JAEA-Technology 2024-009 DOI:10.11484/jaea-technology-2024-009

高速炉燃料用 SUS316 相当鋼の 高温強度及び照射特性評価

High-temperature Strength of Modified Type 316 Steel for Fast Reactor Fuel before and after Neutron Irradiation

宮澤健 上羽智之 矢野康英 丹野敬嗣 大塚智史 鬼澤高志 安藤勝訓 皆藤威二

Takeshi MIYAZAWA, Tomoyuki UWABA, Yasuhide YANO, Takashi TANNO Satoshi OHTSUKA, Takashi ONIZAWA, Masanori ANDO and Takeji KAITO

> 大洗研究所 高速炉サイクル研究開発センター 燃料材料開発部

Fuels and Materials Department Fast Reactor Cycle System Research and Development Center Oarai Research and Development Institute October 2024

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートはクリエイティブ・コモンズ表示 4.0 国際 ライセンスの下に提供されています。 本レポートの成果(データを含む)に著作権が発生しない場合でも、同ライセンスと同様の 条件で利用してください。(<u>https://creativecommons.org/licenses/by/4.0/deed.ja</u>) なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>) より発信されています。本レポートに関しては下記までお問合せください。

国立研究開発法人日本原子力研究開発機構 研究開発推進部 科学技術情報課 〒 319-1112 茨城県那珂郡東海村大字村松 4 番地 49 E-mail: ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency.

This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.en).

Even if the results of this report (including data) are not copyrighted, they must be used under the same terms and conditions as CC-BY.

For inquiries regarding this report, please contact Library, Institutional Repository and INIS Section, Research and Development Promotion Department, Japan Atomic Energy Agency.

4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1112, Japan

E-mail: ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2024

高速炉燃料用 SUS316 相当鋼の高温強度及び照射特性評価

日本原子力研究開発機構 大洗研究所 高速炉サイクル研究開発センター 燃料材料開発部

宮澤健、上羽智之、矢野康英、丹野敬嗣、大塚智史、
 鬼澤高志⁺¹、安藤勝訓⁺¹、皆藤威二⁺²

(2024年5月24日受理)

SUS316相当鋼を用いた高速炉燃料設計の高信頼性化に向けて、SUS316相当鋼被覆管及びラッパ管の高温強度及び照射データを材料学的及び統計学的な観点で評価・解析することで、高温強度及び高照射量までの照射特性に係る設計用強度式を導出した。

異常な過渡変化の上限温度を超える 900℃までの SUS316 相当鋼被覆管及びラッパ管(非照 射材)の高温引張試験データ及び高温クリープ試験データを拡充し、0.2%耐力、引張強さ、ク リープ破断強度の最適近似式と下限式並びに熱クリープひずみの最適近似式と上下限式を導 出した。

また、高速実験炉「常陽」、仏国・高速原型炉 Phenix 及び米国・FFTF で高照射量まで中性子 照射した SUS316 相当鋼被覆管及びラッパ管の照射後引張試験データ及び SUS316 相当鋼被覆管 の炉内クリープ破断試験データを解析することで、炉内 Na 中照射による引張強度及びクリー プ強度の低下を表す強度補正係数を導出した。導出した式を実測値と比較することで、その妥 当性を確認した。

大洗研究所:〒311-1393 茨城県東茨城郡大洗町成田町 4002 番地

⁺¹ 大洗研究所 高速炉基盤技術開発部

⁺² 大洗研究所 戦略推進部

JAEA-Technology 2024-009

High-temperature Strength of Modified Type 316 Steel for Fast Reactor Fuel before and after Neutron Irradiation

Takeshi MIYAZAWA, Tomoyuki UWABA, Yasuhide YANO, Takashi TANNO, Satoshi OHTSUKA, Takashi ONIZAWA $^{\rm +1}$, Masanori ANDO $^{\rm +1}$ and Takeji KAITO $^{\rm +2}$

Fuels and Materials Department, Fast Reactor Cycle System Research and Development Center, Oarai Research and Development Institute, Japan Atomic Energy Agency Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received May 24, 2024)

For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived.

The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900°C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.

Keywords: Modified Type 316 Steel, Fast Reactor Fuel, High-temperature Strength, Swelling, Irradiation Creep

⁺¹ Fast Reactor Fundamental Technology Development Department, Oarai Research and Development Institute

⁺² Strategy and Management Department, Oarai Research and Development Institute

目 次

1. はじめに	1
2. SUS316 相当鋼の高温強度、照射特性評価	3
2.1 評価項目と対象材	3
2.2 引張強度評価	3
2.3 クリープ強度・変形挙動評価	8
2.4 SUS316 溶体化材の強度特性	17
3. まとめ	18
謝辞	18
参考文献	19
付録1 炉外高温引張試験データ一覧	44
付録2 照射後引張試験データ一覧	54
付録3 炉外クリープ破断試験データ一覧	57
付録 4 炉内外 Na 中クリープ破断データ一覧	64
付録5 熱クリープ変形データ一覧	67
付録 6 SUS304、SUS316 溶体化材の高温クリープ破断関係式	83
付録7 SUS304、SUS316 溶体化材の超高温クリープひずみ式	5 99
付録 8 SUS316 の物性式	125

Contents

1.	In	trodu	ction	1
2.	Hi	gh-ter	mperature strength and irradiation response of modified type 316 steel	3
2	. 1	Mate	rials	3
2	. 2	Tens	ile strength	3
2	. 3	Cree	o strength and deformation behavior	8
2	. 4	Stre	ngth of type 316 steel	-17
3.	Sur	mmarie	es	-18
Ack	now	ledger	ments	- 18
Ref	erei	nces -		- 19
App	end	ix 1	Out-of-pile tensile test data of modified type 316 steel	-44
App	end	ix 2	Tensile test data after neutron irradiation of modified type 316 steel-	- 54
App	end	ix 3	Out-of-pile creep strength data of modified type 316 steel	- 57
App	end	ix 4	In-pile and out-of-pile creep data of modified type 316 steel in liquid	
			sodium	-64
App	end:	ix 5	Out-of-pile creep deformation data of modified type 316 steel	-67
App	end:	ix 6	Out-of-pile creep strength equation of type 304 and 316 steels	-83
App	end	ix 7	Out-of-pile creep deformation equation of type 304 and 316 steels	- 99
App	end	ix 8	Physical property equations of type 316 steel	125

表リスト

表 1	SUS316 相当鋼と評価対象材の材料仕様	- 20
表 2	時間に依存しない設計応力強さ(Sm)	- 22
表 3	時間に依存する設計応力強さ(S _t)	- 23
表 4	回帰分析で算出した熱クリープひずみ式の係数	-24
表 5	熱クリープひずみ式の平均、上下限用の係数	-24

図リスト

図 1	本評価で用いた SUS316 相当鋼の引張試験データと各温度での平均値(0.2%耐力)	25
図 2	本評価で用いた SUS316 相当鋼の引張試験データと各温度での平均値(引張強さ)	25
図 3	0.2%耐力(引張試験データ)とSyとの比較	26
図4	引張強さ(引張試験データ)とSuとの比較	26
図 5	時間に依存しない設計応力強さ(Sm)	27
図 6	高速中性子照射量と 0.2%耐力の関係	28
図 7	高速中性子照射量と引張強さの関係	28
図 8	σy*/σyとLMPの関係	29
図 9	σu*/σuとLMPの関係	29
図 10	照射材の 0.2%耐力と照射条件における Sy*の関係	30
図 11	照射材の引張強さと照射条件における Su*の関係	30
図 12	本解析で用いた SUS316 相当鋼被覆管の炉外大気中/Ar 中クリープ破断試験データ	31
図 13	炉外大気中/Ar 中クリープ破断試験データの回帰曲線	32
図 14	クリープ破断予測比	32
図 15	S _R と炉外大気中/Ar 中クリープ破断試験データの比較(600~750℃)	33
図 16	S _R と炉外大気中/Ar 中クリープ破断試験データの比較(800~900℃)	33
図 17	破断時間と St の関係	34
図 18	SUS316 相当鋼被覆管内圧クリープ破断データの比較	
	(炉外大気中、炉外 Na 中、炉内 Na 中)	35
図 19	炉外 Na 中クリープ強度式	35
図 20	クリープ強度補正係数の LMP 依存性	36
図 21	炉内 Na 中試験データと S _R 、S _R *の比較	36
図 22	2 次クリープひずみ速度の応力依存性(650℃)	37
図 23	2 次クリープひずみ速度の応力依存性(700℃)	37
図 24	2 次クリープひずみ速度の応力依存性(750℃)	38
図 25	2 次クリープひずみ速度の応力依存性(800~1000℃)	38

図 26	$(d\varepsilon/dt)/\sigma^{3.34}$ の 1/(T+273.15)依存性(650~900℃)	- 39
図 27	1 次クリープひずみの飽和値(ε_t)の応力依存性	- 40
図 28	ε _t /σ ^{1.90} の1/(T+273.15)依存性(650~900℃)	-41
図 29	1 次クリープひずみの飽和値(ε _t)平均値と上下限値(650~900℃)	-41
図 30	1 次クリープ係数 γ の応力依存性	- 42
図 31	γ/σ ^{2.63} の1/(T+273.15)依存性(650~900℃)	-43

1. はじめに

高速炉燃料被覆管の国内開発は、動力炉・核燃料開発事業団(現・日本原子力研究開発機構)に おいて1968年から開始された[1]。高速炉燃料被覆管に要求される高温強度、高温での耐 Na 腐食 性、加工性及び溶接性に優れていること並びに海外で被覆材として実績があることを考慮して、 開発対象として SUS316 ステンレス鋼が選定され、耐照射性(耐スエリング性)及び高温強度の向 上に向けた研究開発が進められた。化学成分や加工熱処理条件等の製造プロセスの最適化により、 SUS316としては世界的にも最高レベルの性能を有する SUS316相当鋼が開発され、高速実験炉「常 陽」及び高速増殖原型炉「もんじゅ」の燃料被覆管、ラッパ管等の炉心材料として使用されてき た。これまでの使用実績を踏まえ、現在、研究開発が進められている高速実証炉の初装荷炉心に も適用される計画である。

SUS316 相当鋼の材料強度基準(案)は、材料強度及び照射特性に関する国内外における豊富な データ及び知見を用いて既に策定されている。一方、材料強度基準(案)を、より合理的、且つ信 頼性の高いものに仕上げるため、SUS316 相当鋼の高温強度データ、Na 腐食データの取得に加えて 「常陽」や米国の高速実験炉 FFTF 等を用いた照射データ取得が進められた。本研究では、SUS316 相当鋼を用いた高速炉燃料設計の高信頼性化に向けて、これまでに取得された SUS316 相当鋼の高 温強度及び照射データを材料学的及び統計学的な観点で評価・解析することで、設計用強度基準 式を導出した。

なお、高速増殖原型炉「もんじゅ」の燃料要素及び燃料集合体の構造設計用の技術基準として、 1985年(昭和60年)12月に「高速原型炉燃料集合体の構造設計方針(案)」及び「高速原型炉燃料集 合体の構造設計方針材料強度基準(案)」等が策定され、初装荷燃料等の設計に用いられた。その後、高 速増殖原型炉「もんじゅ」の設置変更申請が行われるとともに、燃料集合体等の設工認申請を行う こととなった。平成18年3月20日には、日本原子力研究開発機構内に「もんじゅプロジェクト推 進本部」が設置され、材料強度基準の見直し等を行うために、同推進本部の下に「技術基準班」が設 置された(メンバーは次ページ参照)。技術基準班では、平成18年3月から平成20年2月まで合計 42回にわたる会合において、「材料強度基準(案)」及び「設計用物性値集」の各項目について、当時 の材料の照射下でのふるまい等に関する知見を基に議論・検討が行われた。その結果、適用範囲、デー タベース、策定方法及び策定に至る背景や参考資料等について見直しが行われ、結果がまとめられ た。本レポートでは、技術基準班での検討結果及び採用された方法論を踏襲しつつ、新たに拡充され た炉外試験データ(主に700℃を超える高温側)を用いることで、技術基準班で定めた強度式のうち、 非照射下及び照射下における強度式を更新した結果をまとめた。 「もんじゅ技術基準班メンバー」(括弧内は、活動当時の所属)

※「もんじゅ技術基準班」会合は平成18年3月から平成20年2月まで合計42回開催。

班 長:

松元 愼一郎 (平成19年4月まで班長。平成18年9月まで燃料材料試験部、平成18年10月 から環境保全部)

有井祥夫(平成19年5月から燃料材料試験部)

- 班長代理:
 - 安部 智之(東海研究開発センター 核燃料サイクル工学研究所

- 班 員:
 - 中江 延男 (平成18年5月まで。次世代原子力システム研究開発部門)
 - 上羽 智之 (次世代原子力システム研究開発部門)
 - 永沼 正行 (次世代原子力システム研究開発部門)
 - 川崎 信史 (次世代原子力システム研究開発部門)
 - 安藤 勝訓*(次世代原子力システム研究開発部門)
 - 中沢 博明 (東海研究開発センター 核燃料サイクル工学研究所 プルトニウム燃料技術開発センター 技術部)
 - 小澤 隆之 (東海研究開発センター 核燃料サイクル工学研究所 プルトニウム燃料技術開発センター 製造加工部)
 - 吉田 英一 (大洗研究開発センター 技術開発部)
 - 古川 智弘 (大洗研究開発センター 技術開発部)
 - 関根 隆 (大洗研究開発センター 高速実験炉部)
 - 永井 寛 (大洗研究開発センター 燃料材料試験部)
 - 吉武 庸光 (平成19年6月まで大洗研究開発センター 燃料材料試験部、平成19年7月から大洗研究開発センター 計画管理室)
 - 小川 竜一郎* (大洗研究開発センター 燃料材料試験部)
 - 矢野 康英* (大洗研究開発センター 燃料材料試験部)
 - 竹内 則彦 (敦賀本部 高速増殖炉研究開発センター もんじゅ開発部)
 - 大川 剛 (敦賀本部 高速増殖炉研究開発センター もんじゅ開発部)
 - 北野 彰洋 (敦賀本部 高速増殖炉研究開発センター もんじゅ開発部)
 - *職制外発令されていないが、検討作業に協力したメンバー

2. SUS316 相当鋼の高温強度、照射特性評価

2.1 評価項目と対象材

本研究では、高速炉の炉心材料(燃料被覆管、ラッパ管等)に用いるために開発された SUS316 相当鋼[1,2]及びこれと同等仕様の材料(表 1)について、高温強度及び照射特性の評価を実施 した。評価項目は以下の通りである。

[非照射材評価]

- ・引張強度評価(設計降伏点 S_v、設計引張強さ S_u、時間に依存しない設計応力強さ S_m)
- ・クリープ強度評価(設計クリープ破断応力強さ S_R、時間に依存する設計応力強さ S_t)
- ・クリープ変形挙動評価(熱クリープひずみ)

[照射材評価]

- ·照射後引張強度評価(短時間強度補正係数)
- ・炉内クリープ破断強度評価(クリープ強度補正係数)

高温強度特性及び照射特性への影響が大きな冷間加工度については、いずれの評価材でも SUS316 相当鋼の仕様範囲内(冷間加工度:20±3%)である。非照射材のクリープ破断強度と引 張強度の評価では、TiとNbの添加量が目標濃度に満たないロット及び溶体化処理温度が規定 の1040℃以上を満足しないロットも評価に含めた。Ti及びNbは、溶体化熱処理により一旦母 相に固溶させることで、高温環境下で微細なMX析出物として析出し、材料の強度の向上に寄与 する[1,2]。よって、これら仕様範囲外のロットのデータを評価に含めることで、保守側の強度 評価となる。その他項目の評価では、仕様範囲内の材料を用いた。

- 2.2 引張強度評価
- 2.2.1 非照射材引張強度評価
- (1) 評価に用いたデータ

本評価に用いた引張強度データは以下の通りである(図1、図2、付録1)[3]。ここで、付録1に示すラッパ管材の900℃までの引張試験データを新たに拡充した。

- ・試験方法: 炉外(非照射)大気中の引張試験(JIS G 0567の標準引張試験方法の規定による)
- ・試験温度:室温~900℃

ここで、「炉外」とは「原子炉外」のことであり、非照射環境の試験であることを意味して いる。一方、以下で用いる「炉内」とは原子炉内の中性子照射環境下の試験であることを意味 している。

(2) 評価方法

引張強度データを以下の方法で回帰分析し、最適近似曲線(0.2%耐力 σ_y、引張強さ σ_u)と

下限曲線(設計降伏点 S_y、設計引張強さ S_u)を求めた。降伏点が明確に表れないオーステナイ ト鋼において 0.2%耐力を降伏点とみなした。まず、0.2%耐力と引張強さについて、各温度での 試験データの平均値を算出した。これら各温度の平均値と温度の多項式で回帰分析することで 最適近似曲線を求めた。ここで、最適近似曲線に対する各温度平均値の標準偏差(σ)が最小 となるよう回帰分析した。データの傾向をよく表していると考えられる最小の次数の式として 5 次式を選択した。この最適近似曲線に対する試験データの標準偏差(σ)を算出し、平均曲 線から 3.29 σ を差し引いた曲線(99.9%信頼下限値)を下限曲線(設計降伏点 S_y及び設計引張 強さ S_u)とした。ただし、温度 65℃以下では、試験温度 65℃での値で一定とした。

(3) 評価結果

① 0.2%耐力

図 3 に上記の方法で導出した回帰曲線(0.2%耐力の最適近似曲線 σ_y[MPa]及び下限曲線 S_y [MPa])と0.2%耐力データを比較して示す。最適近似曲線の回帰結果は次式の通りである。

- $\sigma_{v} = 6.7663905854072 \times 10^{2} + 9.7808904492672 \times 10^{-1} \cdot T$
 - 1. 0594994904664 \times 10⁻² T² + 3. 3680156614436 \times 10⁻⁵ T³
 - 4. 4429067505148 × 10⁻⁸ T⁴ + 1. 9921452127951 × 10⁻¹¹ T⁵ -------(1)

ここで、T は温度[℃]である。標準偏差(σ)としては 23.3898593322371 を得た。

99.9%信頼下限式(設計降伏点 S_y[MPa])は、次式の通りである。ここで、式の係数は四捨五入により、有効数字5桁とした。

• 65°C < T \leq 900°C

• $20^{\circ}C \leq T \leq 65^{\circ}C$

保守性を確保するため、式(2)における 65℃の値で一定とした。

②引張強さ

図 4 に上記の方法で導出した回帰曲線(引張強さの最適近似曲線 σ_u[MPa]及び下限曲線 S_u[MPa])と引張強さデータを比較して示す。最適近似曲線の回帰結果は次式の通りである。

 $\sigma_{\rm u} = 7.8052982618862 \times 10^2 + 2.2227173858136 \times 10^{-1} \cdot T$

- 7. 1017468766051 \times 10⁻³ T² + 2. 707855044915800 \times 10⁻⁵ T³
- $3.876529682358 \times 10^{-8} \cdot T^{4} + 1.8060339890951 \times 10^{-11} \cdot T^{5} \qquad ------(3)$

ここで、標準偏差(σ)として 22.4930165111296 を得た。

99.9%信頼下限式(設計引張強さ Su[MPa])は、次式の通りである。ここで、式の係数は四捨 五入により、有効数字5桁とした。

• $65^{\circ}C < T \leq 900^{\circ}C$

 $S_{u} = 7.0653 \times 10^{2} + 2.2227 \times 10^{-1} \cdot T - 7.1017 \times 10^{-3} \cdot T^{2} + 2.7079 \times 10^{-5} \cdot T^{3} - 3.8765 \times 10^{-8} \cdot T^{4} + 1.8060 \times 10^{-11} \cdot T^{5} - ------(4)$

• $20^{\circ}C \leq T \leq 65^{\circ}C$

保守性を確保するため、式(4)における65℃の値で一定とした。

高速炉燃料集合体材料における時間に依存しない設計応力強さ(Sm)は次式により算出した。

 $S_{\rm m} = {\rm Min}\left(\frac{1}{2}S_{\rm u}^{\rm RT}, \frac{3}{4}S_{\rm y}^{\rm RT}, \frac{1}{2}S_{\rm u}^{\rm HT}, \frac{3}{4}S_{\rm y}^{\rm HT}\right) \qquad -----(5)$

- S^{RT} : 室温における S_u値
- S_y^{RT} : 室温における S_y 値
- S^{HT}: 当該温度における S_u値
- S^{HT}: 当該温度における S_y値

ただし、記号 Min は括弧内の値で最も小さい値を選ぶことを意味する。Sy 及び Su を式(5) に代入して求めた Sm 値を表 2 及び図 5 に示す。Sm は、830℃までは Su 支配であり、これを 超える温度では Sy 支配となる。

2.2.2 照射材引張強度評価

- (1) 評価に用いたデータ(付録2)[4,5]
 - ・試験方法 : 高速中性子による材料照射(「常陽」、Phenix)及び 燃料照射(「常陽」、FFTF)後の引張試験
 - ・ひずみ速度 : 6.0×10⁻⁵~1.7×10⁻³ [s⁻¹]
 - ・照射温度 : 392~734 [℃]
 - ・照射時間 : 3,852~24,464 [h]
 - ・中性子照射量 :2.4×10²⁶~2.5×10²⁷ [n/m², E>0.1MeV]
 - ・引張試験温度 :400~750 [°C]

(2) 評価方法

短時間強度に及ぼす環境効果としては照射効果と Na 効果が考えられる。このうち照射効果 として照射硬化がある。これは、照射温度が約 500℃以下の場合、フランクループ生成に伴う 転位密度増加が生じ、短時間強度が上昇する現象である。これを超える高温では、主として製造時に導入した冷間加工組織の回復、軟化のため強度低下が生じる(照射軟化)。

一方、高温側では、加工組織の回復、軟化(照射軟化)に加えて、固溶元素のNa中への選択的拡散溶出による効果(Na 効果)が2次的要因として重畳したものとして現れる。現状のデータベース及び照射材料の機械的性質に及ぼす照射効果に関する知見を考慮すると、環境効果として各因子を単純に分離、定量化することは困難である。従って、現状で得られているNa中での照射データを用い、短時間強度に関する補正係数を定めた。

