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JAERI 1127 UDC 518.5

The KAK Program for the Numerical Solution
of Few-Group Neutron Diffusion Equations
in Two Dimensions

Summary

The KAK program for the IBM 7044 is capable of solving neutron diffusion prob-
lems in cylindrical or slab geometry for one to four groups. Up to 1500 mesh points
may be used. The diffusion difference equation is solved by the matrix factorization
method. = The source iteration is extraporated by the Tchebysheff polynomial method.
The criticality search by the poison control, the adjoint flux calculation and the per-
turbation calculation may be performed at the user’s option. Normalization of fluxes
to an arbitrary input power is allowed. The regionwise-average neutron fluxes and
leakages are listed as the ocutput data. A typical running time is 18 min. for the case
with 530 mesh points and three energy groups which converged with three source
iterations.
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1. Introduction

The few group neutron diffusion equation code is one of the most frequently used digital
computer codes in the reactor physics calculations. Various numerical methods for solving the
twodimensi onal neutron diffusion equation were developed and programmed for use with the
high speed digital computers. Among them PDQ, CURE and Twenty Grand codes are widely
used in the nuclear reactor criticality calculations. These codes, however, make use of some pointwise
or linewise relaxation method to solve the diffusion difference equation in one energy group. Such
an inner iteration routine is one of the time consuming part in the diffusion code and many ef-
forts were concentrated in developing the procedure for rapid convergence of the inner iteration.

The authors developed one scheme of numerically solving the two-dimensional diffusion equa-
tion without any use of the inner iteration process by the direct generalization of the method
applied to the one-dimensional diffusion code. This method was originally developed by G.L
MARCHUK?Y and designated as the matrix factorization method by R.S. VALGA?. The important
features of this method are (1) the significant reduction of computational steps by the exclusion
of the inner iteration process (merit) and (2) the requirement of larger core memories for the
matrix inversion (demerit). However, the recent trend of the digital computer development fore-
sees larger core memories as well as higher computation speed. Thus, the requirement for larger
core memories (or more frequent use of tapes) will not prevent the application of this method.
In our institute the only available two-dimensional diffusion code applicable for more than two energy
groups, at present, is the Twenty Grand code which requires fairly long computation time. The
two-dimensional diffusion code, KAK, presented in this report will save the computation time
in the diffusion equation calculation hereafter.

This code solves the two-dimensional diffusion equation, as well as its adjoint equation by the
matrix factorization method. The criticality search by the poison concentration control and the
reactivity calculation by the few group perturbation theory can also be performed. Varieties of
flux averaged values are listed as the output of the edit routine. The log derivative condition can
be applied on the outer boundary, but not on the normal mesh lines within the boundary. The
code is programmed by the FORTRAN IV for use in the IBM 7044 computer.

2. Main feature of KAK code

The main features of the two-dimensional diffusion equation code, KAK, are summerized as
follows.
1) Name of the code: KAK.
2) Equation to be solved: two-dimensional, few-group neutron diffusion equation.
}  Geometry: z-y or r-=z.
) Energy group: 4 groups (max.).
5) Boundary condition: Vanishing flux, symmetrical flux, flux with logarithmic derivative.
) Material regions: 40 regions {max.).
) Material specification: overlapping permissible.
8) Radial mesh points: 30 points (max. for 7 or z).
9) Axial mesh points: 50 points (max. for = or ¥).
10) Method of calculating the pointwise flux: Matrix factorization method.
11) Method of the source iteration: Tchebysheff polynomial method.
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12) Flux convergence criterion: pointwise source ratio.

13) Criticality search: performed by controlling the poison absorption cross section.
14) Adjoint flux: calculated by the user’s option.

15) Reactivity change by the perturbation: calculated by the user’s option.

16) Programming language: FORTRAN-IV,

17) Computer to be used: IBM-7044

3. Derivation of the difference equation

The few-group, two-dimensional diffusion equation is expressed by the following second order

differential equation,

= Di(r)p2¢'(r)+ 27 (r) ¢ (r) = XS(r) + 27 r) ¢~ (r) (1)
where

S(r) =5 S Pr) (2)

27 (r) =2, (r)+ 2, (r)+ D(r) BA(r) (3)

(=1, 2, = )

and

F0=31=0

X1=0, DXi=1.0

B2=0 (for the cylindrical geometry).

The radial co-ordinate (r or z) axis of the two-dimensional (r-z or x-%) system to be solved
is devided into K mesh points, and the axial co-ordinate (¢ or v) axis into L mesh points. (The
mesh interval can be varied arbitrarily). An arbitrary mesh point in the system is represented
by the index (%, ). The mesh interval between the mesh point (£, [) and its adjacent point is
specified as L, R, T or B for the left-side, right-side, upper or lower direction, respectively. Each
quadrant around the point (%, [) is numbered as 1, 2, 3 or 4, as shown in Fig. 1. The coordinates

of the point (&, [) are represented as (7, 2,) for convenience.

-
i (h, 1+1)
r@;“*ZD—j: (TL) | (TR)E
(k=1 z>! (k, 1) ; (bl D (LT) (P;T) <fm)
L ®B ¢ ;R"‘ ———(;;TC\— ?P%)}\
B il i L we) (pB) |° (RB) ®
1 NN

Fig. 1 Mesh interval and area
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The diffusion equation (1) is integrated between the small intervals.

p——%gr<rp R

zp~§gzgzp+
to derive the difference equations.

The material composition for each quadrant around the point (k, /) may be specified arbitra-
rily. The nuclear constant, for example, the diffusion coefficient, D' (r, ), for each quadrant is
represented by D, (¢=1, 2, 3 and 4) for simplicity.

The continuity conditions of the neutron flux and the net neutron current are applied on the

boundary surfaces including the point (%, 1).

¢i—(P): i+(P)> ¢l ( ) z+(P)

Ji(p)=J;.(p), Ji(p)=Ji(p)

Integrating the equation (1), the first term of the left hand side becomes (the energy group in-

(4)

dex, 7, is omitted for simplicity)

i

_D
R

D, D, D,
+I(LT) (@i 1= Par, 1) "“‘f(LB) (D1 1 —Pi-1, 1) +—B"(BL) (Do 1— Do 1-1)

D,

BART) Brrrs 1= 60 )~ EUTR 01, 101~ 80 )~ ZHTL) (B 18 )

D4 ¢ D4
+§(BR> (Dr 1B, z—x)‘};

by application of the conditions (4). Integration of the second term of the left hand side and

(RB) (fr+1,1— P 1)

the right hand side are approximated, respectively, by

Sgggﬂédv- {ZT(PR)T—{—ZT(PL) —i—ZT(PL) +2T(PR) }¢kl
and

(0§ rav=neRL+ pen s aen o+ aer2
where

Joe=XiSu1o+ 2807
(g=1, 2, 3, 4)
(PR), (PL), etc. are the surface areas of the cube illustrated in Fig. 1 and are calculated by

the following formulae,

(PR)= §(7-+§)a, (PL) :=%(r— Ly

(RT) =€-(r+§)a, (LT) :%(r_%)“,

®B)=E(r+ %Y, wn=5(-1LY,

(PT) =—€—r”, (PB) :_gra,

(BR)=(TR)=(PR), (BL)=(TL)=(PL) (5)
where a=0 for z-y geometry and

a=1 for r-z geometry.
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The integrated equation derived above is reduced to the five-point difference equation.

