	-0.167	0.167	5.165	-5.165	-1.289E-05	1.162E-05	4.204E-04	-3.671E-04
1.30	-0.163	0.163	5.171	-5.171	-1.262E-05	1.137E-05	4.207E-04	-3.673E-04
1.31	-0.160	0.160	5.176	-5.176	-1.235E-05	1.114E-05	4.210E-04	-3.675E-04
1.32	-0.157	0.157	5.182	-5.182	-1.210E-05	1.090E-05	4.213E-04	-3.677E-04
1.33	-0.153	0.153	5.188	-5.188	-1.184E-05	1.067E-05	4.215E-04	-3.680E-04
1.34	-0.150	0.150	5.193	-5.193	-1.159E-05	1.045E-05	4.218E-04	-3.682E-04
1.35	-0.147	0.147	5.199	-5.199	-1.135E-05	1.023E-05	4.220E-04	-3.684E-04
1.36	-0.144	0.144	5.204	-5.204	-1.112E-05	1.002E-05	4.223E-04	-3.686E-04
1.37	-0.141	0.141	5.209	-5.209	-1.088E-05	9.808E-06	4.225E-04	-3.688E-04
1.38	-0.138	0.138	5.214	-5.214	-1.066E-05	9.602E-06	4.228E-04	-3.690E-04
1.39	-0.136	0.136	5.220	-5.220	-1.043E-05	9.401E-06	4.230E-04	-3.692E-04
1.40	-0.133	0.133	5.225	-5.225	-1.022E-05	9.205E-06	4.232E-04	-3.693E-04
1.41	-0.130	0.130	5.229	-5.229	-1.000E-05	9.012E-06	4.235E-04	-3.695E-04
1.42	-0.127	0.127	5.234	-5.234	-9.793E-06	8.823E-06	4.237E-04	-3.697E-04
1.43	-0.125	0.125	5.239	-5.239	-9.588E-06	8.639E-06	4.239E-04	-3.699E-04
1.44	-0.122	0.122	5.244	-5.244	-9.387E-06	8.458E-06	4.241E-04	-3.700E-04
1.45	-0.120	0.120	5.248	-5.248	-9.191E-06	8.281E-06	4.243E-04	-3.702E-04
1.46	-0.117	0.117	5.253	-5.253	-8.999E-06	8.107E-06	4.245E-04	-3.704E-04
1.47	-0.115	0.115	5.257	-5.257	-8.811E-06	7.938E-06	4.247E-04	-3.705E-04
1.48	-0.113	0.113	5.262	-5.262	-8.627E-06	7.772E-06	4.249E-04	-3.707E-04
1.49	-0.110	0.110	5.266	-5.266	-8.447E-06	7.609E-06	4.251E-04	-3.708E-04
1.50	-0.108	0.108	5.270	-5.270	-8.270E-06	7.450E-06	4.253E-04	-3.710E-04
1.51	-0.106	0.106	5.274	-5.274	-8.097E-06	7.294E-06	4.255E-04	-3.711E-04
1.52	-0.104	0.104	5.278	-5.278	-7.928E-06	7.141E-06	4.256E-04	-3.713E-04
1.53	-0.101	0.101	5.282	-5.282	-7.762E-06	6.992E-06	4.258E-04	-3.714E-04
1.54	-0.099	0.099	5.286	-5.286	-7.600E-06	6.845E-06	4.260E-04	-3.716E-04
1.55	-0.097	0.097	5.290	-5.290	-7.441E-06	6.702E-06	4.261E-04	-3.717E-04
1.56	-0.095	0.095	5.294	-5.294	-7.286E-06	6.562E-06	4.263E-04	-3.718E-04
1.57	-0.093	0.093	5.298	-5.298	-7.133E-06	6.424E-06	4.265E-04	-3.720E-04
1.58	-0.091	0.091	5.301	-5.301	-6.984E-06	6.290E-06	4.266E-04	-3.721E-04
1.59	-0.090	0.090	5.305	-5.305	-6.838E-06	6.158E-06	4.268E-04	-3.722E-04
1.60	-0.088	0.088	5.309	-5.309	-6.695E-06	6.030E-06	4.269E-04	-3.724E-04

Appendix 2 Analysis results of Young's modulus effect case (4/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.086	0.086	5.312	-5.312	-6.555E-06	5.903E-06	4.271E-04	-3.725E-04
1.62	-0.084	0.084	5.316	-5.316	-6.418E-06	5.780E-06	4.272E-04	-3.726E-04
1.63	-0.082	0.082	5.319	-5.319	-6.284E-06	5.659E-06	4.274E-04	-3.727E-04
1.64	-0.081	0.081	5.322	-5.322	-6.152E-06	5.540E-06	4.275E-04	-3.728E-04
1.65	-0.079	0.079	5.326	-5.326	-6.024E-06	5.425E-06	4.276E-04	-3.729E-04
1.66	-0.077	0.077	5.329	-5.329	-5.898E-06	5.311E-06	4.278E-04	-3.730E-04
1.67	-0.076	0.076	5.332	-5.332	-5.774E-06	5.200E-06	4.279E-04	-3.731E-04
1.68	-0.074	0.074	5.335	-5.335	-5.654E-06	5.091E-06	4.280E-04	-3.732E-04
1.69	-0.073	0.073	5.338	-5.338	-5.535E-06	4.984E-06	4.281E-04	-3.733E-04
1.70	-0.071	0.071	5.342	-5.342	-5.420E-06	4.880E-06	4.283E-04	-3.734E-04
1.71	-0.070	0.070	5.345	-5.345	-5.306E-06	4.778E-06	4.284E-04	-3.735E-04
1.72	-0.068	0.068	5.348	-5.348	-5.195E-06	4.678E-06	4.285E-04	-3.736E-04
1.73	-0.067	0.067	5.350	-5.350	-5.087E-06	4.580E-06	4.286E-04	-3.737E-04
1.74	-0.065	0.065	5.353	-5.353	-4.980E-06	4.484E-06	4.287E-04	-3.738E-04
1.75	-0.064	0.064	5.356	-5.356	-4.876E-06	4.390E-06	4.288E-04	-3.739E-04
1.76	-0.063	0.063	5.359	-5.359	-4.774E-06	4.298E-06	4.289E-04	-3.740E-04
1.77	-0.062	0.062	5.362	-5.362	-4.674E-06	4.208E-06	4.290E-04	-3.741E-04
1.78	-0.060	0.060	5.365	-5.365	-4.576E-06	4.120E-06	4.291E-04	-3.742E-04
1.79	-0.059	0.059	5.367	-5.367	-4.481E-06	4.034E-06	4.292E-04	-3.743E-04
1.80	-0.058	0.058	5.370	-5.370	-4.387E-06	3.950E-06	4.293E-04	-3.743E-04
1.81	-0.057	0.057	5.373	-5.373	-4.295E-06	3.867E-06	4.294E-04	-3.744E-04
1.82	-0.055	0.055	5.375	-5.375	-4.205E-06	3.786E-06	4.295E-04	-3.745E-04
1.83	-0.054	0.054	5.378	-5.378	-4.117E-06	3.707E-06	4.296E-04	-3.746E-04
1.84	-0.053	0.053	5.380	-5.380	-4.031E-06	3.629E-06	4.297E-04	-3.746E-04
1.85	-0.052	0.052	5.383	-5.383	-3.947E-06	3.553E-06	4.298E-04	-3.747E-04
1.86	-0.051	0.051	5.385	-5.385	-3.864E-06	3.479E-06	4.299E-04	-3.748E-04
1.87	-0.050	0.050	5.388	-5.388	-3.783E-06	3.406E-06	4.300E-04	-3.749E-04
1.88	-0.049	0.049	5.390	-5.390	-3.704E-06	3.335E-06	4.300E-04	-3.749E-04
1.89	-0.048	0.048	5.392	-5.392	-3.627E-06	3.265E-06	4.301E-04	-3.750E-04
1.90	-0.047	0.047	5.395	-5.395	-3.551E-06	3.196E-06	4.302E-04	-3.751E-04
1.91	-0.046	0.046	5.397	-5.397	-3.476E-06	3.129E-06	4.303E-04	-3.751E-04
1.92	-0.045	0.045	5.399	-5.399	-3.404E-06	3.064E-06	4.304E-04	-3.752E-04
1.93	-0.044	0.044	5.402	-5.402	-3.332E-06	3.000E-06	4.304E-04	-3.752E-04
1.94	-0.043	0.043	5.404	-5.404	-3.262E-06	2.937E-06	4.305E-04	-3.753E-04
1.95	-0.042	0.042	5.406	-5.406	-3.194E-06	2.875E-06	4.306E-04	-3.754E-04
1.96	-0.041	0.041	5.408	-5.408	-3.127E-06	2.815E-06	4.306E-04	-3.754E-04
1.97	-0.041	0.041	5.410	-5.410	-3.062E-06	2.756E-06	4.307E-04	-3.755E-04
1.98	-0.040	0.040	5.412	-5.412	-2.998E-06	2.698E-06	4.308E-04	-3.755E-04
1.99	-0.039	0.039	5.415	-5.415	-2.935E-06	2.642E-06	4.308E-04	-3.756E-04
2.00	-0.038	0.038	5.417	-5.417	-2.873E-06	2.586E-06	4.309E-04	-3.756E-04

Appendix 2 Analysis results of Young's modulus effect case (5/8)

Fluence	Operational	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	
2.01	-0.037	0.037	5.419	-5.419	-2.813E-06	2.532E-06	4.310E-04	-3.757E-04	
2.02	-0.036	0.036	5.421	-5.421	-2.754E-06	2.479E-06	4.310E-04	-3.757E-04	
2.03	-0.036	0.036	5.423	-5.423	-2.697E-06	2.427E-06	4.311E-04	-3.758E-04	
2.04	-0.035	0.035	5.425	-5.425	-2.640E-06	2.376E-06	4.312E-04	-3.758E-04	
2.05	-0.034	0.034	5.427	-5.427	-2.585E-06	2.327E-06	4.312E-04	-3.759E-04	
2.06	-0.034	0.034	5.429	-5.429	-2.531E-06	2.278E-06	4.313E-04	-3.759E-04	
2.07	-0.033	0.033	5.431	-5.431	-2.478E-06	2.230E-06	4.313E-04	-3.760E-04	
2.08	-0.032	0.032	5.432	-5.432	-2.426E-06	2.183E-06	4.314E-04	-3.760E-04	
2.09	-0.032	0.032	5.434	-5.434	-2.375E-06	2.138E-06	4.314E-04	-3.761E-04	
2.10	-0.031	0.031	5.436	-5.436	-2.325E-06	2.093E-06	4.315E-04	-3.761E-04	
2.11	-0.030	0.030	5.438	-5.438	-2.276E-06	2.049E-06	4.315E-04	-3.761E-04	
2.12	-0.030	0.030	5.440	-5.440	-2.229E-06	2.006E-06	4.316E-04	-3.762E-04	
2.13	-0.029	0.029	5.442	-5.442	-2.182E-06	1.963E-06	4.316E-04	-3.762E-04	
2.14	-0.028	0.028	5.444	-5.444	-2.136E-06	1.923E-06	4.317E-04	-3.763E-04	
2.15	-0.028	0.028	5.445	-5.445	-2.091E-06	1.882E-06	4.317E-04	-3.763E-04	
2.16	-0.027	0.027	5.447	-5.447	-2.048E-06	1.843E-06	4.318E-04	-3.763E-04	
2.17	-0.027	0.027	5.449	-5.449	-2.005E-06	1.804E-06	4.318E-04	-3.764E-04	
2.18	-0.026	0.026	5.451	-5.451	-1.963E-06	1.766E-06	4.319E-04	-3.764E-04	
2.19	-0.026	0.026	5.452	-5.452	-1.921E-06	1.729E-06	4.319E-04	-3.764E-04	
2.20	-0.025	0.025	5.454	-5.454	-1.881E-06	1.693E-06	4.320E-04	-3.765E-04	
2.21	-0.024	0.024	5.456	-5.456	-1.842E-06	1.657E-06	4.320E-04	-3.765E-04	
2.22	-0.024	0.024	5.458	-5.458	-1.803E-06	1.623E-06	4.320E-04	-3.765E-04	
2.23	-0.023	0.023	5.459	-5.459	-1.765E-06	1.589E-06	4.321E-04	-3.766E-04	
2.24	-0.023	0.023	5.461	-5.461	-1.728E-06	1.555E-06	4.321E-04	-3.766E-04	
2.25	-0.023	0.023	5.463	-5.463	-1.692E-06	1.523E-06	4.322E-04	-3.766E-04	
2.26	-0.022	0.022	5.464	-5.464	-1.656E-06	1.491E-06	4.322E-04	-3.767E-04	
2.27	-0.022	0.022	5.466	-5.466	-1.622E-06	1.459E-06	4.322E-04	-3.767E-04	
2.28	-0.021	0.021	5.467	-5.467	-1.588E-06	1.429E-06	4.323E-04	-3.767E-04	
2.29	-0.021	0.021	5.469	-5.469	-1.554E-06	1.399E-06	4.323E-04	-3.767E-04	
2.30	-0.020	0.020	5.471	-5.471	-1.522E-06	1.369E-06	4.323E-04	-3.768E-04	
2.31	-0.020	0.020	5.472	-5.472	-1.490E-06	1.341E-06	4.324E-04	-3.768E-04	
2.32	-0.019	0.019	5.474	-5.474	-1.459E-06	1.313E-06	4.324E-04	-3.768E-04	
2.33	-0.019	0.019	5.475	-5.475	-1.428E-06	1.285E-06	4.324E-04	-3.769E-04	
2.34	-0.019	0.019	5.477	-5.477	-1.398E-06	1.258E-06	4.325E-04	-3.769E-04	
2.35	-0.018	0.018	5.479	-5.479	-1.369E-06	1.232E-06	4.325E-04	-3.769E-04	
2.36	-0.018	0.018	5.480	-5.480	-1.340E-06	1.206E-06	4.325E-04	-3.769E-04	
2.37	-0.018	0.018	5.482	-5.482	-1.312E-06	1.180E-06	4.326E-04	-3.769E-04	
2.38	-0.017	0.017	5.483	-5.483	-1.284E-06	1.155E-06	4.326E-04	-3.770E-04	
2.39	-0.017	0.017	5.485	-5.485	-1.257E-06	1.131E-06	4.326E-04	-3.770E-04	
2.40	-0.016	0.016	5.486	-5.486	-1.231E-06	1.107E-06	4.326E-04	-3.770E-04	

Appendix 2 Analysis results of Young's modulus effect case (6/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.016	0.016	5.488	-5.488	-1.205E-06	1.084E-06	4.327E-04	-3.770E-04
2.42	-0.016	0.016	5.489	-5.489	-1.180E-06	1.061E-06	4.327E-04	-3.771E-04
2.43	-0.015	0.015	5.491	-5.491	-1.155E-06	1.039E-06	4.327E-04	-3.771E-04
2.44	-0.015	0.015	5.492	-5.492	-1.131E-06	1.017E-06	4.328E-04	-3.771E-04
2.45	-0.015	0.015	5.494	-5.494	-1.107E-06	9.959E-07	4.328E-04	-3.771E-04
2.46	-0.014	0.014	5.495	-5.495	-1.084E-06	9.750E-07	4.328E-04	-3.771E-04
2.47	-0.014	0.014	5.497	-5.497	-1.061E-06	9.545E-07	4.328E-04	-3.771E-04
2.48	-0.014	0.014	5.498	-5.498	-1.039E-06	9.344E-07	4.329E-04	-3.772E-04
2.49	-0.014	0.014	5.500	-5.500	-1.017E-06	9.148E-07	4.329E-04	-3.772E-04
2.50	-0.013	0.013	5.501	-5.501	-9.954E-07	8.955E-07	4.329E-04	-3.772E-04
2.51	-0.013	0.013	5.503	-5.503	-9.745E-07	8.767E-07	4.329E-04	-3.772E-04
2.52	-0.013	0.013	5.504	-5.504	-9.540E-07	8.583E-07	4.330E-04	-3.772E-04
2.53	-0.013	0.013	5.505	-5.505	-9.339E-07	8.402E-07	4.330E-04	-3.772E-04
2.54	-0.012	0.012	5.507	-5.507	-9.143E-07	8.226E-07	4.330E-04	-3.773E-04
2.55	-0.012	0.012	5.508	-5.508	-8.951E-07	8.053E-07	4.330E-04	-3.773E-04
2.56	-0.012	0.012	5.510	-5.510	-8.762E-07	7.883E-07	4.330E-04	-3.773E-04
2.57	-0.011	0.011	5.511	-5.511	-8.578E-07	7.717E-07	4.331E-04	-3.773E-04
2.58	-0.011	0.011	5.513	-5.513	-8.398E-07	7.555E-07	4.331E-04	-3.773E-04
2.59	-0.011	0.011	5.514	-5.514	-8.222E-07	7.396E-07	4.331E-04	-3.773E-04
2.60	-0.011	0.011	5.515	-5.515	-8.048E-07	7.240E-07	4.331E-04	-3.773E-04
2.61	-0.011	0.011	5.517	-5.517	-7.879E-07	7.088E-07	4.331E-04	-3.774E-04
2.62	-0.010	0.010	5.518	-5.518	-7.713E-07	6.939E-07	4.332E-04	-3.774E-04
2.63	-0.010	0.010	5.520	-5.520	-7.549E-07	6.791E-07	4.332E-04	-3.774E-04
2.64	-0.010	0.010	5.521	-5.521	-7.392E-07	6.649E-07	4.332E-04	-3.774E-04
2.65	-0.010	0.010	5.522	-5.522	-7.237E-07	6.510E-07	4.332E-04	-3.774E-04
2.66	-0.010	0.010	5.524	-5.524	-7.084E-07	6.373E-07	4.332E-04	-3.774E-04
2.67	-0.009	0.009	5.525	-5.525	-6.934E-07	6.237E-07	4.333E-04	-3.774E-04
2.68	-0.009	0.009	5.527	-5.527	-6.789E-07	6.107E-07	4.333E-04	-3.774E-04
2.69	-0.009	0.009	5.528	-5.528	-6.646E-07	5.978E-07	4.333E-04	-3.775E-04
2.70	-0.009	0.009	5.529	-5.529	-6.506E-07	5.853E-07	4.333E-04	-3.775E-04
2.71	-0.009	0.009	5.531	-5.531	-6.369E-07	5.729E-07	4.333E-04	-3.775E-04
2.72	-0.008	0.008	5.532	-5.532	-6.235E-07	5.608E-07	4.333E-04	-3.775E-04
2.73	-0.008	0.008	5.534	-5.534	-6.102E-07	5.489E-07	4.333E-04	-3.775E-04
2.74	-0.008	0.008	5.535	-5.535	-5.974E-07	5.374E-07	4.334E-04	-3.775E-04
2.75	-0.008	0.008	5.536	-5.536	-5.849E-07	5.261E-07	4.334E-04	-3.775E-04
2.76	-0.008	0.008	5.538	-5.538	-5.726E-07	5.150E-07	4.334E-04	-3.775E-04
2.77	-0.008	0.008	5.539	-5.539	-5.605E-07	5.041E-07	4.334E-04	-3.775E-04
2.78	-0.007	0.007	5.541	-5.541	-5.487E-07	4.935E-07	4.334E-04	-3.775E-04
2.79	-0.007	0.007	5.542	-5.542	-5.371E-07	4.831E-07	4.334E-04	-3.775E-04
2.80	-0.007	0.007	5.543	-5.543	-5.258E-07	4.729E-07	4.335E-04	-3.776E-04

Appendix 2 Analysis results of Young's modulus effect case (7/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.81	-0.007	0.007	5.545	-5.545	-5.148E-07	4.630E-07	4.335E-04	-3.776E-04
2.82	-0.007	0.007	5.546	-5.546	-5.039E-07	4.532E-07	4.335E-04	-3.776E-04
2.83	-0.007	0.007	5.548	-5.548	-4.933E-07	4.436E-07	4.335E-04	-3.776E-04
2.84	-0.007	0.007	5.549	-5.549	-4.829E-07	4.343E-07	4.335E-04	-3.776E-04
2.85	-0.006	0.006	5.550	-5.550	-4.727E-07	4.251E-07	4.335E-04	-3.776E-04
2.86	-0.006	0.006	5.552	-5.552	-4.628E-07	4.162E-07	4.335E-04	-3.776E-04
2.87	-0.006	0.006	5.553	-5.553	-4.529E-07	4.073E-07	4.335E-04	-3.776E-04
2.88	-0.006	0.006	5.554	-5.554	-4.432E-07	3.986E-07	4.336E-04	-3.776E-04
2.89	-0.006	0.006	5.556	-5.556	-4.340E-07	3.904E-07	4.336E-04	-3.776E-04
2.90	-0.006	0.006	5.557	-5.557	-4.248E-07	3.821E-07	4.336E-04	-3.776E-04
2.91	-0.006	0.006	5.559	-5.559	-4.158E-07	3.740E-07	4.336E-04	-3.776E-04
2.92	-0.005	0.005	5.560	-5.560	-4.072E-07	3.662E-07	4.336E-04	-3.776E-04
2.93	-0.005	0.005	5.561	-5.561	-3.985E-07	3.584E-07	4.336E-04	-3.776E-04
2.94	-0.005	0.005	5.563	-5.563	-3.901E-07	3.508E-07	4.336E-04	-3.776E-04
2.95	-0.005	0.005	5.564	-5.564	-3.820E-07	3.435E-07	4.336E-04	-3.776E-04
2.96	-0.005	0.005	5.566	-5.566	-3.738E-07	3.361E-07	4.336E-04	-3.776E-04
2.97	-0.005	0.005	5.567	-5.567	-3.660E-07	3.291E-07	4.337E-04	-3.777E-04
2.98	-0.005	0.005	5.568	-5.568	-3.582E-07	3.221E-07	4.337E-04	-3.777E-04
2.99	-0.005	0.005	5.570	-5.570	-3.507E-07	3.153E-07	4.337E-04	-3.777E-04
3.00	-0.005	0.005	5.571	-5.571	-3.433E-07	3.087E-07	4.337E-04	-3.777E-04