強度補正係数の算出には、「常陽」、仏国 Phenix 及び米国 FFTF で材料照射試験又は燃料ピン 照射試験を実施した SUS316 相当鋼被覆管及び「常陽」燃料照射 SUS316 相当鋼ラッパ管の照射 後引張試験データ(以下、照射材データと呼ぶ)を用いた。これらの 0.2%耐力及び引張強さと 高速中性子照射量の関係を試験温度で整理したものを図 6、図 7 に示す。なお、試験温度は各 試験片の照射温度に合わせた。これらのデータを用いて、短時間強度補正係数を次の方法によ り求めた。

短時間強度補正係数の算出

個々の照射材データ(照射後の 0.2%耐力 σ_y *、引張強さ σ_u *)を 2.2.1 で導出した非照射 材強度値(最適近似式に照射材データの各試験温度を代入して求めた値: σ_y 、 σ_u)でそれぞ れ除した値(σ_y */ σ_y 、 σ_u */ σ_u)を算出し、照射による強度低下係数とした。

短時間強度補正係数の定式化

 $\sigma_{y}*/\sigma_{y}$ 及び $\sigma_{u}*/\sigma_{u}$ の値をラーソンミラーパラメータ(LMP)にて整理し、各強度補正係数の標準偏差が最小となる最適近似式を求めた。ここで、 $\sigma_{y}*/\sigma_{y}$ 及び $\sigma_{u}*/\sigma_{u}$ が1を超える温度域(475℃未満)については、照射硬化により強度低下が生じないことを意味しているため、最適近似式の算出データから除外した。

(3) 評価結果

図8及び図9に照射材データと最適近似曲線を示す。算出した式は以下の通りである。

$\sigma_y * \sigma_y = -12.219 + 7.5134 \times 10^{-3} \text{ (LMP)} - 1.3726 \times 10^{-6} \text{ (LMP)}^2$	
$+7.9778 \times 10^{-11}$ (LMP) ³	(6)
LMP = $(T+273.15) \cdot (2.6624+\log_{10}(t_{irr}))$	(7)

$$\sigma_{u}*/\sigma_{u} = -13.377 + 2.7572 \times 10^{-3} (LMP) - 1.7059 \times 10^{-7} (LMP)^{2} + 3.3751 \times 10^{-12} (LMP)^{3} ------(8)$$

$$LMP = (T+273.15) \cdot (14.905 + \log_{10}(t_{irr})) ------(9)$$

ここで、T は照射温度[℃]、t_{irr}は照射時間[h]である。 図 6 及び図 7 に示すように、照射温度 475~525℃は、SUS316 相当鋼のスエリングピーク温 度に対応し、潜伏期間が終了する 16×10^{26} (n/m², E>0.1MeV) を近傍から徐々に強度低下が生 じている。スエリングに起因した強度低下の不確かさを考慮し、安全裕度を適切に設けるため、 $475 \sim 525 ^{\circ} C$ の照射温度範囲では、最も強度が低下する照射温度である $525 ^{\circ} C$ を一律に最適式(式 (6)~(9))に代入することにより短時間強度補正係数(γ_{sy} 及び γ_{su})を導出した。導出した短 時間補正係数 γ_{sy} 及び γ_{su} を以下に示す。

・0.2%耐力に対する短時間強度補正係数 γ sy

 γ_{sy} =-12.219+7.5134×10⁻³ (LMP) -1.3726×10⁻⁶ (LMP)²+7.9778×10⁻¹¹ (LMP)³ ---(10) LMP= (T+273.15)・(2.6624+log₁₀(t_{irr})) ------(11) ただし、LMPの値が 6968.8を超える場合は、LMPの値が 6968.8の場合の値を用いる。また、 γ_{sy} の算出値が 1 以上の場合及び T<475℃の温度範囲では一律に γ_{sy} =1 とする。475℃≦T≦ 525℃の温度範囲では、一律に上式の T に 525℃を代入して得た値を用いることとする。

・引張強さに対する短時間強度補正係数 y su

 γ_{Su} =-13.377+2.7572×10⁻³ (LMP)-1.7059×10⁻⁷ (LMP)²+3.3751×10⁻¹² (LMP)³ -(12) LMP= (T+273.15)×(14.905+log₁₀(t_{irr})) ------(13) ただし、LMPの値が 20256 を超える場合は、LMPの値が 20256 の場合の値を用いる。また、 γ_{Su} の算出値が 1 以上の場合及び T<475℃の温度範囲では一律に γ_{Su} =1 とする。475℃≦T≦ 525℃の温度範囲では、一律に上式のTに 525℃を代入して得た値を用いることとする。

上式に照射材データの照射条件(照射温度と照射時間)を代入して導出した短時間強度補正 係数(γ_{Sy}, γ_{Su})を試験温度における設計降伏点(S_y)及び設計引張強さ(S_u)に乗じた値(S_y *、 S_u *)を求め、これらと各照射材データ(σ_y *、 σ_u *)と比較した結果をそれぞれ図10と図11に 示す。 S_y *と S_u *が、全ての照射材データを包絡していることから、導出した短時間補正係数は 妥当と判断される。

個々で求めた短時間強度補正係数の適用可能範囲は、用いたデータ条件から以下の通り定めた。

・温度:室温~700℃

・時間:24,000 [h]まで

2.3 クリープ強度・変形挙動評価

2.3.1 非照射材クリープ強度評価

(1) 評価に用いたデータ

本評価に用いた強度データは以下の通りである(図12、付録3)[3,6-8]。ここで、付録3に 示す板状クリープ片を用いた900℃までのクリープ破断データを新たに拡充した。

・ 試験方法: 炉外(非照射下)大気中内圧クリープ破断試験(内圧導入型)

及び Ar 中板状クリープ試験

- · 試験温度:600~900℃
- ・ 相当応力:17~424MPa
- (2) 評価方法

クリープ変形は高温での母相原子の自己拡散を介して生じる事象であり、試験温度に大きく 依存する。このため、温度の異なる試験で得たクリープ破断寿命データを応力のみの関数で表 すことはできない。一方、アレニウス則に基づいて試験温度と破断時間を統一的に表す LMP を 応力の関数として回帰分析することで、試験温度の異なるクリープ破断寿命データを精度よく 整理できることが知られている[9,10]。

LMP = $(T+273.15) \cdot (C+\log_{10}(t_R))$ -----(14)

ここで、Tは温度[℃]、t_Rはクリープ破断時間[h]、Cは材料依存定数である。

本評価で用いるデータの大半は内圧クリープ試験データである。内圧クリープ試験では、試験片を高温に加熱保持した状態で、外部から不活性ガスによる内圧を導入する。これにより、管の周方向及び軸方向への応力が負荷される。この状態での相当応力(σ_{eq} [MPa])は、以下の通り導入内圧から算出した。内圧クリープ試験片に加わる周方向の応力(σ_{θ})と軸方向の応力(σ_{z})は、薄肉円筒管近似により、次式の通り表すことができる(径方向応力(σ_{r})はゼロである)。

周方向応力 $\sigma_{\theta} = \frac{d}{2t} \cdot P$ ------(15) 軸方向応力 $\sigma_{z} = \frac{d}{4t} \cdot P$ ------(16)

ここで、Pは内圧、dは管の外直径、tは管の肉厚である。上式を Von Mises 応力の式に代入 することで、以下の通り、内圧からの相当応力(*σ*。)を算出する式が得られる。

相当応力 (Von Mises)
$$\sigma_e = \sqrt{\frac{(\sigma_\theta - \sigma_z)^2 + (\sigma_z - \sigma_r)^2 + (\sigma_r - \sigma_\theta)^2}{2}} = \frac{\sqrt{3}}{2}\sigma_\theta = \frac{\sqrt{3}\cdot d}{4t}P$$
 -----(17)

本検討では、クリープ破断強度の最適近似式と下限式(設計クリープ破断応力強さ S_R)をLMP に対する相当応力の関数として導出した。具体的には、クリープ破断試験における試験温度(T) とクリープ破断時間(t_R)からLMPを算出し、このLMPの値を相当応力の常用対数(log₁₀(σ_e)) の多項式として回帰分析した。ここで、log₁₀(σ_e)の標準偏差が最小となるLMPの定数C及び多 項式の係数を算出した。データの回帰性から、log₁₀(σ_e)の4次式を採用した。S_Rは、全ての 試験データを包絡するよう、最適近似式における時間に係数 α を乗じることで導出した。

(3) 結果

回帰分析により求めた最適近似式を以下に示す。また、最適近似式と実測データを図13に 示す。

• $\sigma_{eq} \ge 17.6644467547202$:

• σ_{eq}<17.6644467547202: LMP=21.2185058809371 (一定) ------(19)

クリープ試験では、負荷応力の低下とともに破断寿命は増加する。よって、図 13 において、 負荷応力の低下とともに LMP が増加すべきであるが、応力の 4 次式を採用したため、 σ_{eq} が 17.6644467547202MPa を下回ると、LMP は逆に減少傾向となる。このため、 σ_{eq} が 17.6644467547202MPa を下回る範囲では、 σ_{eq} が 17.6644467547202MPa の場合の LMP 値 (21.2185058809371)で一定という保守的な設定を行った。

予測値に対する実測値のバラツキを把握するため、クリープ破断時間の実測値を予測値(上 式を用いて算出した値)で除した値(クリープ破断予測比)を算出し、LMPで整理した(図 14)。 この比の常用対数の標準偏差(σ)は0.1770と算出され、99%信頼上限及び99%信頼下限に相当 する強度比の常用対数は、それぞれ0.4567(2.58 σ)と-0.4567(-2.58 σ)となる。よって、99% 信頼上限及び99%信頼下限に相当する強度比は、それぞれ2.862(10^{0.4567})と0.3494(10^{-0.4567})と 算出される。本検討では、99%信頼下限よりも保守側の値である1/3の逆数を時間係数とし、式 (18)より次のSRの式を導出した。ここで、式の係数は四捨五入により、有効数字5桁とした。

$$LMP = (T+273.15) \cdot (15.145 + \log_{10}(3 \cdot t_R)) / 1000$$

= - 5.6534 \cdot (log_{10}S_R)^4 + 42.702 \cdot (log_{10}S_R)^3 - 119.49 \cdot (log_{10}S_R)^2
+ 142.65 \cdot (log_{10}S_R) - 39.993 ------(20)

ただし、SRが 17.664[MPa]を下回る場合は、SRの値が 17.664[MPa]の場合の LMP 値を用いる。

図 15 及び図 16 に炉外大気中/Ar 中クリープ試験データと S_Rの比較を示す。時間係数 3 を 適用することで、600~900℃までの全てのクリープ破断データを包絡できている。なお、各温 度において、上式から得られる S_Rの計算値が設計引張強さ S_uを上回る場合には、S_R=S_uとし ている。

上記で導出したクリープ破断強度式の適用可能温度範囲は、用いたデータの使用条件から 900℃以下とする。

次に、時間に依存する設計応力強さ(S_t)を次式により算出した。

 $S_t = 0.8 \cdot S_R$ ------(21)

上式に S_R を代入して求めた S_t を表 3 及び図 17 に示す。なお、 S_R の計算値が設計引張強さ S_u を上回る場合には、 $S_R = S_u$ としており、低温、高応力条件において $S_t = 0.8 \cdot S_u$ となる場合、破断時間が一定値となる(図 17 の破線部)。

2.3.2 照射材クリープ強度評価

(1) 評価に用いたデータ
 評価に用いたデータは以下の通りである(付録 4)。

・ 炉外(非照射) Na 中内圧クリープ破断試験(内圧封入型)[3]
 試験温度:650℃、675℃、700℃
 試験周応力:70~403MPa

・炉内 Na 中内圧クリープ破断試験(FFTF/MOTA、内圧封入型)[8]
試験温度:605℃、670℃、750℃
試験周応力:70.0~328MPa
中性子照射量:0.5~20.52×10²⁶ (n/m², E>0.1MeV)

(2) 評価方法

①クリープ強度に及ぼす環境効果

図 18 に炉外(非照射下)大気中、炉外(非照射下)Na中、炉内(照射下)Na中の内圧クリー プ破断試験データを LMP で整理した結果を示す。ここで、LMP の材料定数 C は非照射材の評価 で求めた C=15.145 を用いた。

LMP が 18.2 以下の範囲では、炉内 Na 中のクリープ破断強度は炉外 Na 中のクリープ破断強度 を下回っているが、LMP がこれを超える範囲では、両者の破断寿命に有意な差が認められない。 このような試験環境がクリープ破断強度に及ぼすメカニズムを以下に整理する。

- ・ 炉外 Na 中:鋼中の微量添加元素である P と B の Na 中への溶出が生じる。これに伴って M₂₃C₆等の炭化物の微細分散析出効果が失われるため強度低下が生じる[1,11]。高温、長 時間側では、冷間加工転位の回復による効果も重畳する。
- ・ 炉内 Na 中:上述の微量元素の溶出に加え、製造時の冷間加工転位の回復が照射によって 促進されることで強度低下が生じる[1,8,11]。ここで、照射による冷間加工転位の回復 は、照射温度に応じたレベルに収束する[12]。

炉外 Na 中の低 LMP 側(短時間、低温側)では、P と B がほとんど溶出しないためクリープ強 度は維持される。一方、炉内 Na 中の場合、照射による転位回復が比較的早期に生じ、クリー プ破断強度は低下する。このため、低 LMP 側では炉外と炉内でクリープ破断強度の違いが現 れたと考えられる。一方、高 LMP 側(長時間、高温側)では、高温 Na 環境による P と B の Na 中への溶出と冷間加工転位の回復が支配的となる結果、炉内外のクリープ強度が同程度に なったと考えられる。相当応力が 60MPa では炉内 Na 中と炉外 Na 中のクリープ破断時間は一 致していること(図 18)から、これよりも低い応力、即ち高温長時間側で試験した場合、炉 内と炉外のクリープ破断強度は一致すると考えることができる。

② クリープ強度補正係数の策定方法

高速炉内照射によるクリープ破断強度の低減効果を、以下の方法によりクリープ強度補正係 数として定式化した。ここで、クリープ強度補正係数とは、炉外大気中と炉内 Na 中とで温度 とクリープ破断時間がそれぞれ同じ条件の応力比([炉内 Na 中クリープ破断強度]/[炉外大 気中クリープ破断強度])である。上述の通り、Na や照射によるクリープ破断強度の低下は使 用温度と時間に依存することから、クリープ強度補正係数について LMP を用いて定式化する。 一方、炉外大気中のクリープ破断試験と炉内 Na 中のクリープ破断試験における温度と破断時 間がそれぞれ一致する条件で応力を直接比較できるような実測データはない。このため、実 測データと整合性の高い最適近似式を介して応力比を求める必要がある。

そこで、クリープ強度補正係数の策定用に炉外 Na 中クリープ破断強度の最適近似式を作成 した。炉外大気中の式としては、2.3.1 で求めた最適近似式(式(18))を用いた。これらのク リープ強度式は、試験温度と破断時間から算出される LMP によって表される。上述のように クリープ強度を決定するメカニズムが使用環境によって異なると考えられることから、炉外 Na 中のクリープ破断強度式用の LMP の材料定数 C は炉外 Na 中データで最適化した値を用い た。

(3) 結果

① 炉外 Na 中クリープ強度式の作成

低応力条件での炉内 Na 中のクリープ破断強度評価用に炉外 Na 中クリープ破断強度の最適近 似式を策定した。炉外 Na 中の試験温度とクリープ破断時間から算出される LMP を応力の多項 式で回帰分析することで、以下に示す最適近似式を導出した。LMP の材料定数 C もこの回帰処 理で最適値を算出した。ここで、回帰分析は log10tr の標準偏差が最小となるよう実施した。 σ_{eq}≧130MPa :

LMP = $(T+273.15) \cdot (18.0641594421482+\log_{10}t_R)/1000$

- = -7.06676262351665 $(\log_{10} \sigma_{eq})^2$ +27.5487815344614 $\log_{10} \sigma_{eq}$
 - -5. 83325638064692 ------(22)

 $\sigma_{eq} < 130 MPa$:

LMP = $(T+273.15) \cdot (18.0641594421482+\log_{10}t_R)/1000$

 $= -2.32869020616547 \cdot \log_{10} \sigma_{eq} + 25.7463850042698 -----(23)$

応力の大きさによって式を切り替えたのは、試験データの回帰性を高めるためである。2 つ の関数を滑らかに接続するため、切り替え点における曲線の傾きを一致させている。図 19 に示 す通り、本最適近似式と実測値はよく一致している。

② クリープ強度補正係数の定式化

クリープ強度補正係数(γ)を以下の組み合わせで算出し、LMP を用いて定式化した。ここ で、低応力側(高温、長時間側)では Na 効果が支配的になるという実験事実(図 18)に基づ き、低応力側(高温、長時間側)でのクリープ強度補正係数は「[炉内 Na 中クリープ強度]/炉 外[大気中クリープ強度]」ではなく「[炉外 Na 中クリープ強度]/[炉外大気中クリープ強度]」 としている。

- ・高応力側(相当応力>60MPa)
 - γ = [炉内 Na 中クリープ強度]/[炉外大気中クリープ強度]
- ・低応力側(相当応力≦60MPa)
 - γ = [炉外 Na 中クリープ強度]/[炉外大気中クリープ強度]

上記において、炉内 Na 中クリープ強度と炉外大気中クリープ強度は、試験温度とクリープ破 断時間がそれぞれ一致する条件での相当応力である。具体的には、高応力側での炉外大気中ク リープ強度は、温度と破断時間を炉内 Na 中クリープ試験と同一条件として、式(18)により炉外 大気中クリープ強度(応力)を算出し、炉内 Na クリープ強度の実測値(試験応力の実測値)と の比(強度補正係数)を求めた。低応力側では、式(18)と式(23)を用いて、以下の条件での炉 外大気中クリープ強度と炉外 Na 中クリープ強度を算出し、両者の比(強度補正係数)を求め た。

T=605°C : σ_{eq} =20MPa, 40MPa, 60MPa T=670°C : σ_{eq} =20MPa, 40MPa, 60MPa T=750°C : σ_{eq} =20MPa, 40MPa, 60MPa 上述の通り算出した強度補正係数を LMP で整理した結果を図 20 に示す。この図より、強度 補正係数は、以下の通り設定した。

・低LMP 側(LMP≦24.8777329642065):

[炉内 Na 中強度]/[炉外大気中強度]の平均値を取り一定値(γ=0.735884332647099) とした。

・高LMP 側(LMP>24.8777329642065):

炉外 Na 中強度/炉外気中強度の常用対数を LMP の一次関数で回帰分析し、次式を得た。 ここで、log₁₀t_Rの標準偏差が最小となるよう回帰分析を行った。

 $log_{10} (\gamma) = 4.79989256913151 - 0.198293108924183 \cdot LMP ------(24)$ LMP = (T+273.15) · (21.5385641996209+log_{10}t_R)/1000 ------(25)

ここで、低 LMP 側と高 LMP 側の境界値(LMP: 24.8777329642065)は、式(24)に γ=0.735884332647099を代入して求めた値である。以上の検討により、強度補正係数(γ)を次 式の通り定式化した。ここで、式の係数は四捨五入により、有効数字5桁とした。

LMP > 24.878 : $\gamma = 10^{(4.7999-0.19829 \cdot LMP)}$ -----(26) LMP=(T+273.15) • (21.539+log₁₀ t_R)/1000 -----(27)

ここで、LMPの値が24.878以下の場合は、LMPの値が24.878の場合の値とする。

このクリープ強度補正係数を S_R(式(20)、設計クリープ破断応力強さ)に乗じることにより、 照射及び Na 効果を考慮したクリープ強度の下限値(S_R*)を求めることができる。S_R*と実測値(炉 内 Na 中クリープ破断試験データ)と比較した結果を図 21 に示す。S_R*は全てのデータを包絡し ており、本検討におけるクリープ強度に及ぼす照射及び Na 効果(クリープ強度補正係数)の評 価は妥当と判断される。

本検討で定めたクリープ強度補正係数の適用可能温度範囲は、用いたデータの取得条件から 700℃以下とする。

2.3.3 非照射材クリープ変形挙動評価

(1) 評価に用いたデータ

評価に用いたデータは以下の通りである(付録 5)。ここで、付録 5 に示す板状クリープ試験 片を用いて 900℃までのクリープ破断データを新たに拡充した。

・被覆管単軸クリープ試験データ[6,7]
 試験温度:650℃、700℃、750℃
 試験応力:49~255 MPa

・板状クリープ試験データ

試験温度:800℃、850℃、900℃、1000℃ 試験応力:14~170 MPa

(2) 評価方法

熱クリープひずみデータのうち1次及び2次クリープ領域のデータを解析し、以下の構成式 に基づく定式化を行った。

 $\varepsilon_c = \varepsilon_t \cdot \{1 - \exp(-\gamma \cdot t)\} + (d\varepsilon/dt) \cdot t \qquad -----(28)$

ここで、第1項及び第2項は、それぞれ1次クリープひずみと2次クリープひずみを表す。1 次クリープひずみの係数(ε_t 、 γ)及び2次クリープひずみ速度($d\varepsilon/dt$)を表す式は、以下の 通り、いずれも熱活性化プロセスが律速となる事象に適用するアレニウスの項に応力依存の項 を乗じる形とした。

 $\varepsilon_t = A_t \cdot (\sigma_{eq})^{n_t} \cdot \exp(-Q_t/(T + 273.15))$ (29)

$$\gamma = A_{\gamma} \cdot (\sigma_{eq})^{n_{\gamma}} \cdot \exp\left(-Q_{\gamma}/(T + 273.15)\right) \quad ----- \quad (30)$$

$$d\varepsilon/dt = A_s \cdot (\sigma_{eq})^{n_s} \cdot \exp(-Q_s/(T + 273.15))$$
 (31)

ここで、σ_{eq}は相当応力[MPa]である。上記の式を用いたデータ解析を以下の手順で実施した。

- ① 2次クリープひずみ速度の定式化
 - ・クリープ変形速度が最小となる速度を2次クリープひずみ速度とした。以下の手順で、2次 クリープひずみ速度の式(31)の係数(n_s、A_s及びQ_s)を算出した。
 - ・試験温度(650~900℃)毎に2次クリープひずみ速度の応力依存性データを回帰分析し、
 応力指数 n_s及びその平均値を算出した。
 - ・式(31)を次式の通り展開し、求めた応力指数 nsの平均値を代入した。

$$\ln\left((d\varepsilon/dt)/(\sigma_{eq})^{n_s}\right) = \ln\left(A_s\right) - Q_s/(T + 273.15)$$
(32)