— Qi Prr1s 101 1Pty 1-1—Co 111, 1= Ay 1P 141+ Pty 1D 1= Fo1 - (6)
where ’
_ADyRT)+DyRB)}
1= R
_{Ds(BL)+D(BR)}
ksl B
_{D(LT)+D4(LB)}
Clz;l_ L
d,,= {DI(TR);:DZ(TL)} (7)
Pui=0p1+bp i+ d T
_{Z(PR)+2,TPLT | {3T(PL)+2(PR))B
Tk:l_"' 2 + 2
_{APRY+ HPOT | { fo(PL)+ fU(PR)} B
fk;l 2 + 2

The five-point difference equation (6) and its coefficent formulae (7) are the fundamental
equations of the two-dimensional diffusion equation code.

The equation (6) may be represented by the matrix form,

Ag=f (8)
where
bl —al
—-c; b, —a,
. e . .

a,, b, and ¢, are submatrices having the following elements ;

2931
ak: 2
agr
le —dkl
bL: _bkzn sz _dl:Z
—bx; Drr
Cri
C,= Cpa (10)
AN
CxL
¢ and f are vectors with the following elements;
¢ll f‘ll
¢12 f12
= fo (11)
¢ ¢/;l jlzl

Pt f KL,
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4. Matrix factorization method

The five point difference equation (6) for the i-th energy group is solved by the matrix
factorization method. This is the direct generalization to the matrix form of the line inversion
method applied to the three-point difference equation in case of the one-dimensional diffusion pro-
blem. ’

The vectors, ¢ and f, are subdivided into K subvectors, ¢, and f;

¢1=1) fu
=) fi= ) 12
o (QDkL (f L 12)
The matrix equation (8) can be expressed by the simultaneous submatrix equations, as follows;
— P+ 0 —Cifp1 =1, (13)
(k: 1) 2, ...... , K)

where a,, b, and ¢, are the submatrices given by (10).
The equations (13) are modified to the form of

Sr1=Bip,—C., —F, (14)

B,=a, b,

Ci=a,c,

Fi=a,'f, (15)
We try to solve the matrix equation (14) by the backward reccurence formula,

$e=Ciir(Bes1Prir T Zpp) (16)

and obtain the reccurence formulae for the coefficient matrix and vector, 8, and Z,. Substituting
the similar expression for ¢,—; of the equation (16) into equation (14), the following expression
of ¢; is derived;

@i= (By—B1) U1+ Z,+ F) (17)
Equating the coeflicients of the equations (16) and (17), the forward reccurence formulae for the
coefficient matrix and vector, B; and Z,, are obtained,

Bir1=Crir(By— i) ! (18)
Zin=pn(Z+F)) (19)

The initial coefficient matrix and vector, 8, and Z,, are given by the left-side boundary condition.
Succeeding matrices and vectors, B, and Z,, are calculated in the increasing order of 2 by the
reccurence formulae (18) and (19), respectively. The initial flux vector, @x.,, is given by the right-
side boundary condition and succeeding flux vectors, ¢, are obtained in the decreasing order of %
by the reccurence formula (16).

The inverse matrix, (B,— 8,7}, is calculated by the method of inverse triangular matrices,
which is in wide use {e.g. TNS code?) in solving the simultanecus linear algebraic equations.

More rigorous derivation of the matrix factorization method is shown in the references 1)
and 2).

The merit of this method is the direct solution of the i-th group flux distribution without
use of the inner iteration, which shortens the computation time. Its demerit is the requirement

of larger memories for storage of the matrix elements of g,

5. Boundary conditions

The outer boundary conditions applicable to the code, KAK, are
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BC (1): ¢=0
BC (2): 04/0z=0 or 08¢/or=0
BC (3): 0¢/0z=—¢[r or 0p/0r=—¢[r
at the boundary. When the condition BC (1) is applied, the boundary exists on the mesh line of
! (or £)=0 or [ (or &)=L (or K).
when the condition BC (2) or BC (3) is applied, the boundary exists on the line in the middle
of I(or £)=0 and 1 or { (or £)=L—1 (or K-1) and L (or K).

5.1 Vertical boundary conditions
The bottom and top boundary conditions are included in the upper left corner element, (b,)1,
and lower right corner element, (b,);;, respectively, of the coefficient matrix, b,. These elements

are given by the following formulae according to the boundary condition applied.

(1) ¢=0

CARES - (bottom)
GorL=pu (top)

(2) 0¢/0z=0
O11=pn—bn (bottom)
by rr=pr—du (top)

(3) 0pjoz=—g¢[r

g 1+4d=/2y)

Or)11=pu bkll —(2/27) (bottom)
b)re :PkL_dkL']::ﬁ;z—L/_zﬁ (top)

14+ (dz/27)
The coefficients, pu, b, and d,, are given by the equation (7).

5.2 Lateral boundary conditions
The left-side boundary condition defines the coefficient matrix and vector, 8, and Z;, for the
forward reccurence formulae (18) and (19). The right-side boundary condition defines the flux
vector, @, for the backward reccurence formula (16). B, Z, and @, are given by the follow-

ing formulae according to the boundary condition applied.

(1) ¢=0
B=0
Zl:O } ‘ (left)
Px-1=Cr ' Zx (right)
(2) 0¢/or=0
l=CI
ér__o } (left)
Gr-1=(Cx—Bx) "' Zx (right)
(3) 0g/or=—¢/r
_ 1 (dry/2y)
A 1_1—(117*1/27')(31 } (left)
Z,=0
(L) g 17 .
¢K—1~{l——(d7‘§/27’)ck .le.} Z (right)
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6. Source iteration

After the neutron flux distributions, ¢} , (i=1,2, - , I), are calculated successively from the
first to the I-th energy group, convergence of the neutron source distribution is tested. If the
convergence criterion is unsatisfied, the source distribution is extrapolated to minimize the defer-
ence between the estimated and the converged eigenvalues, after which the neutron flux distribu-

tions are recalculated. This iteration process is designated as the source iteration.

The neutron source, ¢f7, at the point (&, [) after the m-th source iteration is given by

DDV
9ri= 21 V404 (20)
q

where V, is the volume of the g¢-th quadrant around the point (%, ), ie.