Appendix 2 Analysis results of Young's modulus effect case (8/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.00	-3.959	3.959	0.000	0.000	-5.012E-04	5.012E-04	0.000E+00	0.000E+00
0.01	-2.723	2.723	1.249	-1.249	-3.446E-04	3.446E-04	1.581E-04	-1.581E-04
0.02	-2.287	2.287	1.697	-1.697	-2.895E-04	2.895E-04	2.149E-04	-2.149E-04
0.03	-2.122	2.122	1.875	-1.875	-2.686E-04	2.686E-04	2.373E-04	-2.373E-04
0.04	-2.049	2.049	1.960	-1.960	-2.593E-04	2.593E-04	2.481E-04	-2.481E-04
0.05	-2.007	2.007	2.014	-2.014	-2.540E-04	2.540E-04	2.549E-04	-2.549E-04
0.06	-1.976	1.976	2.056	-2.056	-2.501E-04	2.501E-04	2.603E-04	-2.603E-04
0.07	-1.949	1.949	2.095	-2.095	-2.467E-04	2.467E-04	2.652E-04	-2.652E-04
0.08	-1.923	1.923	2.132	-2.132	-2.434E-04	2.434E-04	2.699E-04	-2.699E-04
0.09	-1.898	1.898	2.168	-2.168	-2.402E-04	2.402E-04	2.744E-04	-2.744E-04
0.10	-1.873	1.873	2.204	-2.204	-2.371E-04	2.371E-04	2.789E-04	-2.789E-04
0.11	-1.849	1.849	2.239	-2.239	-2.341E-04	2.341E-04	2.834E-04	-2.834E-04
0.12	-1.825	1.825	2.273	-2.273	-2.310E-04	2.310E-04	2.877E-04	-2.877E-04
0.13	-1.801	1.801	2.307	-2.307	-2.280E-04	2.280E-04	2.920E-04	-2.920E-04
0.14	-1.778	1.778	2.341	-2.341	-2.251E-04	2.251E-04	2.963E-04	-2.963E-04
0.15	-1.755	1.755	2.374	-2.374	-2.221E-04	2.221E-04	3.005E-04	-3.005E-04
0.16	-1.732	1.732	2.406	-2.406	-2.193E-04	2.193E-04	3.046E-04	-3.046E-04
0.17	-1.710	1.710	2.439	-2.439	-2.164E-04	2.164E-04	3.087E-04	-3.087E-04
0.18	-1.687	1.687	2.470	-2.470	-2.136E-04	2.136E-04	3.127E-04	-3.127E-04
0.19	-1.665	1.665	2.502	-2.502	-2.108E-04	2.108E-04	3.167E-04	-3.167E-04
0.20	-1.644	1.644	2.533	-2.533	-2.080E-04	2.080E-04	3.206E-04	-3.206E-04
0.21	-1.622	1.622	2.563	-2.563	-2.053E-04	2.053E-04	3.244E-04	-3.244E-04
0.22	-1.601	1.601	2.593	-2.593	-2.026E-04	2.026E-04	3.283E-04	-3.283E-04
0.23	-1.580	1.580	2.623	-2.623	-2.000E-04	2.000E-04	3.320E-04	-3.320E-04
0.24	-1.559	1.559	2.652	-2.652	-1.974E-04	1.974E-04	3.357E-04	-3.357E-04
0.25	-1.539	1.539	2.681	-2.681	-1.948E-04	1.948E-04	3.394E-04	-3.394E-04
0.26	-1.518	1.518	2.709	-2.709	-1.922E-04	1.922E-04	3.430E-04	-3.430E-04
0.27	-1.498	1.498	2.737	-2.737	-1.897E-04	1.897E-04	3.465E-04	-3.465E-04
0.28	-1.479	1.479	2.765	-2.765	-1.872E-04	1.872E-04	3.500E-04	-3.500E-04
0.29	-1.459	1.459	2.792	-2.792	-1.847E-04	1.847E-04	3.535E-04	-3.535E-04
0.30	-1.440	1.440	2.819	-2.819	-1.823E-04	1.823E-04	3.569E-04	-3.569E-04
0.31	-1.421	1.421	2.846	-2.846	-1.798E-04	1.798E-04	3.602E-04	-3.602E-04
0.32	-1.402	1.402	2.872	-2.872	-1.775E-04	1.775E-04	3.635E-04	-3.635E-04
0.33	-1.383	1.383	2.898	-2.898	-1.751E-04	1.751E-04	3.668E-04	-3.668E-04
0.34	-1.365	1.365	2.923	-2.923	-1.728E-04	1.728E-04	3.700E-04	-3.700E-04
0.35	-1.347	1.347	2.948	-2.948	-1.705E-04	1.705E-04	3.732E-04	-3.732E-04
0.36	-1.329	1.329	2.973	-2.973	-1.682E-04	1.682E-04	3.763E-04	-3.763E-04
0.37	-1.311	1.311	2.997	-2.997	-1.660E-04	1.660E-04	3.794E-04	-3.794E-04
0.38	-1.294	1.294	3.021	-3.021	-1.638E-04	1.638E-04	3.824E-04	-3.824E-04
0.39	-1.276	1.276	3.045	-3.045	-1.616E-04	1.616E-04	3.854E-04	-3.854E-04
0.40	-1.259	1.259	3.068	-3.068	-1.594E-04	1.594E-04	3.884E-04	-3.884E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (1/8)

Fluence	Fluence Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.41	-1.242	1.242	3.091	-3.091	-1.573E-04	1.573E-04	3.913E-04	-3.913E-04
0.42	-1.226	1.226	3.114	-3.114	-1.551E-04	1.551E-04	3.942E-04	-3.942E-04
0.43	-1.209	1.209	3.136	-3.136	-1.531E-04	1.531E-04	3.970E-04	-3.970E-04
0.44	-1.193	1.193	3.158	-3.158	-1.510E-04	1.510E-04	3.998E-04	-3.998E-04
0.45	-1.177	1.177	3.180	-3.180	-1.490E-04	1.490E-04	4.025E-04	-4.025E-04
0.46	-1.161	1.161	3.201	-3.201	-1.469E-04	1.469E-04	4.053E-04	-4.053E-04
0.47	-1.145	1.145	3.223	-3.223	-1.450E-04	1.450E-04	4.079E-04	-4.079E-04
0.48	-1.130	1.130	3.243	-3.243	-1.430E-04	1.430E-04	4.106E-04	-4.106E-04
0.49	-1.114	1.114	3.264	-3.264	-1.411E-04	1.411E-04	4.131E-04	-4.131E-04
0.50	-1.099	1.099	3.284	-3.284	-1.391E-04	1.391E-04	4.157E-04	-4.157E-04
0.51	-1.084	1.084	3.304	-3.304	-1.372E-04	1.372E-04	4.182E-04	-4.182E-04
0.52	-1.069	1.069	3.324	-3.324	-1.354E-04	1.354E-04	4.207E-04	-4.207E-04
0.53	-1.055	1.055	3.343	-3.343	-1.335E-04	1.335E-04	4.232E-04	-4.232E-04
0.54	-1.040	1.040	3.362	-3.362	-1.317E-04	1.317E-04	4.256E-04	-4.256E-04
0.55	-1.026	1.026	3.381	-3.381	-1.299E-04	1.299E-04	4.279E-04	-4.279E-04
0.56	-1.012	1.012	3.399	-3.399	-1.281E-04	1.281E-04	4.303E-04	-4.303E-04
0.57	-0.998	0.998	3.417	-3.417	-1.264E-04	1.264E-04	4.326E-04	-4.326E-04
0.58	-0.984	0.984	3.435	-3.435	-1.246E-04	1.246E-04	4.349E-04	-4.349E-04
0.59	-0.971	0.971	3.453	-3.453	-1.229E-04	1.229E-04	4.371E-04	-4.371E-04
0.60	-0.957	0.957	3.470	-3.470	-1.212E-04	1.212E-04	4.393E-04	-4.393E-04
0.61	-0.944	0.944	3.488	-3.488	-1.195E-04	1.195E-04	4.415E-04	-4.415E-04
0.62	-0.931	0.931	3.505	-3.505	-1.179E-04	1.179E-04	4.436E-04	-4.436E-04
0.63	-0.918	0.918	3.521	-3.521	-1.162E-04	1.162E-04	4.457E-04	-4.457E-04
0.64	-0.905	0.905	3.538	-3.538	-1.146E-04	1.146E-04	4.478E-04	-4.478E-04
0.65	-0.893	0.893	3.554	-3.554	-1.130E-04	1.130E-04	4.498E-04	-4.498E-04
0.66	-0.880	0.880	3.570	-3.570	-1.114E-04	1.114E-04	4.519E-04	-4.519E-04
0.67	-0.868	0.868	3.585	-3.585	-1.099E-04	1.099E-04	4.538E-04	-4.538E-04
0.68	-0.856	0.856	3.601	-3.601	-1.083E-04	1.083E-04	4.558E-04	-4.558E-04
0.69	-0.844	0.844	3.616	-3.616	-1.068E-04	1.068E-04	4.577E-04	-4.577E-04
0.70	-0.832	0.832	3.631	-3.631	-1.053E-04	1.053E-04	4.596E-04	-4.596E-04
0.71	-0.820	0.820	3.646	-3.646	-1.038E-04	1.038E-04	4.615E-04	-4.615E-04
0.72	-0.809	0.809	3.660	-3.660	-1.024E-04	1.024E-04	4.633E-04	-4.633E-04
0.73	-0.797	0.797	3.675	-3.675	-1.009E-04	1.009E-04	4.651E-04	-4.651E-04
0.74	-0.786	0.786	3.689	-3.689	-9.950E-05	9.950E-05	4.669E-04	-4.669E-04
0.75	-0.775	0.775	3.702	-3.702	-9.809E-05	9.809E-05	4.687E-04	-4.687E-04
0.76	-0.764	0.764	3.716	-3.716	-9.670E-05	9.670E-05	4.704E-04	-4.704E-04
0.77	-0.753	0.753	3.730	-3.730	-9.532E-05	9.532E-05	4.721E-04	-4.721E-04
0.78	-0.742	0.742	3.743	-3.743	-9.396E-05	9.396E-05	4.738E-04	-4.738E-04
0.79	-0.732	0.732	3.756	-3.756	-9.262E-05	9.262E-05	4.754E-04	-4.754E-04
0.80	-0.721	0.721	3.769	-3.769	-9.129E-05	9.129E-05	4.770E-04	-4.770E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (2/8)
Fluence	Operational stress (MPa)		Shutdown s	tress (MPa)	Operational strain Shutdown strain			vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.711	0.711	3.781	-3.781	-8.998E-05	8.998E-05	4.786E-04	-4.786E-04
0.82	-0.701	0.701	3.794	-3.794	-8.869E-05	8.869E-05	4.802E-04	-4.802E-04
0.83	-0.691	0.691	3.806	-3.806	-8.741E-05	8.741E-05	4.818E-04	-4.818E-04
0.84	-0.681	0.681	3.818	-3.818	-8.615E-05	8.615E-05	4.833E-04	-4.833E-04
0.85	-0.671	0.671	3.830	-3.830	-8.490E-05	8.490E-05	4.848E-04	-4.848E-04
0.86	-0.661	0.661	3.841	-3.841	-8.367E-05	8.367E-05	4.863E-04	-4.863E-04
0.87	-0.651	0.651	3.853	-3.853	-8.246E-05	8.246E-05	4.877E-04	-4.877E-04
0.88	-0.642	0.642	3.864	-3.864	-8.126E-05	8.126E-05	4.891E-04	-4.891E-04
0.89	-0.633	0.633	3.875	-3.875	-8.007E-05	8.007E-05	4.905E-04	-4.905E-04
0.90	-0.623	0.623	3.886	-3.886	-7.890E-05	7.890E-05	4.919E-04	-4.919E-04
0.91	-0.614	0.614	3.897	-3.897	-7.775E-05	7.775E-05	4.933E-04	-4.933E-04
0.92	-0.605	0.605	3.908	-3.908	-7.660E-05	7.660E-05	4.946E-04	-4.946E-04
0.93	-0.596	0.596	3.918	-3.918	-7.548E-05	7.548E-05	4.959E-04	-4.959E-04
0.94	-0.587	0.587	3.928	-3.928	-7.436E-05	7.436E-05	4.972E-04	-4.972E-04
0.95	-0.579	0.579	3.938	-3.938	-7.327E-05	7.327E-05	4.985E-04	-4.985E-04
0.96	-0.570	0.570	3.948	-3.948	-7.218E-05	7.218E-05	4.998E-04	-4.998E-04
0.97	-0.562	0.562	3.958	-3.958	-7.111E-05	7.111E-05	5.010E-04	-5.010E-04
0.98	-0.553	0.553	3.967	-3.967	-7.005E-05	7.005E-05	5.022E-04	-5.022E-04
0.99	-0.545	0.545	3.977	-3.977	-6.901E-05	6.901E-05	5.034E-04	-5.034E-04
1.00	-0.537	0.537	3.986	-3.986	-6.797E-05	6.797E-05	5.046E-04	-5.046E-04
1.01	-0.529	0.529	3.995	-3.995	-6.696E-05	6.696E-05	5.057E-04	-5.057E-04
1.02	-0.521	0.521	4.004	-4.004	-6.595E-05	6.595E-05	5.069E-04	-5.069E-04
1.03	-0.513	0.513	4.013	-4.013	-6.496E-05	6.496E-05	5.080E-04	-5.080E-04
1.04	-0.505	0.505	4.022	-4.022	-6.398E-05	6.398E-05	5.091E-04	-5.091E-04
1.05	-0.498	0.498	4.030	-4.030	-6.301E-05	6.301E-05	5.102E-04	-5.102E-04
1.06	-0.490	0.490	4.039	-4.039	-6.205E-05	6.205E-05	5.112E-04	-5.112E-04
1.07	-0.483	0.483	4.047	-4.047	-6.111E-05	6.111E-05	5.123E-04	-5.123E-04
1.08	-0.475	0.475	4.055	-4.055	-6.018E-05	6.018E-05	5.133E-04	-5.133E-04
1.09	-0.468	0.468	4.063	-4.063	-5.926E-05	5.926E-05	5.143E-04	-5.143E-04
1.10	-0.461	0.461	4.071	-4.071	-5.835E-05	5.835E-05	5.153E-04	-5.153E-04
1.11	-0.454	0.454	4.078	-4.078	-5.746E-05	5.746E-05	5.162E-04	-5.162E-04
1.12	-0.447	0.447	4.086	-4.086	-5.657E-05	5.657E-05	5.172E-04	-5.172E-04
1.13	-0.440	0.440	4.093	-4.093	-5.570E-05	5.570E-05	5.181E-04	-5.181E-04
1.14	-0.433	0.433	4.101	-4.101	-5.484E-05	5.484E-05	5.191E-04	-5.191E-04
1.15	-0.427	0.427	4.108	-4.108	-5.399E-05	5.399E-05	5.200E-04	-5.200E-04
1.16	-0.420	0.420	4.115	-4.115	-5.315E-05	5.315E-05	5.209E-04	-5.209E-04
1.17	-0.413	0.413	4.122	-4.122	-5.232E-05	5.232E-05	5.217E-04	-5.217E-04
1.18	-0.407	0.407	4.128	-4.128	-5.150E-05	5.150E-05	5.226E-04	-5.226E-04
1.19	-0.400	0.400	4.135	-4.135	-5.069E-05	5.069E-05	5.234E-04	-5.234E-04
1.20	-0.394	0.394	4.142	-4.142	-4.990E-05	4.990E-05	5.243E-04	-5.243E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (3/8)

Fluence	Operational stress (MPa)		Shutdown s	tress (MPa)	Operational strain SI		Shutdov	shutdown strain	
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	
1.21	-0.388	0.388	4.148	-4.148	-4.911E-05	4.911E-05	5.251E-04	-5.251E-04	
1.22	-0.382	0.382	4.154	-4.154	-4.833E-05	4.833E-05	5.259E-04	-5.259E-04	
1.23	-0.376	0.376	4.161	-4.161	-4.757E-05	4.757E-05	5.267E-04	-5.267E-04	
1.24	-0.370	0.370	4.167	-4.167	-4.681E-05	4.681E-05	5.274E-04	-5.274E-04	
1.25	-0.364	0.364	4.173	-4.173	-4.607E-05	4.607E-05	5.282E-04	-5.282E-04	
1.26	-0.358	0.358	4.179	-4.179	-4.533E-05	4.533E-05	5.289E-04	-5.289E-04	
1.27	-0.352	0.352	4.184	-4.184	-4.460E-05	4.460E-05	5.297E-04	-5.297E-04	
1.28	-0.347	0.347	4.190	-4.190	-4.388E-05	4.388E-05	5.304E-04	-5.304E-04	
1.29	-0.341	0.341	4.196	-4.196	-4.318E-05	4.318E-05	5.311E-04	-5.311E-04	
1.30	-0.336	0.336	4.201	-4.201	-4.248E-05	4.248E-05	5.318E-04	-5.318E-04	
1.31	-0.330	0.330	4.206	-4.206	-4.179E-05	4.179E-05	5.324E-04	-5.324E-04	
1.32	-0.325	0.325	4.212	-4.212	-4.111E-05	4.111E-05	5.331E-04	-5.331E-04	
1.33	-0.319	0.319	4.217	-4.217	-4.044E-05	4.044E-05	5.338E-04	-5.338E-04	
1.34	-0.314	0.314	4.222	-4.222	-3.977E-05	3.977E-05	5.344E-04	-5.344E-04	
1.35	-0.309	0.309	4.227	-4.227	-3.912E-05	3.912E-05	5.350E-04	-5.350E-04	
1.36	-0.304	0.304	4.232	-4.232	-3.848E-05	3.848E-05	5.356E-04	-5.356E-04	
1.37	-0.299	0.299	4.236	-4.236	-3.784E-05	3.784E-05	5.362E-04	-5.362E-04	
1.38	-0.294	0.294	4.241	-4.241	-3.721E-05	3.721E-05	5.368E-04	-5.368E-04	
1.39	-0.289	0.289	4.246	-4.246	-3.659E-05	3.659E-05	5.374E-04	-5.374E-04	
1.40	-0.284	0.284	4.250	-4.250	-3.598E-05	3.598E-05	5.380E-04	-5.380E-04	
1.41	-0.279	0.279	4.254	-4.254	-3.538E-05	3.538E-05	5.385E-04	-5.385E-04	
1.42	-0.275	0.275	4.259	-4.259	-3.478E-05	3.478E-05	5.391E-04	-5.391E-04	
1.43	-0.270	0.270	4.263	-4.263	-3.419E-05	3.419E-05	5.396E-04	-5.396E-04	
1.44	-0.266	0.266	4.267	-4.267	-3.361E-05	3.361E-05	5.401E-04	-5.401E-04	
1.45	-0.261	0.261	4.271	-4.271	-3.304E-05	3.304E-05	5.407E-04	-5.407E-04	
1.46	-0.257	0.257	4.275	-4.275	-3.248E-05	3.248E-05	5.412E-04	-5.412E-04	
1.47	-0.252	0.252	4.279	-4.279	-3.192E-05	3.192E-05	5.417E-04	-5.417E-04	
1.48	-0.248	0.248	4.283	-4.283	-3.137E-05	3.137E-05	5.421E-04	-5.421E-04	
1.49	-0.244	0.244	4.287	-4.287	-3.083E-05	3.083E-05	5.426E-04	-5.426E-04	
1.50	-0.239	0.239	4.290	-4.290	-3.030E-05	3.030E-05	5.431E-04	-5.431E-04	
1.51	-0.235	0.235	4.294	-4.294	-2.977E-05	2.977E-05	5.435E-04	-5.435E-04	
1.52	-0.231	0.231	4.297	-4.297	-2.925E-05	2.925E-05	5.440E-04	-5.440E-04	
1.53	-0.227	0.227	4.301	-4.301	-2.874E-05	2.874E-05	5.444E-04	-5.444E-04	
1.54	-0.223	0.223	4.304	-4.304	-2.823E-05	2.823E-05	5.448E-04	-5.448E-04	
1.55	-0.219	0.219	4.307	-4.307	-2.773E-05	2.773E-05	5.452E-04	-5.452E-04	
1.56	-0.215	0.215	4.311	-4.311	-2.724E-05	2.724E-05	5.457E-04	-5.457E-04	
1.57	-0.211	0.211	4.314	-4.314	-2.676E-05	2.676E-05	5.460E-04	-5.460E-04	
1.58	-0.208	0.208	4.317	-4.317	-2.628E-05	2.628E-05	5.464E-04	-5.464E-04	
1.59	-0.204	0.204	4.320	-4.320	-2.581E-05	2.581E-05	5.468E-04	-5.468E-04	
1.60	-0.200	0.200	4.323	-4.323	-2.534E-05	2.534E-05	5.472E-04	-5.472E-04	

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (4/8)