・ $d\varepsilon/dt$ 、 σ_{eq} 、試験温度(650~900°C)の実測値を上式に代入した上で、ln($(d\varepsilon/dt)/(\sigma_{eq})^{n_s}$)の標準偏差が最小となるよう回帰分析し、係数 As と Qs を算出した。

- ② 1次クリープひずみの定式化
 - ・以下の通り、クリープひずみデータを回帰分析することで、1 次クリープひずみ式の係数 (n_t , A_t , Q_t , n_{γ} , A_{γ} , Q_{γ})を算出した。
 - ・式(29)に示す1次クリープひずみの飽和値(ε_t)の係数(n_t , A_t 及び Q_t)を①と同じ手順で 算出した。
 - ・試験温度(650~900°C)毎に1次クリープひずみの飽和値(ε_t)の応力依存性データを回帰 分析し、応力指数 n_t及びその平均値を算出した。
 - ・式(29)を次式の通り展開し、求めた応力指数ntの平均値を代入した。

 $\ln \left(\varepsilon_t / (\sigma_{eg})^{n_t} \right) = \ln \left(A_t \right) - Q_t / (T + 273.15)$ (33)

- ・ ε_t 、 σ_{eq} 、試験温度(650~900°C)の実測値を上式に代入した上で、 $\ln(\varepsilon_t/(\sigma_{eq})^{n_t})$ の標準偏差が最小となるよう回帰分析し、係数 $A_t \ge Q_t$ を算出した。
- ・ γ の係数 $(n_{\gamma}, A_{\gamma}$ 及び $Q_{\gamma})$ についても、式(30)を展開して得た次式を用いて、同じ手順で 算出した。

$$\ln(\gamma/\sigma^{n_{\gamma}}) = \ln(A_{\gamma}) - Q_{\gamma}/(T + 273.15) \quad ----- \quad (34)$$

(3) 結果

① 2次クリープひずみ速度の算出

図 22~図 25 に各温度における 2 次クリープ 金み速度の応力依存性を示す。650℃から 900℃ の温度範囲において、応力指数 n_sの値は 2.41 から 4.28 であり、平均値 3.34 と算出された。 これは、転位クリープ(高温累乗則)で想定される応力指数(3~5)[13]と同等である。一方、 1000℃はオーステナイト鋼の溶体化処理温度近傍であり、再結晶や冷間加工転位の回復等、顕 著な微細組織の変化が考えられること及び 1000℃での応力指数は 6.10 と他の温度域での値よ りも高めであることから、1000℃のデータは解析対象外とした。以降、n_sの値として、650℃か ら 900℃での平均値である 3.34 を採用する。

次に式(32)の通り、ln(($d\epsilon/dt$)/ $\sigma^{3.34}$)の1/(T+273.15)依存性を評価した結果を図26に示す。 ln(($d\epsilon/dt$)/ $\sigma^{3.34}$)は、1/(T+273.15)に対して線形関係にある。これは、($d\epsilon/dt$)/ $\sigma^{3.34}$ の温度依存 性がアレニウス則に則ることを示している。回帰分析により、As と Qs の最適値はそれぞれ 3.10×10⁸及び4.24×10⁴と評価された。ln(($d\epsilon/dt$)/ $\sigma^{3.34}$)の標準偏差(σ)は0.59560であり、 As の 95%信頼区間(±1.96 σ)の算出値は表4に示す通りとなった。

② 1 次クリープひずみの算出

図 27 に 1 次クリープひずみの飽和値(ε_t)の応力依存性を示す。650[°]Cのデータは明確な応力依存性を示し、その応力指数(n_t)は 1.76 となった。一方、高温になるに従い応力依存性が不明瞭となった。これは、高温環境では 2 次クリープ変形が顕著となり全体のひずみから 1 次ク

リープひずみを分離する精度が低下するためである。そこで、高温であってもクリープ変形や その温度依存性が無視できる条件を以下の通り設定し、700℃以上の高温域での応力指数評価 に用いた。650℃における1次クリープひずみの飽和値(*ε_t*)の応力依存性は次式の通り表すこ とができる(図 27)。

 $\varepsilon_t = 2.66 \times 10^{-5} \times \sigma^{1.76}$ ------(35)

応力がゼロに近い 0.098[MPa] (0.01[kgf/mm²])の場合の ε_t を計算すると、4.5×10⁻⁷[%]となる。このように応力がほぼゼロの場合、いずれの温度でもクリープ変形は小さく、温度依存性は無視できると考え、700~900℃では、実測データだけでなく(σ , ε_t)=(0.098[MPa], 4.5×10⁻⁷[%])を含めた回帰分析を実施した。その結果、図 27に示す通り、650~900℃の温度範囲における応力指数 (n_t)は 1.70~2.15、平均値は 1.90 と評価された。

次に式(33)の通り、ln ($\varepsilon_t/\sigma^{1.90}$)の 1/(T+273.15)依存性を評価した結果を図 28 に示す。 ln ($\varepsilon_t/\sigma^{1.90}$)を1/(T+273.15)の1次式で回帰分析し、A_t及びQ_tの最適値として、それぞれ1.95 と1.12×10⁴を算出した。ln(A_t)の標準偏差(σ)は0.92844であり、A_tの95%信頼区間(±1.96 σ)の算出値は表4に示す通りとなった。

なお、図 29 に 650~900℃の温度範囲で算出した*ε*tの全データを示す。全データの平均値、上限値及び下限値はそれぞれ 0.2348、0.6556 及び 0.0279 であった。

定数 γ についても同様な方法及び温度範囲(650~900℃)で応力指数 n_γ、A_γ及び Q_γを算出 した。算出結果を図 30、図 31 及び表 4 に示す。

③ 熱クリープひずみの定式化

以上の検討結果より、熱クリープひずみ式(式(28)~(31))の平均、上下限用の係数を表 5 の通り定めた。平均式では、全ての係数として最適値を採用した。上下限式については、全て の係数をそれぞれ上限値もしくは下限値とする方法も考えられるが、この場合、過度に保守的 な式となる。このため、上限式については、*ε*tの係数 At のみ 95%信頼区間の上限値を採用し、 それ以外の係数は最適値とした。下限式については、係数 At のみ下限値を採用した場合、係数 At の下限値と最適値の絶対値の差が小さく、十分な保守性が確保できない。このため、係数 At に加えて 2 次クリープひずみ速度の係数 As も 95%信頼区間の下限値を採用した。

なお、表5の脚注に注記している通り、1次クリープの飽和値(ϵ_t)は、図29に示す全体の 平均値、上下限値を上限とした。即ち、熱クリープひずみの最適近似値、上限値及び下限値の 計算において、 ϵ_t の計算値が図29に示す値(ϵ_t 最適近似値の計算で0.235、 ϵ_t 上限値の計算で 0.656、 ϵ_t 下限値の計算で0.0279)を超えた場合、図29に示す値を用いる。これは、式(29)に 基づくと、高応力になるほど ϵ_t の算出値が高くなるが、このような高応力域における実事象で は、2次クリープ変形が支配的となることを考慮したものである。

付録5に示す通り、650~850℃の温度範囲において、熱クリープひずみ式から算出される最 適近似値は実測値と良く一致している。また、特異的なクリープ曲線形状を示す実測データの ごく初期を除き、熱クリープひずみデータが上下限内に包絡されており、本検討で導出した熱 クリープひずみ式は妥当と判断される。一方、900℃では、本検討で導出した熱クリープひずみ 式は実測データよりも過少評価となっている。これは、高温側での組織の回復による可能性が 考えられる。

策定に用いたデータ条件及び 900℃では過少評価となっていることから、熱クリープひずみ 式の適用範囲として以下を設定する。

・温度:425~850℃

・時間:t ≤0.3t_R
 (3 次クリープ領域を含まない範囲に適用するため、破断時間(t_r)の 0.3 倍以内とする)

2.4 SUS316 溶体化材の強度特性

高速炉燃料用 SUS316 相当鋼は、P、B、Ti 等の微量元素の添加や転位組織導入のための冷間 加工を行うことで、耐照射性改善のための組織を制御した材料である[1,8]。一方、高照射量の 中性子照射環境に晒されない炉心部材には、SUS316 溶体化材が使用される場合があり、その強 度特性把握も重要である。

高速炉の構造材料として、SUS316 や SUS304 の溶体化材が使用されており、これらの強度特 性式が策定されている。高温クリープ破断強度及び高温クリープひずみ式については、それぞ れ付録 6 及び付録 7 に示す通り、高速炉の燃料集合体設計で必要となる 850℃を超える 900℃ まで適用可能な式が策定されており、これらを高速炉の燃料集合体設計にも適用可能である。

また、物性値については、ASME Boiler and Pressure Vessel Code (ASME BPVC) で SUS316 の組成を含むオーステナイト鋼を対象とした値が規定されている。これらの値を使用することで、各種物性式を策定することができる。付録 8 に ASME BPVC 及びその他公開データを用いて、 導出した SUS316 の物性式を示す。

3. まとめ

本研究では、SUS316相当鋼を用いた高速炉燃料設計の高信頼性化に向けて、これまでに取得 された SUS316相当鋼の高温強度及び照射データを材料学的及び統計学的な観点で評価・解析 することで、高温強度及び高照射量までの照射特性に係る設計用強度式を導出した。

- 1) 異常な過渡変化の上限温度を超える 900℃までの SUS316 相当鋼(非照射材)の高温引張強度データ及び高温クリープ破断強度データを拡充し、統計処理を行うことで、0.2%耐力、引張強さ及びクリープ破断強度の最適近似式及び下限式(設計降伏点 Sy、設計引張強さ Su、設計クリープ破断応力強さ SR)を導出した。
- 2)高速実験炉「常陽」、仏国・高速原型炉 Phenix 及び米国・FFTF で中性子照射した SUS316 相 当鋼の引張試験データを統計的及び材料学的な観点で解析し、炉内 Na 中照射による引張 強度低下を表す短時間強度補正係数を定式化した。Sy 及び Su に短時間強度補正係数を乗じ た値と実測値(中性子照射後の引張強度データ)を比較することで、導出式の妥当性を確 認した。
- 3)米国・FFTFの照射リグ MOTAを用いて取得した SUS316 相当鋼被覆管の炉内(中性子照射下) 高温 Na 中クリープ破断データと炉外(非照射)高温 Na 中クリープ破断データを統計的及 び材料学的な観点で解析し、炉内高温 Na 環境によるクリープ強度の補正係数を導出した。 S_Rにこのクリープ強度補正係数を乗じた値と実測値(炉内クリープ破断データ)を比較す ることで、導出式の妥当性を確認した。
- 4) 異常な過渡変化の上限温度を超える 900℃までの熱クリープひずみデータを拡充し、熱ク リープひずみの最適近似式及び上下限式を定めた。
- 5) 高速炉の構造設計用に策定された SUS316 溶体化材の 900℃まで適用可能な高温クリープ破 断強度及び高温クリープひずみ式を示した。これらは高速炉の炉心で用いる SUS316 溶体 化材にも適用可能である。

謝 辞

本レポートにおけるデータの数値解析に協力頂いた株式会社 NESI の伊藤昌弘氏、石谷行生 氏に感謝の意を表します。

参考文献

- [1] 立石嘉徳、柚原俊一、柴原格、伊藤正彦、野村茂雄、佐藤義則、吉田英一、鹿倉栄,高速 炉炉心材料用改良 SUS316 ステンレス鋼の開発,日本原子力学会誌,vol. 30, no. 11, 1988, pp. 1005-1019.
- [2] Fujiwara, M., Uchida, H., Ohta, S., Yuhara, S., Tani, S., Sato, Y., Development of modified type 316 stainless steel for fast breeder reactor fuel cladding tubes, Radiation-induced changes in microstructure : 13th International Symposium (Part I), ASTM STP 955, 1987, pp.127-145.
- [3] 飯塚昇司、吉田英一、加納茂機、二瓶勲,高速炉用改良 SUS316 ステンレス鋼燃料被覆管の 高温材料強度データ集, PNC TN9450 88-004, 1988, 140p.
- Yano, Y., Uwaba, T., Tanno, T., Yoshitake, T., Ohtsuka, S., Tensile properties of modified 316 stainless steel (PNC316) after neutron irradiation over 100 dpa, J. Nucl. Sci. Technol., vol. 61, no. 4, 2024, pp. 521-529.
 DOI: 10.1080/00223131.2023.2243943.
- [5] 吉武庸光、大森雄、田中康介,「もんじゅ」型燃料集合体(MFA-1, 2) 被覆管の引張強度・ 延性特性評価, JNC TN9400 2001-116, 2001, 71p.
- [6] FBR 材料専門委員会クリープサブグループ(田中千秋),高速炉用燃料被覆管のクリープ試験(第12次クリープ試験), PNC TN241 83-19, 1983, 83p.
- [7] FBR 材料専門委員会クリープサブグループ(田中千秋),高速炉用燃料被覆管のクリープ試験(第13次クリープ試験), PNC TN241 85-02, 1984, 95p.
- [8] Ukai, S., Mizuta, S., Kaito, T., Okada, H., In-reactor creep rupture properties of 20% CW modified 316 stainless steel, J.Nucl.Mater., vol. 278, 2000, pp. 320-327.
- [9] 丸山公一, 高温長時間クリープ特性の推定での信頼性向上, 鉄と鋼, vol. 105, no. 8, 2019, pp. 767-777.
- [10] Larson, F. R. and Miller, J., A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, vol. 74, 1952, pp. 765-771.
- [11] 吉田英一, 材料分野におけるナトリウム技術報告―高温ナトリウム環境中の材料腐食・ 強度特性等について―, JAEA-Review 2013-026, 2013, 151p.
- [12] Garner, F. A., 4.02 Radiation Damage in Austenitic Steels, Eds. Konings R. J. M., Comprehensive Nuclear Materials, vol. 4, 2012 pp. 33-95.
- [13] Weertman, J., Dislocation climb theory of steady-state creep, Trans. ASME, vol. 61, 1968, pp. 681-694.

対象試験 込わ材」 クリーブ強度評価						(受入れ材] ・クリーブ強度評価									受入れ材] ・引張強度評価	受入れ材」 ・引張強度評価 ・クリーブ強度評価	受入れ材] ・引張強度評価 ・クリーブ強度評価	・ソリーノ&IPキ判計 照射材] ・引張強度評価 ・クリーブ強度評価		
結晶粒度	(ASTM No.)	6.0-9.0	8.5	8.2	8.0-8.1	8.0	8.0	7.5-8.0	7.5-8.0	8.0	7.5-8.0	8.0	7.5-8.0	7.5-8.0	7.5-8.0	8.0	8.0	8.5	8.0-8.5	8.0-8.5
令問加工度	(%)	20±3	20.1	19.8	20.4	21	21	21	20	21	20	21	20	20	20	20	20	20	19-20	20
<u> 滚休</u> 小 這	(°°)	≧1040	1075	1080	1075	1020	1020	1018	1020	1018	1018	1020	1020	1020	1020	1020	1080	1080	1080	1040
	0	≦0.004	0.0013	0.0010	0.0028	0.0033	0.0017	0.0017	0.0020	0.0024	0.0015	0.0015	0.0023	0.0016	0.0027	0.0021	0.0014	0.0016	0.0016	0.0026
	M	≦0.05	0.048	0.010	0.048	0.022	0.029	0.029	0.029	0.015	0.021	0.029	0.028	0.027	0.033	0.015	610.0	0.015	0.016	0.013
	As	≦0.03	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	<0.002	0.002	<0.002
	Cu	≦0.2	0.02	0.02	0.02	0.14	0.13	0.13	0.13	0.14	0.14	0.13	0.13	0.13	0.13	0.14	<0.01	0.01	0.01	0.01
	C	≦0.02	0.07	0.06	0.06	0.01	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.03	<0.01	0.01	0.01	0.01
	Λ	≦0.2	0.04	0.03	0.04	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	<0.01	<0.002	0.01	<0.01
	qN	0.05	≦0.005	≦0.005	0.006	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.042	0.073	0.079	0.046
()	щ	0.05	0.003	0.005	0.004	0.003	0.002	0.002	0.002	0.003	0.002	0.003	0.002	0.002	0.002	0.002	0.084	0.078	0.080	0.070
所結果 (wt ⁹	z	≦0.01	0.0071	0.0065	0.0074	0.0073	0.0080	0.0080	0.0079	0.0095	0.0089	0.0090	0.0080	0.0081	0.0091	0.0098	0.0024	0.007	0.003	0.005
化学分析	в	0.002-0.006	0.0020	0.0019	0.0019	0.0012	0.0012	0.0012	0.0012	0.0014	0.0012	0.0011	0.0014	0.0014	0.0012	0.0012	0.0054	0.0037	0.0031	0.0030
	Mo	2.00	2.30	2.26	2.31	2.40	2.44	2.44	2.56	2.56	2.44	2.56	2.49	2.46	2.49	2.48	2.34	2.40	2.48	2.34
	Cr	16.00 -18.00	17.76	17.75	17.88	17.50	17.35	17.35	17.40	17.45	17.50	17.35	17.30	17.35	17.35	17.55	16.70	16.50	16.52	16.50
	Ni	13.00 -14.00	13.85	13.92	13.80	13.05	13.05	13.05	13.05	13.16	13.05	13.08	13.08	13.05	13.12	13.16	13.77	13.96	13.84	13.45
	s	≤0.010	0.005	0.004	0.003	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.009	0.009	600.0	0.009	0.009	0.003	0.00	0.005
	Ч	0.015	0.027	0.027	0.028	0.029	0.029	0.029	0.028	0.029	0.029	0.029	0.028	0.028	0.029	0.029	0.028	0.024	0.028	0.025
	Mn	1.40 -2.00	1.69	1.75	1.70	1.94	1.63	1.63	1.63	1.68	1.94	1.61	1.59	1.59	1.69	1.65	1.95	1.62	1.83	1.71
	si	0.60 -1.00	0.42	0.45	0.41	0.53	0.54	0.54	0.53	0.54	0.53	0.53	0.52	0.53	0.53	0.54	0.82	0.91	0.82	0.76
	0	0.04 -0.08	0.052	0.058	0.056	0.058	0.059	0.059	0.060	0.057	0.057	0.059	0.060	0.061	0.058	0.057	0.062	0.049	0.052	0.041
	(日本)			50 MK							50 MS						54 MK	54 MS	2W 22	

表1 SUS316 相当鋼と評価対象材の材料仕様(1/2)

- 20 -

※グレーの箇所は仕様範囲外。

JAEA-Technology 2024-009

		対象試験		[受入れ材] ・引張強度評価 ~1.1	・シットーノ変で半刻計画 [照射材] ・引張強度評価 ・クリープ強度評価	受入れ材 ・引張強度評価 照射材 ・引張強度評価	[受入れ材] ・引張強度評価 照射材] ・引張強度評価	照射材] ・引張強度評価	(受入れ村] ・引張強度評価 ・クリープ強度評価	(愛入れ材) ・引張強度評価 ・クリーブ強度評価 (照射材) ・引張強度評価	受入れ材] ・引張強度評価 ・クリーブ強度評価 ・クリーブ変形挙動評価	[受入れ材] ・引張強度評価 照射材] ・引張強度評価	[受入れ材] ・引張強度評価	[受入れ材] ・引張強度評価	受入れ材] ・引張強度評価
	結晶粒度	(ASTM No.)	0.9-0.9	8.2-8.3	8.3-8.8	7.5	8.5	8.0	8.5-9.0	7.0-7.5	7.5-8.0	7.5-8.5	8.5-9.0	7.5-8.0	7.0-7.5
	冷間加工度	(%)	20±3	61	19-20	18	20-21	20-21	21-22	81	17	20	20	20	20
	溶体化温度	(°c)	≧ 1040 1085		1085	1080	1095	1095	1080	1100	1100	1090	1070	1060	1060
		0	≦0.004	0.0017	0.0018	0.0010	0.0012	0.0013	0.0022	0.0010	<0.0003	0.0008	0.0009	0.0004	0.0008
2/2)		IA	≦0.05	0.040	0.040	0.029	0.017	0.019	0.023	0.029	0.019	0.013	0.014	0.019	0.014
比様(sA	≦0.03	0.002	0.002	0.001	<0.002	<0.002	<0.002	0.004	0.002	0.004	<0.002	0.002	0.002
材料仁		Cu	≦0.2	0.002	0.002	0.04	0.01	0.03	0.01	0.01	0.03	0.02	0.01	0.03	0.02
良村の		Co	≦0.02	0.005	0.005	0.01	<0.01	<0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01
価対象		Λ	≤0.2	0.002	0.002	0.01	<0.01	<0.01	<0.01	0.02	0.01	0.01	<0.01	0.03	0.03
蜀と評		ЧN	0.05-0.10	0.073	0.070	0.080	0.095	0.091	0.062	0.087	0.083	0.066	0.079	0.080	0.076
相当夠	(ц	0.05	860.0	260.0	0.078	0.075	0.077	0.097	60.0	0.09	0.068	0.08	0.08	0.08
S316	結果 (wt%	Ν	≦0.01	0.0075	0.0077	0.009	0.003	0.003	0.005	0.0070	0.0074	0.008	0.0021	0.0033	0.0037
1 SU	化学分析	В	0.002-0.006	0.0044	0.0039	0.0039	0.0034	0.0037	0.0032	0.0040	0.0040	0.0022	0.0036	0.0044	0.0045
敤		Mo	2.00 -3.00	2.51	2.50	2.35	2.52	2.59	2.50	2.37	2.43	2.49	2.52	2.51	2.45
		Cr	16.00 -18.00	16.60	16.50	16.22	16.30	16.50	16.30	16.44	16.40	16.35	16.40	16.50	16.44
		Ni	13.00 -14.00	13.81	13.74	13.45	13.71	13.77	13.96	13.73	13.74	13.46	13.85	13.60	13.75
		S	≦0.010	0.004	0.004	0.003	0.002	0.002	0.004	0.002	0.005	0.004	0.002	0.003	0.003
		Р	0.015	0.031	0.030	0.028	0.025	0.028	0.025	0.031	0.030	0.020	0.024	0.029	0.030
		Mn	1.40 -2.00	1.78	1.74	1.72	1.82	1.91	1.82	1.55	1.64	1.97	1.88	1.86	1.65
		Si	0.60 -1.00	0.93	0.92	0.78	0.78	0.80	0.81	0.78	0.84	0.72	0.83	0.75	0.85
		С	0.04 -0.08	0.048	0.047	0.054	0.056	0.056	0.054	0.054	0.063	0.053	0.055	0.060	0.060
	/		仕様範囲		55MS	60MK	60MS1 (わげ ブ ラスト無)	60MS2	56JS	LRK004	0301	N301	2048010 (S1)	1035341 (K1)	1033301 (K2)