V,=(PR)T/2, V,=(PL)T/2,

V.=(PL)BJ2, V.=(PR)B/?
and _

~1.0 (if SIu3i,%0)
% _o.0 (if SIv3%,=0)

The convergence criterion and the source extrapolation technique used in KAK code are simi-
lar with those used in PDQ code?. The eigenvalue and its upper and lower bound at the m-th
iteration, A, A 2@ are defined by

(m)
A (m) = pm—1) _Yhi
=i il g
g
(m) — 2(m-D©N[ind Lt
o=zl il e
/z(m):/’((m_‘l) ¢(m)'¢(m) (23)
¢*(m—1> .¢(m)
If the convergence criterion
Afm) — 3(m)
ST =L (24)

where g, is an input parameter, is satisfied, the problem is considered to be converged. If the

inequality (24) is unsatisfied, the extrapolated neutron source, ¢ after the m-th iteration is cal-

culated by the formula,

G =K@ (L)) — g1 ) (25)
where
Alm)
*(m—1)
T — TR %)

(LG | ) || —gm) || p*m=1) |
and the (m-+1) -th source iteration is performed. The sequence of the extrapolation factors 9 =
0,0{j=0, 1,2, -+, [—1} is given by

. 5(1 +coszj; 175)

- (7=0,1,2, - [—1) (27)
2—5(1—%(303%%)

The underlying theory of the source extrapolation technique, based on TCHEBYSHEFF polynomials,
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is described in the reference. The dominance ratio, 9, defined by the ratio of the second largest
eigenvalue to the largest eigenvalue of the multi-group diffusion difference equation, is approxi-
mated® by
- R™
5=i_2 H “ (28)
1% R

where
| R = [ —gi |
is the residual of the flux distribution of the i-th group. More detail procedure of the source

iteration is described in the reference®.

7. Criticality search

In KAK code the criticality search is performed by the poison absorption control. The con-
trol rod regions (or controlled regions) are specified by the factor, W, (n is the region index).
The n-th region is uncontrolled if W,=0, and controlled if W=:0. The value (arbitrary input)
of W, is the weight of the poisoning in the z-th region. Only the thermal absorption cross sec-
tion is controlled in the criticality search.

The thermal absorption cross section of the n-th region, 57, is the sum of the uncontrolled

and controlled absorption cross sections, i.e.,
2= A D Wt (29)
where
37 ; uncontrolled absorption cross section
24 ; controlled absorption cross section
t; criticality search parameter.

When the criticality search option is chosen, the criticality search iteration is performed to
ensure the eigenvalue A (or Ku)=1.0. After the source iteration of the I-th criticality search
iteration is converged in the sense of the ineguality (24), the convergence of the criticality search
iteration is tested by the criterion,

| 4,—1.0] <s, (30)
where ¢, is an arbitrary convergence parameter. If the inequality (30) is satisfied, the criticality
search iteration is considered to be converged. If the inequality (30) is unsatisfied the criticality
search parameter for the (/+1)-th iteration, ¢, is linearly interpolated,
Lty
_ A=Ay
where A4,=1.0—4,. The parameter, t,;, is substituted into the equation (29) and the eigenvalue
Az41 1s recalculated by the source iteration procedure described in Section 6.

When the initial criticality search is performed ([=0), #, is guessed by

ti=t(1+CAA)
where C is an initial guess of the gradient (1/z) (dt/dA).

tl+1:tl+A/zl (31)

8. Cadlculation of the adjoint flux

The multi-group neutron diffusion equations are of the form:

- Vny¢f+2g¢f=2i—l¢i—l+:§f;»Z;'gsf (32)
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where X7=0 and %,=237=0. The equation (32) is'represented in the matrix form:

L-¢=0 (33)
where
¢y
$= ¢
ol

and the matrix elements of the operator L are

Li:= —nyﬁ.S@-%’»S;‘

i1 xi P
L,',,‘_.1= ——Z’r ——7DZ§ !

B

Li = —“Exi»zg (i or i—1)

The adjoint operator, L*, to the equation (33) and its solution, i.e. the adjoin flux, ¢*, must

satisfy the condition ;

[p*-Lpl=[gp-L*¢*] (34)

Therefore, the adjoint flux equations are of the form:

. e i e P s
_FDlV¢*i+ZfI‘¢*I=2;¢*1+1+¥2X1¢*1 (35)

or in the matrix representation;
L*.¢*=0 . (36)
where
$*1
e pre
¢‘*I

and the operator L* with the elements of the form;
Lii= —VDfV+2fT—Z§~'u2;

. op3e
Liin= ‘—2‘,—'—2‘“fo+1

TaBLe 1 Nuclear constant interchange table

Diffusion eq. Adjoint eq. Diffusion eq. Adjoint eq.
P o 3t >t (2r=0)
$° P*e P PES
¢3 ¢*2 ZTS Z’Tz
ot U 2ire (OH=0) pXY
X1 I PR 3,8
Xz ¢ 2,2 Sra
X3 I D P
X vt uI Xt=0
D Dt 33 X3
Dz D3 ))ZfB XZ
Dy De 3¢ X!

Dy Dt
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P e
L,-,,-=-—D2fx1 (77 or 7+1)

(Z, 7=1, 2, ++e-+- , D)
is the transposed operator of L.

The adjoint flux equation (35) can be solved by the same method as that used for the solution
of the diffusion equation (32) with the suitable interchange of nuclear constants. The interchange
of constants is illustrated in TABLE1 in the case of four energy groups. The calculation of the
adjoint flux distribution is performed by the user’s option. Note that the adjoint fluxes, ¢, are
calculated in the descending order of ¢ (i=1, I—1, - - , 1)

9. Reactivity change by perturbation

The reactivity change caused by small variation in some of the nuclear constants in the dif-
fusion equation (32) is estimated by perturbation theory. The perturbed diffusion equation is
represented in the matrix form:

L'g'=0 A
where (37)
L'=L+3L (38)
@' : perturbed flux
6L : perturbed part of the operator, L.
By the theory of perturbation? the functional equation
[g*-0Lg' 10 (39)
is deduced, from which the reactivity change (or change in the eigenvalue), d4/2, is estimated.
The explicit form of the reactivity change based on the perturbation theory is given bellow :

04 1

7 =—%(7) o
where 3(1/2) is calculated by the volume integrals ;

”1_ _ﬁ_l_ L bt i Fopdt ) — g3t F *

5(2)_FSGdV;{5ZT¢¢ +ODH i ) — 63— oS } (41)
where

F={ avsix.sp" (42)

G i
S =03, 0S =23 0(vZH¢,
¢o=0, 3o=31=0, x2f=0

and the domain of the integration, G, is the reactor system under consideration.