Fluence	Operational stress (MPa)		Shutdown s	stress (MPa)	Operational strain Shutdown strain			wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.197	0.197	4.326	-4.326	-2.488E-05	2.488E-05	5.476E-04	-5.476E-04
1.62	-0.193	0.193	4.328	-4.328	-2.443E-05	2.443E-05	5.479E-04	-5.479E-04
1.63	-0.189	0.189	4.331	-4.331	-2.398E-05	2.398E-05	5.483E-04	-5.483E-04
1.64	-0.186	0.186	4.334	-4.334	-2.354E-05	2.354E-05	5.486E-04	-5.486E-04
1.65	-0.183	0.183	4.337	-4.337	-2.311E-05	2.311E-05	5.489E-04	-5.489E-04
1.66	-0.179	0.179	4.339	-4.339	-2.268E-05	2.268E-05	5.493E-04	-5.493E-04
1.67	-0.176	0.176	4.342	-4.342	-2.226E-05	2.226E-05	5.496E-04	-5.496E-04
1.68	-0.173	0.173	4.344	-4.344	-2.184E-05	2.184E-05	5.499E-04	-5.499E-04
1.69	-0.169	0.169	4.346	-4.346	-2.143E-05	2.143E-05	5.502E-04	-5.502E-04
1.70	-0.166	0.166	4.349	-4.349	-2.102E-05	2.102E-05	5.505E-04	-5.505E-04
1.71	-0.163	0.163	4.351	-4.351	-2.063E-05	2.063E-05	5.508E-04	-5.508E-04
1.72	-0.160	0.160	4.353	-4.353	-2.023E-05	2.023E-05	5.510E-04	-5.510E-04
1.73	-0.157	0.157	4.355	-4.355	-1.984E-05	1.984E-05	5.513E-04	-5.513E-04
1.74	-0.154	0.154	4.357	-4.357	-1.946E-05	1.946E-05	5.516E-04	-5.516E-04
1.75	-0.151	0.151	4.359	-4.359	-1.908E-05	1.908E-05	5.518E-04	-5.518E-04
1.76	-0.148	0.148	4.361	-4.361	-1.871E-05	1.871E-05	5.521E-04	-5.521E-04
1.77	-0.145	0.145	4.363	-4.363	-1.834E-05	1.834E-05	5.523E-04	-5.523E-04
1.78	-0.142	0.142	4.365	-4.365	-1.798E-05	1.798E-05	5.526E-04	-5.526E-04
1.79	-0.139	0.139	4.367	-4.367	-1.762E-05	1.762E-05	5.528E-04	-5.528E-04
1.80	-0.136	0.136	4.369	-4.369	-1.727E-05	1.727E-05	5.530E-04	-5.530E-04
1.81	-0.134	0.134	4.371	-4.371	-1.692E-05	1.692E-05	5.532E-04	-5.532E-04
1.82	-0.131	0.131	4.372	-4.372	-1.658E-05	1.658E-05	5.535E-04	-5.535E-04
1.83	-0.128	0.128	4.374	-4.374	-1.624E-05	1.624E-05	5.537E-04	-5.537E-04
1.84	-0.126	0.126	4.376	-4.376	-1.591E-05	1.591E-05	5.539E-04	-5.539E-04
1.85	-0.123	0.123	4.377	-4.377	-1.558E-05	1.558E-05	5.541E-04	-5.541E-04
1.86	-0.121	0.121	4.379	-4.379	-1.526E-05	1.526E-05	5.543E-04	-5.543E-04
1.87	-0.118	0.118	4.380	-4.380	-1.494E-05	1.494E-05	5.544E-04	-5.544E-04
1.88	-0.116	0.116	4.381	-4.381	-1.463E-05	1.463E-05	5.546E-04	-5.546E-04
1.89	-0.113	0.113	4.383	-4.383	-1.432E-05	1.432E-05	5.548E-04	-5.548E-04
1.90	-0.111	0.111	4.384	-4.384	-1.401E-05	1.401E-05	5.550E-04	-5.550E-04
1.91	-0.108	0.108	4.385	-4.385	-1.371E-05	1.371E-05	5.551E-04	-5.551E-04
1.92	-0.106	0.106	4.387	-4.387	-1.341E-05	1.341E-05	5.553E-04	-5.553E-04
1.93	-0.104	0.104	4.388	-4.388	-1.312E-05	1.312E-05	5.554E-04	-5.554E-04
1.94	-0.101	0.101	4.389	-4.389	-1.283E-05	1.283E-05	5.556E-04	-5.556E-04
1.95	-0.099	0.099	4.390	-4.390	-1.255E-05	1.255E-05	5.557E-04	-5.557E-04
1.96	-0.097	0.097	4.391	-4.391	-1.227E-05	1.227E-05	5.558E-04	-5.558E-04
1.97	-0.095	0.095	4.392	-4.392	-1.199E-05	1.199E-05	5.560E-04	-5.560E-04
1.98	-0.093	0.093	4.393	-4.393	-1.172E-05	1.172E-05	5.561E-04	-5.561E-04
1.99	-0.090	0.090	4.394	-4.394	-1.145E-05	1.145E-05	5.562E-04	-5.562E-04
2.00	-0.088	0.088	4.395	-4.395	-1.118E-05	1.118E-05	5.563E-04	-5.563E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (5/8)

Fluence	Operational	stress (MPa)	Shutdown s	stress (MPa)	Operational strain Shutdown			vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.01	-0.086	0.086	4.396	-4.396	-1.092E-05	1.092E-05	5.565E-04	-5.565E-04
2.02	-0.084	0.084	4.397	-4.397	-1.067E-05	1.067E-05	5.566E-04	-5.566E-04
2.03	-0.082	0.082	4.398	-4.398	-1.041E-05	1.041E-05	5.567E-04	-5.567E-04
2.04	-0.080	0.080	4.398	-4.398	-1.016E-05	1.016E-05	5.568E-04	-5.568E-04
2.05	-0.078	0.078	4.399	-4.399	-9.916E-06	9.916E-06	5.569E-04	-5.569E-04
2.06	-0.076	0.076	4.400	-4.400	-9.673E-06	9.673E-06	5.570E-04	-5.570E-04
2.07	-0.075	0.075	4.401	-4.401	-9.433E-06	9.433E-06	5.570E-04	-5.570E-04
2.08	-0.073	0.073	4.401	-4.401	-9.197E-06	9.197E-06	5.571E-04	-5.571E-04
2.09	-0.071	0.071	4.402	-4.402	-8.964E-06	8.964E-06	5.572E-04	-5.572E-04
2.10	-0.069	0.069	4.402	-4.402	-8.734E-06	8.734E-06	5.573E-04	-5.573E-04
2.11	-0.067	0.067	4.403	-4.403	-8.508E-06	8.508E-06	5.573E-04	-5.573E-04
2.12	-0.065	0.065	4.403	-4.403	-8.285E-06	8.285E-06	5.574E-04	-5.574E-04
2.13	-0.064	0.064	4.404	-4.404	-8.065E-06	8.065E-06	5.575E-04	-5.575E-04
2.14	-0.062	0.062	4.404	-4.404	-7.848E-06	7.848E-06	5.575E-04	-5.575E-04
2.15	-0.060	0.060	4.405	-4.405	-7.634E-06	7.634E-06	5.576E-04	-5.576E-04
2.16	-0.059	0.059	4.405	-4.405	-7.423E-06	7.423E-06	5.576E-04	-5.576E-04
2.17	-0.057	0.057	4.406	-4.406	-7.216E-06	7.216E-06	5.577E-04	-5.577E-04
2.18	-0.055	0.055	4.406	-4.406	-7.011E-06	7.011E-06	5.577E-04	-5.577E-04
2.19	-0.054	0.054	4.406	-4.406	-6.809E-06	6.809E-06	5.578E-04	-5.578E-04
2.20	-0.052	0.052	4.407	-4.407	-6.610E-06	6.610E-06	5.578E-04	-5.578E-04
2.21	-0.051	0.051	4.407	-4.407	-6.413E-06	6.413E-06	5.578E-04	-5.578E-04
2.22	-0.049	0.049	4.407	-4.407	-6.220E-06	6.220E-06	5.578E-04	-5.578E-04
2.23	-0.048	0.048	4.407	-4.407	-6.029E-06	6.029E-06	5.579E-04	-5.579E-04
2.24	-0.046	0.046	4.407	-4.407	-5.841E-06	5.841E-06	5.579E-04	-5.579E-04
2.25	-0.045	0.045	4.408	-4.408	-5.656E-06	5.656E-06	5.579E-04	-5.579E-04
2.26	-0.043	0.043	4.408	-4.408	-5.473E-06	5.473E-06	5.579E-04	-5.579E-04
2.27	-0.042	0.042	4.408	-4.408	-5.292E-06	5.292E-06	5.579E-04	-5.579E-04
2.28	-0.040	0.040	4.408	-4.408	-5.115E-06	5.115E-06	5.579E-04	-5.579E-04
2.29	-0.039	0.039	4.408	-4.408	-4.939E-06	4.939E-06	5.580E-04	-5.580E-04
2.30	-0.038	0.038	4.408	-4.408	-4.767E-06	4.767E-06	5.580E-04	-5.580E-04
2.31	-0.036	0.036	4.408	-4.408	-4.596E-06	4.596E-06	5.580E-04	-5.580E-04
2.32	-0.035	0.035	4.408	-4.408	-4.428E-06	4.428E-06	5.580E-04	-5.580E-04
2.33	-0.034	0.034	4.408	-4.408	-4.262E-06	4.262E-06	5.579E-04	-5.579E-04
2.34	-0.032	0.032	4.408	-4.408	-4.099E-06	4.099E-06	5.579E-04	-5.579E-04
2.35	-0.031	0.031	4.408	-4.408	-3.938E-06	3.938E-06	5.579E-04	-5.579E-04
2.36	-0.030	0.030	4.407	-4.407	-3.779E-06	3.779E-06	5.579E-04	-5.579E-04
2.37	-0.029	0.029	4.407	-4.407	-3.622E-06	3.622E-06	5.579E-04	-5.579E-04
2.38	-0.027	0.027	4.407	-4.407	-3.467E-06	3.467E-06	5.579E-04	-5.579E-04
2.39	-0.026	0.026	4.407	-4.407	-3.315E-06	3.315E-06	5.578E-04	-5.578E-04
2.40	-0.025	0.025	4.407	-4.407	-3.164E-06	3.164E-06	5.578E-04	-5.578E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (6/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain Shutdown strain			vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.024	0.024	4.407	-4.407	-3.017E-06	3.017E-06	5.578E-04	-5.578E-04
2.42	-0.023	0.023	4.406	-4.406	-2.870E-06	2.870E-06	5.578E-04	-5.578E-04
2.43	-0.022	0.022	4.406	-4.406	-2.726E-06	2.726E-06	5.577E-04	-5.577E-04
2.44	-0.020	0.020	4.406	-4.406	-2.584E-06	2.584E-06	5.577E-04	-5.577E-04
2.45	-0.019	0.019	4.405	-4.405	-2.443E-06	2.443E-06	5.576E-04	-5.576E-04
2.46	-0.018	0.018	4.405	-4.405	-2.305E-06	2.305E-06	5.576E-04	-5.576E-04
2.47	-0.017	0.017	4.405	-4.405	-2.169E-06	2.169E-06	5.576E-04	-5.576E-04
2.48	-0.016	0.016	4.404	-4.404	-2.033E-06	2.033E-06	5.575E-04	-5.575E-04
2.49	-0.015	0.015	4.404	-4.404	-1.901E-06	1.901E-06	5.575E-04	-5.575E-04
2.50	-0.014	0.014	4.404	-4.404	-1.770E-06	1.770E-06	5.574E-04	-5.574E-04
2.51	-0.013	0.013	4.403	-4.403	-1.640E-06	1.640E-06	5.574E-04	-5.574E-04
2.52	-0.012	0.012	4.403	-4.403	-1.512E-06	1.512E-06	5.573E-04	-5.573E-04
2.53	-0.011	0.011	4.402	-4.402	-1.386E-06	1.386E-06	5.572E-04	-5.572E-04
2.54	-0.010	0.010	4.402	-4.402	-1.262E-06	1.262E-06	5.572E-04	-5.572E-04
2.55	-0.009	0.009	4.401	-4.401	-1.140E-06	1.140E-06	5.571E-04	-5.571E-04
2.56	-0.008	0.008	4.401	-4.401	-1.019E-06	1.019E-06	5.570E-04	-5.570E-04
2.57	-0.007	0.007	4.400	-4.400	-8.992E-07	8.992E-07	5.570E-04	-5.570E-04
2.58	-0.006	0.006	4.400	-4.400	-7.808E-07	7.808E-07	5.569E-04	-5.569E-04
2.59	-0.005	0.005	4.399	-4.399	-6.649E-07	6.649E-07	5.568E-04	-5.568E-04
2.60	-0.004	0.004	4.398	-4.398	-5.500E-07	5.500E-07	5.568E-04	-5.568E-04
2.61	-0.003	0.003	4.398	-4.398	-4.368E-07	4.368E-07	5.567E-04	-5.567E-04
2.62	-0.003	0.003	4.397	-4.397	-3.247E-07	3.247E-07	5.566E-04	-5.566E-04
2.63	-0.002	0.002	4.397	-4.397	-2.141E-07	2.141E-07	5.565E-04	-5.565E-04
2.64	-0.001	0.001	4.396	-4.396	-1.052E-07	1.052E-07	5.564E-04	-5.564E-04
2.65	0.000	0.000	4.395	-4.395	2.794E-09	-2.794E-09	5.564E-04	-5.564E-04
2.66	0.001	-0.001	4.395	-4.395	1.085E-07	-1.085E-07	5.563E-04	-5.563E-04
2.67	0.002	-0.002	4.394	-4.394	2.138E-07	-2.138E-07	5.562E-04	-5.562E-04
2.68	0.003	-0.003	4.393	-4.393	3.170E-07	-3.170E-07	5.561E-04	-5.561E-04
2.69	0.003	-0.003	4.392	-4.392	4.194E-07	-4.194E-07	5.560E-04	-5.560E-04
2.70	0.004	-0.004	4.392	-4.392	5.207E-07	-5.207E-07	5.559E-04	-5.559E-04
2.71	0.005	-0.005	4.391	-4.391	6.198E-07	-6.198E-07	5.558E-04	-5.558E-04
2.72	0.006	-0.006	4.390	-4.390	7.187E-07	-7.187E-07	5.557E-04	-5.557E-04
2.73	0.006	-0.006	4.389	-4.389	8.161E-07	-8.161E-07	5.556E-04	-5.556E-04
2.74	0.007	-0.007	4.388	-4.388	9.120E-07	-9.120E-07	5.555E-04	-5.555E-04
2.75	0.008	-0.008	4.388	-4.388	1.007E-06	-1.007E-06	5.554E-04	-5.554E-04
2.76	0.009	-0.009	4.387	-4.387	1.100E-06	-1.100E-06	5.553E-04	-5.553E-04
2.77	0.009	-0.009	4.386	-4.386	1.193E-06	-1.193E-06	5.552E-04	-5.552E-04
2.78	0.010	-0.010	4.385	-4.385	1.284E-06	-1.284E-06	5.551E-04	-5.551E-04
2.79	0.011	-0.011	4.384	-4.384	1.374E-06	-1.374E-06	5.550E-04	-5.550E-04
2.80	0.012	-0.012	4.383	-4.383	1.464E-06	-1.464E-06	5.549E-04	-5.549E-04

Appendix 3 Analysis results of mean-thermal-expansion-coefficient effect case (7/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	Shutdown strain Iot region Cold region 5.547E-04 -5.547E-04 5.546E-04 -5.546E-04 5.545E-04 -5.545E-04 5.545E-04 -5.545E-04			
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region			
2.81	0.012	-0.012	4.382	-4.382	1.552E-06	-1.552E-06	5.547E-04	-5.547E-04			
2.82	0.013	-0.013	4.382	-4.382	1.639E-06	-1.639E-06	5.546E-04	-5.546E-04			
2.83	0.014	-0.014	4.381	-4.381	1.725E-06	-1.725E-06	5.545E-04	-5.545E-04			
2.84	0.014	-0.014	4.380	-4.380	1.810E-06	-1.810E-06	5.544E-04	-5.544E-04			
2.85	0.015	-0.015	4.379	-4.379	1.894E-06	-1.894E-06	5.543E-04	-5.543E-04			
2.86	0.016	-0.016	4.378	-4.378	1.976E-06	-1.976E-06	5.541E-04	-5.541E-04			
2.87	0.016	-0.016	4.377	-4.377	2.058E-06	-2.058E-06	5.540E-04	-5.540E-04			
2.88	0.017	-0.017	4.376	-4.376	2.140E-06	-2.140E-06	5.539E-04	-5.539E-04			
2.89	0.018	-0.018	4.375	-4.375	2.219E-06	-2.219E-06	5.538E-04	-5.538E-04			
2.90	0.018	-0.018	4.374	-4.374	2.299E-06	-2.299E-06	5.536E-04	-5.536E-04			
2.91	0.019	-0.019	4.373	-4.373	2.376E-06	-2.376E-06	5.535E-04	-5.535E-04			
2.92	0.019	-0.019	4.372	-4.372	2.454E-06	-2.454E-06	5.534E-04	-5.534E-04			
2.93	0.020	-0.020	4.371	-4.371	2.530E-06	-2.530E-06	5.532E-04	-5.532E-04			
2.94	0.021	-0.021	4.369	-4.369	2.605E-06	-2.605E-06	5.531E-04	-5.531E-04			
2.95	0.021	-0.021	4.368	-4.368	2.680E-06	-2.680E-06	5.530E-04	-5.530E-04			
2.96	0.022	-0.022	4.367	-4.367	2.753E-06	-2.753E-06	5.528E-04	-5.528E-04			
2.97	0.022	-0.022	4.366	-4.366	2.826E-06	-2.826E-06	5.527E-04	-5.527E-04			
2.98	0.023	-0.023	4.365	-4.365	2.898E-06	-2.898E-06	5.525E-04	-5.525E-04			
2.99	0.023	-0.023	4.364	-4.364	2.969E-06	-2.969E-06	5.524E-04	-5.524E-04			
3.00	0.024	-0.024	4.363	-4.363	3.039E-06	-3.039E-06	5.523E-04	-5.523E-04			

Appendix 3 Analysis results of mean-thermal-expansion-coefficient case (8/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain		Shutdov	Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	
0.00	-3.207	3.207	0.000	0.000	-4.060E-04	4.060E-04	0.000E+00	0.000E+00	
0.01	-2.195	2.195	1.012	-1.012	-2.779E-04	2.779E-04	1.281E-04	-1.281E-04	
0.02	-1.836	1.836	1.372	-1.372	-2.323E-04	2.323E-04	1.737E-04	-1.737E-04	
0.03	-1.696	1.696	1.511	-1.511	-2.147E-04	2.147E-04	1.913E-04	-1.913E-04	
0.04	-1.632	1.632	1.575	-1.575	-2.066E-04	2.066E-04	1.994E-04	-1.994E-04	
0.05	-1.593	1.593	1.614	-1.614	-2.017E-04	2.017E-04	2.043E-04	-2.043E-04	
0.06	-1.564	1.564	1.644	-1.644	-1.979E-04	1.979E-04	2.081E-04	-2.081E-04	
0.07	-1.537	1.537	1.670	-1.670	-1.946E-04	1.946E-04	2.114E-04	-2.114E-04	
0.08	-1.512	1.512	1.695	-1.695	-1.914E-04	1.914E-04	2.146E-04	-2.146E-04	
0.09	-1.488	1.488	1.720	-1.720	-1.883E-04	1.883E-04	2.177E-04	-2.177E-04	
0.10	-1.464	1.464	1.744	-1.744	-1.853E-04	1.853E-04	2.207E-04	-2.207E-04	
0.11	-1.440	1.440	1.767	-1.767	-1.823E-04	1.823E-04	2.237E-04	-2.237E-04	
0.12	-1.417	1.417	1.790	-1.790	-1.794E-04	1.794E-04	2.266E-04	-2.266E-04	
0.13	-1.395	1.395	1.813	-1.813	-1.765E-04	1.765E-04	2.295E-04	-2.295E-04	
0.14	-1.372	1.372	1.835	-1.835	-1.737E-04	1.737E-04	2.323E-04	-2.323E-04	
0.15	-1.350	1.350	1.857	-1.857	-1.709E-04	1.709E-04	2.351E-04	-2.351E-04	
0.16	-1.329	1.329	1.879	-1.879	-1.682E-04	1.682E-04	2.378E-04	-2.378E-04	
0.17	-1.307	1.307	1.900	-1.900	-1.655E-04	1.655E-04	2.405E-04	-2.405E-04	
0.18	-1.287	1.287	1.921	-1.921	-1.629E-04	1.629E-04	2.431E-04	-2.431E-04	
0.19	-1.266	1.266	1.941	-1.941	-1.603E-04	1.603E-04	2.457E-04	-2.457E-04	
0.20	-1.246	1.246	1.962	-1.962	-1.577E-04	1.577E-04	2.483E-04	-2.483E-04	
0.21	-1.226	1.226	1.982	-1.982	-1.552E-04	1.552E-04	2.508E-04	-2.508E-04	
0.22	-1.206	1.206	2.001	-2.001	-1.527E-04	1.527E-04	2.533E-04	-2.533E-04	
0.23	-1.187	1.187	2.021	-2.021	-1.502E-04	1.502E-04	2.558E-04	-2.558E-04	
0.24	-1.168	1.168	2.040	-2.040	-1.478E-04	1.478E-04	2.582E-04	-2.582E-04	
0.25	-1.149	1.149	2.058	-2.058	-1.455E-04	1.455E-04	2.605E-04	-2.605E-04	
0.26	-1.131	1.131	2.077	-2.077	-1.431E-04	1.431E-04	2.629E-04	-2.629E-04	
0.27	-1.113	1.113	2.095	-2.095	-1.408E-04	1.408E-04	2.652E-04	-2.652E-04	
0.28	-1.095	1.095	2.113	-2.113	-1.386E-04	1.386E-04	2.674E-04	-2.674E-04	
0.29	-1.077	1.077	2.130	-2.130	-1.364E-04	1.364E-04	2.696E-04	-2.696E-04	
0.30	-1.060	1.060	2.147	-2.147	-1.342E-04	1.342E-04	2.718E-04	-2.718E-04	
0.31	-1.043	1.043	2.164	-2.164	-1.320E-04	1.320E-04	2.740E-04	-2.740E-04	
0.32	-1.026	1.026	2.181	-2.181	-1.299E-04	1.299E-04	2.761E-04	-2.761E-04	
0.33	-1.010	1.010	2.197	-2.197	-1.279E-04	1.279E-04	2.781E-04	-2.781E-04	
0.34	-0.994	0.994	2.214	-2.214	-1.258E-04	1.258E-04	2.802E-04	-2.802E-04	
0.35	-0.978	0.978	2.229	-2.229	-1.238E-04	1.238E-04	2.822E-04	-2.822E-04	
0.36	-0.962	0.962	2.245	-2.245	-1.218E-04	1.218E-04	2.842E-04	-2.842E-04	
0.37	-0.947	0.947	2.260	-2.260	-1.199E-04	1.199E-04	2.861E-04	-2.861E-04	
0.38	-0.932	0.932	2.276	-2.276	-1.179E-04	1.179E-04	2.881E-04	-2.881E-04	
0.39	-0.917	0.917	2.291	-2.291	-1.161E-04	1.161E-04	2.899E-04	-2.899E-04	
0.40	-0.902	0.902	2.305	-2.305	-1.142E-04	1.142E-04	2.918E-04	-2.918E-04	

