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Summary

Ae efficient treatment of thermal neutron scattering kernels for high temperature crystals
has been established and a new computer code HIKER based our treatment has been developed.

Characteristic points in our treatment which are important for taking the high temperature
characteristics of crystals into consideration are the following two approximations: 1) The Debye
model is used for the low frequency part of the frequency distribution of crystal lattice vibra-
tions. This makes it possible to perform the analytical computation of the scattering law or
the dynamical structure factor Si (&, €) for the low frequency lattice modes: 2) The Doppler
approximation is used when the Debye-Waller factor, for the high frequency part of the fre-
quency distribution, exceeds a certain limit (above which a good convergence of Edgeworth
series is violated).

When the Debye-Waller factor is below the limit, the scattering law Sz (, €) for the high
frequency lattice modes is computed by the phonon expansion and Edgeworth series methods
as usual. The total scattering law S (,€) is obtained by convolution of the two partial scattering
laws for the low and high frequency lattice modes. The scattering kernel ¢ (Ey, E) is obtained
from S (x, £) by the interpolation over (k, €) and the Gaussian integration over the scattering
angle.

Characteristics of the code HIKER and guides for users are given. Results of our calcula-
tion for ZrHis at 1000°C are also illustrated.  Efficiency and accuracy of our method are dis-
cussed in comparison with the conventional method.

* Century Research Center Corp.
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1. Introduction

A method which has been used generally to evaluate scattering kernels for crystalline modera-
tors is Parks’ method®, which was programmed for computer by J. BELL. Bell’s program is the
well known SUMMIT?. We have also the UNCLE program which is a version of SUMMIT
revised by Japanese Nuclear Data Committee with permission of PARKS and US AEC?.

In the Parks’ method the frequency distribution of crystal lattice vibrations is divided into
the low and high frequency parts, fi(») and f2(w), respectively. The phonon expansion method?
and the short time approximation® are used to evaluate the scattering kernel. The calculation
for the high frequency modes is performed by means of the phonon expansion method only.
The phonon expansion method involves two different kind of expansions. Which expansion
must be used is determined by the value of the Debye-Waller factor for the low frequency
part. If this factor is smaller than a certain value which is controlled by input data, each of
the first zph, terms in the phonon expansion is computed numerically performing the convolu-
tion, which determines the cross section for the n-phonon process (72<7pm, where npn, is an
integer given as input). The phonon terms of order n(>7,,) are approximated by means of
the centrallimit theorem of statistics. This approximated expansion is called the Edgeworth
series¥. For larger values of the Debye-Waller factor, the short time approximation is used for
the low frequency modes.  For high frequency modes the phonon expansion is made even in
this case. The central limit theorem is applied to the contributions from high frequency modes
for all values of order ». The Parks’ method has been proved very useful for the evaluation
of the scattering kernels for crystalline moderators at relatively low temperature (<1000°C)
and for neutrons with relatively low incident energy (<1eV). For crystals at relatively high
temperature (=1000°C) and for hot neutrons® the number of phonons excited becomes very
large and much more computational time is required to obtain reasonable values of the scattering
kernel. Moreover, for some types of crystals the convergence of the Edgeworth series becomes
violated, so that it can happen that we get meaningless values of scattering kernels for some
incident and final energies.

The purpose of our peresent work is to establish a computational method effective in such
a case, i.e.,, a method with which we can get reasonable values of scattering kernels for crys-
tals at high temperature with a good accuracy without spending much computer time. We also
divide the frequency distribution into the low and high frequency parts. We approximate the
low frequency part by the Debye distribution with a suitable Debye temperature, which is to
be determined appropriately from the shape of the original low frequency part of the frequency
distribution. Using the Debye model, we can perform analytically the calculation of the
scattering kernel for the low frequency modes. For high frequency modes we use the phonon
expansion method formulated by PARKS and the Doppler approximation. If the Debye-Waller
factor for the high frequency modes is smaller than a values which is controlled by input data
and if n<npo, each of n-phonon terms in the phonon expansion is computed rigorously. If
n>>Nyho, the phonon terms are approximated by the Edgeworth series. When the Debye-Waller
factor is lager then the control value, the scattering kernel is computed by means of the
Doppler approximation.

* We call neutrons with energies between 1 and 2 or 3 eV hot neutrons.
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Generally speaking, low frequency acoustic modes have the Debye type frequency distribu-
tion. The contribution of the low frequency modes is relatively unimportant at high tempera-
ture, since the mean energy of thermalized neutrons becomes larger as the temperature of a
crystal rises. For these reasons, it is reasonable to use the Debye model for the low frequency
modes. On the other hand, the expression of the scattering kernel in the Doppler approximation
becomes identical with that for the free gas in the high temperature limit. We can expect
that the Doppler approximation holds quite good for the scattering of hot neutrons by high
temperature crystals.