10. Edit of output data

Varieties of integrated and region-averaged values are edited as the output of the code for
convenience of the user. The following is the list of output quantities.
(1) Eigenvalue
m, A, e e gow
(2) Criticality search parameter
L, A, AdA
(3) Neutron flux
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(a) Pointwise flux: ¢,

Renormalized by the formula:
¢;z,l=ﬂ¢,;;,l
g=3| K sigriavipy
i Jy, Py
(b) Regionwise flux: ¢
gi=\ gaviv,
Va
(¢) Core average: ¢’
n=KC

(d) Reflector average: ¢.
Similar with eq. (46) for 7 KC
(e) Groupwise flux ratio: o,
=5,/
{(4) Neutron absorption

(a) Regionwise absorption cross section: X*

an

7

an

When the criticality search is performed,
(b) Regionwise absorption: A,
A" = E Zin¢£z V‘"

(c¢) Core average: 2%
Zic: 2 2;‘)2¢:‘1%2/¢(‘;VC
n=KC

(d) Reflector average: 3%,
Similar with eq. (49) for n2xKC.
(5) Neutron emission
(a) Regionwise fission cross section x neu.: v3},

(b) Regionwise neutron emission: F,
n== Z 'UZ};:QS:Z ‘V‘"
H
(¢) Core average: v2%

DZQ: = 2 szn¢fz Kf’l/¢::\'/vc

n=KC
(6) Neutron removal
(a) Regionwise removal cross section: 2%

(b) Groupwise removal in core: KR!

Rcl:: 2 Zf’¢fzv’l

n=KC
(c) Core average: 2%
2 =Ri$:V.
(7) Neutron leakage
(a) Regionwise leakage: L/
Li— -\ Digg-as

(b) Regionwise buckling: (DB?);

i1s given by eq.

(47)

11
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(DBZ):z = L;z/gb:tWI
(c) Core average: (DB
(DBY);= 3 Li/$iVe
KC

n=

(d) Core average diffusion coefficient: D}

Di= 3 DigValgiVe

n=KC
(8) Neutron source

(a) Pointwise source: .S,,,

S =701
7‘1=S ¢av
VC
(b) Regionwise average source
Sn.-:g SdV/IV,
Va

(9) Power
(a) Pointwise power: P,
Py= Z%Dziﬁe Z

(b) Region average power: P,
P,,=g PAV/V,
Vﬂ

(c) Core average power: P,

Pc:: 2 PnY/n/Vc
n=KC
(10) Flux and Power ratio
d;m

(a) Flux ration: d¢

d e =Max {9}, ,/8:}
drie=Min{;, ,/¢:}
(b) Power ratio: Puax, Prin
Prax=Max{ Py, 1/ P:}
Prin=Min{ Py, //F.}
(11) Volume

(a) Reglonwise volume: V,
V.= A%
greg,n

(b} Total, core and refector volumes: V,, V,, V,

Vt = 2 Vn
Vc: 2 Vn
n=KC
Vr: 2 Vn
nEKC

(12) Normalization factors
(a) Flux normalization factor: §

(b) Source normalization factor: 7

JAERI 1127

(55)

(56)

(68)

(13) Core average neutron multiplication (The following output data are given only by the small

KAK code)
(a) Non-absorption probability: p;
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pi=2(F+ 37+ (DB | (70)
yi=3 (%) |
=3t (ix1)
(b) Neutron emission probability: (7f);
(0 )i=p2%/ 3% (71)

(c¢) Groupwise neutron multiplication: &;
ki=(f )ipr+-+pi
(d) Two-group model

2= 2308 26,
7 ey
D=2 2 6
ixl

pYg= EIDZ w5 %QSQ
Dfxt'(zrf'{‘z,af)
T= >\T;

ix7
=Dy (3 +37)
(e) One-group model
ko=33k;
Me=3t;

11. Program links

KAK is written entirely in FORTRAN IV and is a chain program which consists of 6 de-
pendent links. Each stage of the program fit into a 32K core storage, and uses 5 scratch tapes.
All iﬁput-output operation are done with tapes. No sense switches or lights are used. Fig. 2 is
the flow chart of main link, where LZ is a indicator for poison or rod search and KZ for adjoint
and KP for perturbation calculation. TasLE 2 below lists the function of each dependent link.

TasLE 3 Gives the logical tape numbers (with the actual tape unit) that are reffered to in the
code, with the function of each tape.

TABLE 2 Program chain links

Chain link Function
CHAIN (1) Reads and writes input parameters etc. and sets up initial conditions.
CHAIN (2) Calculates the coefficients of difference form of diffusion equation including

the modification for power or rod search.
CHAIN (3) Does the source iteration. (The flux is calculated by direct methods.)

CHAIN (4) Does the source normalization, and if needed, does also the preparation for
poison or power search.
The adjoint flux is also printed out if it is already calculated.

CHAIN (5) Calculates the region integrated quantity etc. and if needed prepares for adjoint
calculation.

CHAIN (6) Link for perturbation calculation.
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Ik

Rewinds scratch tapes,
Reads and writes the title.

CHAIN (1 )f

CHAIN (5)

m. or zero

A

CHAIN (6)

Fig. 2 Flow chart of the main program

TaBLle 3 Tapes required for KAK

JAERI 1127

Logical tape no.

Actual tape unit

Function

SYSLB
SYSIN
SYSOU
FTCO 2
FTCO 3
FTCO 4
FTCO 8
FTCO 9
UO 6

C1
C2
C3
Cs5
B2
B 4
C 4
B 3
o

System tape
Input tape
Output tape

1 Scratch tape

J

Program tape
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1234567893123456789%1234567898123456789g1234567893123456789g123456789312?456789g
KIAKK] |S|AMP|LIE! |PIR[o|BILIEM Pio| [[S[o|N] |S|EIAIRICIH IR
1 1 0 1 1 1 0 1 0 Lt
2 2 14 8 4 2 Prireteas
1f.[o 0.0 101|001 0}.10{0|5 1/.10 4[.18|2 (8] Ll
1f.11]4 0{.10 0].10] ol lotolsl4| 76| | ol.l0| | 0[.10 1.10 Ll
0. 18/8|3 0].10 0/.|00[2 0.0 01.100]3|12|5[4i1| |2|.14|6 1/.]0 TREEER
1|, 1114 01.10, 0,10 0].10}0/814|7|6 0/.]0 0{.10 1(.10 Ll
0.18/8]3 0/.10 0].16[516/5| |~14] |0].|0 0[.[0 0i 0 1].10 rae
21.10 1] 194,10 20 140].10 1110 11]01.40 14 tr ety
12}.10 147100 8 e
20 {0[114] {0} 18 OI0LLEL o) 181 191919 [N
1 1 Lttt
3|1 110[8]-|1}1} [0].10 1t
0].121616]0{—0]2] 10].]2 = 11.]0 IR RN
1f.10 0f.10 L
123456789?1234567892123456789g1234567892123456789g12345678921234567893123456789g

Fig. 3 KAK sample problem input data

12. Input data card

Fig. 3 shows the input data forms filled out for the sample problem. There are 10 types of
data cards required for input to KAK: (1) title card, (2) control cards, (3) composition specification
cards, (4) mesh specification cards, (5) region specification cards, (6) core region specification card,
(7) logarithmic derivative data cards, (8) poison control data cards, (9) rod search parameter cards
and (10) input cards for perturbation. Given below are the instructions for writing KAK input.
Note that the number formats are described in FORTRAN nomenclature and are given in paren-
theses immediately following the input number symbol.