Appendix 4 Analysis results of steady creep coefficient effect case (1/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain		Shutdov	Shutdown strain	
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	
0.41	-0.888	0.888	2.320	-2.320	-1.124E-04	1.124E-04	2.936E-04	-2.936E-04	
0.42	-0.874	0.874	2.334	-2.334	-1.106E-04	1.106E-04	2.954E-04	-2.954E-04	
0.43	-0.860	0.860	2.348	-2.348	-1.088E-04	1.088E-04	2.972E-04	-2.972E-04	
0.44	-0.846	0.846	2.362	-2.362	-1.071E-04	1.071E-04	2.989E-04	-2.989E-04	
0.45	-0.832	0.832	2.375	-2.375	-1.053E-04	1.053E-04	3.007E-04	-3.007E-04	
0.46	-0.819	0.819	2.388	-2.388	-1.037E-04	1.037E-04	3.023E-04	-3.023E-04	
0.47	-0.806	0.806	2.402	-2.402	-1.020E-04	1.020E-04	3.040E-04	-3.040E-04	
0.48	-0.793	0.793	2.414	-2.414	-1.004E-04	1.004E-04	3.056E-04	-3.056E-04	
0.49	-0.780	0.780	2.427	-2.427	-9.877E-05	9.877E-05	3.072E-04	-3.072E-04	
0.50	-0.768	0.768	2.440	-2.440	-9.719E-05	9.719E-05	3.088E-04	-3.088E-04	
0.51	-0.755	0.755	2.452	-2.452	-9.563E-05	9.563E-05	3.104E-04	-3.104E-04	
0.52	-0.743	0.743	2.464	-2.464	-9.410E-05	9.410E-05	3.119E-04	-3.119E-04	
0.53	-0.731	0.731	2.476	-2.476	-9.259E-05	9.259E-05	3.134E-04	-3.134E-04	
0.54	-0.720	0.720	2.488	-2.488	-9.111E-05	9.111E-05	3.149E-04	-3.149E-04	
0.55	-0.708	0.708	2.499	-2.499	-8.965E-05	8.965E-05	3.163E-04	-3.163E-04	
0.56	-0.697	0.697	2.510	-2.510	-8.822E-05	8.822E-05	3.178E-04	-3.178E-04	
0.57	-0.686	0.686	2.522	-2.522	-8.681E-05	8.681E-05	3.192E-04	-3.192E-04	
0.58	-0.675	0.675	2.533	-2.533	-8.542E-05	8.542E-05	3.206E-04	-3.206E-04	
0.59	-0.664	0.664	2.543	-2.543	-8.405E-05	8.405E-05	3.219E-04	-3.219E-04	
0.60	-0.653	0.653	2.554	-2.554	-8.271E-05	8.271E-05	3.233E-04	-3.233E-04	
0.61	-0.643	0.643	2.564	-2.564	-8.138E-05	8.138E-05	3.246E-04	-3.246E-04	
0.62	-0.633	0.633	2.575	-2.575	-8.008E-05	8.008E-05	3.259E-04	-3.259E-04	
0.63	-0.623	0.623	2.585	-2.585	-7.880E-05	7.880E-05	3.272E-04	-3.272E-04	
0.64	-0.613	0.613	2.595	-2.595	-7.754E-05	7.754E-05	3.285E-04	-3.285E-04	
0.65	-0.603	0.603	2.605	-2.605	-7.630E-05	7.630E-05	3.297E-04	-3.297E-04	
0.66	-0.593	0.593	2.614	-2.614	-7.508E-05	7.508E-05	3.309E-04	-3.309E-04	
0.67	-0.584	0.584	2.624	-2.624	-7.387E-05	7.387E-05	3.321E-04	-3.321E-04	
0.68	-0.574	0.574	2.633	-2.633	-7.269E-05	7.269E-05	3.333E-04	-3.333E-04	
0.69	-0.565	0.565	2.642	-2.642	-7.153E-05	7.153E-05	3.345E-04	-3.345E-04	
0.70	-0.556	0.556	2.651	-2.651	-7.038E-05	7.038E-05	3.356E-04	-3.356E-04	
0.71	-0.547	0.547	2.660	-2.660	-6.926E-05	6.926E-05	3.367E-04	-3.367E-04	
0.72	-0.538	0.538	2.669	-2.669	-6.815E-05	6.815E-05	3.379E-04	-3.379E-04	
0.73	-0.530	0.530	2.678	-2.678	-6.706E-05	6.706E-05	3.389E-04	-3.389E-04	
0.74	-0.521	0.521	2.686	-2.686	-6.599E-05	6.599E-05	3.400E-04	-3.400E-04	
0.75	-0.513	0.513	2.694	-2.694	-6.493E-05	6.493E-05	3.411E-04	-3.411E-04	
0.76	-0.505	0.505	2.703	-2.703	-6.389E-05	6.389E-05	3.421E-04	-3.421E-04	
0.77	-0.497	0.497	2.711	-2.711	-6.287E-05	6.287E-05	3.431E-04	-3.431E-04	
0.78	-0.489	0.489	2.719	-2.719	-6.186E-05	6.186E-05	3.441E-04	-3.441E-04	
0.79	-0.481	0.481	2.727	-2.727	-6.087E-05	6.087E-05	3.451E-04	-3.451E-04	
0.80	-0.473	0.473	2.734	-2.734	-5.990E-05	5.990E-05	3.461E-04	-3.461E-04	

Appendix 4 Analysis results of steady creep coefficient effect case (2/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.466	0.466	2.742	-2.742	-5.894E-05	5.894E-05	3.471E-04	-3.471E-04
0.82	-0.458	0.458	2.749	-2.749	-5.800E-05	5.800E-05	3.480E-04	-3.480E-04
0.83	-0.451	0.451	2.757	-2.757	-5.707E-05	5.707E-05	3.489E-04	-3.489E-04
0.84	-0.444	0.444	2.764	-2.764	-5.615E-05	5.615E-05	3.498E-04	-3.498E-04
0.85	-0.437	0.437	2.771	-2.771	-5.526E-05	5.526E-05	3.507E-04	-3.507E-04
0.86	-0.430	0.430	2.778	-2.778	-5.437E-05	5.437E-05	3.516E-04	-3.516E-04
0.87	-0.423	0.423	2.785	-2.785	-5.350E-05	5.350E-05	3.525E-04	-3.525E-04
0.88	-0.416	0.416	2.792	-2.792	-5.265E-05	5.265E-05	3.534E-04	-3.534E-04
0.89	-0.409	0.409	2.798	-2.798	-5.180E-05	5.180E-05	3.542E-04	-3.542E-04
0.90	-0.403	0.403	2.805	-2.805	-5.097E-05	5.097E-05	3.550E-04	-3.550E-04
0.91	-0.396	0.396	2.811	-2.811	-5.016E-05	5.016E-05	3.558E-04	-3.558E-04
0.92	-0.390	0.390	2.817	-2.817	-4.936E-05	4.936E-05	3.566E-04	-3.566E-04
0.93	-0.384	0.384	2.824	-2.824	-4.857E-05	4.857E-05	3.574E-04	-3.574E-04
0.94	-0.378	0.378	2.830	-2.830	-4.779E-05	4.779E-05	3.582E-04	-3.582E-04
0.95	-0.371	0.371	2.836	-2.836	-4.702E-05	4.702E-05	3.590E-04	-3.590E-04
0.96	-0.366	0.366	2.842	-2.842	-4.627E-05	4.627E-05	3.597E-04	-3.597E-04
0.97	-0.360	0.360	2.848	-2.848	-4.553E-05	4.553E-05	3.605E-04	-3.605E-04
0.98	-0.354	0.354	2.853	-2.853	-4.480E-05	4.480E-05	3.612E-04	-3.612E-04
0.99	-0.348	0.348	2.859	-2.859	-4.409E-05	4.409E-05	3.619E-04	-3.619E-04
1.00	-0.343	0.343	2.865	-2.865	-4.338E-05	4.338E-05	3.626E-04	-3.626E-04
1.01	-0.337	0.337	2.870	-2.870	-4.269E-05	4.269E-05	3.633E-04	-3.633E-04
1.02	-0.332	0.332	2.876	-2.876	-4.200E-05	4.200E-05	3.640E-04	-3.640E-04
1.03	-0.327	0.327	2.881	-2.881	-4.133E-05	4.133E-05	3.647E-04	-3.647E-04
1.04	-0.321	0.321	2.886	-2.886	-4.067E-05	4.067E-05	3.653E-04	-3.653E-04
1.05	-0.316	0.316	2.891	-2.891	-4.002E-05	4.002E-05	3.660E-04	-3.660E-04
1.06	-0.311	0.311	2.896	-2.896	-3.938E-05	3.938E-05	3.666E-04	-3.666E-04
1.07	-0.306	0.306	2.901	-2.901	-3.875E-05	3.875E-05	3.673E-04	-3.673E-04
1.08	-0.301	0.301	2.906	-2.906	-3.813E-05	3.813E-05	3.679E-04	-3.679E-04
1.09	-0.296	0.296	2.911	-2.911	-3.752E-05	3.752E-05	3.685E-04	-3.685E-04
1.10	-0.292	0.292	2.916	-2.916	-3.692E-05	3.692E-05	3.691E-04	-3.691E-04
1.11	-0.287	0.287	2.920	-2.920	-3.633E-05	3.633E-05	3.697E-04	-3.697E-04
1.12	-0.282	0.282	2.925	-2.925	-3.574E-05	3.574E-05	3.703E-04	-3.703E-04
1.13	-0.278	0.278	2.930	-2.930	-3.517E-05	3.517E-05	3.708E-04	-3.708E-04
1.14	-0.273	0.273	2.934	-2.934	-3.461E-05	3.461E-05	3.714E-04	-3.714E-04
1.15	-0.269	0.269	2.938	-2.938	-3.406E-05	3.406E-05	3.719E-04	-3.719E-04
1.16	-0.265	0.265	2.943	-2.943	-3.351E-05	3.351E-05	3.725E-04	-3.725E-04
1.17	-0.260	0.260	2.947	-2.947	-3.297E-05	3.297E-05	3.730E-04	-3.730E-04
1.18	-0.256	0.256	2.951	-2.951	-3.245E-05	3.245E-05	3.736E-04	-3.736E-04
1.19	-0.252	0.252	2.955	-2.955	-3.193E-05	3.193E-05	3.741E-04	-3.741E-04
1.20	-0.248	0.248	2.959	-2.959	-3.142E-05	3.142E-05	3.746E-04	-3.746E-04

Appendix 4 Analysis results of steady creep coefficient effect case (3/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	nal strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.21	-0.244	0.244	2.963	-2.963	-3.091E-05	3.091E-05	3.751E-04	-3.751E-04
1.22	-0.240	0.240	2.967	-2.967	-3.042E-05	3.042E-05	3.756E-04	-3.756E-04
1.23	-0.236	0.236	2.971	-2.971	-2.993E-05	2.993E-05	3.761E-04	-3.761E-04
1.24	-0.233	0.233	2.975	-2.975	-2.945E-05	2.945E-05	3.765E-04	-3.765E-04
1.25	-0.229	0.229	2.978	-2.978	-2.898E-05	2.898E-05	3.770E-04	-3.770E-04
1.26	-0.225	0.225	2.982	-2.982	-2.852E-05	2.852E-05	3.775E-04	-3.775E-04
1.27	-0.222	0.222	2.986	-2.986	-2.806E-05	2.806E-05	3.779E-04	-3.779E-04
1.28	-0.218	0.218	2.989	-2.989	-2.761E-05	2.761E-05	3.784E-04	-3.784E-04
1.29	-0.215	0.215	2.993	-2.993	-2.717E-05	2.717E-05	3.788E-04	-3.788E-04
1.30	-0.211	0.211	2.996	-2.996	-2.674E-05	2.674E-05	3.793E-04	-3.793E-04
1.31	-0.208	0.208	3.000	-3.000	-2.631E-05	2.631E-05	3.797E-04	-3.797E-04
1.32	-0.205	0.205	3.003	-3.003	-2.589E-05	2.589E-05	3.801E-04	-3.801E-04
1.33	-0.201	0.201	3.006	-3.006	-2.547E-05	2.547E-05	3.805E-04	-3.805E-04
1.34	-0.198	0.198	3.009	-3.009	-2.506E-05	2.506E-05	3.809E-04	-3.809E-04
1.35	-0.195	0.195	3.013	-3.013	-2.466E-05	2.466E-05	3.813E-04	-3.813E-04
1.36	-0.192	0.192	3.016	-3.016	-2.427E-05	2.427E-05	3.817E-04	-3.817E-04
1.37	-0.189	0.189	3.019	-3.019	-2.388E-05	2.388E-05	3.821E-04	-3.821E-04
1.38	-0.186	0.186	3.022	-3.022	-2.350E-05	2.350E-05	3.825E-04	-3.825E-04
1.39	-0.183	0.183	3.025	-3.025	-2.312E-05	2.312E-05	3.829E-04	-3.829E-04
1.40	-0.180	0.180	3.028	-3.028	-2.275E-05	2.275E-05	3.832E-04	-3.832E-04
1.41	-0.177	0.177	3.031	-3.031	-2.239E-05	2.239E-05	3.836E-04	-3.836E-04
1.42	-0.174	0.174	3.033	-3.033	-2.203E-05	2.203E-05	3.840E-04	-3.840E-04
1.43	-0.171	0.171	3.036	-3.036	-2.168E-05	2.168E-05	3.843E-04	-3.843E-04
1.44	-0.169	0.169	3.039	-3.039	-2.133E-05	2.133E-05	3.847E-04	-3.847E-04
1.45	-0.166	0.166	3.042	-3.042	-2.099E-05	2.099E-05	3.850E-04	-3.850E-04
1.46	-0.163	0.163	3.044	-3.044	-2.065E-05	2.065E-05	3.853E-04	-3.853E-04
1.47	-0.161	0.161	3.047	-3.047	-2.032E-05	2.032E-05	3.857E-04	-3.857E-04
1.48	-0.158	0.158	3.049	-3.049	-2.000E-05	2.000E-05	3.860E-04	-3.860E-04
1.49	-0.155	0.155	3.052	-3.052	-1.968E-05	1.968E-05	3.863E-04	-3.863E-04
1.50	-0.153	0.153	3.054	-3.054	-1.936E-05	1.936E-05	3.866E-04	-3.866E-04
1.51	-0.151	0.151	3.057	-3.057	-1.905E-05	1.905E-05	3.869E-04	-3.869E-04
1.52	-0.148	0.148	3.059	-3.059	-1.875E-05	1.875E-05	3.873E-04	-3.873E-04
1.53	-0.146	0.146	3.062	-3.062	-1.845E-05	1.845E-05	3.876E-04	-3.876E-04
1.54	-0.143	0.143	3.064	-3.064	-1.815E-05	1.815E-05	3.878E-04	-3.878E-04
1.55	-0.141	0.141	3.066	-3.066	-1.786E-05	1.786E-05	3.881E-04	-3.881E-04
1.56	-0.139	0.139	3.069	-3.069	-1.758E-05	1.758E-05	3.884E-04	-3.884E-04
1.57	-0.137	0.137	3.071	-3.071	-1.730E-05	1.730E-05	3.887E-04	-3.887E-04
1.58	-0.134	0.134	3.073	-3.073	-1.702E-05	1.702E-05	3.890E-04	-3.890E-04
1.59	-0.132	0.132	3.075	-3.075	-1.675E-05	1.675E-05	3.893E-04	-3.893E-04
1.60	-0.130	0.130	3.077	-3.077	-1.648E-05	1.648E-05	3.895E-04	-3.895E-04

Appendix 4 Analysis results of steady creep coefficient effect case (4/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.128	0.128	3.079	-3.079	-1.621E-05	1.621E-05	3.898E-04	-3.898E-04
1.62	-0.126	0.126	3.081	-3.081	-1.595E-05	1.595E-05	3.900E-04	-3.900E-04
1.63	-0.124	0.124	3.083	-3.083	-1.570E-05	1.570E-05	3.903E-04	-3.903E-04
1.64	-0.122	0.122	3.085	-3.085	-1.545E-05	1.545E-05	3.906E-04	-3.906E-04
1.65	-0.120	0.120	3.087	-3.087	-1.520E-05	1.520E-05	3.908E-04	-3.908E-04
1.66	-0.118	0.118	3.089	-3.089	-1.496E-05	1.496E-05	3.910E-04	-3.910E-04
1.67	-0.116	0.116	3.091	-3.091	-1.472E-05	1.472E-05	3.913E-04	-3.913E-04
1.68	-0.114	0.114	3.093	-3.093	-1.448E-05	1.448E-05	3.915E-04	-3.915E-04
1.69	-0.113	0.113	3.095	-3.095	-1.425E-05	1.425E-05	3.917E-04	-3.917E-04
1.70	-0.111	0.111	3.097	-3.097	-1.402E-05	1.402E-05	3.920E-04	-3.920E-04
1.71	-0.109	0.109	3.098	-3.098	-1.380E-05	1.380E-05	3.922E-04	-3.922E-04
1.72	-0.107	0.107	3.100	-3.100	-1.358E-05	1.358E-05	3.924E-04	-3.924E-04
1.73	-0.106	0.106	3.102	-3.102	-1.336E-05	1.336E-05	3.926E-04	-3.926E-04
1.74	-0.104	0.104	3.104	-3.104	-1.315E-05	1.315E-05	3.929E-04	-3.929E-04
1.75	-0.102	0.102	3.105	-3.105	-1.294E-05	1.294E-05	3.931E-04	-3.931E-04
1.76	-0.101	0.101	3.107	-3.107	-1.273E-05	1.273E-05	3.933E-04	-3.933E-04
1.77	-0.099	0.099	3.108	-3.108	-1.253E-05	1.253E-05	3.935E-04	-3.935E-04
1.78	-0.097	0.097	3.110	-3.110	-1.233E-05	1.233E-05	3.937E-04	-3.937E-04
1.79	-0.096	0.096	3.112	-3.112	-1.213E-05	1.213E-05	3.939E-04	-3.939E-04
1.80	-0.094	0.094	3.113	-3.113	-1.193E-05	1.193E-05	3.941E-04	-3.941E-04
1.81	-0.093	0.093	3.115	-3.115	-1.174E-05	1.174E-05	3.943E-04	-3.943E-04
1.82	-0.091	0.091	3.116	-3.116	-1.155E-05	1.155E-05	3.944E-04	-3.944E-04
1.83	-0.090	0.090	3.118	-3.118	-1.137E-05	1.137E-05	3.946E-04	-3.946E-04
1.84	-0.088	0.088	3.119	-3.119	-1.119E-05	1.119E-05	3.948E-04	-3.948E-04
1.85	-0.087	0.087	3.120	-3.120	-1.101E-05	1.101E-05	3.950E-04	-3.950E-04
1.86	-0.086	0.086	3.122	-3.122	-1.083E-05	1.083E-05	3.952E-04	-3.952E-04
1.87	-0.084	0.084	3.123	-3.123	-1.066E-05	1.066E-05	3.953E-04	-3.953E-04
1.88	-0.083	0.083	3.125	-3.125	-1.049E-05	1.049E-05	3.955E-04	-3.955E-04
1.89	-0.082	0.082	3.126	-3.126	-1.032E-05	1.032E-05	3.957E-04	-3.957E-04
1.90	-0.080	0.080	3.127	-3.127	-1.016E-05	1.016E-05	3.958E-04	-3.958E-04
1.91	-0.079	0.079	3.128	-3.128	-9.993E-06	9.993E-06	3.960E-04	-3.960E-04
1.92	-0.078	0.078	3.130	-3.130	-9.833E-06	9.833E-06	3.962E-04	-3.962E-04
1.93	-0.076	0.076	3.131	-3.131	-9.676E-06	9.676E-06	3.963E-04	-3.963E-04
1.94	-0.075	0.075	3.132	-3.132	-9.521E-06	9.521E-06	3.965E-04	-3.965E-04
1.95	-0.074	0.074	3.133	-3.133	-9.369E-06	9.369E-06	3.966E-04	-3.966E-04
1.96	-0.073	0.073	3.135	-3.135	-9.219E-06	9.219E-06	3.968E-04	-3.968E-04
1.97	-0.072	0.072	3.136	-3.136	-9.071E-06	9.071E-06	3.969E-04	-3.969E-04
1.98	-0.071	0.071	3.137	-3.137	-8.926E-06	8.926E-06	3.971E-04	-3.971E-04
1.99	-0.069	0.069	3.138	-3.138	-8.783E-06	8.783E-06	3.972E-04	-3.972E-04
2.00	-0.068	0.068	3.139	-3.139	-8.643E-06	8.643E-06	3.974E-04	-3.974E-04

Appendix 4 Analysis results of steady creep coefficient effect case (5/8)