温度	$1/2 \cdot S_u^{RT}$	$3/4 \cdot S_y^{RT}$	$1/2 \cdot S_u^{HT}$	$3/4 \cdot S_y^{HT}$	S _m
(°C)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
$20 \sim 65$	348	469	348	469	348
75	348	469	346	469	346
100	348	469	340	465	340
150	348	469	326	450	326
175	348	469	319	441	319
200	348	469	313	432	313
225	348	469	308	423	308
250	348	469	303	415	303
275	348	469	300	408	300
300	348	469	297	402	297
325	348	469	295	398	295
350	348	469	294	394	294
375	348	469	293	390	293
400	348	469	292	387	292
425	348	469	291	384	291
450	348	469	289	381	289
475	348	469	287	377	287
500	348	469	284	371	284
525	348	469	279	363	279
550	348	469	273	354	273
575	348	469	265	342	265
600	348	469	256	328	256
625	348	469	244	311	244
650	348	469	231	291	231
675	348	469	216	268	216
700	348	469	199	243	199
725	348	469	180	216	180
750	348	469	161	189	161
775	348	469	141	159	141
800	348	469	121	131	121
825	348	469	102	103	102
850	348	469	86	79	79

表2時間に依存しない設計応力強さ(S_m)

※グレーの箇所は、 $1/2 \cdot S_u^{RT}$ 、 $3/4 \cdot S_y^{RT}$ 、 $1/2 \cdot S_u^{HT}$ 、 $3/4 \cdot S_y^{HT}$ の中での最小値(S_m の値)。

3000h	408	374	39	3														
			ĉ	30	265	225	184	143	106	LL	58	44	34	26	18			
18000h	418	385	350	315	278	240	200	159	120	88	65	49	38	29	22			
10000h	430	397	364	329	294	256	217	177	137	102	75	56	43	34	26	18		
3000h	453	422	390	358	324	289	253	215	175	136	102	76	57	44	35	27	20	
1000h	466	445	414	383	351	318	284	248	211	172	134	101	76	58	45	35	28	20
300h	466	463	440	410	380	349	316	283	248	212	175	138	105	79	61	47	37	29
100h	466	463	460	434	405	376	345	314	281	247	212	176	140	107	81	63	49	39
30h	466	463	460	454	433	405	376	346	316	284	252	218	183	147	115	88	89	53
10h	466	463	460	454	447	431	403	375	346	317	286	255	222	188	153	121	83	72
Зh	466	463	460	454	447	437	425	406	379	351	323	293	263	231	199	165	133	104
1h	466	463	460	454	447	437	425	410	391	370	345	318	289	258	226	194	164	137
	425°C	450°C	475°C	500°C	525°C	550°C	575°C	000°C	625°C	650°C	675°C	700°C	725°C	750°C	775°C	800°C	825°C	850°C

(S_t)
5設計応力強さ
時間に依存する
表 3

筧出した	係数	最谪値	95%信頼区間					
FH OTC	11.34		上限值	下限值				
	A_{t}	1.95	12.0	0.315				
	n_{t}	1.90						
1 次クリープ	Q_{t}	1.12×10^{4}						
ひずみ	Α _γ	5. 20×10^7	2. 56 $\times 10^{8}$	1.06×10^{7}				
	n _v	2.63	_	_				
	Q_{γ}	$3.38 imes 10^4$	_	_				
	A_{s}	3.10×10^8	9.96 $\times 10^{8}$	9. 65×10^{7}				
2次クリープ ひずみ	ns	3.34						
	Q_{s}	4.24×10^4						

表4 回帰分析で算出した熱クリープひずみ式の係数

算出した係数		最適近似式*1	上限式**2	下限式**3
1 次クリープ ひずみ	At	1.95	12.0	0.315
	n_{t}	1.90	同左	同左
	Q_{t}	1.12×10^{4}	同左	同左
	Α _γ	5. 20×10^7	同左	同左
	n _y	2.63	同左	同左
	Q_{γ}	3.38×10^4	同左	同左
2 次クリープ ひずみ速度	As	3.10×10^8	同左	9. 65×10^7
	n _s	3. 34	同左	同左
	$Q_{\rm s}$	4. 24×10^4	同左	同左

表5 熱クリープひずみ式の平均、上下限用の係数

※1 ただし、1次クリープひずみの飽和値(ε_t)の上限値は 0.235 とし、計算値がこれを超えた場合、0.235 を用いることとする。

※2 ただし、 ε_tの上限値は 0.656 とし、計算値がこれを超えた場合、0.656 を用いることと する。

※3 ただし、 εtの上限値は 0.0279 とし、計算値がこれを超えた場合、0.0279 を用いることとする。

図1 本評価で用いた SUS316 相当鋼の引張試験データと各温度での平均値(0.2%耐力)

図2本評価で用いた SUS316相当鋼の引張試験データと各温度での平均値(引張強さ)

図3 0.2%耐力(引張試験データ)とSyとの比較

図4 引張強さ(引張試験データ)とSuとの比較

図5 時間に依存しない設計応力強さ(S_m)、 (a) S_mの温度依存性、(b) 1/2・S_u^{RT}、3/4・S_y^{RT}、1/2・S_u^{HT}及び3/4・S_y^{HT}の温度依存性比較

図 6 高速中性子照射量と 0.2%耐力の関係 (灰色印:ラッパ管、白色印:材料照射被覆管、黒色印:燃料ピン照射被覆管)

図7 高速中性子照射量と引張強さの関係 (灰色印:ラッパ管、白色印:材料照射被覆管、黒色印:燃料ピン照射被覆管)

図8 σ_y^*/σ_y とLMPの関係

図9 $\sigma_{u}^{*}/\sigma_{u}$ とLMPの関係

図 10 照射材の 0.2%耐力と照射条件における Sy*の関係

図 11 照射材の引張強さと照射条件における Su*の関係

(BM) 代為当時

図 13 炉外大気中/Ar 中クリープ破断試験データの回帰曲線

図14 クリープ破断予測比

図 15 S_Rと炉外大気中/Ar 中クリープ破断試験データの比較(600~750°C) 低温、高応力条件で S_Rの計算値が設計引張強さ S_uを上回る場合には、S_R=S_uとしている。

図 16 S_Rと炉外大気中/Ar 中クリープ破断試験データの比較(800~900°C) 低温、高応力条件で S_Rの計算値が設計引張強さ S_uを上回る場合には、S_R=S_uとしている。

図 17 破断時間と St の関係 低温、高応力条件で SR の計算値が設計引張強さ Su を上回る場合には、St=0.8·Su としている (破線部)。

図 19 炉外 Na 中クリープ強度式

図 22 2 次クリープひずみ速度の応力依存性(650℃)

図 23 2 次クリープひずみ速度の応力依存性(700℃)

図 24 2 次クリープひずみ速度の応力依存性(750℃)

図 25 2 次クリープひずみ速度の応力依存性(800~1000℃)

図 26 (*dɛ/dt*)/σ^{3.34}の 1/(T+273.15) 依存性(650~900°C)

図 27 1 次クリープひずみの飽和値 (ϵ_t) の応力依存性

図 28 *ε t*/σ^{1.90}の1/(T+273.15)依存性(650~900°C)

図 29 1 次クリープひずみの飽和値(*ε_t*) 平均値と上下限値(650~900℃)

図 31 $\gamma / \sigma^{2.63} O 1 / (T+273.15)$ 依存性 (650~900°C)

付録1 炉外高温引張試験データー覧

燃料被覆管材については、被覆管の両端に治具を固定することで、大気中で管軸方向への引張 試験を実施した[e.g.,1]。ラッパ管材の引張試験は、JIS G0567 に準拠して実施した。試験片形状 の例を図 A1-1 に示す[2]。試験データー覧を表 A1 に示す。

参考文献

- [1] 飯塚昇司、吉田英一、加納茂機、二瓶勲,高速炉用改良 SUS316 ステンレス鋼燃料被覆管の 高温材料強度データ集, PNC TN9450 88-004, 1988, 140p.
- [2] Y. Yano, T. Tanno, Y. Sekio, H. Oka, S. Ohtsuka, T. Uwaba, T. Kaito, Tensile properties and hardness of two types of 11Cr-ferritic/martensitic steel after aging up to 45,000 h, Nucl. Mater. Energy Vol. 9, 2016, pp. 324-330.

図 A1-1 ラッパ管引張試験片形状の例[2]

		• • • • •	• • • • • • • • • • • • • • • • • • • •	2 - 1 - 7		
武士	细插	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
7121人	<u> </u>	(°C)	(MPa)	(MPa)	(%)	(%)
被覆管単軸	60MS	20	721.0	797.0	9.0	15.8
被覆管単軸	60MS	20	716.0	797.0	8.9	16.0
被覆管単軸	60MS	20	715.0	796.0	9.4	16.8
被覆管単軸	60MK	20	694.0	794.0	9.4	16.4
被覆管単軸	60MK	20	698.0	797.0	9.9	17.0
被覆管単軸	60MK	20	694.0	795.0	9.9	16.8
被覆管単軸	55MK(K9311)	20	671.1	821.0	7.4	13.5
被覆管単軸	55MK(K9311)	20	666.1	813.7	7.6	13.6
被覆管単軸	54MS	20	743.3	796.3		17.0
被覆管単軸	55MK	20	650.2	795.3		16.0
被覆管単軸	55MK	20	647.2	799.2		14.6
被覆管単軸	55MK	20	699.2	811.0		15.9
被覆管単軸	55MK	20	672.7	809.0		18.2
被覆管単軸	55MK	20	645.3	803.2		13.6
被覆管単軸	55MK	20	688.4	817.9		17.2
被覆管単軸	55MK	20	682.5	814.0		13.8
被覆管単軸	55MK	20	665.9	808.1		15.6
被覆管単軸	55MK	20	647.2	819.8		15.0
被覆管単軸	55MK	20	654.1	823.8		15.1
被覆管単軸	55MS	20	741.4	790.4		20.2
被覆管単軸	55MS	20	740.4	789.4		19.4
被覆管単軸	55MS	20	711.0	800.2		18.2
被覆管単軸	55MS	20	744.3	805.1		19.1
被覆管単軸	55MS	20	740.4	807.1		18.1
被覆管単軸	56JS	20	721.8	827.7		14.4
被覆管単軸	56JS	20	705.1	842.4		14.8
被覆管単軸	56JS	20	708.0	828.7		16.6
被覆管単軸	56JS	20	750.2	843.4		15.0
被覆管単軸	56JS	20	739.4	841.4		17.0
被覆管単軸	54MS	20	724.7	769.8		16.0
被覆管単軸	54MS	20	728.6	775.7		16.0
被覆管単軸	54MS	20	743.3	804.1		14.0
被覆管単軸	54MS	20	723.7	770.8		15.0
被覆管単軸	54MS	20	744.3	816.9		16.2
被覆管単軸	54MS	20	730.6	795.3	_	17.0
被覆管単軸	54MS	20	757.1	814.0	_	16.7

表 A1 炉外引張試験結果一覧(1/9)

TT IN		試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
形状		(°C)	(MPa)	(MPa)	(%)	(%)
ラッパ管	lot 0301	20	706.8	787.8	14.7	28.3
ラッパ管	lot 0301	20	706.5	786.0	16.1	28.1
ラッパ管	lot 0301	20	714.6	782.2	15.7	26.7
ラッパ管	N301	20	672.7	740.4	—	26.0
ラッパ管	N301	20	704.1	763.0	—	19.0
ラッパ管	N301	20	672.7	735.5	—	26.0
ラッパ管	N301	20	677.6	749.2	—	30.0
ラッパ管	N301	20	676.7	738.4	—	26.0
ラッパ管	N301	20	658.0	744.3	—	27.0
ラッパ管	N301	20	671.8	735.5	—	26.0
ラッパ管	N301	20	696.3	758.1	—	18.0
ラッパ管	lot 0301	20	696.0	756.0	—	25.0
ラッパ管	lot 0301	20	703.0	757.0	—	22.0
ラッパ管	lot 0301	20	653.0	780.0	—	15.0
ラッパ管	lot 0301	20	659.0	780.0	—	15.0
ラッパ管	lot 0301	20	698.0	757.0	—	25.0
ラッパ管	lot 0301	20	701.0	756.0	—	24.0
ラッパ管	lot 0301	20	659.0	802.0	—	16.0
ラッパ管	lot 0301	20	639.0	770.0	—	15.0
ラッパ管	LRK004	20	700.2	756.1	—	22.0
ラッパ管	LRK004	20	664.9	738.4	—	24.0
ラッパ管	LRK004	20	684.5	759.0	—	22.0
ラッパ管	LRK004	20	667.8	747.3	—	25.0
ラッパ管	LRK004	20	682.5	755.1	—	25.0
ラッパ管	LRK004	20	673.7	745.3	_	25.0
被覆管単軸	2048010 (S1)	100	711.6	764.0	_	_
被覆管単軸	1035341 (K1)	100	697.0	762.5	_	_
被覆管単軸	1033301 (K2)	100	685.8	748.1		_
ラッパ管	lot 0301	100	664.4	720.5	1.8	11.9
ラッパ管	lot 0301	100	668.9	711.9	2.3	13.2
被覆管単軸	2048010 (S1)	200	690.4	732.4		
被覆管単軸	1035341 (K1)	200	671.8	725.6	_	_
被覆管単軸	1033301 (K2)	200	661.2	714.3	—	
ラッパ管	lot 0301	200	634.2	673.9	1.9	8.0
ラッパ管	lot 0301	200	668.9	711.9	2.3	13.2

表 A1 炉外引張試験結果一覧(2/9)

		衣 AI 別グ	·归版武阙福未	一見(3/9)		
玉卡	细插	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
ハシ1 入	到吗 1 里	(°C)	(MPa)	(MPa)	(%)	(%)
被覆管単軸	55MS	300	608.0	653.1	—	3.6
被覆管単軸	55MS	300	610.0	654.1	—	4.0
被覆管単軸	55MK	300	590.4	683.5	—	4.0
被覆管単軸	55MK	300	600.2	683.5	—	2.4
被覆管単軸	60MS	300	650.0	679.0	2.1	3.7
被覆管単軸	60MS	300	617.0	676.0	2.1	3.7
被覆管単軸	60MS	300	606.0	675.0	1.7	3.0
被覆管単軸	60MS	300	620.0	684.0	2.3	4.6
被覆管単軸	60MS	300	623.0	681.0	1.9	4.4
被覆管単軸	60MK	300	623.0	685.0	2.1	4.4
被覆管単軸	60MK	300	610.0	683.0	1.8	4.6
被覆管単軸	60MK	300	616.0	683.0	2.0	4.8
被覆管単軸	60MK	300	637.0	686.0	1.7	3.8
被覆管単軸	60MK	300	643.0	687.0	1.7	4.4
ラッパ管	lot 0301	300	611.2	656.7	2.6	6.5
ラッパ管	lot 0301	300	610.7	659.9	2.0	5.8
ラッパ管	lot 0301	300	626.7	675.7	2.2	5.9
被覆管単軸	55MK	400	550.2	683.5	—	5.0
被覆管単軸	55MK	400	555.1	687.4	—	5.6
被覆管単軸	55MS	400	613.9	668.8	—	5.2
被覆管単軸	55MS	400	612.9	665.9	—	5.2
被覆管単軸	56JS	400	618.8	689.4	—	4.0
被覆管単軸	56JS	400	611.9	696.3	—	4.0
被覆管単軸	54MS	400	609.0	659.0	—	4.7
被覆管単軸	54MS	400	616.8	670.8	—	4.5
被覆管単軸	2048010 (S1)	400	639.7	681.7	—	—
被覆管単軸	1035341 (K1)	400	619.1	691.0	—	—
被覆管単軸	55MK(K9311)	400	570.1	679.9	3.7	5.0
被覆管単軸	55MK(K9311)	400	580.7	680.0	3.2	4.4
被覆管単軸	60MS	400	592.0	676.0	2.7	6.8
被覆管単軸	60MS	400	592.0	674.0	3.9	5.8
被覆管単軸	60MS	400	592.0	671.0	3.5	5.4
被覆管単軸	60MS	400	605.0	668.0	3.5	5.2
被覆管単軸	60MS	400	583.0	675.0	3.3	5.8
被覆管単軸	60MK	400	607.0	673.0	4.1	6.0
被覆管単軸	60MK	400	603.0	667.0	4.0	4.6
被覆管単軸	60MK	400	608.0	674.0	4.1	5.4
被覆管単軸	60MK	400	609.0	669.0	3.0	5.6
被覆管単軸	60MK	400	608.0	671.0	3.1	5.8

表 A1 炉外引張試験結果一覧(3/9)

\mathbf{r}	表 A1	炉外引	張試験結果-	一覧	(4/9)
---	------	-----	--------	----	-------

王公十七	细種	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
7721入		(°C)	(MPa)	(MPa)	(%)	(%)
ラッパ管	lot 0301	400	572.5	655.6	4.9	8.2
ラッパ管	lot 0301	400	584.5	651.2	4.8	8.0
ラッパ管	lot 0301	400	589.1	659.2	3.9	7.5
ラッパ管	lot 0301	420	590.6	653.4	4.8	8.4
ラッパ管	lot 0301	430	584.2	645.4	4.3	7.7
ラッパ管	lot 0301	440	579.3	644.5	5.8	8.6
ラッパ管	lot 0301	450	579.6	646.5	4.5	7.6
ラッパ管	lot 0301	450	575.0	643.3	5.3	8.5
ラッパ管	lot 0301	450	578.8	645.7	4.7	8.1
ラッパ管	lot 0301	460	583.3	646.7	4.9	8.0
被覆管単軸	54MS	500	607.0	639.4	—	4.0
被覆管単軸	55MS	500	567.8	591.3	—	7.4
被覆管単軸	55MS	500	570.7	591.3	—	6.4
被覆管単軸	55MK	500	579.6	661.0	—	7.2
被覆管単軸	55MK	500	567.8	654.1		7.0
被覆管単軸	55MK	500	603.1	660.0	_	7.3
被覆管単軸	55MK	500	611.9	657.0	_	7.6
被覆管単軸	55MK	500	537.4	656.1	_	6.5
被覆管単軸	55MK	500	555.1	664.9	—	5.6
被覆管単軸	55MK	500	555.1	651.2	—	6.7
被覆管単軸	55MK	500	525.6	649.2	—	11.0
被覆管単軸	55MK	500	554.1	665.9	—	5.6
被覆管単軸	55MK	500	535.4	670.8	—	5.3
被覆管単軸	55MS	500	607.0	645.3		6.0
被覆管単軸	55MS	500	610.0	658.0		7.3
被覆管単軸	55MS	500	592.3	641.4		7.2
被覆管単軸	55MS	500	586.4	641.4	l	5.8
被覆管単軸	55MS	500	583.5	641.4	1	6.1
被覆管単軸	56JS	500	600.2	702.2	1	3.4
被覆管単軸	56JS	500	584.5	680.6	1	4.4
被覆管単軸	56JS	500	552.1	633.5		7.0
被覆管単軸	56JS	500	575.7	662.9		7.0
被覆管単軸	56JS	500	598.2	666.9		5.0
被覆管単軸	54MS	500	611.0	645.3		4.4
被覆管単軸	54MS	500	581.5	634.5		4.6
被覆管単軸	54MS	500	597.2	654.1		5.1
被覆管単軸	54MS	500	607.0	641.4	_	7.6
被覆管単軸	54MS	500	575.7	648.2	—	8.9
被覆管単軸	60MS	500	582.0	691.0	4.7	8.9
被覆管単軸	60MS	500	578.0	654.0	4.1	6.2
被覆管単軸	60MS	500	567.0	654.0	4.1	5.2
被覆管単軸	60MK	500	579.0	652.0	3.8	6.6
被覆管単軸	60MK	500	586.0	654.0	3.3	6.5
被覆管単軸	60MK	500	567.0	652.0	6.0	6.4

	御廷	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
形私	蚵性	(°C)	(MPa)	(MPa)	(%)	(%)
ラッパ管	lot 0301	500	571.5	632.7	7.0	10.0
ラッパ管	lot 0301	500	574.7	638.9	3.5	10.1
ラッパ管	lot 0301	500	593.8	646.6	3.7	11.2
ラッパ管	lot 0301	550	558.6	615.2	6.5	10.2
ラッパ管	lot 0301	550	542.7	617.3	5.7	8.5
ラッパ管	lot 0301	550	561.0	619.6	6.9	9.9
被覆管単軸	54MS	600	536.4	584.5	—	6.6
被覆管単軸	54MK	600	517.8	609.0	—	10.0
被覆管単軸	55MS	600	500.1	575.7	—	8.4
被覆管単軸	55MS	600	503.1	578.6	—	9.2
被覆管単軸	55MK	600	491.3	589.4	—	7.8
被覆管単軸	55MK	600	505.0	597.2	—	8.4
被覆管単軸	55MK	600	529.6	601.1	—	9.9
被覆管単軸	55MK	600	549.2	606.1	—	9.1
被覆管単軸	55MK	600	512.9	595.3	—	7.2
被覆管単軸	55MK	600	520.7	606.1	—	_
被覆管単軸	55MK	600	501.1	605.1	—	6.3
被覆管単軸	55MK	600	491.3	598.2	—	10.0
被覆管単軸	55MK	600	470.7	612.9	—	8.7
被覆管単軸	55MK	600	514.8	605.1	—	8.9
被覆管単軸	55MS	600	544.3	613.9	—	_
被覆管単軸	55MS	600	533.5	597.2	—	7.6
被覆管単軸	55MS	600	501.1	576.6	—	11.0
被覆管単軸	55MS	600	516.8	586.4	—	8.6
被覆管単軸	55MS	600	515.8	590.4	—	8.4
被覆管単軸	56JS	600	529.6	610.0	—	8.0
被覆管単軸	56JS	600	534.5	607.0	—	—
被覆管単軸	56JS	600	542.3	605.1	—	8.2
被覆管単軸	56JS	600	537.4	610.0	—	8.0
被覆管単軸	56JS	600	542.3	613.9	—	8.0
被覆管単軸	54MS	600	557.0	605.1	—	—
被覆管単軸	54MS	600	542.3	588.4	—	6.6
被覆管単軸	54MS	600	541.3	600.2	—	7.7
被覆管単軸	54MS	600	540.3	591.3	—	9.0
被覆管単軸	54MS	600	539.4	592.3	—	8.9
被覆管単軸	2048010 (S1)	600	545.8	598.4	—	—
被覆管単軸	1035341 (K1)	600	532.8	612.2	—	—
被覆管単軸	55MK(K9410)	600	482.7	594.3	5.6	7.7
被覆管単軸	55Mk(K9410)	600	498.3	595.7	5.6	7.3
被覆管単軸	60MS	600	520.0	598.0	4.6	7.3
被覆管単軸	60MS	600	507.0	591.0	4.5	8.2
被覆管単軸	60MS	600	513.0	591.0	3.1	9.0
被覆管単軸	60MK	600	521.0	595.0	4.1	6.6
被覆管単軸	60MK	600	529.0	590.0	3.9	7.5
被覆管単軸	60MK	600	530.0	594.0	4.4	5.9