Title card

Columns 1 through 72 may contain any desired information and are printed on a cover of the
output.

Control card 1

Columns 1 through 6, kG (16): Geometry indicator. If KG is 0, rectangular z-y geometry is
specified ; if this number is +1, cylindrical -z geometry is specified.

Columns 7 through 12, KS (I16): Search indicator. If KS is 0, ket is calculated; if KS is 1,
poison search is performed; if KS is 2 rod search is executed.

Columns 13 through 18, KA (I6): Adjoint indicator. If KA is 1, the adjoint fluxes will be
computed following the flux calculation; if this number is 0, the adjoint flux calculation is
skipped.

Columns 19 through 24, KP (I6): Perturbation indicator. If KP is 1, reactivity change by per-
turbation is calculated ; if KP is O, perturbation calculation is skipped.

Columns 25 through 30, KF (I16): Flux-guess indicator, If KF is 0, the initial flux guess is
supplied by the code; if this number is 1, the flux guess is given regionwise by input card;
if this number is 2, the flux distribution from the proceeding case is used as the initial guess.

Columns 31 through 36, KL (I6): Left side boundary indicator. If KL is O, flux on the left
side (column 0) is assumed to be zero; if this number is 1, a symmetry boundary is assumed
to exist midway between columns O and 1. If this number is 2, the logarithmic derivative
is given on the same boundary as KL=1. The value of logarithmic derivative is given by
an input card (see below).

Columns 37 through 42 KR (I6): Right side boundary indicator. If KR is 0, flux on the right
side (Column IMAX) is assumed to be zero; if this number is 1, a symmetry boundary is
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assumed to exist midway between columns IMAX—1 and IMAX. If this number is 2 the log-
arithmic derivative is given on the same boundary as KR=1. The value of logarithmic
derivative is given by an input card.

Columns 43 through 48, KT (I6): Top boundary indicator. If this number is 0, flux on the
top (row 0) is assumed to be zero; if this number is 1, a symmetry boundary is assumed to
exist midway between rows O and 1. If this number is 2, the logarithmic derivative is
given on the same boundary as KT=1.

Columns 49 through 54, KB (I6): Bottom boundary indicator. If this number is 0, flux on
the bottom (row JMAX) is assumed to be zero; if this number is 1, a symmetry boundary
is assumed to exist midway between rows JMAX-1 and JMAX. If this number is 2, the
logarithmic derivative is given on the same boundary as KB=1.

Control card 2

Columns 1 through 6, NGMAX (I6): Total number of energy groups <4.

Columns 7 through 12, NRMAX (I6): Total number of compositions <<40.

Columns 13 through 18, IMAX (I6): Total number of columns (X or R direction) <30.

Columns 19 through 24, JIMAX (I16): Total number of rows (Y or Z direction) <<50. '

Columns 25 through 30, MMAX (I16): Total number of mesh regions (X or R direction) <30,
in each of which mesh size is set to be equal.

Columns 31 through 36, NMAX (I6): Total number of mesh region (Y or Z direction) <50.
Control card 3

Columns 1 through NGMAX x10, (YK (I), I=1, NGMAX) (8E 10.7): The fraction of neutrons

NGMAX
produced from fission that are born in group 1. Note that > YK(I)=1.0.
I=1
Columns (1+NGMAX x10) through (NGMAX+1)x10, EPS1 (E 10.7): Convergence criterion

for source iteration. A value of 10~® for this number will usually assure reasonable conver-
gence.

Columns 11+NGMAX x10 through (NGMAX+2)x 10, EPS2 (E 10.7): Convergence criterion
for the criticality search option. ,

Columns 21 +NGMAZX % 10 through (NGMAX +3) x 10, EIGEN (E 10. 7) : Initial guess of ke

Columns 31 +NGMAX x10 through (NGMAX+4)x10, PT (E10.7): Power of reactor under
consideration. The neutron flux is normalized to attain this value. The unit of power is in
watt,
Composition specification cards

Columns 1 through 10, D (E10.7): Diffusion coefficient.

Columns 11 through 20, B2 (E10.7): Composition-group dependent buckling.

Columns 21 through 30, ¥4 (E 10.7): Macroscopic absorption cross section.

Columns 31 through 40, 2% (E 10.7): Macroscopic removal cross section.

Columns 41 through 50, v¥; (E 10.7): v times macroscopic fission cross section.

Columns 51 through 60. » (E10.7): The average number of neutrons produced per fission.

Columns 61 through 70, F (E 10. 7): Composition-group dependent initial flux guess that is used
when KF is 1.

Columns 71 through 80. Any number for your identification.

These items on one card are repeated firstly for each group. These items on NGMAX cards are
repeated secondly for each composition. So NGMAX x NRMAZX cards are necessary for the com-

position specification.
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Mesh specification cards

Columns 1 through 10, DM (E 10. 5): Mesh width of 1st mesh region (X or R Direction). Even
if KL is 1, the width between columns 0 and 1 must be specified.

Columns 11 through 12 MK (I12): The column number of last column which has the same

mesh width.
MMAX

Up to six of these data could be specified on a card. [ :l—}—l cards are necessary for

this specification.
Columns 1 through 10, DN (E 10. 5) : Mesh width for 1st mesh region (Y or Z direction). Even
if KT is 1, the width between rows 0 and 1 must be specified.
Columns 11 through 12, NK (I2): The row number of last row that has the same mesh width.
NMAX

Up to six of these data could be specified on a card. [ ]+1 cards are necessary for

this specification.
Region specification cards

The regions of the reactor are specified as rectangles.

Columns 1 through 5, NA (I4): Composition number to be specified.

Columns 5 through 6, NL (I2): Left column number of the region (including 0).

Columns 7 through 8, NR (I2): Right column number of the region.

Columns 9 through 10, NT (I2): Top row number of the region.

Columns 11 through 12, NB (I12): Bottom row number of the region.

The compositions are numbered beginning with 1; however, more than one region may have
the same composition.

Up to six sets of these data could be specified on a card.

The composition number which is lastly specified is stored in the memory. (One can overlay
composition numbers on the same sub-regions.)

Composition specification is terminated when NA is set to 999.

Core region specfication cards
Columns 1 through 6, KCMAX (I6): Total number of core regions.
Columns 7 through 12, KC; i=1, KCMAX: The composition number of the core region. The
format of the first card, (1116); the following cards, if any, (1216).
Columns 1 through NRMAXx10, K; i=1, ... NRMAX, (8 E10.7): Power conversion factor
in each region. Watt per fission per sec.
The following cards must be skipped if they are not needed.