Fluence	Operational	stress (MPa)	Shutdown s	stress (MPa)	Operatio	onal strain	Shutdov	wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.01	-0.067	0.067	3.140	-3.140	-8.504E-06	8.504E-06	3.975E-04	-3.975E-04
2.02	-0.066	0.066	3.141	-3.141	-8.368E-06	8.368E-06	3.976E-04	-3.976E-04
2.03	-0.065	0.065	3.142	-3.142	-8.234E-06	8.234E-06	3.978E-04	-3.978E-04
2.04	-0.064	0.064	3.143	-3.143	-8.103E-06	8.103E-06	3.979E-04	-3.979E-04
2.05	-0.063	0.063	3.144	-3.144	-7.973E-06	7.973E-06	3.980E-04	-3.980E-04
2.06	-0.062	0.062	3.145	-3.145	-7.845E-06	7.845E-06	3.982E-04	-3.982E-04
2.07	-0.061	0.061	3.146	-3.146	-7.720E-06	7.720E-06	3.983E-04	-3.983E-04
2.08	-0.060	0.060	3.147	-3.147	-7.596E-06	7.596E-06	3.984E-04	-3.984E-04
2.09	-0.059	0.059	3.148	-3.148	-7.475E-06	7.475E-06	3.985E-04	-3.985E-04
2.10	-0.058	0.058	3.149	-3.149	-7.355E-06	7.355E-06	3.986E-04	-3.986E-04
2.11	-0.057	0.057	3.150	-3.150	-7.237E-06	7.237E-06	3.988E-04	-3.988E-04
2.12	-0.056	0.056	3.151	-3.151	-7.122E-06	7.122E-06	3.989E-04	-3.989E-04
2.13	-0.055	0.055	3.152	-3.152	-7.007E-06	7.007E-06	3.990E-04	-3.990E-04
2.14	-0.054	0.054	3.153	-3.153	-6.895E-06	6.895E-06	3.991E-04	-3.991E-04
2.15	-0.054	0.054	3.154	-3.154	-6.785E-06	6.785E-06	3.992E-04	-3.992E-04
2.16	-0.053	0.053	3.155	-3.155	-6.676E-06	6.676E-06	3.993E-04	-3.993E-04
2.17	-0.052	0.052	3.156	-3.156	-6.570E-06	6.570E-06	3.994E-04	-3.994E-04
2.18	-0.051	0.051	3.156	-3.156	-6.465E-06	6.465E-06	3.995E-04	-3.995E-04
2.19	-0.050	0.050	3.157	-3.157	-6.361E-06	6.361E-06	3.996E-04	-3.996E-04
2.20	-0.049	0.049	3.158	-3.158	-6.259E-06	6.259E-06	3.997E-04	-3.997E-04
2.21	-0.049	0.049	3.159	-3.159	-6.159E-06	6.159E-06	3.998E-04	-3.998E-04
2.22	-0.048	0.048	3.160	-3.160	-6.061E-06	6.061E-06	3.999E-04	-3.999E-04
2.23	-0.047	0.047	3.160	-3.160	-5.963E-06	5.963E-06	4.000E-04	-4.000E-04
2.24	-0.046	0.046	3.161	-3.161	-5.868E-06	5.868E-06	4.001E-04	-4.001E-04
2.25	-0.046	0.046	3.162	-3.162	-5.774E-06	5.774E-06	4.002E-04	-4.002E-04
2.26	-0.045	0.045	3.163	-3.163	-5.682E-06	5.682E-06	4.003E-04	-4.003E-04
2.27	-0.044	0.044	3.163	-3.163	-5.591E-06	5.591E-06	4.004E-04	-4.004E-04
2.28	-0.043	0.043	3.164	-3.164	-5.501E-06	5.501E-06	4.005E-04	-4.005E-04
2.29	-0.043	0.043	3.165	-3.165	-5.413E-06	5.413E-06	4.006E-04	-4.006E-04
2.30	-0.042	0.042	3.165	-3.165	-5.327E-06	5.327E-06	4.007E-04	-4.007E-04
2.31	-0.041	0.041	3.166	-3.166	-5.242E-06	5.242E-06	4.008E-04	-4.008E-04
2.32	-0.041	0.041	3.167	-3.167	-5.158E-06	5.158E-06	4.008E-04	-4.008E-04
2.33	-0.040	0.040	3.167	-3.167	-5.075E-06	5.075E-06	4.009E-04	-4.009E-04
2.34	-0.039	0.039	3.168	-3.168	-4.994E-06	4.994E-06	4.010E-04	-4.010E-04
2.35	-0.039	0.039	3.169	-3.169	-4.914E-06	4.914E-06	4.011E-04	-4.011E-04
2.36	-0.038	0.038	3.169	-3.169	-4.835E-06	4.835E-06	4.012E-04	-4.012E-04
2.37	-0.038	0.038	3.170	-3.170	-4.758E-06	4.758E-06	4.012E-04	-4.012E-04
2.38	-0.037	0.037	3.170	-3.170	-4.682E-06	4.682E-06	4.013E-04	-4.013E-04
2.39	-0.036	0.036	3.171	-3.171	-4.607E-06	4.607E-06	4.014E-04	-4.014E-04
2.40	-0.036	0.036	3.172	-3.172	-4.533E-06	4.533E-06	4.015E-04	-4.015E-04

Appendix 4 Analysis results of steady creep coefficient effect case (6/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.035	0.035	3.172	-3.172	-4.461E-06	4.461E-06	4.015E-04	-4.015E-04
2.42	-0.035	0.035	3.173	-3.173	-4.389E-06	4.389E-06	4.016E-04	-4.016E-04
2.43	-0.034	0.034	3.173	-3.173	-4.319E-06	4.319E-06	4.017E-04	-4.017E-04
2.44	-0.034	0.034	3.174	-3.174	-4.250E-06	4.250E-06	4.018E-04	-4.018E-04
2.45	-0.033	0.033	3.174	-3.174	-4.182E-06	4.182E-06	4.018E-04	-4.018E-04
2.46	-0.033	0.033	3.175	-3.175	-4.115E-06	4.115E-06	4.019E-04	-4.019E-04
2.47	-0.032	0.032	3.175	-3.175	-4.049E-06	4.049E-06	4.020E-04	-4.020E-04
2.48	-0.031	0.031	3.176	-3.176	-3.984E-06	3.984E-06	4.020E-04	-4.020E-04
2.49	-0.031	0.031	3.176	-3.176	-3.921E-06	3.921E-06	4.021E-04	-4.021E-04
2.50	-0.030	0.030	3.177	-3.177	-3.858E-06	3.858E-06	4.021E-04	-4.021E-04
2.51	-0.030	0.030	3.177	-3.177	-3.796E-06	3.796E-06	4.022E-04	-4.022E-04
2.52	-0.030	0.030	3.178	-3.178	-3.735E-06	3.735E-06	4.023E-04	-4.023E-04
2.53	-0.029	0.029	3.178	-3.178	-3.675E-06	3.675E-06	4.023E-04	-4.023E-04
2.54	-0.029	0.029	3.179	-3.179	-3.617E-06	3.617E-06	4.024E-04	-4.024E-04
2.55	-0.028	0.028	3.179	-3.179	-3.559E-06	3.559E-06	4.024E-04	-4.024E-04
2.56	-0.028	0.028	3.180	-3.180	-3.502E-06	3.502E-06	4.025E-04	-4.025E-04
2.57	-0.027	0.027	3.180	-3.180	-3.446E-06	3.446E-06	4.026E-04	-4.026E-04
2.58	-0.027	0.027	3.181	-3.181	-3.391E-06	3.391E-06	4.026E-04	-4.026E-04
2.59	-0.026	0.026	3.181	-3.181	-3.336E-06	3.336E-06	4.027E-04	-4.027E-04
2.60	-0.026	0.026	3.181	-3.181	-3.283E-06	3.283E-06	4.027E-04	-4.027E-04
2.61	-0.026	0.026	3.182	-3.182	-3.231E-06	3.231E-06	4.028E-04	-4.028E-04
2.62	-0.025	0.025	3.182	-3.182	-3.179E-06	3.179E-06	4.028E-04	-4.028E-04
2.63	-0.025	0.025	3.183	-3.183	-3.128E-06	3.128E-06	4.029E-04	-4.029E-04
2.64	-0.024	0.024	3.183	-3.183	-3.078E-06	3.078E-06	4.029E-04	-4.029E-04
2.65	-0.024	0.024	3.183	-3.183	-3.029E-06	3.029E-06	4.030E-04	-4.030E-04
2.66	-0.024	0.024	3.184	-3.184	-2.980E-06	2.980E-06	4.030E-04	-4.030E-04
2.67	-0.023	0.023	3.184	-3.184	-2.932E-06	2.932E-06	4.031E-04	-4.031E-04
2.68	-0.023	0.023	3.185	-3.185	-2.886E-06	2.886E-06	4.031E-04	-4.031E-04
2.69	-0.022	0.022	3.185	-3.185	-2.839E-06	2.839E-06	4.032E-04	-4.032E-04
2.70	-0.022	0.022	3.185	-3.185	-2.794E-06	2.794E-06	4.032E-04	-4.032E-04
2.71	-0.022	0.022	3.186	-3.186	-2.749E-06	2.749E-06	4.033E-04	-4.033E-04
2.72	-0.021	0.021	3.186	-3.186	-2.705E-06	2.705E-06	4.033E-04	-4.033E-04
2.73	-0.021	0.021	3.186	-3.186	-2.662E-06	2.662E-06	4.033E-04	-4.033E-04
2.74	-0.021	0.021	3.187	-3.187	-2.619E-06	2.619E-06	4.034E-04	-4.034E-04
2.75	-0.020	0.020	3.187	-3.187	-2.577E-06	2.577E-06	4.034E-04	-4.034E-04
2.76	-0.020	0.020	3.187	-3.187	-2.536E-06	2.536E-06	4.035E-04	-4.035E-04
2.77	-0.020	0.020	3.188	-3.188	-2.496E-06	2.496E-06	4.035E-04	-4.035E-04
2.78	-0.019	0.019	3.188	-3.188	-2.456E-06	2.456E-06	4.035E-04	-4.035E-04
2.79	-0.019	0.019	3.188	-3.188	-2.416E-06	2.416E-06	4.036E-04	-4.036E-04
2.80	-0.019	0.019	3.189	-3.189	-2.378E-06	2.378E-06	4.036E-04	-4.036E-04

Appendix 4 Analysis results of steady creep coefficient effect case (7/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.81	-0.018	0.018	3.189	-3.189	-2.340E-06	2.340E-06	4.037E-04	-4.037E-04
2.82	-0.018	0.018	3.189	-3.189	-2.302E-06	2.302E-06	4.037E-04	-4.037E-04
2.83	-0.018	0.018	3.190	-3.190	-2.265E-06	2.265E-06	4.037E-04	-4.037E-04
2.84	-0.018	0.018	3.190	-3.190	-2.229E-06	2.229E-06	4.038E-04	-4.038E-04
2.85	-0.017	0.017	3.190	-3.190	-2.193E-06	2.193E-06	4.038E-04	-4.038E-04
2.86	-0.017	0.017	3.190	-3.190	-2.158E-06	2.158E-06	4.038E-04	-4.038E-04
2.87	-0.017	0.017	3.191	-3.191	-2.124E-06	2.124E-06	4.039E-04	-4.039E-04
2.88	-0.017	0.017	3.191	-3.191	-2.089E-06	2.089E-06	4.039E-04	-4.039E-04
2.89	-0.016	0.016	3.191	-3.191	-2.056E-06	2.056E-06	4.039E-04	-4.039E-04
2.90	-0.016	0.016	3.191	-3.191	-2.024E-06	2.024E-06	4.040E-04	-4.040E-04
2.91	-0.016	0.016	3.192	-3.192	-1.991E-06	1.991E-06	4.040E-04	-4.040E-04
2.92	-0.015	0.015	3.192	-3.192	-1.959E-06	1.959E-06	4.040E-04	-4.040E-04
2.93	-0.015	0.015	3.192	-3.192	-1.928E-06	1.928E-06	4.041E-04	-4.041E-04
2.94	-0.015	0.015	3.192	-3.192	-1.897E-06	1.897E-06	4.041E-04	-4.041E-04
2.95	-0.015	0.015	3.193	-3.193	-1.867E-06	1.867E-06	4.041E-04	-4.041E-04
2.96	-0.015	0.015	3.193	-3.193	-1.837E-06	1.837E-06	4.042E-04	-4.042E-04
2.97	-0.014	0.014	3.193	-3.193	-1.807E-06	1.807E-06	4.042E-04	-4.042E-04
2.98	-0.014	0.014	3.193	-3.193	-1.778E-06	1.778E-06	4.042E-04	-4.042E-04
2.99	-0.014	0.014	3.194	-3.194	-1.750E-06	1.750E-06	4.042E-04	-4.042E-04
3.00	-0.014	0.014	3.194	-3.194	-1.722E-06	1.722E-06	4.043E-04	-4.043E-04

Appendix 4 Analysis results of steady creep coefficient effect case (8/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	ational strain Shutdown strain		
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.00	-3.207	3.207	0.000	0.000	-4.060E-04	4.060E-04	0.000E+00	0.000E+00
0.01	-2.202	2.202	1.006	-1.006	-2.787E-04	2.787E-04	1.273E-04	-1.273E-04
0.02	-1.846	1.846	1.361	-1.361	-2.337E-04	2.337E-04	1.723E-04	-1.723E-04
0.03	-1.711	1.711	1.497	-1.497	-2.165E-04	2.165E-04	1.895E-04	-1.895E-04
0.04	-1.650	1.650	1.558	-1.558	-2.088E-04	2.088E-04	1.972E-04	-1.972E-04
0.05	-1.614	1.614	1.593	-1.593	-2.043E-04	2.043E-04	2.017E-04	-2.017E-04
0.06	-1.588	1.588	1.620	-1.620	-2.010E-04	2.010E-04	2.050E-04	-2.050E-04
0.07	-1.564	1.564	1.643	-1.643	-1.980E-04	1.980E-04	2.080E-04	-2.080E-04
0.08	-1.542	1.542	1.665	-1.665	-1.952E-04	1.952E-04	2.108E-04	-2.108E-04
0.09	-1.521	1.521	1.686	-1.686	-1.926E-04	1.926E-04	2.134E-04	-2.134E-04
0.10	-1.500	1.500	1.707	-1.707	-1.899E-04	1.899E-04	2.161E-04	-2.161E-04
0.11	-1.480	1.480	1.727	-1.727	-1.873E-04	1.873E-04	2.187E-04	-2.187E-04
0.12	-1.460	1.460	1.748	-1.748	-1.848E-04	1.848E-04	2.212E-04	-2.212E-04
0.13	-1.440	1.440	1.767	-1.767	-1.823E-04	1.823E-04	2.237E-04	-2.237E-04
0.14	-1.421	1.421	1.787	-1.787	-1.799E-04	1.799E-04	2.261E-04	-2.261E-04
0.15	-1.402	1.402	1.806	-1.806	-1.774E-04	1.774E-04	2.286E-04	-2.286E-04
0.16	-1.383	1.383	1.824	-1.824	-1.751E-04	1.751E-04	2.309E-04	-2.309E-04
0.17	-1.365	1.365	1.843	-1.843	-1.727E-04	1.727E-04	2.333E-04	-2.333E-04
0.18	-1.347	1.347	1.861	-1.861	-1.705E-04	1.705E-04	2.355E-04	-2.355E-04
0.19	-1.329	1.329	1.878	-1.878	-1.682E-04	1.682E-04	2.378E-04	-2.378E-04
0.20	-1.312	1.312	1.896	-1.896	-1.660E-04	1.660E-04	2.400E-04	-2.400E-04
0.21	-1.294	1.294	1.913	-1.913	-1.638E-04	1.638E-04	2.422E-04	-2.422E-04
0.22	-1.278	1.278	1.930	-1.930	-1.617E-04	1.617E-04	2.443E-04	-2.443E-04
0.23	-1.261	1.261	1.946	-1.946	-1.596E-04	1.596E-04	2.464E-04	-2.464E-04
0.24	-1.245	1.245	1.963	-1.963	-1.576E-04	1.576E-04	2.484E-04	-2.484E-04
0.25	-1.229	1.229	1.978	-1.978	-1.556E-04	1.556E-04	2.504E-04	-2.504E-04
0.26	-1.213	1.213	1.994	-1.994	-1.536E-04	1.536E-04	2.524E-04	-2.524E-04
0.27	-1.198	1.198	2.009	-2.009	-1.516E-04	1.516E-04	2.544E-04	-2.544E-04
0.28	-1.183	1.183	2.024	-2.024	-1.497E-04	1.497E-04	2.563E-04	-2.563E-04
0.29	-1.168	1.168	2.039	-2.039	-1.479E-04	1.479E-04	2.581E-04	-2.581E-04
0.30	-1.154	1.154	2.054	-2.054	-1.460E-04	1.460E-04	2.600E-04	-2.600E-04
0.31	-1.139	1.139	2.068	-2.068	-1.442E-04	1.442E-04	2.618E-04	-2.618E-04
0.32	-1.125	1.125	2.082	-2.082	-1.425E-04	1.425E-04	2.635E-04	-2.635E-04
0.33	-1.112	1.112	2.096	-2.096	-1.407E-04	1.407E-04	2.653E-04	-2.653E-04
0.34	-1.098	1.098	2.109	-2.109	-1.390E-04	1.390E-04	2.670E-04	-2.670E-04
0.35	-1.085	1.085	2.122	-2.122	-1.374E-04	1.374E-04	2.686E-04	-2.686E-04
0.36	-1.072	1.072	2.135	-2.135	-1.357E-04	1.357E-04	2.703E-04	-2.703E-04
0.37	-1.059	1.059	2.148	-2.148	-1.341E-04	1.341E-04	2.719E-04	-2.719E-04
0.38	-1.047	1.047	2.160	-2.160	-1.325E-04	1.325E-04	2.735E-04	-2.735E-04
0.39	-1.035	1.035	2.173	-2.173	-1.310E-04	1.310E-04	2.750E-04	-2.750E-04
0.40	-1.023	1.023	2.185	-2.185	-1.295E-04	1.295E-04	2.765E-04	-2.765E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (1/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operational strain Shutdown s			vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.41	-1.011	1.011	2.196	-2.196	-1.280E-04	1.280E-04	2.780E-04	-2.780E-04
0.42	-1.000	1.000	2.208	-2.208	-1.265E-04	1.265E-04	2.795E-04	-2.795E-04
0.43	-0.988	0.988	2.219	-2.219	-1.251E-04	1.251E-04	2.809E-04	-2.809E-04
0.44	-0.977	0.977	2.230	-2.230	-1.237E-04	1.237E-04	2.823E-04	-2.823E-04
0.45	-0.967	0.967	2.241	-2.241	-1.224E-04	1.224E-04	2.836E-04	-2.836E-04
0.46	-0.956	0.956	2.251	-2.251	-1.210E-04	1.210E-04	2.850E-04	-2.850E-04
0.47	-0.946	0.946	2.262	-2.262	-1.197E-04	1.197E-04	2.863E-04	-2.863E-04
0.48	-0.936	0.936	2.272	-2.272	-1.184E-04	1.184E-04	2.876E-04	-2.876E-04
0.49	-0.926	0.926	2.282	-2.282	-1.172E-04	1.172E-04	2.888E-04	-2.888E-04
0.50	-0.916	0.916	2.291	-2.291	-1.159E-04	1.159E-04	2.901E-04	-2.901E-04
0.51	-0.906	0.906	2.301	-2.301	-1.147E-04	1.147E-04	2.913E-04	-2.913E-04
0.52	-0.897	0.897	2.310	-2.310	-1.136E-04	1.136E-04	2.924E-04	-2.924E-04
0.53	-0.888	0.888	2.319	-2.319	-1.124E-04	1.124E-04	2.936E-04	-2.936E-04
0.54	-0.879	0.879	2.328	-2.328	-1.113E-04	1.113E-04	2.947E-04	-2.947E-04
0.55	-0.870	0.870	2.337	-2.337	-1.102E-04	1.102E-04	2.958E-04	-2.958E-04
0.56	-0.862	0.862	2.345	-2.345	-1.091E-04	1.091E-04	2.969E-04	-2.969E-04
0.57	-0.854	0.854	2.354	-2.354	-1.080E-04	1.080E-04	2.980E-04	-2.980E-04
0.58	-0.845	0.845	2.362	-2.362	-1.070E-04	1.070E-04	2.990E-04	-2.990E-04
0.59	-0.838	0.838	2.370	-2.370	-1.060E-04	1.060E-04	3.000E-04	-3.000E-04
0.60	-0.830	0.830	2.378	-2.378	-1.050E-04	1.050E-04	3.010E-04	-3.010E-04
0.61	-0.822	0.822	2.385	-2.385	-1.041E-04	1.041E-04	3.019E-04	-3.019E-04
0.62	-0.815	0.815	2.393	-2.393	-1.031E-04	1.031E-04	3.029E-04	-3.029E-04
0.63	-0.808	0.808	2.400	-2.400	-1.022E-04	1.022E-04	3.038E-04	-3.038E-04
0.64	-0.801	0.801	2.407	-2.407	-1.013E-04	1.013E-04	3.047E-04	-3.047E-04
0.65	-0.794	0.794	2.414	-2.414	-1.005E-04	1.005E-04	3.055E-04	-3.055E-04
0.66	-0.787	0.787	2.420	-2.420	-9.963E-05	9.963E-05	3.064E-04	-3.064E-04
0.67	-0.781	0.781	2.427	-2.427	-9.880E-05	9.880E-05	3.072E-04	-3.072E-04
0.68	-0.774	0.774	2.433	-2.433	-9.800E-05	9.800E-05	3.080E-04	-3.080E-04
0.69	-0.768	0.768	2.439	-2.439	-9.721E-05	9.721E-05	3.088E-04	-3.088E-04
0.70	-0.762	0.762	2.445	-2.445	-9.645E-05	9.645E-05	3.096E-04	-3.096E-04
0.71	-0.756	0.756	2.451	-2.451	-9.571E-05	9.571E-05	3.103E-04	-3.103E-04
0.72	-0.750	0.750	2.457	-2.457	-9.498E-05	9.498E-05	3.110E-04	-3.110E-04
0.73	-0.745	0.745	2.463	-2.463	-9.428E-05	9.428E-05	3.117E-04	-3.117E-04
0.74	-0.739	0.739	2.468	-2.468	-9.360E-05	9.360E-05	3.124E-04	-3.124E-04
0.75	-0.734	0.734	2.473	-2.473	-9.293E-05	9.293E-05	3.131E-04	-3.131E-04
0.76	-0.729	0.729	2.478	-2.478	-9.229E-05	9.229E-05	3.137E-04	-3.137E-04
0.77	-0.724	0.724	2.483	-2.483	-9.166E-05	9.166E-05	3.143E-04	-3.143E-04
0.78	-0.719	0.719	2.488	-2.488	-9.105E-05	9.105E-05	3.149E-04	-3.149E-04
0.79	-0.715	0.715	2.493	-2.493	-9.046E-05	9.046E-05	3.155E-04	-3.155E-04
0.80	-0.710	0.710	2.497	-2.497	-8.989E-05	8.989E-05	3.161E-04	-3.161E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (2/8)