表 A1 炉外引張試験結果一覧(5/9)

			们成时候而不	見(0/3)		
王公子	仰呑	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
ハシ1 入	<u> </u>	(°C)	(MPa)	(MPa)	(%)	(%)
ラッパ管	lot 0301	600	520.0	590.8	4.3	10.9
ラッパ管	lot 0301	600	519.3	592.0	7.3	11.4
ラッパ管	lot 0301	600	525.2	596.5	7.8	10.7
被覆管単軸	55MK	650	470.7	595.3	_	—
被覆管単軸	55MK	650	454.0	550.2	_	7.9
被覆管単軸	55MK	650	472.7	534.5	—	10.0
被覆管単軸	55MK	650	452.1	555.1	—	8.9
被覆管単軸	55MK	650	451.1	560.0	—	8.7
被覆管単軸	55MS	650	503.1	560.9	—	6.4
被覆管単軸	55MS	650	482.5	556.0	—	7.6
被覆管単軸	55MS	650	474.6	532.5	_	11.5
被覆管単軸	55MS	650	472.7	543.3	—	8.8
被覆管単軸	55MS	650	466.8	544.3	_	8.4
被覆管単軸	56JS	650	475.6	560.0	_	8.6
被覆管単軸	56JS	650	486.4	573.7	—	6.4
被覆管単軸	56JS	650	459.0	544.3	—	11.2
被覆管単軸	56JS	650	467.8	546.2	—	12.0
被覆管単軸	56JS	650	487.4	560.0	—	11.0
被覆管単軸	54MS	650	492.3	531.5	—	8.0
被覆管単軸	54MS	650	487.4	533.5	—	8.0
被覆管単軸	54MS	650	518.8	564.9	—	—
被覆管単軸	54MS	650	491.3	545.2	_	5.4
被覆管単軸	54MS	650	494.3	551.1	—	9.5
被覆管単軸	54MS	650	479.5	545.2	_	8.2
被覆管単軸	54MS	650	482.5	549.2	_	8.2
ラッパ管	lot 0301	650	471.2	550.7	4.9	12.4
ラッパ管	lot 0301	650	448.9	525.4	5.9	15.4
ラッパ管	lot 0301	650	451.0	530.6	5.8	15.4
ラッパ管	N301	650	456.0	504.1	—	13.0
ラッパ管	N301	650	459.9	526.6	—	11.0
ラッパ管	N301	650	457.0	507.0	_	13.0
ラッパ管	N301	650	444.2	522.7	—	13.0
ラッパ管	N301	650	451.1	504.1	_	14.0
ラッパ管	N301	650	440.3	519.8	_	12.0
ラッパ管	N301	650	442.3	501.1	—	13.0
ラッパ管	N301	650	445.2	530.5		11.0
ラッパ管	LRK004	650	477.6	533.5	—	11.0
ラッパ管	LRK004	650	502.1	557.0		10.0
ラッパ管	LRK004	650	492.3	551.1		11.0
ラッパ管	LRK004	650	492.3	554.1		11.0
被覆管単軸	55MK	675	434.4	513.9		6.3
被覆管単軸	55MK	675	433.5	515.8	—	6.2

表 A1 炉外引張試験結果一覧(6/9)

<u>4</u> 4/хп	全国任	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
7124人	如何生	(°C)	(MPa)	(MPa)	(%)	(%)
ラッパ管	lot 0301	675	442.0	505.0	—	17.0
ラッパ管	lot 0301	675	432.0	494.0	—	20.0
ラッパ管	lot 0301	675	437.0	516.0	—	11.0
ラッパ管	lot 0301	675	450.0	519.0	—	12.0
ラッパ管	lot 0301	675	453.0	523.0	—	16.0
ラッパ管	lot 0301	675	450.0	518.0	—	17.0
ラッパ管	lot 0301	675	458.0	515.0	—	11.0
ラッパ管	lot 0301	675	456.0	508.0	—	12.0
被覆管単軸	54MS	700	392.3	474.6	—	14.4
被覆管単軸	54MK	700	376.6	470.7	—	13.6
被覆管単軸	55MS	700	368.7	463.9	—	6.0
被覆管単軸	55MS	700	390.3	466.8	—	7.2
被覆管単軸	55MK	700	376.6	465.8	—	15.8
被覆管単軸	55MK	700	386.4	479.5	—	13.4
被覆管単軸	55MK	700	372.7	470.7	—	18.2
被覆管単軸	55MK	700	373.6	472.7	—	14.2
被覆管単軸	55MK	700	369.7	463.9	_	10.3
被覆管単軸	55MK	700	397.2	511.9	_	9.2
被覆管単軸	55MK	700	373.6	468.8	_	7.1
被覆管単軸	55MK	700	335.4	447.2	_	15.4
被覆管単軸	55MK	700	401.1	505.0	_	10.8
被覆管単軸	55MK	700	383.4	478.6	—	13.5
被覆管単軸	55MS	700	440.3	499.2	_	8.4
被覆管単軸	55MS	700	407.0	477.6	_	13.4
被覆管単軸	55MS	700	371.7	436.4	—	21.6
被覆管単軸	55MS	700	420.7	493.3	—	10.4
被覆管単軸	55MS	700	414.8	493.3	—	10.4
被覆管単軸	56JS	700	394.2	491.3	—	15.8
被覆管単軸	56JS	700	441.3	511.9	—	9.0
被覆管単軸	56JS	700	363.8	459.0	—	22.1
被覆管単軸	56JS	700	371.7	459.9	—	27.0
被覆管単軸	56JS	700	375.6	459.9	—	28.0
被覆管単軸	54MS	700	419.7	489.4	—	7.0
被覆管単軸	54MS	700	409.9	472.7	_	7.6
被覆管単軸	54MS	700	394.2	466.8	_	19.4
被覆管単軸	54MS	700	391.3	477.6	—	14.0
被覆管単軸	54MS	700	428.6	478.6	—	11.2
被覆管単軸	2048010 (S1)	700	391.1	474.4	—	—
被覆管単軸	1035341 (K1)	700	384.8	478.7	—	—
被覆管単軸	55MK(K9410)	700	375.8	480.5	2.4	19.1
被覆管単軸	55MK(K9410)	700	373.5	477.8	2.4	17.0
被覆管単軸	60MS	700	395.0	418.0	0.8	10.6
被覆管単軸	60MS	700	387.0	418.0	1.0	9.7
被覆管単軸	60MS	700	399.0	433.0	1.0	12.4

表 A1	炉外引張試験結果-	−覧(8/9)

TZ 4 b	AT 17	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
形状	—————————————————————————————————————	(°C)	(MPa)	(MPa)	(%)	(%)
被覆管単軸	60MK	700	434.0	466.0	2.0	17.4
被覆管単軸	60MK	700	397.0	428.0	2.1	14.4
被覆管単軸	60MK	700	423.0	455.0	1.6	14.4
ラッパ管	lot 0301	700	393.1	465.1	3.2	23.0
ラッパ管	lot 0301	700	394.9	464.2	2.9	19.9
ラッパ管	lot 0301	700	385.9	464.0	2.8	20.3
被覆管単軸	55MK	750	345.2	414.8	—	12.0
被覆管単軸	55MK	750	290.3	379.5	—	15.0
被覆管単軸	55MK	750	281.5	353.0	—	28.1
被覆管単軸	55MK	750	294.2	391.3	—	23.0
被覆管単軸	55MK	750	290.3	390.3	-	20.2
被覆管単軸	55MS	750	359.9	420.7	—	13.6
被覆管単軸	55MS	750	315.8	396.2	—	21.7
被覆管単軸	55MS	750	293.2	363.8	-	29.1
被覆管単軸	55MS	750	316.8	406.0	-	19.3
被覆管単軸	55MS	750	320.7	413.8	_	17.1
被覆管単軸	56JS	750	320.7	392.3	_	21.6
被覆管単軸	56JS	750	352.1	418.7	1	17.0
被覆管単軸	56JS	750	288.3	358.9		25.3
被覆管単軸	56JS	750	292.2	376.6	1	41.0
被覆管単軸	56JS	750	302.0	376.6		35.0
被覆管単軸	54MS	750	375.6	415.8	—	12.4
被覆管単軸	54MS	750	325.6	382.5	_	12.8
被覆管単軸	54MS	750	316.8	383.4		32.9
被覆管単軸	54MS	750	338.3	404.0		21.6
被覆管単軸	54MS	750	329.5	401.1	1	19.6
ラッパ管	lot 0301	750	317.6	389.1	1.2	29.1
ラッパ管	lot 0301	750	315.2	391.7	1.3	31.7
ラッパ管	lot 0301	750	319.2	390.1	1.2	35.5
被覆管単軸	55MS	800	256.9	323.6	_	38.0
被覆管単軸	55MS	800	251.1	318.7	—	44.0
被覆管単軸	55MK	800	233.4	309.9	—	42.0
被覆管単軸	55MK	800	228.5	308.9	_	40.6
被覆管単軸	55MK	800	295.2	334.4	—	24.2
被覆管単軸	55MK	800	230.5	307.9	—	40.8
被覆管単軸	55MK	800	217.7	272.6	—	34.2
被覆管単軸	55MK	800	241.2	316.8	_	23.2
被覆管単軸	55MK	800	241.2	328.5	_	23.7
被覆管単軸	55MS	800	294.2	345.2	—	19.2
被覆管単軸	55MS	800	249.1	311.9	_	36.5
被覆管単軸	55MS	800	218.7	275.6	_	36.7
被覆管単軸	55MS	800	237.3	320.7	_	24.2
被覆管単軸	55MS	800	247.1	332.4	—	23.6

		X 11 /9 /1		元(0/0/		
玉卡	细插	試験温度	0.2%耐力	引張強さ	一様伸び	破断伸び
ハシ1 入	到吗?里	(°C)	(MPa)	(MPa)	(%)	(%)
被覆管単軸	56JS	800	224.6	260.9	—	_
被覆管単軸	56JS	800	287.3	351.1	—	20.0
被覆管単軸	56JS	800	218.7	284.4	—	29.0
被覆管単軸	56JS	800	238.3	300.1	—	39.0
被覆管単軸	56JS	800	234.4	302.0	—	50.0
被覆管単軸	54MS	800	297.1	325.6	—	16.2
被覆管単軸	54MS	800	264.8	318.7	—	16.0
被覆管単軸	54MS	800	242.2	311.9	—	33.4
被覆管単軸	54MS	800	258.9	324.6	—	26.3
被覆管単軸	54MS	800	247.1	318.7	—	34.9
被覆管単軸	60MS	800	274.0	281.0	0.5	15.4
被覆管単軸	60MS	800	283.0	297.0	0.5	18.0
被覆管単軸	60MS	800	262.0	269.0	0.9	18.0
被覆管単軸	60MS	800	260.0	269.0	0.5	12.3
被覆管単軸	60MS	800	259.0	272.0	0.6	13.5
被覆管単軸	60MK	800	277.0	283.0	0.3	23.1
被覆管単軸	60MK	800	229.0	268.0	1.0	18.0
被覆管単軸	60MK	800	269.0	285.0	0.4	17.0
被覆管単軸	60MK	800	277.0	285.0	0.5	18.2
被覆管単軸	60MK	800	285.0	291.0	0.5	17.6
ラッパ管	lot 0301	800	255.7	318.6	1.0	49.7
ラッパ管	lot 0301	800	257.1	322.3	0.8	36.2
ラッパ管	lot 0301	800	255.9	323.6	0.7	41.3
被覆管単軸	2048010 (S1)	850	180.9	245.6	—	_
被覆管単軸	1035341 (K1)	850	173.3	241.8	—	_
被覆管単軸	1033301 (K2)	850	181.1	247.9	—	-
ラッパ管	lot 0301	850	204.3	262.9	0.6	52.7
ラッパ管	lot 0301	850	197.9	267.0	0.7	57.3
ラッパ管	lot 0301	850	204.2	263.7	0.6	51.9
被覆管単軸	2048010 (S1)	900	124.7	184.2	—	_
被覆管単軸	1035341 (K1)	900	123.7	187.1	—	_
被覆管単軸	1033301 (K2)	900	126.8	189.3		_
ラッパ管	lot 0301	900	155.2	208.4	0.6	59.4
ラッパ管	lot 0301	900	152.4	210.8	0.7	60.8
ラッパ管	lot 0301	900	152.8	210.4	0.7	65.6

表 A1 炉外引張試験結果一覧(9/9)

付録2 照射後引張試験データー覧

炉外高温引張試験(付録-1)と同様に、被覆管の単軸引張試験については、被覆管の両端に治 具を固定することで、大気中で管軸方向への引張試験を実施した。ラッパ管材の引張試験は、JIS G0567に準拠して実施した。試験データの一覧を表 A2 に示す。

表 A2 照射後引張試験データ (1/3)

照射炉	形状	鋼種	試験片 番号	照射温度 (℃)	高速中性子 照射量 (x10 ²⁶ n/m ² , E>0.1MeV)	照射時間 (h)	試験温度 (℃)	0.2%耐力 (MPa)	引張強さ (MPa)
「常陽」	燃料照射被覆管	55MK	E2512	392	5.7	10082.6	400	871.5	946.5
FFTF	燃料照射被覆管	60MK	XL08B1	393	12.5	21667.2	400	895.2	913.9
「常陽」	燃料照射被覆管	55MS	C7632	400	5.1	9670.3	400	857.2	921.3
「常陽」	燃料照射被覆管	55MS	83482	400	2.4	4189.2	400	874.6	931.7
「常陽」	燃料照射被覆管	55MK	83472	403	2.6	4189.2	400	839.9	910.9
「常陽」	ラッパ管	LRK004	M2WI2E2	405	20.1	24463.9	400	856.2	901.9
「常陽」	ラッパ管	LRK004	M2WI2C6	409	18.9	24463.9	400	856.6	902.7
「常陽」	燃料照射被覆管	55MS	A4322	416	5.4	9483.4	400	805.1	895.5
「常陽」	燃料照射被覆管	55MS	A4232	417	5.4	9483.4	400	805.1	914.2
「常陽」	燃料照射被覆管	55MK	A4402	417	5.4	9483.4	400	879.4	915.3
「常陽」	燃料照射被覆管	55MK	A4222	417	5.5	9483.4	400	837.1	902.1
「常陽」	ラッパ管	LRK004	M2WI2A2	417	20.2	24463.9	420	839.3	881.3
「常陽」	燃料照射被覆管	55MS	98B22	425	3.0	4256.6	450	837.1	902.1
「常陽」	燃料照射被覆管	55MS	98B62	430	3.0	4256.6	450	804.0	890.0
「常陽」	ラッパ管	LRK004	M2WI4B6	431	19.1	24463.9	430	735.8	801.3
「常陽」	燃料照射被覆管	55MK	83473	436	3.7	4189.2	450	774.1	841.7
「常陽」	燃料照射被覆管	55MS	83483	437	3.5	4189.2	450	801.8	865.9
「常陽」	ラッパ管	N301	F5WH5A2	440	4.4	11482.5	440	637.7	722.9
「常陽」	ラッパ管	N301	F5WH5A1	440	4.6	11482.5	440	629.5	725.0
「常陽」	ラッパ管	N301	F5WH5B2	444	4.1	11482.5	440	605.4	695.4
「常陽」	ラッパ管	N301	F5WH5B1	444	4.1	11482.5	440	579.4	684.6
「常陽」	燃料照射被覆管	55MS	G35232	446	15.9	20081.0	450	757.9	824.4
「常陽」	ラッパ管	LRK004	M2WI4F6	449	22.2	24463.9	450	721.8	785.2
「常陽」	ラッパ管	LRK004	M2WI4C6	450	18.2	24463.9	450	729.9	786.0
「常陽」	ラッパ管	LRK004	M2WI4E1	453	22.2	24463.9	450	723.1	774.1
「常陽」	ラッパ管	N301	F5WH5C2	458	4.4	11482.5	460	619.0	707.2
「常陽」	ラッパ管	N301	F5WH5C1	458	4.4	11482.5	460	607.1	697.6
「常陽」	ラッパ管	N301	F5WH5E2	462	5.5	11482.5	460	621.0	730.8
「常陽」	ラッパ管	N301	F5WH5E1	462	5.5	11482.5	460	620.5	727.7
「常陽」	燃料照射被覆管	55MS	83484	471	4.1	4189.2	450	730.8	810.5
「常陽」	燃料照射被覆管	55MK	83474	474	4.3	4189.2	450	701.4	793.2

表 A2 照射後引張試験データ(2/3)

照射炉	形状	鋼種	試験片 番号	照射温度 (℃)	高速中性子 照射量 (x10 ²⁶ n/m ² , E>0.1MeV)	照射時間 (h)	試験温度 (℃)	0.2%耐力 (MPa)	引張強さ (MPa)
Phenix	材料照射被覆管	55MK	ZDB4B04	475	16.6	11448.0	500	590.4	669.8
「常陽」	燃料照射被覆管	55MK	E26341	484	9.1	10082.6	500	485.6	667.5
「常陽」	燃料照射被覆管	55MK	E27641	484	9.1	10082.6	500	561.6	649.9
「常陽」	燃料照射被覆管	55MS	C7634	485	8.4	9670.3	500	633.8	689.3
Phenix	材料照射被覆管	55MK	ZDB4B05	490	10.4	6576.0	500	585.5	688.4
Phenix	材料照射被覆管	55MK	ZDB4B06	490	7.7	4872.0	500	578.6	705.1
FFTF	燃料照射被覆管	60MK	XL07G1	495	20.9	21667.2	500	481.4	584.6
「常陽」	燃料照射被覆管	55MK	G3203A	496	17.6	20081.0	500	512.7	602.3
「常陽」	ラッパ管	LRK004	M2W15F6	497	15.5	24463.9	500	552.0	649.0
FFTF	燃料照射被覆管	60MS1(1)	XL10J1	499	20.7	21667.2	500	475.5	551.1
「常陽」	材料照射被覆管	60MS2	H6AU51	502	15.9	18622.6	500	496.4	597.5
「常陽」	ラッパ管	LRK004	M2WI5E6	508	15.3	24463.9	500	547.1	637.1
「常陽」	燃料照射被覆管	55MK	83476	517	4.5	4189.2	500	575.0	632.1
「常陽」	燃料照射被覆管	55MS	83486	518	4.4	4189.2	500	611.3	687.5
「常陽」	燃料照射被覆管	55MK	A4404	533	8.5	9483.4	550	523.5	614.6
「常陽」	燃料照射被覆管	55MS	A4324	534	8.4	9483.4	550	473.6	644.3
「常陽」	燃料照射被覆管	55MS	A4234	536	8.5	9483.4	550	469.2	638.8
「常陽」	燃料照射被覆管	55MK	A4224	539	8.6	9483.4	550	471.4	603.6
「常陽」	燃料照射被覆管	55MS	98B26	545	4.6	4256.6	550	546.3	650.9
「常陽」	燃料照射被覆管	55MS	C7636	547	4.4	9670.3	550	490.1	573.2
Phenix	材料照射被覆管	55MK	ZDB4B08	550	10.8	6576.0	550	513.9	617.8
Phenix	材料照射被覆管	55MK	ZDB4B09	550	8.0	4872.0	550	514.9	618.8
「常陽」	燃料照射被覆管	55MK	83477	553	4.3	4189.2	550	509.1	592.3
「常陽」	燃料照射被覆管	55MS	83487	554	4.2	4189.2	550	536.9	611.3
「常陽」	材料照射被覆管	60MK	C5AT9	569	3.9	3851.5	550	488.4	582.5
「常陽」	材料照射被覆管	60MK	F7AT81	569	15.5	14399.3	550	404.3	539.1
「常陽」	材料照射被覆管	60MK	L9AT7	569	25.0	23806.7	570	359.6	522.5
Phenix	材料照射被覆管	55MK	ZDB4B10	570	18.5	11448.0	550	429.5	547.2
「常陽」	燃料照射被覆管	55MS	98B66	580	4.6	4256.6	600	487.9	545.2
「常陽」	燃料照射被覆管	55MK	83478	583	3.6	4189.2	600	457.2	514.3
「常陽」	燃料照射被覆管	55MS	83488	585	3.5	4189.2	600	481.4	536.9

表 A2 照射後引張試験データ (3/3)