Logarithmic derivative data card

The following card is necessary only when KL=2.

Columns 1 through 10 XxNGMAX, 71 i=1, ... NGMAX, (4E10.7): 7. is the logarithmic de-
rivative on the left side boundary for group i.

The following card is necessary only when KR=2.

Columns 1 through 10X NGMAX, 7ri i=1, NGMAX (4 E 10.7) : 7g; is the logarithmic derivative
on the right side boundary for group i.

The following card is necessary only when KT =2,

Columns 1 through 10 xNGMAX, i i=1, ... NGMAX, (4E10.7): yr; is the logarithmic de-
rivative on the top boundary for group i.

The following card is necessary only when KB=2.

Columns 1 through 10xXNGMAX, (78 i=1, ... NGMAX) (4E10.7): 7g is the logarithmic de-
rivative on the bottom boundary for group i.
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Poison control data cards
The following cards are necessary only when KS=1.
Columns 1 through 10, %,, (E10.7): Poison cross section for the thermal group.
Columns 11 through 20, t, (E 10.7): Initial guess of the poison pararheter.
Columns 21 through 30, C (E 10.7): Parameter for the second search.
The second poison parameter is calculated by
Ty =to(1+C4A)
where
Ary=1—2,
Changing the card,
Columns 1 through 10xXNRMAX, W; i=1, ... NRMAX (8E10.7): Region specification of
poisoning. The thermal absorption cross section of region i is calculated by
SNGMAX _ SNGMAX 4 Y15

api
Perturbation calculated data cards

The following cards are necessary only when KP=1.

Columns 1 through 10, D (E 10.7) : The change of diffusion coefficient in group 1 and region 1.

Columns 11 through 20, 0%, (E10.7): The change of absorption cross section in group 1 and
region 1. :

Columns 21 through 30, 63%, (E10.7): The change of removal cross section in group 1 and
region 1.

Columns 31 through 40, v, (E10.7): The change of fission cross section multiplied by » in
group 1 and region 1.

NRMAX+1

These of four data are repeated continuously for each region. Namely[ 5

[NRM?X + 1]

jl cards

arenecessary for one fixed energy group. These

[NRM.;XX + IJ

cards are repeated for each

cards are necessary for a perturbation calculation.

group, so that. NGMAXx
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KAK SAMPLE PROBLEM POISON SEARCH

POISON SEARCH CALCULATIONS ARE INCLUDED.

SYSTEM

GEOMETRY secevonssasassossesss RI

vessversea 2

NUMBER QF GROUPS
NUMBER OF REGIONS seves
NUMBER OF SUBREGINONS ...

NUMBER OF MESH POINTS seese

FONVERGENCE CRITERION

EDR SOJRCE ITERATION «svraa 0o1008-02

BOUNDARY CONDITION
LEFT SIDE eueeaasses ZERO DERIVATIVE

RIGHT SIDE ZERQ FLUX |
see 2 UP SIDE sene »+ IERD DERIVATIVE
ux 2 DOWN SIDE «o «e LERQ FLUX

18X 8«

NORMALIZATION CONSTANT

TOTAL POHER oyaesess 0p4820000€ 09

FOR SEARCH ITERATION essaa 0.200E-02

GROUP CONSTANIS

FISSION SPECTRUM 0.10000000E 03 0.
REGION 1
GROUP D BUCKLING SIGMA-A SIGMA-R NU SIGMA-F Ng
1 0.1140000E OV LI 0.8%76000E-02 0. .
2 0:8830000E 00 0: 0. 2000000E-02 O. 0.3254100E-02 0. 2460000 01
REGION 2
GROUP [} BUCKLING SIGMA-A SIGMA-R NU SIGMA-F NU
1 0, 1140000E O1 [¢Y O. 0,3%756000E-02 0. 0.
2 0,8830000& 00 0. 0.65650006-04 0. (18 0.

REGIDN CONSTANTS

NUMBERS DF FISSIDN PER WATT

CONTROL CONSTANTS
POISON PARAMETER
POISONING DIRECTION
POTSONJNG CROSS SECTION
OMEGA FOR EACH REGION

HMATERIAL MAP

COBE REGION VDo asaee 1

RO 1 2 3 & 5 6 7 &
4

0.31108000€-10 [N

0.20000000E-00
-0. 10000000 01
0.26600000E-02
0. 10000000E 01 0.

MESH SPECIFICATION
R DELTA COL 2.000 1 9.000 2 10.000 11 10.000 1%

7 DEITA ROKW 12,000 1 17.000 8

9 10 11 12 13 1%

LI Y Y e S Y )

«£1 1 1 1 1 31 1

1 -

#1111y 11
2 =

el 1 1 1 1% v 11
3 .

+1 1t 1y v 11
& =

«£1 1 1 1 1 o
5 =

3 1 Y Yy Y oy oy
5 »

LN T R R R R A D
T =

L0 N R R A R |

1

1
1
1

T e 2 2 2«
*

0 *
11 2 2 2e
. »
1 1« 2 2 2e
3 *
1 12 2 2+
. 3
1 Ix 2 2 2e
3 .

1 1+ 2 2 2
.
1 1+ 2 2 2=

B RemessrestrseerIretirEs e bt R R E SRR bh

LRITICAL 1T, 0 POLSONTNG PARAMETER . 0.20000000E-00 LaMBDA 0.10245104¢€. 01 OIF. [«

SOURCE 1. MAY LAMBDA

LAMADA MIN LAMBDA AZC,. PARAMETER USED

1 0.12512685E 01  0.1924510%5 01  0.33278937£-00  O.
2 0.11837011E 01  0.70B574I4E 01  0.6L543873E 00 0,
3 0.11137668E 01  0.10374615E 01  0.L6216255E G0  0.17910121E-00
u 0.10715085F 01 0.10288uBUE 01  0«92°48607E 00  0.8BL14324E-01
5 0.10489939E 01  0.10239056F 01  0.96111194E 00  0,110259156~01
& 0.10238R58F 01 0,10180219E 01 0.10063057E D1 0.96871430€ 00
7 0.10200455E 01  0.10174BOSE 01  0.10111130E 01  0.35812563E~00
8 0.10188524F 0} 0,10173250E 01  0.10133600€ 061  0,366216758-01
9 0.10180303E 61  0,J0172227E 01  0.10150488F 01  0.22667925E-00
10 N.101THBT2E O] 0.10171606E 03 0,10162511F 01 0.57092Z71E 00
CRITICAL [T, 1 POISONING PARAMETER  0.20343212£-00 LAMBDA  0.101406564E OF DIF.  =0.17160594E~01
SOURCE IT,  MAX LAMBDA LAMBDA MIN LAMBDA ACC. PARAMETER USED
1 0.)0153438E 01V 0.10140665E 01 0.10180534E 01  0.33914%058-20
2 041UT40664E 01  0.10140664E 0T  0.10140664E 01  O.
CRITICAL IT. 2 POISONING PARAMETER  0.21903445E-00 LAMBDA _0.100023%5E 91 DIF.  —0.14066353E~01
SOURCE IT,  MAX LANMBDA LAMBDA MIN LAMADA ACC. PARAMETER USED
0.100714781€ 01 0.10002345S 01  0.10001762E 01  0.33914405E~20
2 0.1000Z344E 01  0.1000238RE 01 0.1000234%E 01 0.