Fluence	Operational stress (MPa)		Shutdown s	tress (MPa)	Operational strain Shutdown strain			wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.706	0.706	2.502	-2.502	-8.934E-05	8.934E-05	3.167E-04	-3.167E-04
0.82	-0.702	0.702	2.506	-2.506	-8.880E-05	8.880E-05	3.172E-04	-3.172E-04
0.83	-0.697	0.697	2.510	-2.510	-8.828E-05	8.828E-05	3.177E-04	-3.177E-04
0.84	-0.693	0.693	2.514	-2.514	-8.778E-05	8.778E-05	3.182E-04	-3.182E-04
0.85	-0.690	0.690	2.518	-2.518	-8.729E-05	8.729E-05	3.187E-04	-3.187E-04
0.86	-0.686	0.686	2.522	-2.522	-8.682E-05	8.682E-05	3.192E-04	-3.192E-04
0.87	-0.682	0.682	2.525	-2.525	-8.637E-05	8.637E-05	3.196E-04	-3.196E-04
0.88	-0.679	0.679	2.529	-2.529	-8.593E-05	8.593E-05	3.201E-04	-3.201E-04
0.89	-0.676	0.676	2.532	-2.532	-8.551E-05	8.551E-05	3.205E-04	-3.205E-04
0.90	-0.672	0.672	2.535	-2.535	-8.510E-05	8.510E-05	3.209E-04	-3.209E-04
0.91	-0.669	0.669	2.538	-2.538	-8.471E-05	8.471E-05	3.213E-04	-3.213E-04
0.92	-0.666	0.666	2.541	-2.541	-8.434E-05	8.434E-05	3.217E-04	-3.217E-04
0.93	-0.663	0.663	2.544	-2.544	-8.398E-05	8.398E-05	3.220E-04	-3.220E-04
0.94	-0.661	0.661	2.547	-2.547	-8.363E-05	8.363E-05	3.224E-04	-3.224E-04
0.95	-0.658	0.658	2.549	-2.549	-8.330E-05	8.330E-05	3.227E-04	-3.227E-04
0.96	-0.656	0.656	2.552	-2.552	-8.299E-05	8.299E-05	3.230E-04	-3.230E-04
0.97	-0.653	0.653	2.554	-2.554	-8.268E-05	8.268E-05	3.233E-04	-3.233E-04
0.98	-0.651	0.651	2.556	-2.556	-8.240E-05	8.240E-05	3.236E-04	-3.236E-04
0.99	-0.649	0.649	2.559	-2.559	-8.212E-05	8.212E-05	3.239E-04	-3.239E-04
1.00	-0.647	0.647	2.561	-2.561	-8.186E-05	8.186E-05	3.241E-04	-3.241E-04
1.01	-0.645	0.645	2.563	-2.563	-8.162E-05	8.162E-05	3.244E-04	-3.244E-04
1.02	-0.643	0.643	2.564	-2.564	-8.138E-05	8.138E-05	3.246E-04	-3.246E-04
1.03	-0.641	0.641	2.566	-2.566	-8.116E-05	8.116E-05	3.248E-04	-3.248E-04
1.04	-0.640	0.640	2.568	-2.568	-8.095E-05	8.095E-05	3.250E-04	-3.250E-04
1.05	-0.638	0.638	2.569	-2.569	-8.076E-05	8.076E-05	3.252E-04	-3.252E-04
1.06	-0.637	0.637	2.571	-2.571	-8.058E-05	8.058E-05	3.254E-04	-3.254E-04
1.07	-0.635	0.635	2.572	-2.572	-8.041E-05	8.041E-05	3.256E-04	-3.256E-04
1.08	-0.634	0.634	2.573	-2.573	-8.025E-05	8.025E-05	3.258E-04	-3.258E-04
1.09	-0.633	0.633	2.575	-2.575	-8.010E-05	8.010E-05	3.259E-04	-3.259E-04
1.10	-0.632	0.632	2.576	-2.576	-7.997E-05	7.997E-05	3.260E-04	-3.260E-04
1.11	-0.631	0.631	2.577	-2.577	-7.985E-05	7.985E-05	3.262E-04	-3.262E-04
1.12	-0.630	0.630	2.577	-2.577	-7.974E-05	7.974E-05	3.263E-04	-3.263E-04
1.13	-0.629	0.629	2.578	-2.578	-7.964E-05	7.964E-05	3.264E-04	-3.264E-04
1.14	-0.628	0.628	2.579	-2.579	-7.955E-05	7.955E-05	3.265E-04	-3.265E-04
1.15	-0.628	0.628	2.580	-2.580	-7.947E-05	7.947E-05	3.265E-04	-3.265E-04
1.16	-0.627	0.627	2.580	-2.580	-7.940E-05	7.940E-05	3.266E-04	-3.266E-04
1.17	-0.627	0.627	2.581	-2.581	-7.935E-05	7.935E-05	3.267E-04	-3.267E-04
1.18	-0.626	0.626	2.581	-2.581	-7.930E-05	7.930E-05	3.267E-04	-3.267E-04
1.19	-0.626	0.626	2.581	-2.581	-7.927E-05	7.927E-05	3.267E-04	-3.267E-04
1.20	-0.626	0.626	2.581	-2.581	-7.924E-05	7.924E-05	3.268E-04	-3.268E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (3/8)

Fluence	e Operational stress (MPa)		Shutdown s	stress (MPa)	Operational strain Shutdown stra			wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.21	-0.626	0.626	2.581	-2.581	-7.923E-05	7.923E-05	3.268E-04	-3.268E-04
1.22	-0.626	0.626	2.582	-2.582	-7.922E-05	7.922E-05	3.268E-04	-3.268E-04
1.23	-0.626	0.626	2.581	-2.581	-7.923E-05	7.923E-05	3.268E-04	-3.268E-04
1.24	-0.626	0.626	2.581	-2.581	-7.924E-05	7.924E-05	3.268E-04	-3.268E-04
1.25	-0.626	0.626	2.581	-2.581	-7.927E-05	7.927E-05	3.267E-04	-3.267E-04
1.26	-0.626	0.626	2.581	-2.581	-7.930E-05	7.930E-05	3.267E-04	-3.267E-04
1.27	-0.627	0.627	2.581	-2.581	-7.934E-05	7.934E-05	3.267E-04	-3.267E-04
1.28	-0.627	0.627	2.580	-2.580	-7.939E-05	7.939E-05	3.266E-04	-3.266E-04
1.29	-0.628	0.628	2.580	-2.580	-7.946E-05	7.946E-05	3.265E-04	-3.265E-04
1.30	-0.628	0.628	2.579	-2.579	-7.952E-05	7.952E-05	3.265E-04	-3.265E-04
1.31	-0.629	0.629	2.579	-2.579	-7.960E-05	7.960E-05	3.264E-04	-3.264E-04
1.32	-0.630	0.630	2.578	-2.578	-7.969E-05	7.969E-05	3.263E-04	-3.263E-04
1.33	-0.630	0.630	2.577	-2.577	-7.978E-05	7.978E-05	3.262E-04	-3.262E-04
1.34	-0.631	0.631	2.576	-2.576	-7.989E-05	7.989E-05	3.261E-04	-3.261E-04
1.35	-0.632	0.632	2.575	-2.575	-8.000E-05	8.000E-05	3.260E-04	-3.260E-04
1.36	-0.633	0.633	2.574	-2.574	-8.012E-05	8.012E-05	3.259E-04	-3.259E-04
1.37	-0.634	0.634	2.573	-2.573	-8.024E-05	8.024E-05	3.258E-04	-3.258E-04
1.38	-0.635	0.635	2.572	-2.572	-8.038E-05	8.038E-05	3.256E-04	-3.256E-04
1.39	-0.636	0.636	2.571	-2.571	-8.052E-05	8.052E-05	3.255E-04	-3.255E-04
1.40	-0.637	0.637	2.570	-2.570	-8.067E-05	8.067E-05	3.253E-04	-3.253E-04
1.41	-0.639	0.639	2.569	-2.569	-8.083E-05	8.083E-05	3.252E-04	-3.252E-04
1.42	-0.640	0.640	2.568	-2.568	-8.099E-05	8.099E-05	3.250E-04	-3.250E-04
1.43	-0.641	0.641	2.566	-2.566	-8.116E-05	8.116E-05	3.248E-04	-3.248E-04
1.44	-0.643	0.643	2.565	-2.565	-8.134E-05	8.134E-05	3.247E-04	-3.247E-04
1.45	-0.644	0.644	2.563	-2.563	-8.153E-05	8.153E-05	3.245E-04	-3.245E-04
1.46	-0.646	0.646	2.562	-2.562	-8.172E-05	8.172E-05	3.243E-04	-3.243E-04
1.47	-0.647	0.647	2.560	-2.560	-8.192E-05	8.192E-05	3.241E-04	-3.241E-04
1.48	-0.649	0.649	2.559	-2.559	-8.212E-05	8.212E-05	3.239E-04	-3.239E-04
1.49	-0.650	0.650	2.557	-2.557	-8.233E-05	8.233E-05	3.237E-04	-3.237E-04
1.50	-0.652	0.652	2.555	-2.555	-8.255E-05	8.255E-05	3.234E-04	-3.234E-04
1.51	-0.654	0.654	2.553	-2.553	-8.277E-05	8.277E-05	3.232E-04	-3.232E-04
1.52	-0.656	0.656	2.552	-2.552	-8.300E-05	8.300E-05	3.230E-04	-3.230E-04
1.53	-0.658	0.658	2.550	-2.550	-8.324E-05	8.324E-05	3.228E-04	-3.228E-04
1.54	-0.660	0.660	2.548	-2.548	-8.348E-05	8.348E-05	3.225E-04	-3.225E-04
1.55	-0.661	0.661	2.546	-2.546	-8.373E-05	8.373E-05	3.223E-04	-3.223E-04
1.56	-0.663	0.663	2.544	-2.544	-8.398E-05	8.398E-05	3.220E-04	-3.220E-04
1.57	-0.666	0.666	2.542	-2.542	-8.424E-05	8.424E-05	3.218E-04	-3.218E-04
1.58	-0.668	0.668	2.540	-2.540	-8.451E-05	8.451E-05	3.215E-04	-3.215E-04
1.59	-0.670	0.670	2.538	-2.538	-8.478E-05	8.478E-05	3.212E-04	-3.212E-04
1.60	-0.672	0.672	2.536	-2.536	-8.505E-05	8.505E-05	3.210E-04	-3.210E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (4/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	nal strain	Shutdov	vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.674	0.674	2.533	-2.533	-8.533E-05	8.533E-05	3.207E-04	-3.207E-04
1.62	-0.676	0.676	2.531	-2.531	-8.561E-05	8.561E-05	3.204E-04	-3.204E-04
1.63	-0.679	0.679	2.529	-2.529	-8.590E-05	8.590E-05	3.201E-04	-3.201E-04
1.64	-0.681	0.681	2.526	-2.526	-8.620E-05	8.620E-05	3.198E-04	-3.198E-04
1.65	-0.683	0.683	2.524	-2.524	-8.650E-05	8.650E-05	3.195E-04	-3.195E-04
1.66	-0.686	0.686	2.522	-2.522	-8.680E-05	8.680E-05	3.192E-04	-3.192E-04
1.67	-0.688	0.688	2.519	-2.519	-8.711E-05	8.711E-05	3.189E-04	-3.189E-04
1.68	-0.691	0.691	2.517	-2.517	-8.742E-05	8.742E-05	3.186E-04	-3.186E-04
1.69	-0.693	0.693	2.514	-2.514	-8.774E-05	8.774E-05	3.183E-04	-3.183E-04
1.70	-0.696	0.696	2.512	-2.512	-8.806E-05	8.806E-05	3.179E-04	-3.179E-04
1.71	-0.698	0.698	2.509	-2.509	-8.839E-05	8.839E-05	3.176E-04	-3.176E-04
1.72	-0.701	0.701	2.507	-2.507	-8.872E-05	8.872E-05	3.173E-04	-3.173E-04
1.73	-0.704	0.704	2.504	-2.504	-8.905E-05	8.905E-05	3.169E-04	-3.169E-04
1.74	-0.706	0.706	2.501	-2.501	-8.939E-05	8.939E-05	3.166E-04	-3.166E-04
1.75	-0.709	0.709	2.499	-2.499	-8.973E-05	8.973E-05	3.163E-04	-3.163E-04
1.76	-0.712	0.712	2.496	-2.496	-9.008E-05	9.008E-05	3.159E-04	-3.159E-04
1.77	-0.714	0.714	2.493	-2.493	-9.042E-05	9.042E-05	3.156E-04	-3.156E-04
1.78	-0.717	0.717	2.490	-2.490	-9.078E-05	9.078E-05	3.152E-04	-3.152E-04
1.79	-0.720	0.720	2.487	-2.487	-9.113E-05	9.113E-05	3.149E-04	-3.149E-04
1.80	-0.723	0.723	2.485	-2.485	-9.149E-05	9.149E-05	3.145E-04	-3.145E-04
1.81	-0.726	0.726	2.482	-2.482	-9.185E-05	9.185E-05	3.141E-04	-3.141E-04
1.82	-0.729	0.729	2.479	-2.479	-9.222E-05	9.222E-05	3.138E-04	-3.138E-04
1.83	-0.731	0.731	2.476	-2.476	-9.259E-05	9.259E-05	3.134E-04	-3.134E-04
1.84	-0.734	0.734	2.473	-2.473	-9.296E-05	9.296E-05	3.130E-04	-3.130E-04
1.85	-0.737	0.737	2.470	-2.470	-9.334E-05	9.334E-05	3.127E-04	-3.127E-04
1.86	-0.740	0.740	2.467	-2.467	-9.371E-05	9.371E-05	3.123E-04	-3.123E-04
1.87	-0.743	0.743	2.464	-2.464	-9.410E-05	9.410E-05	3.119E-04	-3.119E-04
1.88	-0.746	0.746	2.461	-2.461	-9.448E-05	9.448E-05	3.115E-04	-3.115E-04
1.89	-0.749	0.749	2.458	-2.458	-9.487E-05	9.487E-05	3.111E-04	-3.111E-04
1.90	-0.753	0.753	2.455	-2.455	-9.525E-05	9.525E-05	3.107E-04	-3.107E-04
1.91	-0.756	0.756	2.452	-2.452	-9.565E-05	9.565E-05	3.104E-04	-3.104E-04
1.92	-0.759	0.759	2.449	-2.449	-9.604E-05	9.604E-05	3.100E-04	-3.100E-04
1.93	-0.762	0.762	2.446	-2.446	-9.644E-05	9.644E-05	3.096E-04	-3.096E-04
1.94	-0.765	0.765	2.442	-2.442	-9.683E-05	9.683E-05	3.092E-04	-3.092E-04
1.95	-0.768	0.768	2.439	-2.439	-9.723E-05	9.723E-05	3.088E-04	-3.088E-04
1.96	-0.771	0.771	2.436	-2.436	-9.764E-05	9.764E-05	3.084E-04	-3.084E-04
1.97	-0.775	0.775	2.433	-2.433	-9.804E-05	9.804E-05	3.080E-04	-3.080E-04
1.98	-0.778	0.778	2.430	-2.430	-9.845E-05	9.845E-05	3.076E-04	-3.076E-04
1.99	-0.781	0.781	2.426	-2.426	-9.886E-05	9.886E-05	3.071E-04	-3.071E-04
2.00	-0.784	0.784	2.423	-2.423	-9.927E-05	9.927E-05	3.067E-04	-3.067E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (5/8)

Fluence	ence Operational stress (MPa)		Shutdown s	stress (MPa)	Operational strain Shutdown strain			vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.01	-0.787	0.787	2.420	-2.420	-9.968E-05	9.968E-05	3.063E-04	-3.063E-04
2.02	-0.791	0.791	2.417	-2.417	-1.001E-04	1.001E-04	3.059E-04	-3.059E-04
2.03	-0.794	0.794	2.413	-2.413	-1.005E-04	1.005E-04	3.055E-04	-3.055E-04
2.04	-0.797	0.797	2.410	-2.410	-1.009E-04	1.009E-04	3.051E-04	-3.051E-04
2.05	-0.801	0.801	2.407	-2.407	-1.014E-04	1.014E-04	3.046E-04	-3.046E-04
2.06	-0.804	0.804	2.403	-2.403	-1.018E-04	1.018E-04	3.042E-04	-3.042E-04
2.07	-0.807	0.807	2.400	-2.400	-1.022E-04	1.022E-04	3.038E-04	-3.038E-04
2.08	-0.811	0.811	2.397	-2.397	-1.026E-04	1.026E-04	3.034E-04	-3.034E-04
2.09	-0.814	0.814	2.393	-2.393	-1.030E-04	1.030E-04	3.030E-04	-3.030E-04
2.10	-0.817	0.817	2.390	-2.390	-1.035E-04	1.035E-04	3.025E-04	-3.025E-04
2.11	-0.821	0.821	2.387	-2.387	-1.039E-04	1.039E-04	3.021E-04	-3.021E-04
2.12	-0.824	0.824	2.383	-2.383	-1.043E-04	1.043E-04	3.017E-04	-3.017E-04
2.13	-0.828	0.828	2.380	-2.380	-1.048E-04	1.048E-04	3.012E-04	-3.012E-04
2.14	-0.831	0.831	2.376	-2.376	-1.052E-04	1.052E-04	3.008E-04	-3.008E-04
2.15	-0.834	0.834	2.373	-2.373	-1.056E-04	1.056E-04	3.004E-04	-3.004E-04
2.16	-0.838	0.838	2.370	-2.370	-1.060E-04	1.060E-04	3.000E-04	-3.000E-04
2.17	-0.841	0.841	2.366	-2.366	-1.065E-04	1.065E-04	2.995E-04	-2.995E-04
2.18	-0.845	0.845	2.363	-2.363	-1.069E-04	1.069E-04	2.991E-04	-2.991E-04
2.19	-0.848	0.848	2.359	-2.359	-1.074E-04	1.074E-04	2.986E-04	-2.986E-04
2.20	-0.852	0.852	2.356	-2.356	-1.078E-04	1.078E-04	2.982E-04	-2.982E-04
2.21	-0.855	0.855	2.352	-2.352	-1.082E-04	1.082E-04	2.978E-04	-2.978E-04
2.22	-0.858	0.858	2.349	-2.349	-1.087E-04	1.087E-04	2.973E-04	-2.973E-04
2.23	-0.862	0.862	2.346	-2.346	-1.091E-04	1.091E-04	2.969E-04	-2.969E-04
2.24	-0.865	0.865	2.342	-2.342	-1.095E-04	1.095E-04	2.965E-04	-2.965E-04
2.25	-0.869	0.869	2.339	-2.339	-1.100E-04	1.100E-04	2.960E-04	-2.960E-04
2.26	-0.872	0.872	2.335	-2.335	-1.104E-04	1.104E-04	2.956E-04	-2.956E-04
2.27	-0.876	0.876	2.332	-2.332	-1.108E-04	1.108E-04	2.952E-04	-2.952E-04
2.28	-0.879	0.879	2.328	-2.328	-1.113E-04	1.113E-04	2.947E-04	-2.947E-04
2.29	-0.883	0.883	2.325	-2.325	-1.117E-04	1.117E-04	2.943E-04	-2.943E-04
2.30	-0.886	0.886	2.321	-2.321	-1.122E-04	1.122E-04	2.938E-04	-2.938E-04
2.31	-0.890	0.890	2.318	-2.318	-1.126E-04	1.126E-04	2.934E-04	-2.934E-04
2.32	-0.893	0.893	2.314	-2.314	-1.130E-04	1.130E-04	2.930E-04	-2.930E-04
2.33	-0.897	0.897	2.311	-2.311	-1.135E-04	1.135E-04	2.925E-04	-2.925E-04
2.34	-0.900	0.900	2.307	-2.307	-1.139E-04	1.139E-04	2.921E-04	-2.921E-04
2.35	-0.903	0.903	2.304	-2.304	-1.144E-04	1.144E-04	2.916E-04	-2.916E-04
2.36	-0.907	0.907	2.300	-2.300	-1.148E-04	1.148E-04	2.912E-04	-2.912E-04
2.37	-0.910	0.910	2.297	-2.297	-1.152E-04	1.152E-04	2.908E-04	-2.908E-04
2.38	-0.914	0.914	2.294	-2.294	-1.157E-04	1.157E-04	2.903E-04	-2.903E-04
2.39	-0.917	0.917	2.290	-2.290	-1.161E-04	1.161E-04	2.899E-04	-2.899E-04
2.40	-0.921	0.921	2.287	-2.287	-1.166E-04	1.166E-04	2.894E-04	-2.894E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (6/8)