照射炉	形状	鋼種	試験片 番号	照射温度 (℃)	高速中性子 照射量 (x10 ²⁶ n/m ² , E>0.1MeV)	照射時間 (h)	試験温度 (℃)	0.2%耐力 (MPa)	引張強さ (MPa)
「常陽」	材料照射被覆管	60MS2	C5AU9	589	3.9	3851.5	600	445.2	501.1
「常陽」	材料照射被覆管	60MS2	F7AU81	589	15.2	14399.3	600	342.0	503.2
「常陽」	材料照射被覆管	60MS2	L9AU7	589	24.3	23806.7	600	329.2	496.6
「常陽」	燃料照射被覆管	55MS	98B28	590	2.7	4256.6	600	473.6	537.5
Phenix	材料照射被覆管	55MK	ZDB4B11	595	9.8	6576.0	600	426.6	502.1
Phenix	材料照射被覆管	55MK	ZDB4B12	595	7.3	4872.0	600	445.2	513.9
「常陽」	燃料照射被覆管	55MS	98B68	595	2.8	4256.6	600	447.2	510.0
「常陽」	燃料照射被覆管	55MS	83489	603	2.6	4189.2	600	472.8	523.0
「常陽」	燃料照射被覆管	55MK	83479	605	2.7	4189.2	600	443.3	500.5
FFTF	燃料照射被覆管	60MK	XL07Q1	611	19.5	21667.2	600	322.2	470.5
Phenix	材料照射被覆管	55MK	ZDB4B13	615	15.3	11448.0	600	349.1	458.0
「常陽」	燃料照射被覆管	55MS	A4327	625	5.0	9483.4	650	360.2	422.9
「常陽」	燃料照射被覆管	55MS	A4237	626	5.0	9483.4	650	369.0	422.9
「常陽」	燃料照射被覆管	55MK	A4408	627	5.0	9483.4	650	344.7	407.5
「常陽」	材料照射被覆管	60MK	L9AT4	628	23.6	23806.7	630	275.0	427.0
「常陽」	材料照射被覆管	60MK	C5AT6	628	4.0	3851.5	650	350.1	400.1
「常陽」	材料照射被覆管	60MK	F7AT51	628	14.7	14399.3	650	280.8	414.4
「常陽」	燃料照射被覆管	55MK	A4227	630	5.1	9483.4	650	334.8	398.7
FFTF	燃料照射被覆管	60MK	XL07T1	633	9.0	21667.2	650	280.8	409.9
「常陽」	材料照射被覆管	60MK	D9ZT9	643	4.0	5978.4	650	318.7	448.2
「常陽」	材料照射被覆管	60MS2	D9ZU9	643	4.0	5978.4	650	312.8	449.1
Phenix	材料照射被覆管	55MK	ZDB4B17	650	4.9	6576.0	650	313.8	362.9
Phenix	材料照射被覆管	55MK	ZDB4B18	650	3.6	4872.0	650	327.5	379.5
「常陽」	材料照射被覆管	60MS2	C5AU3	709	4.0	3851.5	700	248.1	269.7
「常陽」	材料照射被覆管	60MS2	F7AU21	709	15.5	14399.3	700	205.5	279.7
「常陽」	材料照射被覆管	60MS2	H6AU11	709	20.6	18622.6	700	198.8	269.6
「常陽」	材料照射被覆管	60MK	D9ZT7	709	4.0	5978.4	700	234.4	328.5
「常陽」	材料照射被覆管	60MS2	D9ZU7	709	4.0	5978.4	700	219.7	320.0
「常陽」	材料照射被覆管	60MK	L9AT1	734	23.2	23806.7	730	169.0	254.0
「常陽」	材料照射被覆管	60MK	C5AT3	734	3.8	3851.5	740	199.1	215.8
「常陽」	材料照射被覆管	60MK	F7AT21	734	14.9	14399.3	750	165.1	220.1

付録3 炉外クリープ破断強度データ一覧

1. データ取得方法

内圧クリープ試験及び板状クリープ試験により SUS316 相当鋼被覆管の炉外クリープ破断試験 データを取得した。内圧クリープ破断試験は、大気中において試験片を目標温度に加熱し、Ar ガ スによる導入内圧により一定応力を保持し、破断に至るまでの時間を計測した。本試験は、高速 炉用燃料被覆管の試験手法として定められた「高速炉燃料被覆管の内圧クリープ破断試験要領」 に基づき実施された[1-3]。

板状クリープ試験は、Ar ガス雰囲気中で図 A3-1 に示す試験片を用い、JIS Z 2271 に準拠して 実施した。20%冷間加工した SUS316 相当鋼板材から、応力負荷方向が圧延方向に対して垂直にな るよう試験片を採取した(T 方向材)。

図 A3-1 板状クリープ試験片の形状

2. 炉外クリープ強度データ

内圧クリープ試験及び板状クリープ試験により取得した SUS316 相当鋼被覆管の炉外クリープ 破断試験データ(試験温度:600~900℃)の一覧を表 A3 に示す。

参考文献

- [1] 飯塚昇司、吉田英一、加納茂機、二瓶勲,高速炉用改良 SUS316 ステンレス鋼燃料被覆管の 高温材料強度データ集, PNC TN9450 88-004, 1988, 140p.
- [2] FBR 材料専門委員会クリープサブグループ(田中千秋),高速炉用燃料被覆管のクリープ試験 (第12次クリープ試験), PNC TN241 83-19, 1983, 83p.
- [3] FBR 材料専門委員会クリープサブグループ(田中千秋),高速炉用燃料被覆管のクリープ試験 (第13次クリープ試験), PNC TN241 85-02, 1984, 95p.

試験方法	内圧クリープ	ЧĒ	ЧĒ	上回	同上	丁凷	上回	上回	山口	ЧĒ	日上	上回	ЧĒ	上回	丁国	ЧĒ	上回	ゴ回	上回	上回	ゴ回	山口	同上	日上	日上	日上	同上	日上	同上	日上	上回
破断時間 (hr)	146.5	390.1	577.2	1440.0	1726.0	1439.5	2893.0	1544.1	2050.5	3893.8	417.0	540.0	1271.0	3402.0	1239.1	2230.4	4258.6	11575.0	223.3	364.6	1478.9	5234.9	88.9	274.2	980.3	2847.5	3416.2	1287.0	8317.2	1526.0	1738.0
相当応力 (MPa)	411.1	383.0	354.2	334.6	333.8	263.3	229.3	272.6	256.5	228.5	315.1	293.0	257.3	213.2	223.4	195.3	152.9	117.2	250.5	212.3	163.1	114.7	273.5	224.2	178.3	144.4	118.9	152.9	84.9	152.9	152.9
周方向試験応力 (MPa)	474.6	442.3	408.9	386.4	385.4	304.0	264.8	314.8	296.2	263.8	363.8	338.3	297.1	246.1	257.9	225.6	176.5	135.3	289.3	245.2	188.3	132.4	315.8	258.9	205.9	166.7	137.3	176.5	98.1	176.5	176.5
試験温度 (℃)	009	009	009	600	600	650	650	650	650	650	650	650	650	650	675	675	675	675	700	700	700	700	700	700	700	700	700	700	700	700	700
錮種	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK

表 V3 SUS316 相当鋼の高温クリープ破断試験結果一覧(1/6)

	試験方法	ピーしく王内	日上	ЧĒ	日上	日上	同上	日上	日上	同上	同上	日上	上回	同上	同上	て回	ЧШ	日上	日上	同上	子国	日上	同上	日上	同上	日上	同上	同上	子国	
吉果一覧 (2/6)	破断時間 (hr)	83.0	147.0	325.0	875.0	130.6	293.7	1482.9	26.8	294.3	1030.1	64.3	243.0	596.0	2690.0	174.0	539.1	507.5	2740.0	2725.7	2843.8	1054.2	1816.9	4884.9	423.0	601.0	1280.0	2506.0	7501.1	23222.0
リープ破断試験	相当応力 ^(MPa)	163.9	136.7	119.7	104.5	152.9	119.7	81.5	207.2	141.8	103.6	180.0	146.9	114.7	76.4	402.6	377.9	351.6	330.4	331.2	229.3	272.6	245.4	218.3	321.9	290.5	253.1	221.7	152.9	117.2
JS316 相当鋼の高温ク	周方向試験応力 (MPa)	189.3	157.9	138.3	120.6	176.5	138.3	94.1	239.3	163.8	119.6	207.9	169.7	132.4	88.3	464.8	436.4	406.0	381.5	382.5	264.8	314.8	283.4	252.0	371.7	335.4	292.2	256.0	176.5	135.3
表 A3 SU	試験温度 (°C)	750	750	750	750	750	750	750	750	750	750	750	750	750	750	009	600	600	600	600	650	650	650	650	650	650	650	650	675	675
	鋼種	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MK	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS	55 MS

(9/6) 馰 がてけいにきか 眠分 公士 田 CI10010 0

錭種	試験温度 (°C)	周方向試験応力 (MPa)	相当応力 (MPa)	破断時間 ^(hr)	試験方法
55 MS	200	289.3	250.5	181.2	内圧クリープ
55 MS	700	245.2	212.3	454.7	山口
55 MS	700	188.3	163.1	1596.5	山口
55 MS	700	132.4	114.7	4490.9	日上
55 MS	700	311.9	270.1	126.0	「山口」
55 MS	700	256.0	221.7	366.7	上回
55 MS	700	212.8	184.3	1020.8	日上
55 MS	700	174.6	151.2	2135.5	上回
55 MK	700	98.1	84.9	19846.7	山上
55 MS	750	186.3	161.4	70.0	王国
55 MS	750	155.9	135.0	127.0	目上
55 MS	750	137.3	118.9	391.0	日上
55 MS	750	112.8	97.7	885.0	日上
55 MS	750	176.5	152.9	140.0	上回
55 MS	750	138.3	119.7	389.5	同上
55 MS	750	94.1	81.5	1329.9	同上
55 MS	750	201.0	174.1	84.7	同上
55 MS	750	163.8	141.8	419.6	同上
55 MS	750	106.9	92.6	1919.6	山上
55 MS	750	205.9	178.3	96.8	山上
55 MS	750	168.7	146.1	280.2	同上
55 MS	750	121.6	105.3	1100.7	山口
55 MS	750	87.3	75.6	2689.2	山上
54MS	009	440.3	381.3	245	子自
54MS	600	408.9	354.2	1315.3	同上
54MS	600	383.4	332.1	2102.8	同上
54MS	650	377.6	327.0	179	王国
54MS	650	345.2	298.9	354	同上
54MS	650	283.4	245.4	1131	同上
54MS	650	252.0	218.3	2459	同上
54MS	650	364.8	315.9	336.1	同上
54MS	650	347.2	300.6	640.7	同上
54MS	650	313.8	271.8	1153	十回

(3/6)
プ破断試験結果一覧(
7 J – (I 4
3相当鋼の高温、
SUS316
表 A3

表 V3 SUS316 相当鋼の高温クリープ破断試験結果一覧(4/6)

鍋種	試験温度 (°C)	周方向試験応力 (MPa)	相当応力 (MPa)	破 断 時 間 (hr)	試験方法
54MS	002	296.2	256.5	128.5	ピーしく王内
54MS	700	245.2	212.3	293	山口
54MS	700	195.2	169.0	999.8	山口
54MS	700	148.1	128.2	2840.9	同上
54MS	700	295.2	255.6	137.7	同上
54MS	700	225.6	195.3	710.8	同上
54MS	700	166.7	144.4	2338.8	同上
54MS	750	189.3	163.9	88	丁旦
54MS	750	138.3	119.7	281	同上
54MS	750	138.3	119.7	480	百上
54MS	750	106.9	92.6	1711	上回
54MS	750	188.3	163.1	96.3	上回
54MS	750	138.3	119.7	380.2	山口
54MS	750	101.0	87.5	1261.1	百上
54MS	750	68.6	59.4	4539.5	同上
54MS	750	201.0	174.1	112.9	同上
54MS	750	156.9	135.9	368.8	同上
54MS	750	113.8	98.5	831	上回
54MS	750	68.6	59.4	3970.2	山口
54MS	750	68.6	59.4	4244.5	山口
54MS	750	210.8	182.6	76.5	同上
54MS	750	145.1	125.7	558.8	同上
54MS	750	125.5	108.7	887.2	同上
54MS	750	68.6	59.4	6600.7	同上
56JS	009	489.4	423.8	141.9	丁旦
56JS	600	438.4	379.6	381.5	同上
56JS	600	403.1	349.1	558.5	日上
56JS	600	382.5	331.2	2171.2	上回

表 V3 SUS316 相当鋼の高温クリープ破断試験結果一覧 (5/6)

錮種	試験温度 (°C)	周方向試験応力 (MPa)	相当応力 (MPa)	破断時間 ^(hr)	試験方法
56JS	650	360.88472	312.5	185.3	内圧クリープ
56JS	650	288.31551	249.7	1056.4	同上
56JS	650	253.01157	219.1	2516.4	同上
56JS	650	381.478685	330.4	126	同上
56JS	650	354.020065	306.6	474	同上
56JS	650	323.61945	280.3	725	同上
56JS	650	251.05024	217.4	2501	同上
26JS	002	313.8128	271.8	53	子国
56JS	700	263.798885	228.5	151.5	上回
56JS	700	205.93965	178.3	589.3	上回
56JS	700	165.732385	143.5	1327.2	同上
56JS	700	313.8128	271.8	76.7	同上
56JS	700	264.77955	229.3	241.7	上回
56JS	700	205.93965	178.3	710	同上
56JS	700	161.809725	140.1	2311	同上
56JS	750	178.48103	154.6	68	子国
56JS	750	143.17709	124.0	226	同上
56JS	750	107.87315	93.4	471	同上
56JS	750	94.14384	81.5	1721	山上
56JS	750	176.5197	152.9	110.8	同上
56JS	750	137.2931	118.9	295.7	同上
56JS	750	107.87315	93.4	571.4	同上
56JS	750	231.43694	200.4	30.8	同上
56JS	750	187.307015	162.2	82	同上
56JS	750	144.157755	124.8	433.5	同上
56JS	750	122.583125	106.2	854.9	同上
56JS	750	205.93965	178.3	66.9	同上
56JS	750	171.616375	148.6	174.5	同上
56JS	750	117.6798	101.9	1192.8	同上
56JS	750	84.33719	73.0	4293.3	上回

JAEA-Technology 2024-009

表 V3 SUS316 相当鋼の高温クリープ破断試験結果一覧(6/6)

錮種	試験温度 (°C)	周方向試験応力 ^(MPa)	相当応力 (MPa)	破断時間 ^(hr)	試験方法
55MS	816	29.42	25.5	7221	内圧クリープ
55MK	816	29.42	25.5	10119.9	山口
55MK	816	29.42	25.5	7383	同上
55MS	852	19.613	17.0	5377	丁旦
55MS	852	19.613	17.0	5841.6	同上
55MK	852	19.613	17.0	6078	同上
55MK	852	19.613	17.0	6100	同上
0301	800	I	170.0	24.1	板状クリープ
0301	800	I	125.0	119.4	山口
0301	800	I	105.0	273.2	同上
0301	800	I	90.0	623.8	同上
0301	800	I	85.0	742.5	山口
0301	850	I	75.0	165.8	工国
0301	850	I	100.0	53.6	同上
0301	850	1	55.0	478.8	上回
0301	850	Ι	40.0	1088.5	同上
0301	006	I	75.0	11.8	丁旦
0301	006	I	50.0	49.4	日上
0301	006	I	40.0	103.1	同上
0301	900	I	30.0	399.5	同上

JAEA-Technology 2024-009

付録4 炉内外 Na 中クリープ破断データー覧

11			ソ ノ 1021月1日	氏線 アン・ク	
鋼種	試験片 番号	試験温度 (℃)	試験応力 (MPa)	相当応力 (MPa)	破幽
55 MK	K9334- 2	650	403.1	349.1	19
55 MK	K9333- 4	650	364.8	315.9	35
55 MK	K9333- 2	650	305.0	264 1	15

表 A4-1 炉外 Na 中内圧クリープ破断試験データ

環境	鋼種	試験片 番号	試験温度 (℃)	試験応力 (MPa)	相当応力 (MPa)	破断時間 (hr)
炉外Na	55 MK	K9334- 2	650	403.1	349.1	197.8
炉外Na	55 MK	K9333- 4	650	364.8	315.9	354.0
炉外Na	55 MK	K9333- 2	650	305.0	264.1	1517.9
炉外Na	55 MK	K9334- 6	650	263.8	228.5	1724.0
炉外Na	55 MK	K9333- 6	650	236.3	204.7	4870.2
炉外Na	55 MK	K9332- 5	650	236.3	204.7	3504.1
炉外Na	55 MK	K9335- 6	650	213.8	185.1	6795.9
炉外Na	55 MK	K9333- 5	650	213.8	185.1	6985.5
炉外Na	55 MK	K9334- 5	650	155.9	135.0	14506.0
炉外Na	55 MK	K9330- 5	650	403.1	349.1	29.0
炉外Na	55 MK	K9334- 1	675	283.4	245.4	648.5
炉外Na	55 MK	K9332- 3	675	255.0	220.8	1130.3
炉外Na	55 MK	K9333- 1	675	252.0	218.3	659.5
炉外Na	55 MK	K9335- 2	675	216.7	187.7	1837.4
炉外Na	55 MK	K9332-14	675	216.7	187.7	2376.0
炉外Na	55 MK	K9333-14	675	189.3	163.9	2593.0
炉外Na	55 MK	K9332- 1	675	188.3	163.1	4131.2
炉外Na	55 MK	K9334-14	675	159.8	138.4	5057.9
炉外Na	55 MK	K9330- 3	675	159.8	138.4	6402.1
炉外Na	55 MK	K9330- 2	675	156.9	135.9	7058.1
炉外Na	55 MK	K9330-16	675	156.9	135.9	6615.7
炉外Na	55 MK	K9335- 1	675	125.5	108.7	9509.7
炉外Na	55 MK	K9333-11	700	248.1	214.9	224.9
炉外Na	55 MK	K9335- 9	700	201.0	174.1	866.4
炉外Na	55 MK	K9332-12	700	156.9	135.9	2103.9
炉外Na	55 MK	K9334-10	700	156.9	135.9	1261.3
炉外Na	55 MK	K9332-11	700	138.3	119.7	1834.6
炉外Na	55 MK	K9332- 4	700	138.3	119.7	2377.2
炉外Na	55 MK	K9335- 9	700	119.6	103.6	3804.8
炉外Na	55 MK	K9330- 4	700	106.9	92.6	4948.3
炉外Na	55 MK	K9330-11	700	106.9	92.6	3874.3
環境	鋼種	試験片 番号	試験温度 (℃)	試験応力 (MPa)	相当応力 (MPa)	破断時間 (hr)
------	-------	-----------	-------------	---------------	---------------	--------------
炉外Na	55 MK	K9334- 8	700	69.6	60.3	12229.9
炉外Na	55 MS	S10201- 2	650	305.0	264.1	870.4
炉外Na	55 MS	S10206- 4	650	213.8	185.1	8090.7
炉外Na	55 MS	S10203- 1	650	213.8	185.1	11818.2
炉外Na	55 MS	S10201- 1	650	236.3	204.7	4103.3
炉外Na	55 MS	S10202- 1	650	263.8	228.5	2603.1
炉外Na	55 MS	S10203- 2	675	255.0	220.8	2120.2
炉外Na	55 MS	S10205- 2	675	216.7	187.7	2547.1
炉外Na	55 MS	S10205-15	675	216.7	187.7	3130.0
炉外Na	55 MS	S10202-14	675	192.2	166.5	4683.6
炉外Na	55 MS	S10203-14	675	192.2	166.5	3209.2
炉外Na	55 MS	S10205-14	675	159.8	138.4	7022.2
炉外Na	55 MS	S10206-14	675	159.8	138.4	8841.1
炉外Na	55 MS	S10201-15	675	156.9	135.9	7972.0
炉外Na	55 MS	S10202-15	675	156.9	135.9	6501.0
炉外Na	55 MS	S10202- 4	675	191.2	165.6	4245.7
炉外Na	55 MS	S10203- 4	675	159.8	138.4	8950.9
炉外Na	55 MS	S10201- 4	675	159.8	138.4	8422.5
炉外Na	55 MS	S10201- 6	675	156.9	135.9	9667.3
炉外Na	55 MS	S10202- 6	675	156.9	135.9	9660.3
炉外Na	55 MS	S10206- 5	675	125.5	108.7	17230.5
炉外Na	55 MS	S10202-12	700	248.1	214.9	240.0
炉外Na	55 MS	S10201-12	700	201.0	174.1	801.8
炉外Na	55 MS	S10205-10	700	156.9	135.9	1557.1
炉外Na	55 MS	S10201-13	700	138.3	119.7	2915.7
炉外Na	55 MS	S10205- 5	700	138.3	119.7	3613.0
炉外Na	55 MS	S10206-11	700	119.6	103.6	3831.4
炉外Na	55 MS	S10202- 5	700	119.6	103.6	3730.3
炉外Na	55 MS	S10205-11	700	106.9	92.6	5232.8
炉外Na	55 MS	S10202- 3	700	69.6	60.3	16035.9
炉外Na	55 MS	S10201- 3	700	69.6	60.3	13069.9

表 A4-2 炉外 Na 中内圧クリープ破断試験データ(続き)

理」本	匈廷	試験片	試験温度	試験応力	相当応力	破断時間	高速中性子照射量
		番号	(°C)	(MPa)	(MPa)	(hr)	$(\times 10^{26} n/m^2, E>0.1 MeV)$
炉内Na	55MK	ME26	605	327.6	283.7	309.3	0.50
炉内Na	55MK	ME25	605	309.9	268.4	393.6	0.62
炉内Na	55MK	ME24	605	299.1	259.0	560.0	0.87
炉内Na	55MK	MH11	605	260.0	225.2	4243.8	5.52
炉内Na	55MK	ME59	605	227.0	196.6	7608.2	9.05
炉内Na	55MK	MH10	605	220.0	190.5	10141.9	13.17
炉内Na	55MK	MH09	605	200.0	173.2	15169.4	19.36
炉内Na	55MK	ME31	670	178.5	154.6	2010.6	3.25
炉内Na	55MK	ME51	670	178.5	154.6	2663.8	3.17
炉内Na	55MK	ME30	670	158.9	137.6	2860.5	4.75
炉内Na	55MK	ME29	670	147.1	127.4	3610.1	6.00
炉内Na	55MK	MH23	670	127.5	110.4	5574.6	6.58
炉内Na	55MK	MH22	670	110.0	95.3	7985.0	9.82
炉内Na	55MK	MH21	670	100.0	86.6	14760	17.52-23.52
炉内Na	55MK	ME33	750	85.3	73.9	864.1	1.37
炉内Na	55MK	ME32	750	70.0	60.6	1301.2	2.12
炉内Na	55MS	MJ14	605	260.0	225.2	5263.0	5.90
炉内Na	55MS	M108	670	127.5	110.4	4898.0	5.52
炉内Na	55MS	M109	670	127.5	110.4	4678.0	5.24

表 A4-3 炉内 Na 中内圧クリープ破断試験データ

付録5

熱クリープ変形データー覧

被覆管単軸クリープ試験は図 A5-1 に示す試験片を用い、JIS Z 2271 に準拠して実施した。被 覆管の全長は 115 mm で、破断伸びは測定用の G.L. は 100 mm である。