CRITICAL 7. 3 POISONING PARAMETER 0,21903445E6~00 LaMBOA 0.10002344E 01 0IFs -0.23443937E~03

FLUX GUESS
0,1000000E 01
0.1000000E 01

FLUX GUESS
0,1000000E 01
0,1000000E 0%



GROUP 1 FLUX

z
6.000E 00
24300 01
%.000E 01
5.700E 01
T.%00E 01
9.100E 01
1.080E 02
1.250E 02

GROUP 1 FLUX

7
6.000€ 00
2.300F N1
4.000€ 01
RL7ONDE 0)
T.400E 01
9.100E_ 01
14080E 02
1.250E 02

GROUP 2 FLUX

7
6.000E 00
2.300E..01
%.000E 01
5.700F 0}
7.400E 01
9. 100E 01
1.080E 02
1.250E 02

GROUP 2 FLUX

z
6.D00E 00
2.300E 01
4,000E 01
5 200£ Q1
T.800E 01
9. 1008 01
1.080E 02
la259E 02

SOURCE

S
6.000E 00
2+300E 01
%.000E 01
5. 7Q0E 01
7.400E 01
92 100E 01
1.080E 02
1.250€ 02

SOURCE

b
6.000E 00
2.300E DL
%.000€ O}
5.I00E 01
T.400E O1
94100 01
1.080EF 02
1.250€ 0?2

POWER

1
5.000E 00
2,300E 01
3,000 D)
5. T00E 01
7.400E 01
9. 100E 01
1.380E 02
1.250E 0Z

WO W — VOB A DRI M W - ® B s BNV N — © NV N

BN E N -

1,000E 00 1.000% 01
1 2

2.730€ 15 2,706CL 15
24625E 15 2.601E 15
2.401E 15 2,379 15
2¢.D67E 1% 2,019E 15
1.640E 15 1,625¢ 15
1.137E 15 1.127F 15
548208 14 S5,768E 14
Oa 0.

1,000E 02 1.100E 02
1 12

54381E 18  2,1L4E 14

4 .. 2.061E 14
B4T32E 14 1.885E 14
H.NI5F 14 TLAD3F Mk
3,232 1% 1,287E 4
2,281E 18 8.928E 13
TJIBRTE 14 4,568E 13
Qe O.

1.000E 00 1.000€ 01
3 2

T«611E 15 T.543E 15
Z.3Y7F IS TU251F 18
6.691E 15 6,631E 15
547628 15 S.TOE 15
4.569E 15 L,529C 15
341688 15 . 3,140F 15,
14621E 15 1.607E 15

.0 Q.

T<000E 02 1.100E 02
n 12

2.388E 15 1,651E 15
2.295E.15 1.587F 15
2,099 15 1,451E 15
T48D7E. 15  1,2L9F 15
14433E 15 9,907E 1k
94936E 'k 6.868E A4
5.065E Y& 3,515 14
Oa s

1.000E 00 1.000E 0}

o 2
64498E-07 6,439E-07
6a24T7E-0T7 .64191E~07
S5¢T13E-07 5,662E~07
L.Q19E~07 L.RTSE-OT
3.901E-07 3,866(-07
2.705£-07  2.681E-07
1.384E~07 1.3726-07
0. .

1.000€ 02 1.100€ 02

07 0.
1.960E-07 _Q.
14792507 O,

- 1.543E=07 . Q.

1.224E-07 O,
B.433E-08 0.
La341E-08 O,
[¢1Y Q.

1.000€ 00 1.,000f 01
1 2

3.1328 02 3,104E 02
3.011E 02 _2.98%E 02
2.753E 02 2.729F D2
2.371E 02 2.350f 02
1.880E 02 1.86LE 02
1.304E 02 1,292E 02
646728 01 6,612 01
O 0,

2.000€ 01
3

24632E 15
2.530E 15
24314E 15
1.993F 15
1.581E 15
1,096E 15
5.611E 14
%

14200E 02
13

Tohk6E 13
T.159E 13
6454TE 13
R.A3IRF 13
heu71E 13
3.100E 13
1.587€ 13
Qe

2.000E 01
2
7.338E 15

T.Q5uF 15
6,U51E 15

15636 15

Q.

1.200€ 02

1

u

8.172E 14
T.BS6E 14
7.18LE 14
6-185€ i%
5.905E 14
3.LU00F 1k
1. 740E 14
0.

2,000 01
3
642656-07

64023207
5.508E5-07

4, 743E-0T.

3.761E-07
2,6028-07
1.335€~07

0.

1.2008 02

13

2.000€ 01
3

3.019€ 02
2.903E 02
2.655E 02
2.286E 02
1.813E 02
1,257 02
6.432E 01
0.

3.000E 01
i

2.511E 15
2.815E 15
2,208E 15
1.902€ 15
1+509E 15
1. 046E 15
Se354E 14
Oy

1.300E 02

1%

3,000 01

1

7.0038 15

6. T22E 15
6. 1STE 15
5.301E 15
4.204E 15
2,915 15
1,492E 15
Qe

1.300E 02

1L

3«000F 01
b

5.978E-07

52 THRE-0OT

S+ 256E-07

4, 526E-07 ...

3.589E-07
2. bBOF-O7
1.27LE-07
.

1.300E 02

14

3.000€ 01
y

2.882E 02
2. TT0E 02

532E 02
24182E 02
1.730€ 02
1.199E 02
64139 01
[+

4 000E
5

243478
24257E
2.064E
1.777E
1.410E
FoTT6E
5.004E
0.

4, 000E
5

6o 546E

64 29%E

S5.756<
4. 956F
34930E
2.725E
1+395E
O.

03

4%.000¢ 01

5

5.589£-07
5¢373E-01
4e9I4E-O7
4.231E-01
3.356E-07
2.325E-07
1.191E-07

0,

4%.000E
5

2.694E
2.590E
2,368E
2,039¢
1.617E
1.121E
5.739¢€
O,

o1

5.000E 01
&

2,143 15
2,060 15
1.8B4E 15
1.623E 15
1.287€ 15
8.926€ 14
4,568E 1%
0.