Fluence	Fluence Operational stress (MPa)		Shutdown s	stress (MPa)	Operatio	onal strain	Shutdov	vn strain
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.924	0.924	2.283	-2.283	-1.170E-04	1.170E-04	2.890E-04	-2.890E-04
2.42	-0.928	0.928	2.280	-2.280	-1.174E-04	1.174E-04	2.886E-04	-2.886E-04
2.43	-0.931	0.931	2.276	-2.276	-1.179E-04	1.179E-04	2.881E-04	-2.881E-04
2.44	-0.935	0.935	2.273	-2.273	-1.183E-04	1.183E-04	2.877E-04	-2.877E-04
2.45	-0.938	0.938	2.269	-2.269	-1.187E-04	1.187E-04	2.873E-04	-2.873E-04
2.46	-0.941	0.941	2.266	-2.266	-1.192E-04	1.192E-04	2.868E-04	-2.868E-04
2.47	-0.945	0.945	2.263	-2.263	-1.196E-04	1.196E-04	2.864E-04	-2.864E-04
2.48	-0.948	0.948	2.259	-2.259	-1.200E-04	1.200E-04	2.860E-04	-2.860E-04
2.49	-0.952	0.952	2.256	-2.256	-1.205E-04	1.205E-04	2.855E-04	-2.855E-04
2.50	-0.955	0.955	2.252	-2.252	-1.209E-04	1.209E-04	2.851E-04	-2.851E-04
2.51	-0.959	0.959	2.249	-2.249	-1.213E-04	1.213E-04	2.847E-04	-2.847E-04
2.52	-0.962	0.962	2.245	-2.245	-1.218E-04	1.218E-04	2.842E-04	-2.842E-04
2.53	-0.965	0.965	2.242	-2.242	-1.222E-04	1.222E-04	2.838E-04	-2.838E-04
2.54	-0.969	0.969	2.239	-2.239	-1.226E-04	1.226E-04	2.834E-04	-2.834E-04
2.55	-0.972	0.972	2.235	-2.235	-1.231E-04	1.231E-04	2.829E-04	-2.829E-04
2.56	-0.975	0.975	2.232	-2.232	-1.235E-04	1.235E-04	2.825E-04	-2.825E-04
2.57	-0.979	0.979	2.229	-2.229	-1.239E-04	1.239E-04	2.821E-04	-2.821E-04
2.58	-0.982	0.982	2.225	-2.225	-1.243E-04	1.243E-04	2.817E-04	-2.817E-04
2.59	-0.986	0.986	2.222	-2.222	-1.248E-04	1.248E-04	2.812E-04	-2.812E-04
2.60	-0.989	0.989	2.219	-2.219	-1.252E-04	1.252E-04	2.808E-04	-2.808E-04
2.61	-0.992	0.992	2.215	-2.215	-1.256E-04	1.256E-04	2.804E-04	-2.804E-04
2.62	-0.996	0.996	2.212	-2.212	-1.260E-04	1.260E-04	2.800E-04	-2.800E-04
2.63	-0.999	0.999	2.209	-2.209	-1.264E-04	1.264E-04	2.796E-04	-2.796E-04
2.64	-1.002	1.002	2.205	-2.205	-1.269E-04	1.269E-04	2.791E-04	-2.791E-04
2.65	-1.005	1.005	2.202	-2.202	-1.273E-04	1.273E-04	2.787E-04	-2.787E-04
2.66	-1.009	1.009	2.199	-2.199	-1.277E-04	1.277E-04	2.783E-04	-2.783E-04
2.67	-1.012	1.012	2.195	-2.195	-1.281E-04	1.281E-04	2.779E-04	-2.779E-04
2.68	-1.015	1.015	2.192	-2.192	-1.285E-04	1.285E-04	2.775E-04	-2.775E-04
2.69	-1.018	1.018	2.189	-2.189	-1.289E-04	1.289E-04	2.771E-04	-2.771E-04
2.70	-1.022	1.022	2.186	-2.186	-1.293E-04	1.293E-04	2.767E-04	-2.767E-04
2.71	-1.025	1.025	2.182	-2.182	-1.297E-04	1.297E-04	2.763E-04	-2.763E-04
2.72	-1.028	1.028	2.179	-2.179	-1.301E-04	1.301E-04	2.759E-04	-2.759E-04
2.73	-1.031	1.031	2.176	-2.176	-1.305E-04	1.305E-04	2.755E-04	-2.755E-04
2.74	-1.035	1.035	2.173	-2.173	-1.309E-04	1.309E-04	2.751E-04	-2.751E-04
2.75	-1.038	1.038	2.170	-2.170	-1.314E-04	1.314E-04	2.746E-04	-2.746E-04
2.76	-1.041	1.041	2.167	-2.167	-1.317E-04	1.317E-04	2.743E-04	-2.743E-04
2.77	-1.044	1.044	2.163	-2.163	-1.321E-04	1.321E-04	2.739E-04	-2.739E-04
2.78	-1.047	1.047	2.160	-2.160	-1.325E-04	1.325E-04	2.735E-04	-2.735E-04
2.79	-1.050	1.050	2.157	-2.157	-1.329E-04	1.329E-04	2.731E-04	-2.731E-04
2.80	-1.053	1.053	2.154	-2.154	-1.333E-04	1.333E-04	2.727E-04	-2.727E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (7/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	onal strain	Shutdov	wn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.81	-1.056	1.056	2.151	-2.151	-1.337E-04	1.337E-04	2.723E-04	-2.723E-04
2.82	-1.059	1.059	2.148	-2.148	-1.341E-04	1.341E-04	2.719E-04	-2.719E-04
2.83	-1.063	1.063	2.145	-2.145	-1.345E-04	1.345E-04	2.715E-04	-2.715E-04
2.84	-1.066	1.066	2.142	-2.142	-1.349E-04	1.349E-04	2.711E-04	-2.711E-04
2.85	-1.069	1.069	2.139	-2.139	-1.353E-04	1.353E-04	2.707E-04	-2.707E-04
2.86	-1.072	1.072	2.136	-2.136	-1.356E-04	1.356E-04	2.704E-04	-2.704E-04
2.87	-1.075	1.075	2.133	-2.133	-1.360E-04	1.360E-04	2.700E-04	-2.700E-04
2.88	-1.078	1.078	2.130	-2.130	-1.364E-04	1.364E-04	2.696E-04	-2.696E-04
2.89	-1.081	1.081	2.127	-2.127	-1.368E-04	1.368E-04	2.692E-04	-2.692E-04
2.90	-1.084	1.084	2.124	-2.124	-1.372E-04	1.372E-04	2.688E-04	-2.688E-04
2.91	-1.086	1.086	2.121	-2.121	-1.375E-04	1.375E-04	2.685E-04	-2.685E-04
2.92	-1.089	1.089	2.118	-2.118	-1.379E-04	1.379E-04	2.681E-04	-2.681E-04
2.93	-1.092	1.092	2.115	-2.115	-1.383E-04	1.383E-04	2.677E-04	-2.677E-04
2.94	-1.095	1.095	2.112	-2.112	-1.386E-04	1.386E-04	2.674E-04	-2.674E-04
2.95	-1.098	1.098	2.109	-2.109	-1.390E-04	1.390E-04	2.670E-04	-2.670E-04
2.96	-1.101	1.101	2.107	-2.107	-1.393E-04	1.393E-04	2.667E-04	-2.667E-04
2.97	-1.104	1.104	2.104	-2.104	-1.397E-04	1.397E-04	2.663E-04	-2.663E-04
2.98	-1.107	1.107	2.101	-2.101	-1.401E-04	1.401E-04	2.659E-04	-2.659E-04
2.99	-1.109	1.109	2.098	-2.098	-1.404E-04	1.404E-04	2.656E-04	-2.656E-04
3.00	-1.112	1.112	2.095	-2.095	-1.408E-04	1.408E-04	2.652E-04	-2.652E-04

Appendix 5 Analysis results of irradiation dimensional change effect case (8/8)

Fluence	Operational	stress (MPa)	Shutdown s	tress (MPa)	Operatio	nal strain Shutdown strain		
(×10 ²⁵ n/m ²)	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.00	-4.123	4.123	0.000	0.000	-4.931E-04	5.092E-04	0.000E+00	0.000E+00
0.01	-3.017	3.017	1.407	-1.407	-3.377E-04	3.401E-04	1.659E-04	-1.618E-04
0.02	-2.526	2.526	2.033	-2.033	-2.754E-04	2.745E-04	2.334E-04	-2.254E-04
0.03	-2.357	2.357	2.317	-2.317	-2.519E-04	2.492E-04	2.608E-04	-2.499E-04
0.04	-2.294	2.294	2.481	-2.481	-2.412E-04	2.372E-04	2.747E-04	-2.617E-04
0.05	-2.264	2.264	2.604	-2.604	-2.346E-04	2.296E-04	2.842E-04	-2.694E-04
0.06	-2.242	2.242	2.709	-2.709	-2.295E-04	2.236E-04	2.921E-04	-2.756E-04
0.07	-2.223	2.223	2.807	-2.807	-2.250E-04	2.183E-04	2.992E-04	-2.812E-04
0.08	-2.203	2.203	2.899	-2.899	-2.208E-04	2.134E-04	3.059E-04	-2.864E-04
0.09	-2.184	2.184	2.988	-2.988	-2.167E-04	2.088E-04	3.123E-04	-2.915E-04
0.10	-2.163	2.163	3.074	-3.074	-2.128E-04	2.045E-04	3.185E-04	-2.963E-04
0.11	-2.143	2.143	3.158	-3.158	-2.091E-04	2.003E-04	3.245E-04	-3.010E-04
0.12	-2.121	2.121	3.239	-3.239	-2.054E-04	1.963E-04	3.302E-04	-3.056E-04
0.13	-2.100	2.100	3.317	-3.317	-2.019E-04	1.924E-04	3.358E-04	-3.100E-04
0.14	-2.078	2.078	3.394	-3.394	-1.984E-04	1.887E-04	3.413E-04	-3.143E-04
0.15	-2.056	2.056	3.470	-3.470	-1.950E-04	1.851E-04	3.466E-04	-3.185E-04
0.16	-2.034	2.034	3.543	-3.543	-1.918E-04	1.816E-04	3.517E-04	-3.226E-04
0.17	-2.012	2.012	3.615	-3.615	-1.886E-04	1.783E-04	3.567E-04	-3.266E-04
0.18	-1.990	1.990	3.685	-3.685	-1.854E-04	1.750E-04	3.616E-04	-3.305E-04
0.19	-1.968	1.968	3.754	-3.754	-1.824E-04	1.718E-04	3.664E-04	-3.343E-04
0.20	-1.945	1.945	3.822	-3.822	-1.794E-04	1.687E-04	3.711E-04	-3.380E-04
0.21	-1.923	1.923	3.888	-3.888	-1.765E-04	1.657E-04	3.757E-04	-3.417E-04
0.22	-1.901	1.901	3.953	-3.953	-1.736E-04	1.628E-04	3.801E-04	-3.452E-04
0.23	-1.879	1.879	4.016	-4.016	-1.708E-04	1.600E-04	3.845E-04	-3.487E-04
0.24	-1.857	1.857	4.079	-4.079	-1.681E-04	1.572E-04	3.888E-04	-3.521E-04
0.25	-1.835	1.835	4.140	-4.140	-1.654E-04	1.545E-04	3.929E-04	-3.554E-04
0.26	-1.814	1.814	4.200	-4.200	-1.628E-04	1.518E-04	3.970E-04	-3.587E-04
0.27	-1.792	1.792	4.259	-4.259	-1.602E-04	1.493E-04	4.010E-04	-3.619E-04
0.28	-1.771	1.771	4.317	-4.317	-1.577E-04	1.468E-04	4.049E-04	-3.650E-04
0.29	-1.749	1.749	4.374	-4.374	-1.552E-04	1.443E-04	4.087E-04	-3.680E-04
0.30	-1.728	1.728	4.430	-4.430	-1.528E-04	1.419E-04	4.125E-04	-3.710E-04
0.31	-1.708	1.708	4.485	-4.485	-1.504E-04	1.396E-04	4.162E-04	-3.740E-04
0.32	-1.687	1.687	4.539	-4.539	-1.481E-04	1.373E-04	4.197E-04	-3.768E-04
0.33	-1.666	1.666	4.592	-4.592	-1.458E-04	1.351E-04	4.233E-04	-3.796E-04
0.34	-1.646	1.646	4.644	-4.644	-1.436E-04	1.329E-04	4.267E-04	-3.824E-04
0.35	-1.626	1.626	4.695	-4.695	-1.414E-04	1.308E-04	4.301E-04	-3.851E-04
0.36	-1.606	1.606	4.745	-4.745	-1.393E-04	1.287E-04	4.334E-04	-3.877E-04
0.37	-1.587	1.587	4.794	-4.794	-1.372E-04	1.266E-04	4.366E-04	-3.903E-04
0.38	-1.567	1.567	4.843	-4.843	-1.352E-04	1.247E-04	4.398E-04	-3.928E-04
0.39	-1.548	1.548	4.890	-4.890	-1.331E-04	1.227E-04	4.429E-04	-3.953E-04
0.40	-1.530	1.530	4.937	-4.937	-1.312E-04	1.208E-04	4.459E-04	-3.977E-04

Appendix 6 Analysis results of considered all physical properties change effect case (1/8)

Fluence	Operational stress (MPa)		Shutdown s	tress (MPa)	Operational strain Shutdown strain			vn strain
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.41	-1.511	1.511	4.983	-4.983	-1.292E-04	1.189E-04	4.489E-04	-4.001E-04
0.42	-1.493	1.493	5.028	-5.028	-1.274E-04	1.171E-04	4.518E-04	-4.024E-04
0.43	-1.474	1.474	5.072	-5.072	-1.255E-04	1.153E-04	4.546E-04	-4.047E-04
0.44	-1.457	1.457	5.115	-5.115	-1.237E-04	1.136E-04	4.574E-04	-4.069E-04
0.45	-1.439	1.439	5.158	-5.158	-1.219E-04	1.119E-04	4.601E-04	-4.091E-04
0.46	-1.422	1.422	5.200	-5.200	-1.202E-04	1.102E-04	4.628E-04	-4.112E-04
0.47	-1.405	1.405	5.241	-5.241	-1.184E-04	1.086E-04	4.654E-04	-4.133E-04
0.48	-1.388	1.388	5.281	-5.281	-1.168E-04	1.070E-04	4.680E-04	-4.153E-04
0.49	-1.371	1.371	5.320	-5.320	-1.151E-04	1.055E-04	4.705E-04	-4.173E-04
0.50	-1.355	1.355	5.359	-5.359	-1.135E-04	1.039E-04	4.729E-04	-4.193E-04
0.51	-1.339	1.339	5.397	-5.397	-1.120E-04	1.024E-04	4.753E-04	-4.212E-04
0.52	-1.323	1.323	5.435	-5.435	-1.104E-04	1.010E-04	4.777E-04	-4.231E-04
0.53	-1.307	1.307	5.471	-5.471	-1.089E-04	9.955E-05	4.800E-04	-4.249E-04
0.54	-1.292	1.292	5.507	-5.507	-1.074E-04	9.816E-05	4.822E-04	-4.267E-04
0.55	-1.277	1.277	5.543	-5.543	-1.060E-04	9.679E-05	4.844E-04	-4.285E-04
0.56	-1.262	1.262	5.577	-5.577	-1.046E-04	9.546E-05	4.866E-04	-4.302E-04
0.57	-1.248	1.248	5.611	-5.611	-1.032E-04	9.415E-05	4.887E-04	-4.319E-04
0.58	-1.233	1.233	5.645	-5.645	-1.018E-04	9.287E-05	4.907E-04	-4.335E-04
0.59	-1.219	1.219	5.677	-5.677	-1.005E-04	9.162E-05	4.927E-04	-4.351E-04
0.60	-1.205	1.205	5.709	-5.709	-9.918E-05	9.040E-05	4.947E-04	-4.367E-04
0.61	-1.192	1.192	5.741	-5.741	-9.790E-05	8.921E-05	4.966E-04	-4.383E-04
0.62	-1.178	1.178	5.772	-5.772	-9.665E-05	8.804E-05	4.985E-04	-4.398E-04
0.63	-1.165	1.165	5.802	-5.802	-9.543E-05	8.690E-05	5.003E-04	-4.412E-04
0.64	-1.153	1.153	5.831	-5.831	-9.424E-05	8.578E-05	5.021E-04	-4.427E-04
0.65	-1.140	1.140	5.861	-5.861	-9.307E-05	8.469E-05	5.039E-04	-4.441E-04
0.66	-1.128	1.128	5.889	-5.889	-9.193E-05	8.363E-05	5.056E-04	-4.454E-04
0.67	-1.115	1.115	5.917	-5.917	-9.081E-05	8.258E-05	5.073E-04	-4.468E-04
0.68	-1.104	1.104	5.944	-5.944	-8.972E-05	8.157E-05	5.089E-04	-4.481E-04
0.69	-1.092	1.092	5.971	-5.971	-8.865E-05	8.057E-05	5.105E-04	-4.494E-04
0.70	-1.080	1.080	5.997	-5.997	-8.760E-05	7.960E-05	5.121E-04	-4.506E-04
0.71	-1.069	1.069	6.023	-6.023	-8.658E-05	7.865E-05	5.136E-04	-4.518E-04
0.72	-1.058	1.058	6.048	-6.048	-8.558E-05	7.772E-05	5.151E-04	-4.530E-04
0.73	-1.048	1.048	6.073	-6.073	-8.461E-05	7.682E-05	5.165E-04	-4.542E-04
0.74	-1.037	1.037	6.097	-6.097	-8.365E-05	7.593E-05	5.179E-04	-4.553E-04
0.75	-1.027	1.027	6.121	-6.121	-8.272E-05	7.507E-05	5.193E-04	-4.564E-04
0.76	-1.017	1.017	6.144	-6.144	-8.181E-05	7.422E-05	5.207E-04	-4.575E-04
0.77	-1.007	1.007	6.166	-6.166	-8.092E-05	7.340E-05	5.220E-04	-4.585E-04
0.78	-0.997	0.997	6.188	-6.188	-8.006E-05	7.260E-05	5.233E-04	-4.595E-04
0.79	-0.988	0.988	6.210	-6.210	-7.921E-05	7.181E-05	5.245E-04	-4.605E-04
0.80	-0.978	0.978	6.231	-6.231	-7.838E-05	7.105E-05	5.257E-04	-4.615E-04

Appendix 6 Analysis results of considered all physical properties change effect case (2/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
0.81	-0.969	0.969	6.252	-6.252	-7.758E-05	7.030E-05	5.269E-04	-4.624E-04
0.82	-0.961	0.961	6.272	-6.272	-7.679E-05	6.958E-05	5.281E-04	-4.634E-04
0.83	-0.952	0.952	6.292	-6.292	-7.602E-05	6.887E-05	5.292E-04	-4.643E-04
0.84	-0.944	0.944	6.312	-6.312	-7.527E-05	6.818E-05	5.303E-04	-4.651E-04
0.85	-0.935	0.935	6.331	-6.331	-7.454E-05	6.750E-05	5.313E-04	-4.660E-04
0.86	-0.927	0.927	6.349	-6.349	-7.383E-05	6.685E-05	5.324E-04	-4.668E-04
0.87	-0.919	0.919	6.367	-6.367	-7.313E-05	6.621E-05	5.334E-04	-4.676E-04
0.88	-0.912	0.912	6.385	-6.385	-7.246E-05	6.558E-05	5.344E-04	-4.684E-04
0.89	-0.904	0.904	6.402	-6.402	-7.180E-05	6.498E-05	5.353E-04	-4.691E-04
0.90	-0.897	0.897	6.419	-6.419	-7.116E-05	6.439E-05	5.362E-04	-4.699E-04
0.91	-0.890	0.890	6.436	-6.436	-7.053E-05	6.381E-05	5.371E-04	-4.706E-04
0.92	-0.883	0.883	6.452	-6.452	-6.993E-05	6.325E-05	5.380E-04	-4.713E-04
0.93	-0.876	0.876	6.467	-6.467	-6.933E-05	6.271E-05	5.388E-04	-4.719E-04
0.94	-0.870	0.870	6.483	-6.483	-6.876E-05	6.218E-05	5.397E-04	-4.726E-04
0.95	-0.864	0.864	6.498	-6.498	-6.820E-05	6.166E-05	5.405E-04	-4.732E-04
0.96	-0.857	0.857	6.512	-6.512	-6.766E-05	6.116E-05	5.412E-04	-4.738E-04
0.97	-0.851	0.851	6.527	-6.527	-6.713E-05	6.068E-05	5.420E-04	-4.744E-04
0.98	-0.845	0.845	6.540	-6.540	-6.661E-05	6.021E-05	5.427E-04	-4.750E-04
0.99	-0.840	0.840	6.554	-6.554	-6.612E-05	5.975E-05	5.434E-04	-4.756E-04
1.00	-0.834	0.834	6.567	-6.567	-6.563E-05	5.930E-05	5.441E-04	-4.761E-04
1.01	-0.829	0.829	6.580	-6.580	-6.516E-05	5.887E-05	5.447E-04	-4.766E-04
1.02	-0.824	0.824	6.592	-6.592	-6.471E-05	5.845E-05	5.454E-04	-4.771E-04
1.03	-0.819	0.819	6.605	-6.605	-6.427E-05	5.805E-05	5.460E-04	-4.776E-04
1.04	-0.814	0.814	6.616	-6.616	-6.384E-05	5.766E-05	5.465E-04	-4.781E-04
1.05	-0.809	0.809	6.628	-6.628	-6.342E-05	5.728E-05	5.471E-04	-4.785E-04
1.06	-0.805	0.805	6.639	-6.639	-6.302E-05	5.691E-05	5.477E-04	-4.789E-04
1.07	-0.800	0.800	6.650	-6.650	-6.263E-05	5.655E-05	5.482E-04	-4.793E-04
1.08	-0.796	0.796	6.661	-6.661	-6.226E-05	5.621E-05	5.487E-04	-4.797E-04
1.09	-0.792	0.792	6.671	-6.671	-6.190E-05	5.588E-05	5.492E-04	-4.801E-04
1.10	-0.788	0.788	6.681	-6.681	-6.155E-05	5.556E-05	5.497E-04	-4.805E-04
1.11	-0.784	0.784	6.691	-6.691	-6.121E-05	5.525E-05	5.501E-04	-4.808E-04
1.12	-0.780	0.780	6.700	-6.700	-6.088E-05	5.495E-05	5.505E-04	-4.812E-04
1.13	-0.777	0.777	6.709	-6.709	-6.057E-05	5.466E-05	5.509E-04	-4.815E-04
1.14	-0.773	0.773	6.718	-6.718	-6.027E-05	5.438E-05	5.513E-04	-4.818E-04
1.15	-0.770	0.770	6.727	-6.727	-5.998E-05	5.412E-05	5.517E-04	-4.821E-04
1.16	-0.767	0.767	6.735	-6.735	-5.970E-05	5.386E-05	5.521E-04	-4.824E-04
1.17	-0.764	0.764	6.743	-6.743	-5.943E-05	5.362E-05	5.524E-04	-4.826E-04
1.18	-0.761	0.761	6.751	-6.751	-5.917E-05	5.338E-05	5.527E-04	-4.829E-04
1.19	-0.758	0.758	6.759	-6.759	-5.893E-05	5.315E-05	5.531E-04	-4.831E-04
1.20	-0.756	0.756	6.766	-6.766	-5.869E-05	5.294E-05	5.533E-04	-4.834E-04