板状クリープ試験は、Ar ガス雰囲気中で図 A5-2 に示す試験片を用い、JIS Z 2271 に準拠して 実施した。20%冷間加工した SUS316 相当鋼板材から、応力負荷方向が圧延方向に対して垂直にな るよう試験片を採取した(T 方向材)。

試験で取得した SUS316 相当鋼被覆管の変位-時間曲線(試験温度:650~1000℃)を解析して 求めたデータの一覧を表 A5 に示す。これらのデータは以下の手順で実測データから抽出した。以 下にデータ解析例(55MK、700℃、98 MPa)を例示しつつ示す。

・取得した変位-時間曲線から、弾性ひずみを差し引くことで熱クリープひずみ曲線とした。

- ・熱クリープひずみ曲線の傾きが最小となる点におけるクリープ変形速度(最小クリープひず み速度)を求めた(図 A5-3)。
- ・熱クリープひずみ曲線上の最小ひずみ速度の点を通り、傾きが最小クリープひずみ速度とする直線を引き、その切片を1次クリープひずみの飽和値(*ε*t)として算出した(図A5-3)。
- ・熱クリープひずみを表すクリープ構成式(第1項:1次クリープひずみ、第2項:2次クリープひずみ)として次式を用い、以下の通り1次クリープの係数γを算出した(図A5-4)。

 $\varepsilon_c = \varepsilon_t \cdot \{1 - \exp(-\gamma \cdot t)\} + (d\varepsilon/dt) \cdot t \qquad ------(1)$

ε_c:熱クリープひずみ [%,相当ひずみ]
 ε_t:1次クリープひずみの飽和値 [%,相当ひずみ]
 dε/dt:2次クリープひずみ速度(最小クリープひずみ速度) [%/h]
 t:時間 [h]

式(1)を展開し、次式を得た。

 $\exp(-\gamma \cdot t) = (\varepsilon_t + (d\varepsilon/dt) \cdot t - \varepsilon_c)/\varepsilon_t \qquad -----(2)$

上記で求めた $d\varepsilon/dt$ の値、 ε_t の値及び熱クリープひずみデータ(ε_c のt依存性データ)を式(2)に 代入し、回帰分析により、係数 γ の最適値を算出した。

図A5-5~14は650~900℃における熱クリープひずみ実験値と予測曲線を比較した図である。 650~850℃の温度範囲において、熱クリープひずみ式から算出される平均値は実測値とよく一致 している。また、特異的なクリープ曲線形状を示す実測データのごく初期を除き、熱クリープひ ずみデータが上下限内に包絡されている。

表 A5 熱クリープ変形データ (1/2)

껲呑	計酔ナ汁	試験温度	応力	破断時間	γ定数	1次クリープひずみ飽和値	最小クリープひずみ速度
動性	<u> </u>	(°C)	(MPa)	(h)	(1/h)	(%)	(%/h)
55MK	被覆管単軸クリープ	650	69	2154(未破断)	2.99.E-03	5.98.E-02	1.05E-05
55MK	被覆管単軸クリープ	650	98	2296(未破断)	2.12.E-03	7.70.E-02	4.48E-05
55MK	被覆管単軸クリープ	650	137	1995(未破断)	2.71.E-03	1.42.E-01	6.30E-05
55MK	被覆管単軸クリープ	650	177	1995(未破断)	2.46.E-03	1.96.E-01	1.11.E-04
55MK	被覆管単軸クリープ	650	216	2102(未破断)	1.10.E-02	3.84.E-01	2.17.E-04
55MK	被覆管単軸クリープ	650	255	1375.2	2.02.E-02	5.51.E-01	4.03.E-04
55MK	被覆管単軸クリープ	700	49	2011(未破断)	2.35.E-03	1.34.E-01	1.47E-05
55MK	被覆管単軸クリープ	700	69	2017(未破断)	2.70.E-03	1.68.E-01	3.62E-05
55MK	被覆管単軸クリープ	700	98	2011(未破断)	2.71.E-03	3.22.E-01	1.12.E-04
55MK	被覆管単軸クリープ	700	137	2011(未破断)	1.52.E-02	7.52.E-02	8.36.E-04
55MK	被覆管単軸クリープ	700	177	743.6	5.42.E-02	2.84.E-01	9.89.E-04
55MK	被覆管単軸クリープ	700	216	289.7	8.44.E-02	4.14.E-01	2.15.E-03
55MK	被覆管単軸クリープ	750	49	5106(未破断)	2.35.E-03	1.86.E-01	9.09E-05
55MK	被覆管単軸クリープ	750	69	4296.2	2.93.E-03	2.48.E-01	9.35E-05
55MK	被覆管単軸クリープ	750	98	2545.5	8.00.E-03	2.65.E-01	5.08.E-04
55MK	被覆管単軸クリープ	750	98	1056.4	3.18.E-02	2.24.E-01	1.67.E-03
55MK	被覆管単軸クリープ	750	137	302.6	1.73.E-01	8.91.E-02	3.70.E-03
55MK	被覆管単軸クリープ	750	137	209.7	1.42.E-01	2.61.E-01	4.62.E-03
55MK	被覆管単軸クリープ	750	177	70.7	1.94.E-01	1.38.E-01	1.13.E-02
55MS	被覆管単軸クリープ	650	69	2041(未破断)	2.01.E-03	3.81.E-02	1.51.E-05
55MS	被覆管単軸クリープ	650	98	2015(未破断)	2.65.E-03	9.24.E-02	2.38.E-05
55MS	被覆管単軸クリープ	650	137	2015(未破断)	2.11.E-03	1.70.E-01	5.23.E-05
55MS	被覆管単軸クリープ	650	177	2016(未破断)	3.45E-03	1.92.E-01	7.27E-05
55MS	被覆管単軸クリープ	700	49	2022(未破断)	2.88.E-03	3.65.E-02	1.27.E-05
55MS	被覆管単軸クリープ	700	69	2015(未破断)	2.09.E-03	6.63.E-02	2.80.E-05
55MS	被覆管単軸クリープ	700	98	2057(未破断)	2.62.E-03	1.79.E-01	6.54.E-05
55MS	被覆管単軸クリープ	700	137	2063(未破断)	3.08.E-03	1.94.E-01	1.52.E-04
55MS	被覆管単軸クリープ	750	49	3660(未破断)	4.38.E-03	1.08.E-01	6.95.E-05
55MS	被覆管単軸クリープ	750	69	3947.1	8.14.E-03	1.61.E-01	3.18.E-04
55MS	被覆管単軸クリープ	750	98	1124.2	2.62.E-02	5.68.E-02	2.13.E-03
55MS	被覆管単軸クリープ	750	98	747.3	4.85.E-02	3.76.E-02	2.59.E-03
55MS	被覆管単軸クリープ	750	137	241.4	8.03.E-02	1.64.E-01	2.78.E-03
55MS	被覆管単軸クリープ	750	137	136.9	1.69.E-01	2.79.E-02	9.31.E-03
55MS	被覆管単軸クリープ	750	177	37.3	3.70.E-01	1.40.E-01	2.71.E-02

			21		, , , , ,	,	
细插	封除士法	試験温度	応力	破断時間	γ定数	1次クリープひずみ飽和値	最小クリープひずみ速度
<u></u> 判判主	武殿 / 1 /云	(°C)	(MPa)	(h)	(1/h)	(%)	(%/h)
0301	板状クリープ	800	65	974.3(未破断)	3.06.E-02	6.44.E-01	1.22.E-03
0301	板状クリープ	800	85	742.5	8.16.E-02	4.07.E-01	3.67.E-03
0301	板状クリープ	850	40	1088.5	3.28.E-02	5.00.E-01	3.98.E-03
0301	板状クリープ	850	55	478.8	2.84.E-01	1.65.E-01	8.17.E-03
0301	板状クリープ	850	75	165.8	2.97.E-01	2.46.E-01	1.39.E-02
0301	板状クリープ	850	100	53.6	4.11.E-01	6.56.E-01	4.89.E-02
0301	板状クリープ	1000	30	7.1	4.63.E+00	1.43.E+00	3.27.E+00
0301	板状クリープ	800	90	623.8	7.63.E-02	4.13.E-01	4.11.E-03
0301	板状クリープ	800	105	273.2	2.41.E-01	2.22.E-01	1.03.E-02
0301	板状クリープ	800	125	119.4	2.85.E-01	3.81.E-01	1.29.E-02
0301	板状クリープ	800	170	24.1	8.86.E-01	2.67.E-01	5.73.E-02
0301	板状クリープ	900	30	399.5	3.53.E-01	5.91.E-01	1.35.E-02
0301	板状クリープ	900	40	103.1	1.33.E+00	4.14.E-01	2.10.E-02
0301	板状クリープ	900	50	49.4	6.40.E-01	2.73.E-01	5.02.E-02
0301	板状クリープ	900	75	11.8	4.60.E+00	2.08.E-01	2.72.E-01
0301	板状クリープ	1000	14	777.7	8.15.E-01	1.37.E-01	2.12.E-02
0301	板状クリープ	1000	18	378.3	7.43.E-01	3.59.E-01	4.91.E-02
0301	板状クリープ	1000	25	55.2	2.95.E-01	1.72.E+00	3.59.E-01
0301	板状クリープ	1000	35	6.8	4.70.E+00	9.96.E-01	3.33.E+00

表 A5 熱クリープ変形データ (2/2)

図 A5-1 被覆管単軸クリープ試験片の形状

図 A5-2 板状クリープ試験片の形状

図 A5-3 熱クリープひずみ曲線からのデータ解析例(鋼種:55MK,700℃,98 MPa)

図 A5-4 熱クリープひずみ曲線からのデータ解析例 (鋼種:55MK, 700℃, 98 MPa)

図 A5-8 700℃における熱クリープひずみ実験値と予測曲線の比較(2/2)

- 76 -

付録6

SUS304、SUS316 溶体化材の高温クリープ破断関係式

1. 目的

高速炉のシビアアクシデント(SA)時のバウンダリ健全性評価に適用できる SUS304 及び SUS316 の クリープ破断関係式を検討する。適用温度範囲は 900℃までを想定する。

2. 現行式

SUS304 及び SUS316 のクリープ破断関係式は、高速炉規格 2022 年版に規格化されており、いずれの 式も適用温度範囲は 825℃までとなっている。

表 A6-1 高速炉規格2022 年版 SUS304 クリープ破断関係式[1]

表 A6-2 高速炉規格2022 年版 SUS316 クリープ破断関係式[1]

3. 既存取得データ

高速炉規格 2022 年版のクリープ破断関係式 (BDS 式) は、SUS304 は最高 800℃まで、 SUS316 は 最高 825℃までのデータを用いて策定されている。SUS304 は、BDS 策定以降 800℃、850℃、900℃ にてクリープ試験データを取得している[2]。SUS316 は、物質・材料研究機構 (NIMS) クリープデー タシートにて 850℃までのデータが報告されている (NIMS クリープデータシート: 14B、15B) [3,4]。

図 A6-1~図 A6-6 に高速炉規格に規定されている現行式とデータの関係を示す。 825℃を超える温度については、現行式の適用範囲外となることから点線にて示している。

- ・ SUS304 の高速炉規格の式は 900℃まで外挿すると、データを過大評価する傾向が みられる。
- SUS316 は、特に 800℃以上で高速炉規格の式は、過度に保守的な評価となっている。
- SUS304 と SUS316 のデータを比較すると、700℃短時間までは SUS316>SUS304 と なっていることが分かるが、700℃長時間及び750℃以上ではSUS316≒SUS304 と なっていると評価できる。
- SUS304 と SUS316 の高速炉規格の式を比較すると、750℃-1000 時間程度 より SUS304>SUS316 となっており、データと整合がとれていない。高速炉のSA における解析において 900℃まで評価を実施する場合は、大きな問題になると考 えられる。

4. 超高温クリープ破断関係式策定方針

SUS304 及び SUS316 の超高温クリープ破断関係式を策定する。高速炉規格の式と整合させるため LMP の定数 C を同一とし、応力により切り替えることとした。

- 5. 検討結果
- 5.1 SUS304
- (1) データベース

加藤らが取得した SUS304 の 800~900℃のデータ[2]及び BDS 式策定にも用いられている 775 ~800℃のデータ [5] を用いることとした (高速炉規格の式との切替応力を調整するために、800℃ 高応力のデータは除外することとした)。

(2) 策定結果

LMP(定数 C は高速炉規格 2022 年版 SUS304 クリープ破断関係式の値を使用)とLog(σ)の 関係において、2 次式回帰によりクリープ破断関係式を策定した(図 A6-7)。策定した SUS304 の 超高温クリープ破断関係式を表 A6-3 に示す。また、データとの関係を図 A6-8~13 に示す。超高温 データを適切に評価できる式となっている。

- 5.2 SUS316
- (1) データベース

NIMS クリープデータシートの SUS316 の800~850℃のデータ[3,4]を用いることとした。

(2) 策定結果

LMP(定数Cは高速炉規格2022年版SUS316クリープ破断関係式の値を使用)とLog(σ)の関係において、2次式回帰によりクリープ破断関係式を策定した(図A6-14)。策定したSUS316の超高温クリープ破断関係式を表A6-4に示す。また、データとの関係を図A6-14~20に示す。超高温データを適切に評価できる式となっている。

5.4 まとめ

900℃まで適用可能な SUS304 クリープ破断関係式(表A6-3)及び SUS316 クリープ破断関係式 (表 A6-4)を策定した。なお、適用温度下限は T>650℃としているが、低温から連続的に評価が必 要な場合は、表 A6-3 及び表 A6-4 の式を低温側に外挿して使用して可能である。

参考文献

[1]日本機械学会,発電用原子力規格 設計・建設規格(2022 年版)<第Ⅱ編 高速炉規格>, JSME S NC2-2022, 2022.

[2]加藤章一、長谷部慎一、吉田英一, 異常高温時における SUS304 のクリープ強度評価, JAEA-Research 2007-091, 2008, 33p.

[3]物質・材料研究機構、クリープデータシート、No. 14B.

- [4]物質・材料研究機構, クリープデータシート, No. 15B.
- [5]物質・材料研究機構, クリープデータシート, No. 4B.

$$(T + 273.15) \{ \log_{10}(\alpha_R t_R) + C \}$$

= $A_0 + A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$

Т	:	温度(℃)	$425 \! \le \! T \! \le \! 825$
σ	:	応力(MPa)	$20 \leq \sigma$
t_R	:	破断時間(h)	

С	17.54301
Ao	31883.53
A_{I}	-5261.784
A_2	-425.0012

	1 10	:	平 均 値 設計最小値	$lpha_{\scriptscriptstyle R}$
--	---------	---	----------------	-------------------------------

ただし、σは当該温度における引張強さを超えてはならない。

$$(T + 273.15) \{ \log_{10}(\alpha_R t_R) + C \}$$

= $A_0 + A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$

Т	:	温度(℃)	$425 \! \le \! T \! \le \! 825$
σ	:	応力(MPa)	$20 \leq \sigma$
t_R	:	破断時間(h)	

С	17.37762
A_0	21647.56
A_{I}	3492.642
A_2	-2163.930

|--|

ただし、σは当該温度における引張強さを超えてはならない。

$$(T + 273.15) \{ \log_{10}(\alpha_R t_R) + C \}$$

= $A_0 + A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$

Т	: 温度(℃)	$650 \! < \! T \! \le \! 900$
σ	: 応力(MPa)	$17 \leq \sigma \leq 49.3$

t_R : 破断時間(h)

С	17.54301
A_0	33054.77
A_{I}	-8354.307
A_2	993.0764

|--|

ただし、σは当該温度における引張強さを超えてはならない。

49.3MPaを超える応力は、JSME2022 年版 SUS304 のクリープ破断関係式を適用する。 本式と合わせて使用する場合は、JSME2022 年版 SUS304 のクリープ破断関係式を 900℃ まで適用できる。

$$(T + 273.15) \{ \log_{10}(\alpha_R t_R) + C \}$$

= $A_0 + A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$

Т	:	温度(℃)	$650 \! < \! T \! \le \! 900$
σ	:	応力(MPa)	$20 \leq \sigma \leq 55.1$

t_R : 破断時間(h)

С	17.37762
A_0	22468.93
A_{I}	5542.442
A_2	-3612.345

$ \alpha_R $ 平均值:1 設計最小值:10

ただし、σは当該温度における引張強さを超えてはならない。

55.1MPa を超える応力は、JSME2022 年版 SUS316 のクリープ破断関係式を適用する。 本式と合わせて使用する場合は、JSME2022 年版 SUS316 のクリープ破断関係式を 900°C まで適用できる。

図 A6-2 SUS304 及び SUS316 の JSME 式とデータの関係 (700℃)

図 A6-4 SUS304 及び SUS316 の JSME 式とデータの関係 (800℃)

図 A6-6 SUS304 及び SUS316 の JSME 式とデータの関係 (900℃)

図 A6-8 超高温クリープ破断式と JSME 式の関係(650℃)

図 A6-10 超高温クリープ破断式と JSME 式の関係(750℃)

図 A6-14 SUS316 LOG(σ)とLMP (定数 Cは JSME2022 SUS316)の関係

図 A6-15 超高温クリープ破断式と JSME 式の関係(650℃)

図 A6-16 超高温クリープ破断式と JSME 式の関係(700℃)

図 A6-18 超高温クリープ破断式と JSME 式の関係(800℃)

図 A6-20 超高温クリープ破断式と JSME 式の関係(900℃)

付録7

SUS304、SUS316 溶体化材の超高温クリープひずみ式

1. 目的

高速炉のシビアアクシデント(SA)解析評価に適用できる SUS304 及び SUS316 のクリープ ひずみ式を検討する。適用温度範囲は 900℃までを想定する。

2. 現行式

SUS304 及び SUS316 のクリープひずみ式は、JSME 設計・建設規格第 II 編高速炉規格 2022 年版[1](以下、現行式)に規格化されており、いずれの式も適用温度範囲は 650℃までと なっている。

表 A7-1 JSME2022 年版 SUS304 のクリープひずみ式

表 A7-2 JSME2022 年版 SUS316 のクリープひずみ式

3. 既存取得データ

現行式のクリープひずみ式 (BDS 式) は、SUS304、SUS316 共に最高 650℃までのデータを 用いて策定されている。

SUS304 は、BDS 策定以降 800℃、850℃、900℃にてクリープデータを取得している[2]。 SUS316 は、NIMS クリープデータシートにて 850℃までのデータが報告されている[3,4]。し かし、定常クリープ速度については記載があるが、クリープひずみ挙動のデータは記載され ていないため、現時点で利用可能な SUS316 溶体化材の 650℃を超える温度のクリープひず み挙動データはゼロである。

4. 超高温クリープひずみ式の検討

- 4.1 SUS304
- 4.1.1 現行式 (JSME2022 年) の適用性確認

図 A7-1 に 800℃及び 900℃におけるクリープひずみ挙動を示す。図 A7-1 より現行式は、 1 次クリープを明らかに過大評価している。これは、650℃を超えるような高温になると、1 次クリープが現れなくなるため考えられる。なお、800℃以上では、明瞭な 2 次クリープも なく、最初から 3 次クリープに入っているようにも見えるが、これは定荷重試験によるもの と解釈できる。1 次クリープが超高温では生じなくなるメカニズムについては、将来の検討 課題とする。

図 A7-2 に定常クリープ速度とクリープ破断時間の関係を示す。800℃のデータは、現行式 (外挿)で良く記述できているが、850℃、900℃のデータは当てはめ性がよくない。

- 4.1.2 超高温クリープひずみ式策定方針
 - 4.1.1 の検討より、超高温クリープひずみ式として、現行式に対して以下の修正を行う。
 - ・現行式において、1次クリープを記述している第1項及び第2項を修正する。
 - ・800℃を超える温度について、定常クリープ速度を修正する。
 - ※クリープ破断時間は、別途策定した超高温用のクリープ破断関係式を適用する。
 - 表 A7-3 JSME2022 年版 SUS304 のクリープ破断関係式
 - 表 A7-4 超高温 SUS304 のクリープ破断関係式

4.1.3 策定結果

策定した SUS304 の超高温クリープひずみ式を表 A7-5 に示す。

第1項及び第2項については、下記に示す B1及び B2の係数を設定した。

温度T(℃)	B1	B ₂	
$\sim \! 650$	1	1	
650~800	(800-T)/150		
800~850	0	(850-T)/50	
850~900	0	0	

定常クリープ速度については、850℃及び 900℃のデータを用いて Monkman-Grant 則(定常クリープ速度=F・exp(-Q/RT)t_R⁻ⁿ)における係数 n について、800℃を超える温度について最小自乗法による修正を行った(図 A7-3 参照)。

図 A7-4~図 A7-5 に策定した超高温 SUS304 のクリープひずみ式とデータの関係を示す。 限られた試験データによる補正であるが、概ね基本的な挙動は記述できている。

4.2 SUS316

4.2.1 超高温クリープひずみ式策定方針

SUS316の超高温クリープひずみ式は、以下の理由より SUS304の超高温クリープひずみ式 を参考に策定を行う。

・現行式は、SUS316 と SUS304 のいずれも Blackburn の式で策定されており、第1項及び 第2項は同一の係数としている(SUS304 と SUS316 の違いは、定常クリープ速度とクリー プ破断時間のみである)。

・図 A7-6 から 650℃を超える高温では、SUS316 と SUS304 のクリープ強度は同程度と評価でき、図 A7-7 より破断伸びも高温では同等と評価できるため、クリープひずみ挙動も同等と推定される。

よって、SUS316の超高温クリープひずみ式は、現行式に対して以下の修正・確認を行う。
・SUS304 で設定した第1項及び第2項に対する係数 B₁及び B₂を SUS316 にも適用できることを確認する。SUS316 は、650℃を超える温度でのクリープひずみ挙動が取得されていないため、確認は SUS304 のデータを用いて実施する。

・定常クリープ速度については、SUS316及び SUS304 データを参考に修正する。

※クリープ破断時間は、別途策定した超高温用のクリープ破断関係式を適用する。

表 A7-6 JSME2022 年版 SUS316 のクリープ破断関係式

表 A7-7 超高温 SUS316 のクリープ破断関係式

4.2.2 策定結果

策定した超高温 SUS316 のクリープひずみ式を表 A7-8 に示す。

定常クリープ速度については、図 A7-8 に示すように現行式(温度外挿)の適用が良くないことから、修正を実施した。650 Cを超える高温における SUS316 の定常クリープ速度と破断時間の関係は、SUS304 と同等と評価できることから、900 Cで SUS304 と同一の値となるように、また、低温からの連続性を確保するために、650 Cは SUS316 現行式と同一となるような Monkman-Grant 則(定常クリープ速度=F・exp(-Q/RT)t_R⁻ⁿ)における係数 F, Q, n を設定した(図 A7-9 参照)。

第1項及び第2項については、下記に示す SUS304 で設定した B1及び B2を適用した。

温度T(℃)	B ₁	B ₂	
$\sim \! 650$	1	1	
650~800	(800-T)/150		
800~850	0	(850-T)/50	
850~900	0	0	

図 A7-10~図 A7-11 に策定した超高温 SUS316 のクリープひずみ式とデータ(SUS304)の 関係を示す。限られた試験データによる補正であるが、概ね基本的な挙動は記述できている。

5. まとめ

現行式(JSME2022 年版、適用温度範囲 650℃まで)を修正する形で、900℃まで適用可能 な超高温 SUS304 のクリープひずみ式(表 A7-5)及び超高温 SUS316 のクリープひずみ式(表 A7-8)を策定した。

参考文献

[1]日本機械学会,発電用原子力規格 設計・建設規格 (2022 版) <第Ⅱ編 高速炉規格>, JSME S NC2-2022, 2022.