5.000€ 01
6

S.982E 15
5.751E 15
5.259E 15
k.529€E 15
3.592E 15
2.490E 15
1.274E 15
Oe

5.0008 01
6

5, 107E~D7

L Ha310E-07

4.490E-07
3.866E-07
2, 066E-07
2. 126E-07
1.088E~-07
0,

5.000E 01
6

2.462E 02
2.367€ 02
2,164E 02
1,86LE 02
1.478E 02
1.025€ 02
5.244E 01
0.

6.000E
7

1+903E
1.830E
1e6T4E
TokkiE
Te TH3E
T.927F
4.057€
0.

6.000E
7

54326E
5.120E
4.683E
4.032E
3.198E
2.217E
1. 1358
[+1%

o1

6.000E 01

7

L.547E~07

4,371E-07

3.998E-07
3.442E-07
2.730E-07
1.893E-07
9.686E-08

O

6.000E
7

2,192
2.107E
1.927¢E
1.659E
YTe316E
9.123E
4. 669E
Qe

ol

7.000E
8

1.6318
1.568E
1.435E
1.235€
9. T99E
64 TILE
3.477E
[+ 1}

7.000E
8

4.600E
ho422€
4,044E
3.482E
2.761E
1.914E
F.798E

0.

03

8.000E
9

1.327E
1.276E
1.167E
1.005E
T969E
5.525€
2.82BE
O.

8.000€

9

157 3.831E

15
15
5
15
15
i

7.000E 03

8

3,927E-07
3,T75E-07
3.u52E-07
2,973E-07
2.357E-07
1.634E-07
8.364E-Un

0.

7. 000E
8

1.893E
1.820E
1. 664E
1.433€
1.136E
T«878E
4,032E
[+ 28

ot

3.683E
3.368E
2.900E
2.300€
1+595F
B.161E
0.

B8.000E

9

31,2718

o1

o1

]

o7

_3.145E-07

2.8T6E~

ot

2.876E-07

1+964E-
1+361€~
6.96TE-

O.

8.000E
9

1.577€
1.516E
1.386E
1.193¢
9. 465E
6.562E
3.358E
Ca

or
or
o8

o1

9.000€ 01
10

9.770E 1k
9.393€ 1%
84590 1IN
T4398E 1%
5.868E 1%
%.069E 14
240828 1%
Oa

9.000E 01
10

3,066E 15
2.9%7€ 15
2,695 15
2.321E 15
1.88CE 15
1.276E 15
6.5308 1&
0.

9.000€ 0%
10
2.5)7E-D7

. 24516E-DT

2.301E-07
1.98YE-07
1.8T1E~0T
1.0B9E-07
5.575E~08
Os

9.009E 0}
AL

1.262E 02
1.213E 02
1.109E 02
9+550E 01
T.573E 0%
Suv251E 01
24687E 01
O



POWER

R 10006 02 1.100E 02 1.200E 02 1,300 92

n 12 13 14
z
6.000E 00 1 9.825% 01 Q. 0. 0.
24300E 91 2 9.L445E 01 0. C. a,
4.000E 0% 3 8.637E 01 0. 0. Oe
5.70Q0E 01 L T.437E 01 0. 0. O
T«%00E 01 5 5.898E 01 O. G. 0.
9.100E 01 & 5.089E 01 0. Qe Qe
1.080€ 02 7 2.092E 01 0. 0. 0.
1.250€ 02 a Q. 0. 0. O
REGION AVERAGE FLUX
GROUP 1
0.1029066%E 16 0.11089154E 15
GROUP
0.29827665E 16 0474153757 15
AVERAGE FLUX RATIO ~REGION WISE-
GROUP 1
0.34500%16E-00 0, 14954271E~00
GROUP 2 -
0.10000000E 01 04 10000000E 01
AVERAGE ABSURPTION CRUOSS-SECTION -REGION WISE-
GROUP 1
0. [+
GROUP 2
0.25826316E-02 0.65650000E~04
TOTAL ABSORPTION -REGION WISE-
0.30251131€ 20 0,13190974E 18
AYERAGE ABSORPIION CROSS~SECIJON OF REFLECTOR -GROUP WISE-~
0. 0.65649999E-04
AVERAGE NU SIGF CROSS-SECTION -REGIDN WISE ~
GROUP 1
0. O.
GROUP 2
0.32541000E-02 O.

TOTAL FISSION -REGION WISE-
0. 154944 06E 20 0.

AVERAGE REMOVAL CROS$S~SECTION -REGION WISE-
GROUP

0.84760000E-02 0.8476D000E~02
GROUP 2
0. 0.
TOTAL REMOVAL DF CORE -GROUP WISE-
0.34252670E 20 0
TOTAL LEAKAGE -REGION WISE-
GROUP X
0.28992876E 19 -0, 15677330€ 19
GRouP _
0.47527193E 19 0.184K0650E 19
BUCKLING ~REGION WISE~
GROUP 1
D.71744369E-03 -0.52175269E-02
GROUP .
0.40575420E-03 0.917T7049E-03

AVERAGE SOURCE ~REGION WISE-
0,25464790E-06, 04

AVERAGE POWER -REGION WJSE-
0.12274029€ 03 O,

"FLUX NORMALIZATION FACTOR ~BETA-
0.77593036E 15



SOURCE NORMALJZATION FACTOR
0.32399090E-05

ELUX RAIID ~GROUP WIS{-
D-MAX
0,26528774E 01
D-MIN
0415417383E-01

AVERAGE ELUX DE REELECTOR
0.11089154E 15

POWER RATIO
P-MAX
Us25515894E 01
P-MIN
0.170L676BE-00

REGION VOLUME
0.39269909¢ OT
VOLUKE *
TOTAL VOLUME
REFLECTOR
CORE

AVERAGE DIFFUSION COEFF, OF
0411500000E 01

~GAMMA-

0.25515895E 01
0.,58333221€~01

~GROUP WISE-

0.78153757E 15

0427096237 07

0.66366146E 07
0,27096237E 07
0.39269909€ 07

CORE ~-GROUP WISE~
0.8R299999E€ 0O

AVERAGE ABSORPTION CROSS-SECTION OF CORE -GROUP WISE-

0.

0425826316E-02

AVERAGE NU SIGF CROSS-SECTION OF CORE -GROUP WISE-

0.

0432541000€~02

AVERAGE REMOVAL CROSS-SECTION OF CORE ~GROUP WISE-

3.84759999E-02

Us

AVERAGE BUCKLING OF CORE ~GROUP WISE-

0.7T1T4L369E~03

AVERAGE PUWER OF CORE
0.12274029€ 02

0e40575420€-03

AVERAGE FLUX OF CORE ~-GROUP WISE~

0.10290669E 16

KAK /Mo AKANUMA

0.29827665E 16
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START/ END/TOTAL TIME(1/1000)/FXSZUTION TIMI(1/1000)/PAGES PRINTED 8Y SYSTEM/LINES PRINTED BY OBJECT PROG./CARDS PUNCHED

18.17 18.38 00351

007uY 000C16

000300

000079