Appendix 6 Analysis results of considered all physical properties change effect case (3/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.21	-0.753	0.753	6.773	-6.773	-5.846E-05	5.273E-05	5.536E-04	-4.836E-04
1.22	-0.751	0.751	6.780	-6.780	-5.825E-05	5.253E-05	5.539E-04	-4.838E-04
1.23	-0.749	0.749	6.786	-6.786	-5.804E-05	5.234E-05	5.541E-04	-4.839E-04
1.24	-0.746	0.746	6.793	-6.793	-5.785E-05	5.216E-05	5.544E-04	-4.841E-04
1.25	-0.744	0.744	6.799	-6.799	-5.766E-05	5.199E-05	5.546E-04	-4.843E-04
1.26	-0.743	0.743	6.805	-6.805	-5.748E-05	5.183E-05	5.548E-04	-4.844E-04
1.27	-0.741	0.741	6.811	-6.811	-5.732E-05	5.168E-05	5.550E-04	-4.846E-04
1.28	-0.739	0.739	6.816	-6.816	-5.716E-05	5.153E-05	5.551E-04	-4.847E-04
1.29	-0.738	0.738	6.821	-6.821	-5.701E-05	5.139E-05	5.553E-04	-4.848E-04
1.30	-0.736	0.736	6.826	-6.826	-5.687E-05	5.127E-05	5.554E-04	-4.849E-04
1.31	-0.735	0.735	6.831	-6.831	-5.674E-05	5.114E-05	5.556E-04	-4.850E-04
1.32	-0.733	0.733	6.836	-6.836	-5.662E-05	5.103E-05	5.557E-04	-4.851E-04
1.33	-0.732	0.732	6.840	-6.840	-5.650E-05	5.093E-05	5.558E-04	-4.852E-04
1.34	-0.731	0.731	6.844	-6.844	-5.640E-05	5.083E-05	5.559E-04	-4.852E-04
1.35	-0.730	0.730	6.849	-6.849	-5.630E-05	5.074E-05	5.560E-04	-4.853E-04
1.36	-0.729	0.729	6.852	-6.852	-5.621E-05	5.066E-05	5.561E-04	-4.853E-04
1.37	-0.729	0.729	6.856	-6.856	-5.613E-05	5.058E-05	5.561E-04	-4.853E-04
1.38	-0.728	0.728	6.860	-6.860	-5.605E-05	5.051E-05	5.562E-04	-4.854E-04
1.39	-0.728	0.728	6.863	-6.863	-5.598E-05	5.045E-05	5.562E-04	-4.854E-04
1.40	-0.727	0.727	6.866	-6.866	-5.593E-05	5.039E-05	5.562E-04	-4.854E-04
1.41	-0.727	0.727	6.869	-6.869	-5.587E-05	5.034E-05	5.562E-04	-4.854E-04
1.42	-0.726	0.726	6.872	-6.872	-5.583E-05	5.030E-05	5.562E-04	-4.854E-04
1.43	-0.726	0.726	6.875	-6.875	-5.579E-05	5.027E-05	5.562E-04	-4.853E-04
1.44	-0.726	0.726	6.877	-6.877	-5.576E-05	5.024E-05	5.562E-04	-4.853E-04
1.45	-0.726	0.726	6.879	-6.879	-5.574E-05	5.021E-05	5.562E-04	-4.853E-04
1.46	-0.726	0.726	6.881	-6.881	-5.572E-05	5.020E-05	5.561E-04	-4.852E-04
1.47	-0.726	0.726	6.883	-6.883	-5.571E-05	5.019E-05	5.561E-04	-4.852E-04
1.48	-0.726	0.726	6.885	-6.885	-5.570E-05	5.018E-05	5.560E-04	-4.851E-04
1.49	-0.727	0.727	6.887	-6.887	-5.571E-05	5.018E-05	5.560E-04	-4.850E-04
1.50	-0.727	0.727	6.889	-6.889	-5.571E-05	5.019E-05	5.559E-04	-4.849E-04
1.51	-0.728	0.728	6.890	-6.890	-5.573E-05	5.020E-05	5.558E-04	-4.849E-04
1.52	-0.728	0.728	6.891	-6.891	-5.575E-05	5.022E-05	5.557E-04	-4.848E-04
1.53	-0.729	0.729	6.893	-6.893	-5.577E-05	5.024E-05	5.556E-04	-4.847E-04
1.54	-0.729	0.729	6.894	-6.894	-5.581E-05	5.027E-05	5.555E-04	-4.846E-04
1.55	-0.730	0.730	6.894	-6.894	-5.584E-05	5.030E-05	5.554E-04	-4.844E-04
1.56	-0.731	0.731	6.895	-6.895	-5.589E-05	5.034E-05	5.553E-04	-4.843E-04
1.57	-0.732	0.732	6.896	-6.896	-5.594E-05	5.038E-05	5.551E-04	-4.842E-04
1.58	-0.733	0.733	6.896	-6.896	-5.599E-05	5.043E-05	5.550E-04	-4.840E-04
1.59	-0.734	0.734	6.897	-6.897	-5.605E-05	5.048E-05	5.548E-04	-4.839E-04
1.60	-0.735	0.735	6.897	-6.897	-5.611E-05	5.053E-05	5.547E-04	-4.838E-04

Appendix 6 Analysis results of considered all physical properties change effect case (4/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
1.61	-0.736	0.736	6.897	-6.897	-5.618E-05	5.059E-05	5.545E-04	-4.836E-04
1.62	-0.737	0.737	6.897	-6.897	-5.625E-05	5.066E-05	5.543E-04	-4.834E-04
1.63	-0.738	0.738	6.897	-6.897	-5.633E-05	5.073E-05	5.541E-04	-4.833E-04
1.64	-0.740	0.740	6.897	-6.897	-5.642E-05	5.080E-05	5.540E-04	-4.831E-04
1.65	-0.741	0.741	6.897	-6.897	-5.650E-05	5.088E-05	5.538E-04	-4.829E-04
1.66	-0.743	0.743	6.896	-6.896	-5.660E-05	5.097E-05	5.536E-04	-4.827E-04
1.67	-0.744	0.744	6.896	-6.896	-5.669E-05	5.105E-05	5.534E-04	-4.826E-04
1.68	-0.746	0.746	6.895	-6.895	-5.680E-05	5.114E-05	5.531E-04	-4.824E-04
1.69	-0.747	0.747	6.894	-6.894	-5.690E-05	5.124E-05	5.529E-04	-4.822E-04
1.70	-0.749	0.749	6.894	-6.894	-5.701E-05	5.133E-05	5.527E-04	-4.820E-04
1.71	-0.751	0.751	6.893	-6.893	-5.712E-05	5.144E-05	5.525E-04	-4.817E-04
1.72	-0.752	0.752	6.892	-6.892	-5.724E-05	5.154E-05	5.522E-04	-4.815E-04
1.73	-0.754	0.754	6.891	-6.891	-5.736E-05	5.165E-05	5.520E-04	-4.813E-04
1.74	-0.756	0.756	6.890	-6.890	-5.749E-05	5.176E-05	5.517E-04	-4.811E-04
1.75	-0.758	0.758	6.888	-6.888	-5.762E-05	5.188E-05	5.515E-04	-4.809E-04
1.76	-0.760	0.760	6.887	-6.887	-5.775E-05	5.199E-05	5.512E-04	-4.806E-04
1.77	-0.762	0.762	6.886	-6.886	-5.788E-05	5.212E-05	5.509E-04	-4.804E-04
1.78	-0.764	0.764	6.884	-6.884	-5.802E-05	5.224E-05	5.507E-04	-4.802E-04
1.79	-0.766	0.766	6.882	-6.882	-5.817E-05	5.237E-05	5.504E-04	-4.799E-04
1.80	-0.768	0.768	6.881	-6.881	-5.831E-05	5.250E-05	5.501E-04	-4.797E-04
1.81	-0.770	0.770	6.879	-6.879	-5.846E-05	5.263E-05	5.498E-04	-4.794E-04
1.82	-0.772	0.772	6.877	-6.877	-5.861E-05	5.277E-05	5.496E-04	-4.791E-04
1.83	-0.775	0.775	6.875	-6.875	-5.877E-05	5.291E-05	5.493E-04	-4.789E-04
1.84	-0.777	0.777	6.874	-6.874	-5.893E-05	5.305E-05	5.490E-04	-4.786E-04
1.85	-0.779	0.779	6.872	-6.872	-5.909E-05	5.319E-05	5.487E-04	-4.784E-04
1.86	-0.782	0.782	6.869	-6.869	-5.925E-05	5.334E-05	5.484E-04	-4.781E-04
1.87	-0.784	0.784	6.867	-6.867	-5.942E-05	5.349E-05	5.480E-04	-4.778E-04
1.88	-0.787	0.787	6.865	-6.865	-5.959E-05	5.364E-05	5.477E-04	-4.775E-04
1.89	-0.789	0.789	6.863	-6.863	-5.976E-05	5.380E-05	5.474E-04	-4.772E-04
1.90	-0.792	0.792	6.861	-6.861	-5.993E-05	5.395E-05	5.471E-04	-4.770E-04
1.91	-0.794	0.794	6.858	-6.858	-6.011E-05	5.411E-05	5.468E-04	-4.767E-04
1.92	-0.797	0.797	6.856	-6.856	-6.029E-05	5.427E-05	5.464E-04	-4.764E-04
1.93	-0.799	0.799	6.853	-6.853	-6.047E-05	5.443E-05	5.461E-04	-4.761E-04
1.94	-0.802	0.802	6.851	-6.851	-6.065E-05	5.460E-05	5.458E-04	-4.758E-04
1.95	-0.804	0.804	6.848	-6.848	-6.084E-05	5.477E-05	5.454E-04	-4.755E-04
1.96	-0.807	0.807	6.845	-6.845	-6.103E-05	5.493E-05	5.451E-04	-4.752E-04
1.97	-0.810	0.810	6.843	-6.843	-6.122E-05	5.510E-05	5.447E-04	-4.749E-04
1.98	-0.813	0.813	6.840	-6.840	-6.141E-05	5.528E-05	5.444E-04	-4.746E-04
1.99	-0.815	0.815	6.837	-6.837	-6.160E-05	5.545E-05	5.440E-04	-4.743E-04
2.00	-0.818	0.818	6.834	-6.834	-6.180E-05	5.563E-05	5.437E-04	-4.739E-04

Appendix 6 Analysis results of considered all physical properties change effect case (5/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.01	-0.821	0.821	6.831	-6.831	-6.200E-05	5.580E-05	5.433E-04	-4.736E-04
2.02	-0.824	0.824	6.828	-6.828	-6.219E-05	5.598E-05	5.430E-04	-4.733E-04
2.03	-0.827	0.827	6.826	-6.826	-6.239E-05	5.616E-05	5.426E-04	-4.730E-04
2.04	-0.829	0.829	6.822	-6.822	-6.260E-05	5.634E-05	5.422E-04	-4.727E-04
2.05	-0.832	0.832	6.819	-6.819	-6.280E-05	5.653E-05	5.419E-04	-4.723E-04
2.06	-0.835	0.835	6.816	-6.816	-6.301E-05	5.671E-05	5.415E-04	-4.720E-04
2.07	-0.838	0.838	6.813	-6.813	-6.321E-05	5.690E-05	5.411E-04	-4.717E-04
2.08	-0.841	0.841	6.810	-6.810	-6.342E-05	5.708E-05	5.408E-04	-4.714E-04
2.09	-0.844	0.844	6.807	-6.807	-6.363E-05	5.727E-05	5.404E-04	-4.710E-04
2.10	-0.847	0.847	6.804	-6.804	-6.384E-05	5.746E-05	5.400E-04	-4.707E-04
2.11	-0.850	0.850	6.800	-6.800	-6.405E-05	5.765E-05	5.396E-04	-4.704E-04
2.12	-0.853	0.853	6.797	-6.797	-6.426E-05	5.784E-05	5.392E-04	-4.700E-04
2.13	-0.856	0.856	6.794	-6.794	-6.448E-05	5.803E-05	5.389E-04	-4.697E-04
2.14	-0.859	0.859	6.790	-6.790	-6.469E-05	5.822E-05	5.385E-04	-4.693E-04
2.15	-0.862	0.862	6.787	-6.787	-6.491E-05	5.842E-05	5.381E-04	-4.690E-04
2.16	-0.865	0.865	6.783	-6.783	-6.512E-05	5.861E-05	5.377E-04	-4.687E-04
2.17	-0.868	0.868	6.780	-6.780	-6.534E-05	5.881E-05	5.373E-04	-4.683E-04
2.18	-0.871	0.871	6.777	-6.777	-6.556E-05	5.900E-05	5.369E-04	-4.680E-04
2.19	-0.875	0.875	6.773	-6.773	-6.578E-05	5.920E-05	5.365E-04	-4.676E-04
2.20	-0.878	0.878	6.770	-6.770	-6.600E-05	5.940E-05	5.361E-04	-4.673E-04
2.21	-0.881	0.881	6.766	-6.766	-6.622E-05	5.959E-05	5.357E-04	-4.669E-04
2.22	-0.884	0.884	6.762	-6.762	-6.644E-05	5.979E-05	5.353E-04	-4.666E-04
2.23	-0.887	0.887	6.759	-6.759	-6.666E-05	5.999E-05	5.349E-04	-4.662E-04
2.24	-0.890	0.890	6.755	-6.755	-6.688E-05	6.019E-05	5.345E-04	-4.659E-04
2.25	-0.893	0.893	6.752	-6.752	-6.711E-05	6.039E-05	5.341E-04	-4.655E-04
2.26	-0.896	0.896	6.748	-6.748	-6.733E-05	6.059E-05	5.337E-04	-4.652E-04
2.27	-0.900	0.900	6.744	-6.744	-6.755E-05	6.079E-05	5.333E-04	-4.648E-04
2.28	-0.903	0.903	6.741	-6.741	-6.777E-05	6.099E-05	5.329E-04	-4.644E-04
2.29	-0.906	0.906	6.737	-6.737	-6.800E-05	6.119E-05	5.325E-04	-4.641E-04
2.30	-0.909	0.909	6.733	-6.733	-6.822E-05	6.139E-05	5.321E-04	-4.637E-04
2.31	-0.912	0.912	6.729	-6.729	-6.845E-05	6.159E-05	5.317E-04	-4.634E-04
2.32	-0.916	0.916	6.726	-6.726	-6.867E-05	6.180E-05	5.313E-04	-4.630E-04
2.33	-0.919	0.919	6.722	-6.722	-6.890E-05	6.200E-05	5.309E-04	-4.626E-04
2.34	-0.922	0.922	6.718	-6.718	-6.912E-05	6.220E-05	5.305E-04	-4.623E-04
2.35	-0.925	0.925	6.714	-6.714	-6.934E-05	6.240E-05	5.301E-04	-4.619E-04
2.36	-0.928	0.928	6.711	-6.711	-6.957E-05	6.260E-05	5.296E-04	-4.616E-04
2.37	-0.931	0.931	6.707	-6.707	-6.979E-05	6.280E-05	5.292E-04	-4.612E-04
2.38	-0.935	0.935	6.703	-6.703	-7.002E-05	6.300E-05	5.288E-04	-4.608E-04
2.39	-0.938	0.938	6.699	-6.699	-7.024E-05	6.320E-05	5.284E-04	-4.605E-04
2.40	-0.941	0.941	6.695	-6.695	-7.047E-05	6.341E-05	5.280E-04	-4.601E-04

Appendix 6 Analysis results of considered all physical properties change effect case (6/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.41	-0.944	0.944	6.691	-6.691	-7.069E-05	6.361E-05	5.276E-04	-4.597E-04
2.42	-0.947	0.947	6.688	-6.688	-7.091E-05	6.381E-05	5.272E-04	-4.594E-04
2.43	-0.951	0.951	6.684	-6.684	-7.114E-05	6.401E-05	5.268E-04	-4.590E-04
2.44	-0.954	0.954	6.680	-6.680	-7.136E-05	6.421E-05	5.263E-04	-4.586E-04
2.45	-0.957	0.957	6.676	-6.676	-7.158E-05	6.441E-05	5.259E-04	-4.583E-04
2.46	-0.960	0.960	6.672	-6.672	-7.180E-05	6.461E-05	5.255E-04	-4.579E-04
2.47	-0.963	0.963	6.668	-6.668	-7.203E-05	6.481E-05	5.251E-04	-4.575E-04
2.48	-0.966	0.966	6.664	-6.664	-7.225E-05	6.500E-05	5.247E-04	-4.572E-04
2.49	-0.970	0.970	6.660	-6.660	-7.247E-05	6.520E-05	5.243E-04	-4.568E-04
2.50	-0.973	0.973	6.657	-6.657	-7.269E-05	6.540E-05	5.238E-04	-4.564E-04
2.51	-0.976	0.976	6.653	-6.653	-7.291E-05	6.560E-05	5.234E-04	-4.561E-04
2.52	-0.979	0.979	6.649	-6.649	-7.313E-05	6.579E-05	5.230E-04	-4.557E-04
2.53	-0.982	0.982	6.645	-6.645	-7.335E-05	6.599E-05	5.226E-04	-4.553E-04
2.54	-0.985	0.985	6.641	-6.641	-7.357E-05	6.618E-05	5.222E-04	-4.550E-04
2.55	-0.988	0.988	6.637	-6.637	-7.378E-05	6.638E-05	5.218E-04	-4.546E-04
2.56	-0.992	0.992	6.633	-6.633	-7.400E-05	6.657E-05	5.213E-04	-4.542E-04
2.57	-0.995	0.995	6.629	-6.629	-7.422E-05	6.677E-05	5.209E-04	-4.539E-04
2.58	-0.998	0.998	6.625	-6.625	-7.443E-05	6.696E-05	5.205E-04	-4.535E-04
2.59	-1.001	1.001	6.621	-6.621	-7.464E-05	6.715E-05	5.201E-04	-4.531E-04
2.60	-1.004	1.004	6.618	-6.618	-7.486E-05	6.734E-05	5.197E-04	-4.528E-04
2.61	-1.007	1.007	6.614	-6.614	-7.507E-05	6.753E-05	5.193E-04	-4.524E-04
2.62	-1.010	1.010	6.610	-6.610	-7.528E-05	6.772E-05	5.188E-04	-4.520E-04
2.63	-1.013	1.013	6.606	-6.606	-7.549E-05	6.791E-05	5.184E-04	-4.517E-04
2.64	-1.016	1.016	6.602	-6.602	-7.570E-05	6.810E-05	5.180E-04	-4.513E-04
2.65	-1.019	1.019	6.598	-6.598	-7.591E-05	6.829E-05	5.176E-04	-4.509E-04
2.66	-1.022	1.022	6.594	-6.594	-7.612E-05	6.847E-05	5.172E-04	-4.506E-04
2.67	-1.025	1.025	6.590	-6.590	-7.633E-05	6.866E-05	5.168E-04	-4.502E-04
2.68	-1.028	1.028	6.586	-6.586	-7.653E-05	6.884E-05	5.164E-04	-4.498E-04
2.69	-1.031	1.031	6.583	-6.583	-7.674E-05	6.903E-05	5.159E-04	-4.495E-04
2.70	-1.034	1.034	6.579	-6.579	-7.694E-05	6.921E-05	5.155E-04	-4.491E-04
2.71	-1.037	1.037	6.575	-6.575	-7.714E-05	6.939E-05	5.151E-04	-4.487E-04
2.72	-1.040	1.040	6.571	-6.571	-7.735E-05	6.957E-05	5.147E-04	-4.484E-04
2.73	-1.043	1.043	6.567	-6.567	-7.755E-05	6.975E-05	5.143E-04	-4.480E-04
2.74	-1.046	1.046	6.563	-6.563	-7.774E-05	6.993E-05	5.139E-04	-4.476E-04
2.75	-1.049	1.049	6.560	-6.560	-7.794E-05	7.011E-05	5.135E-04	-4.473E-04
2.76	-1.052	1.052	6.556	-6.556	-7.814E-05	7.028E-05	5.131E-04	-4.469E-04
2.77	-1.054	1.054	6.552	-6.552	-7.834E-05	7.046E-05	5.126E-04	-4.465E-04
2.78	-1.057	1.057	6.548	-6.548	-7.853E-05	7.063E-05	5.122E-04	-4.462E-04
2.79	-1.060	1.060	6.544	-6.544	-7.872E-05	7.081E-05	5.118E-04	-4.458E-04
2.80	-1.063	1.063	6.541	-6.541	-7.892E-05	7.098E-05	5.114E-04	-4.455E-04

Appendix 6 Analysis results of considered all physical properties change effect case (7/8)

Fluence	Operational stress (MPa)		Shutdown stress (MPa)		Operational strain		Shutdown strain	
$(\times 10^{25} n/m^2)$	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region	Hot region	Cold region
2.81	-1.066	1.066	6.537	-6.537	-7.911E-05	7.115E-05	5.110E-04	-4.451E-04
2.82	-1.068	1.068	6.533	-6.533	-7.930E-05	7.132E-05	5.106E-04	-4.447E-04
2.83	-1.071	1.071	6.529	-6.529	-7.948E-05	7.149E-05	5.102E-04	-4.444E-04
2.84	-1.074	1.074	6.525	-6.525	-7.967E-05	7.165E-05	5.098E-04	-4.440E-04
2.85	-1.077	1.077	6.522	-6.522	-7.986E-05	7.182E-05	5.094E-04	-4.437E-04
2.86	-1.079	1.079	6.518	-6.518	-8.004E-05	7.198E-05	5.090E-04	-4.433E-04
2.87	-1.082	1.082	6.514	-6.514	-8.022E-05	7.215E-05	5.086E-04	-4.430E-04
2.88	-1.085	1.085	6.511	-6.511	-8.040E-05	7.231E-05	5.082E-04	-4.426E-04
2.89	-1.087	1.087	6.507	-6.507	-8.058E-05	7.247E-05	5.078E-04	-4.422E-04
2.90	-1.090	1.090	6.503	-6.503	-8.076E-05	7.263E-05	5.074E-04	-4.419E-04
2.91	-1.093	1.093	6.500	-6.500	-8.094E-05	7.279E-05	5.070E-04	-4.415E-04
2.92	-1.095	1.095	6.496	-6.496	-8.111E-05	7.294E-05	5.066E-04	-4.412E-04
2.93	-1.098	1.098	6.492	-6.492	-8.129E-05	7.310E-05	5.062E-04	-4.408E-04
2.94	-1.101	1.101	6.489	-6.489	-8.146E-05	7.325E-05	5.058E-04	-4.405E-04
2.95	-1.103	1.103	6.485	-6.485	-8.163E-05	7.341E-05	5.054E-04	-4.401E-04
2.96	-1.106	1.106	6.481	-6.481	-8.180E-05	7.356E-05	5.050E-04	-4.398E-04
2.97	-1.108	1.108	6.478	-6.478	-8.197E-05	7.371E-05	5.046E-04	-4.394E-04
2.98	-1.111	1.111	6.474	-6.474	-8.213E-05	7.386E-05	5.042E-04	-4.391E-04
2.99	-1.113	1.113	6.471	-6.471	-8.230E-05	7.401E-05	5.038E-04	-4.387E-04
3.00	-1.116	1.116	6.467	-6.467	-8.246E-05	7.415E-05	5.034E-04	-4.384E-04

Appendix 6 Analysis results of considered all physical properties change effect case (8/8)