[2]加藤章一、長谷部慎一、吉田英一, 異常高温時における SUS304 のクリープ強度評価, JAEA-Research 2007-091, 2008, 33p. [3]物質・材料研究機構, クリープデータシート, No. 14B. [4]物質・材料研究機構, クリープデータシート, No. 15.

A HI & JOME		
$(T + 273.15)$ {lo	$\log_{10}(\alpha_R t_R) + C \}$	
$= A_0 +$	$A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$	
使用単位		
<i>T</i> : 温度(℃)	$425 \leq T \leq 825$	
σ : 応力(MPa	a) $20 \leq \sigma$	
<i>t_R</i> : 破断時間(h)	
С	17.54301	
A_{0}	31883.53	
A_I	-5261.784	
A_2	-425.0012	
B		

表 A7-3]	JSME2022	年版	SUS304	のク	IJ	リープ破断関係国	弋
----------	----------	----	--------	----	----	----------	---

a	平 均 値	:	1
$\alpha_{_R}$	設計最小値	:	10

ただし、 σ は当該温度における引張強さを超えてはならない。

本式と合わせて使用する場合は、JSME2022 年版 SUS304 のクリープ破断関係式を 900℃ まで適用できる。

表 A7-5 超高温 SUS304 のクリープひずみ式

$\varepsilon_c = C_1 \left(1 - e^{-r_1 t} \right) + C_2 \left(1 - e^{-r_2 t} \right) + \dot{\varepsilon}_m t$				
	使用単位			
	T : 温度($^{\circ}$ C) 650 \leq T \leq 900			
	σ : 応力(MPa) $1.0 \leq \sigma$			
	t_R : 破断時間(h)			
	$\dot{\mathcal{E}}_{m}$:定常クリープひずみ速度(mm/mm/h)			
	t :時間(h)			
t_R	JSME2022 年版クリープ破断関係式(表 A7-3)及び超高温クリープ破断関係式 (表 A7-4)			
$\dot{\mathcal{E}}_m$	$62.416 \cdot \exp\left[-\frac{40812}{8.31(T+273.15)}\right] t_R^{-n}$ $650 \le T \le 800 n=1.1335$ $800 < T \le 900 n=1.1335 + 0.001379 (T-800)$			
C_{I}	$B_{1} \cdot 1.2692 \cdot \dot{\varepsilon}_{m}^{0.74491} / r_{1}$ 650 ≦ T ≦ 800 のとき $B_{I} = (800 \text{-T}) / 150$ 800 < T ≦ 900 のとき $B_{I} = 0$			
<i>C</i> ₂	$B_2 \cdot 0.48449 \cdot \dot{\varepsilon}_m^{0.81155} / r_2$ 650 ≦ T ≦ 800 のとき $B_2 = 1$ 800 < T ≦ 850 のとき $B_2 = (850 \cdot T) / 50$ 850 < T ≦ 900 のとき $B_2 = 0$			
<i>r</i> ₁	$103.37 \cdot t_R^{-0.72607}$			
<i>r</i> ₂	$17.255 \cdot t_{R}^{-0.86775}$			
ただし、 <i>α_c</i> はクリープひずみ挙動のばらつきを表示するための時間係数である。				

$-A_0$	$+ A_1 \log_{10} \sigma + A_2 (\log_{10} \sigma)^2$		
吏用単位			
7 : 温度(℃) $425 \le T \le 825$		
σ : 応力(MPa) $20 \leq \sigma$			
t_R : 破断時間	(h)		
С	17.37762		
A_{θ}	21647.56		
A_I	3492.642		
A_2	-2163.930		
$\alpha_{\scriptscriptstyle R}$	平均值:1		
	設計取小 <u>旭</u> : 10		

表 A7-6 JSME2022 年版 SUS316 のクリープ破断関係式

まで適用できる。

表 A7-8 超高温 SUS316 のクリープひずみ式

$\boldsymbol{\varepsilon}_{c} = C_{1} \left(1 - \mathrm{e}^{-\mathrm{r}_{1}t} \right) + C_{2} \left(1 - \mathrm{e}^{-\mathrm{r}_{2}t} \right) + \dot{\boldsymbol{\varepsilon}}_{m} t$				
	使用単位			
	T : 温度(℃) $650 \le T \le 900$			
	σ :応力(MPa) 7 $\leq \sigma$			
	t_R :破断時間(h)			
	$\dot{m{arepsilon}}_{m}$:定常クリープひずみ速度(mm/mm/h)			
	t :時間(h)			
t_R	JSME2022 年版クリープ破断関係式(表 A7-6)及び超高温クリープ破断関係式(表 A7-7)			
$\dot{\mathcal{E}}_m$	$65.098 \cdot \exp\left[-\frac{41222}{8.31(T+273.15)}\right] t_R^{-n}$			
	<i>n</i> =1.1126+0.0006352(<i>T</i> -650)			
	$B_1 \cdot 1.2692 \cdot \dot{\varepsilon}_m^{0.74491} / r_1$			
C_1	650≦ <i>T</i> ≦800のとき <i>B</i> _I =(800- <i>T</i>)/150 800< <i>T</i> ≦900のとき <i>B</i> _I =0			
	$B_2 \cdot 0.48449 \cdot \dot{\varepsilon}_m^{0.81155} / r_2$			
C_2	650 $\leq T \leq 800$ のとき $B_2=1$ 800 <t<math>\leq 850のとき $B_2=(850-T)/50$ 850<t<math>\leq 900のとき $B_2=0$</t<math></t<math>			
	-0.72607			
r_1	$103.37 \cdot t_R^{-0.72007}$			
<i>r</i> ₂	$17.255 \cdot t_R^{-0.86775}$			
ただし、	α_c はクリープひずみ挙動のばらつきを表示するための時間係数である。			

図 A7-1-1 SUS304 現行式とデータの関係 (800℃)

図 A7-1-2 SUS304 現行式とデータの関係(900℃)

関係

図 A7-4-1 超高温 SUS304 のクリープひずみ式とデータの関係(800℃)

図 A7-4-2 超高温 SUS304 のクリープひずみ式とデータの関係 (900℃)

図 A7-5 超高温 SUS304 クリープひずみ式の記述性(α =10, 1/10 の上下限)

図 A7-6-3 SUS316 と SUS304 のクリープ強度比較(750°C)

図 A7-6-4 SUS316 と SUS304 のクリープ強度比較(800℃)

図 A7-7-2 SUS316 と SUS304 のクリープ破断伸び比較(850℃)

クリープ破断時間(h)

図 A7-8 SUS316 及び SUS304 定常クリープ速度データと SUS316 現行式の関係

図 A7-9 SUS316 及び SUS304 定常クリープ速度データと SUS316 超高温クリープひずみ式 (定常クリープ速度)の関係

図 A7-10-1 超高温 SUS316 のクリープひずみ式とデータ (SUS304)の関係 (800℃)

図 A7-10-2 超高温 SUS316 のクリープひずみ式とデータ (SUS304)の関係 (900℃)

図 A7-11 超高温 SUS316 クリープひずみ式の記述性(a e=10, 1/10 の上下限)

付録 8

SUS316 の物性式

1. 縦弾性係数

(1)適用範囲

温度については室温から 850℃までとする。850℃を超えての外挿は、その妥当性が立証 できない限り不可とする。

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可能とする。

(2) 策定方法と結果

室温から 650℃の温度範囲においては、日本機械学会 発電用原子力設備規格 設計・建 設規格-高速炉規格 2020 年度版(以下、JSME 高速炉規格 2020 と呼ぶ)[1]に掲載されてい る SUS316 の縦弾性係数の値を使用した。JSME 高速炉規格 2020 で規定されていない 650℃ を超えて 850℃以下までの温度範囲においては、以下の方法により、縦弾性係数を求め た。

2021 年度版の ASME Boiler and Pressure Vessel Code, Section II - Materials Part D Properties (Customary)[2] (以下、2021 ASME BPVC. II. D. C. と呼ぶ) において、オー ステナイトステンレス鋼の-325°F (-198℃) から 1500°F (816℃) までの縦弾性係数が規定 されいる。この値を 3 次式で最小自乗法によりフィッティングすることで、以下の近似式を 得ることができる。

 $E = 1.9584 \times 10^{5} - 65.403 \times T + 1.2853 \times 10^{-2} \times T^{2} - 4.7599 \times 10^{-5} \times T^{3}$

ここで、E及びTは、それぞれ縦弾性係数[MPa]と温度[℃]である。

上記の式を 850℃まで外挿することで、650℃を超えて 850℃までの温度範囲における縦弾 性率を求めた。

上記の方法で求めた縦弾性係数を表 A8.1-1 に示す。また、図 A8.1-1 に JSME 高速炉規格 2020 及び 2021 ASME BPVC.II.D.C.の値との比較を示す。

参考文献

- [1] 日本機械学会,発電用原子力設備規格 設計・建設規格 (2020 年版) <第Ⅱ編 高速炉 規格>, JSME S NC2-2020, 2020.
- [2] 2021 ASME Boiler and Pressure Vessel Code, Section II Materials Part D Properties (Customary), 2021.

温度 [℃]	縦弾性係数 E [MPa]
25	195,000
100	189,000
150	186,000
200	183,000
250	179,000
300	176,000
350	172,000
400	169,000
450	165,000
500	160,000
550	156,000
600	151,000
650	146,000
700	140,000
750	134,000
800	127,000
850	120,000

表 A8.1-1 縦弾性係数

図A8.1-1 縦弾性係数

2. ポアソン比

(1) 適用範囲

温度については室温から 850℃までとする。850℃を超えての外挿は、その妥当性が立証 できない限り不可とする。

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可能 とする。

(2) 策定方法と結果(表A8.2-1、図A8.2-1)

375℃から 650℃の温度範囲においては、JSME 高速炉規格 2020[1]に掲載されている SUS316 のポアソン比の値を使用した。これに規定されていない室温から 375℃までの値と 650℃を超えて 850℃までの値については下記の通りとした。

・室温から 375℃まで

日本機械学会発電用原子力設備規格設計・建設規格-軽水炉規格2020年度版(以下、 JSME 軽水炉規格2020と呼ぶ)[2]で定められている値(ポアソン比0.3一定)を採用した。

・650℃を超えて850℃まで

オーステナイトステンレス鋼(SUS304)のポアソン比は、室温から 1000℃近傍まで、温度 に対して線形的に増加するデータ[3]が報告されていることから、JSME 高速炉規格 2020 で 定められた 500℃から 650℃までの値を直線外挿して求めた。

参考文献

- [1]日本機械学会,発電用原子力設備規格 設計・建設規格(2020年版)<第Ⅱ編 高速炉規 格>, JSME S NC2-2020, 2020.
- [2]日本機械学会,発電用原子力設備規格 設計・建設規格(2020年版)<第I編 軽水炉規 格>,JSME S NC1-2020, 2020.
- [3] M. Fukuhara and A. Sanpei, "Elastic moduli and internal friction of low carbon and stainless steels as a function of temperature", ISIJ Int. 33(4), 1993, pp. 508-512.

1X AO. ムエーハアノマル	表	A8.	2 - 1	ポア	ソ	ン比
-----------------	---	-----	-------	----	---	----

温度 [℃]	ポアソン比 ν[-]
$20\sim\!425$	0.300
450	0.300
475	0.301
500	0.302
525	0.304
550	0.306
575	0.308
600	0.310
625	0.312
650	0.314
675	0.316
700	0.318
725	0.320
750	0.322
775	0.324
800	0.326
825	0.328
850	0.330

図 A8.2-1 ポアソン比の温度依存性

3. 密度

(1) 適用範囲

室温~850℃

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可能とする。

(2) 策定方法と結果

常温における SUS316 の密度は 8.0×10³kg/m³とする[1]。温度 T[\mathbb{C}]における密度は、室 温における密度 $\rho_{RT}[kg/m^3]$ 、平均熱膨張係数 α [1/ \mathbb{C}]から以下のようにして計算により求 められる。計算値と実測値はよく一致することが知られている[2]。

$$\rho = \frac{\rho_{\rm RT}}{1 + 3\alpha(T - 20)}$$

本式に ρ_{RT} として 8,000kg/m³、平均熱膨張係数 α として本付録の第6項に定める平均熱 膨張係数を代入し、室温から 850℃までの密度値を求めた。求めた密度値を表 A8.3-1 及び 図 A8.3-1 に示す。

参考文献

[1] ステンレス協会編, ステンレス鋼便覧-第 3 版-, 日刊工業新聞社, 東京, 1428, 1995. [2] 長谷川正義監修, ステンレス鋼便覧, 日刊工業新聞社, 東京, pp. 103-105, 1987.

表 A8.3-1 密度

温度 [℃]	密度 [kg/m ³]
20	8,000
50	7, 989
75	7, 979
100	7,969
125	7, 959
150	7,949
175	7, 938
200	7,927
225	7,916
250	7,905
275	7, 894
300	7, 883
325	7, 872
350	7, 861
375	7, 850
400	7, 838
425	7,827
450	7, 815
475	7,805
500	7, 794
525	7, 782
550	7,770
575	7,758
600	7,747
625	7, 735
650	7, 723
675	7,710
700	7, 698
725	7,686
750	7,675
775	7, 663
800	7, 652
825	7, 641
850	7,630

図 A8.3-1 密度の温度依存性

4. 比熱

(1) 適用範囲

室温~850℃

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可 能とする。

(2) 方法と結果

比熱は、2021 年度版の ASME Boiler and Pressure Vessel Code, Section II – Materials Part D Properties (Customary) (以下、2021 ASME BPVC. II. D.C. と呼ぶ) で規定されている熱伝導度 (TC)、熱拡散率 (TD) の値 (Material Group K) [1]と、付録 8 の第 3 項で定める密度から求めた。TC、TD は 70°F (21.1℃) から 1500°F (815.6℃) の 温度範囲で 2021 ASME BPVC. II. D.C. [1]に示されている。ここで示される Material Group K の熱伝導度 (TC) 及び熱拡散率 (TD) の値を最小自乗法により、温度の一次式で フィッティングすることで次式を得た。

 $TC = 13.989 + 1.4218 \times 10^{-2} \times T$

$$TD = 3.5378 \times 10^{-6} + 2.2452 \times 10^{-9} \times T$$

上式を用いて求めた各温度における熱伝導度、熱拡散率、本付録の第3項で定めた密度の値を下式に代入することで比熱(C)を算出した。

$$C = \frac{TC}{\rho \times TD}$$

ここで、C は比熱[J/(kg・℃)]、TC は熱伝導度[W/(m・℃)]、 ρ は密度[kg/m³]、TD は熱拡散率[m²/s]である。上記の方法で求めた比熱を表 A8.4-1 及び図 A8.4-1 に示す。

比熱は、上記式の通り熱伝導度、熱拡散率及び密度から計算によって求められる。これ らの物性値は日本機械学会高速炉規格[2]に定められていない。従って今回の見直しにあ たっては、データの信頼性を考慮して、熱伝導度及び熱拡散率は信頼性が高いと考えられ る ASME の 規格値を用いた。ただし、密度については ASME 規格値にもないため付録 8 の第 3 項で定めた密度値を用いた。

参考文献

- [1]2021 ASME Boiler and Pressure Vessel Code, Section II Materials Part D
 Properties (Customary).
- [2]日本機械学会,発電用原子力設備規格 設計・建設規格(2020年版)<第Ⅱ編 高速炉規 格>, JSME S NC2-2020.

温度 [℃]	比熱 [J/(kg・℃)]
20	498.0
50	504.1
75	509.1
100	514.0
125	518.8
150	523.5
175	528.1
200	532.6
225	537.0
250	541.4
275	545.7
300	549.8
325	554.0
350	558.0
375	562.0
400	565.9
425	569.8
450	573.5
475	577.2
500	580.9
525	584.5
550	588.1
575	591.6
600	595.1
625	598.6
650	602.0
675	605.4
700	608.7
725	611.9
750	615.2
775	618.3
800	621.4
825	624.5
850	627.5

表 A8.4-1 比熱

図 A8.4-1 比熱の温度依存性

- 5. 熱伝導度
- (1) 適用範囲
- 室温~850℃

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可能とする。

(2) 策定方法と結果

熱伝導度は、日本機械学会高速炉規格値[1]にないため、本検討では ASME 規格値を用いた。オー ステナイトステンレス鋼の熱伝導度は、70°F (21.1℃) から 1500°F (815.6℃) の温度範囲で 2021 年版の ASME Boiler and Pressure Vessel Code, Section II - Materials Part D Properties (Customary)(以下、2021 ASME BPVC. II. D.C.と呼ぶ)[2]に示されている。ここで示される Material Group K の熱伝導度(TC)の値を最小自乗法により、温度の一次式でフィッティングする ことで次式を得た。

TC $[W/(m \cdot °C)] = 13.989 + 1.4218 \times 10^{-2} \times T$

ここで、T は温度[℃]である。上式を用いて 20~850℃における熱伝導度(TC)を算出した。上 記の方法で求めた熱伝導度を表 A8.5-1 及び図 A8.5-1 に示す。

参考文献

[1]日本機械学会,発電用原子力設備規格 設計・建設規格 (2020 年版) <第Ⅱ編 高速炉規格>, JSME S NC2-2020.

[2]2021 ASME Boiler and Pressure Vessel Code, Section II - Materials Part D Properties (Customary) .

表 A8.5-1 熱伝導度

温度 [℃]	熱伝導度 [₩/ (m・℃)]
20	14. 3
50	14. 7
75	15. 1
100	15.4
125	15.8
150	16. 1
175	16.5
200	16.8
225	17.2
250	17.5
275	17.9
300	18.3
325	18.6
350	19.0
375	19.3
400	19.7
425	20.0
450	20. 4
475	20.7
500	21. 1
525	21.5
550	21.8
575	22. 2
600	22. 5
625	22.9
650	23. 2
675	23.6
700	23.9
725	24. 3
750	24.7
775	25.0
800	25.4
825	25.7
850	26. 1

図 A8.5-1 熱伝導度の温度依存性

6. 熱膨張係数

(1) 適用範囲

室温~850℃

20%冷間圧延を施した SUS316 相当鋼を含む SUS316 オーステナイトステンレス鋼に適用可能とする。

(2) 策定方法

室温から 650℃の温度範囲においては、JSME 高速炉規格 2020[1]に SUS316 の熱膨張係 数が示されており、これらの値を用いた。

650℃を超える温度での熱膨張係数は JSME 高速炉規格 2020 では示されていないが、 2021 ASME BPVC. II. D.C.では、オーステナイトステンレス鋼 (Group 3) について、 70 °F (21.1℃) から 1500°F (815.6℃) までの値が示されている。この 2021 ASME BPVC. II. D. C. で示されている 1200 °F (648.9℃) ~1500 °F (815.6℃) における熱膨張 係数を最小自乗法を用いて 2 次式でフィッティングを行った結果、次式を得た。

 $\alpha^{in} = -60.033 + 0.23734 \times T - 1.7218 \times 10^{-4} \times T^2$

 $\alpha^{se} = 12.981 + 1.4747 \times 10^{-2} \times T - 8.3314 \times 10^{-6} \times T^{2}$

ここで、 α^{in} 及び α^{se} は、それぞれ瞬間熱膨張係数[×10⁻⁶ mm/mm/℃]及び平均熱膨張係数[×10⁻⁶ mm/mm/℃]である。上式に700℃、750℃、800℃及び 850℃をそれぞれ代入し、650℃を超える温度での熱膨張係数を求めた。

上記の方法で求めた熱膨張係数を表 A8.6-1 に示す。図 A8.6-1 に JSME 高速炉規格 2020 及び 2021 ASME BPVC. II. D.C. との比較を示す。

参考文献

- [1]日本機械学会,発電用原子力設備規格 設計・建設規格(2020 年版)<第Ⅱ編 高速炉 規格>, JSME S NC2-2020.
- [2] 2021 ASME Boiler and Pressure Vessel Code, Section II Materials Part D Properties (Customary).

温度	瞬間熱膨張係数	平均熱膨張係数
°C	$ imes 10^{-6}$ mm/mm/°C	$ imes 10^{-6}$ mm/mm/°C
20	15.3	15.3
50	15.9	15.6
75	16.5	15.9
100	16.9	16.1
125	17. 4	16.4
150	17.7	16.6
175	18.1	16.8
200	18.3	17.0
225	18.6	17.2
250	18.8	17.4
275	18.9	17.5
300	19. 1	17.6
325	19. 2	17.8
350	19. 3	17.9
375	19. 4	18.0
400	19.5	18.1
425	19. 7	18.2
450	19.8	18.3
475	20.0	18.3
500	20. 2	18.4
525	20. 5	18.5
550	20.7	18.6
575	21. 0	18.7
600	21. 2	18.8
625	21. 4	18.9
650	21.6	19.0
675	21. 7	19.1
700	21.7	19.2
725	21. 5	19.3
750	21. 1	19.4
775	20.5	19.4
800	19.6	19.4
825	18.6	19.5
850	17.3	19.5

表 A8.6-1 熱膨張係数

図 A8.6-1 熱膨張係数