In the range of temperature of several thousands degrees it would be very difficult to
investigate atomic motions of crystals. ~ Anharmonic vibrations may have important effects on
the scattering of neutrons. Since we have not enough data on the frequency distributions for
the real materials at high temperature and it is very difficult to perform the theoretical evalua-
tion of the frequency distribution taking into consideration of the anharmonic effects, we are
obliged to use the frequency ditribution at the room temperature even in the case of high
temperature. But this causes no serious errors for neutron moderators used in thermal reactors.

At much more higher temperature, the computational technique of the scattering kernel
may be simplified for scattering with relatively small energy transfer because the expansion in

T-1 may be effective in such a case.
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2. Computational Method

2. 1 Introduction

The general expression of the differential scattering cross section for thermal neutrons is as

follows :

o(Ev—E,p) _ 1 1y? Er’ iot

by - 47[(1+M) JEO " dtemX(x, 1), @1
where

SIE—E(),

K?/y=E+Ey—2 v EE, u,

X(r,)=exp { 17 (VO=TO), 2.2)

0 :j:dwfgow) [coth (2%) cos (wt)+7 sin (cot)]. (2.3)

The function X(k,t) is the so-called intermediate scattering function. The meaning of physical
quantities in Eqs. (2.1)~(2.3) is given below:
Ofree free atom scatterimg cross section,

E,, E energies of incident and scattered neutrons, respectively, (eV),

M atomic mass (in the unit of neutron mass to be 1.0).
7 cosine of the scattering angle,

t time,

@ frequency of the crystal lattice vibration, (eV),

f(w)  frequency distribution of the crystal lattice vibrations,
T temperature of crystal, (eV).

Since three dimensional quantities such as o (Ko, E, #) require very large core memory of
computer, it is desirable to use two dimensional quantities. The differential scattering cross
section can be written in terms of the dynamical structure factor S(k,€) as follows;

o(E—E u) _ 1 (;, 1\ [E
Otee  4m (1+M) \/Eo S, €). (2. 4)

From S(k,&) we evaluate the Legendre moments 0,(Ey—E) by means of the Gaussian in-

tegration over g The definition of the scattering kernal of order [ is given by

M:%(l-{-%)zx/gﬁﬁ(ﬁ, e)Pi(p)dp. (2.5)

Ofree

The value of S(k,€) for given initial and final energies and for the scattering angle correspond-

ing to the Gaussian mesh g is obtained by interpolating the values of S(x,€) which have been

calculated beforehand for input (#,€) values. In Eq. (2.5) P,(x) is the Legendre polynomials.
The relation between S(x,€) and the so called scattering law S(a, 8) is given by

S(a, B)=Te2S(k, €), (2.6)

where
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ok _ 1 o JTE
a—WT————MT’(Eo-FE 2 VEE ),

;;z%:_%(E_EO).

We divide the frequency distribution of the crystal lattice vibrations into low and high
frequency parts;

fl@)=fi(o)+/f2(@). 2.7

As can be easily seen from Egs. (2.2) and (2. 3), dividing f(w) as in Eq. (2.7), we can write
the intermediate scattering function in the form of product of partial ones:

X(K, t) :Xl(lf, t)XZ(Es t): (2 8)

where indices 1 and 2 refer to the low and high frequency modes, respectively.

We begin our calculation with partial dynamical structure factors, Si’(x,€) and S/(x,¢),
which correspond to the low and high frequency modes, respectively. =~ We apply our method
mentioned above to the calculation of them. Total S(k,€) is obtained by convolving the partial
S’ (k, &) and S (k,€);

Stk ey=|"_de'Sy(r,e—e)) S (i, ). (2.9)

2. 2 Debye Approximation for Low Frequensy Modes
We apply the Debye model to the low frequency modes. The Debye frequency distribu-
tion is
Sfi(@)=C(3/wp*)e? (2.10)

where fi(®) is normalized to C. The parameter C is a weight factor for the low frequency
modes and wp is the Debye cut-off frequency. The phonon expansion method writes Si/(x, €)

in the form! %
NP1 n
Sk, &)= LU (o), @ 11)

where 8 is (27)-! and 2W, is the Debye-Waller factor for the low frequency modes defined as

oW, = 2";4“/1(0), (2.12)
71(0) :E"’d@f 1%4 coth (Bw). (2.13)

The quantity NPl is an intput which gives the number of phonon terms to be calculated. The
functions Gn(g) are given in the form of successive convolution

Go(e)=0d(e), ]

— (eY— S1(&)
Gi(e)=g(e) M?é%(()%inh@’ (2.14)

Ga(e) = rjwds’g(e’)Gn_l(s—s’).

When B<1, i.e., when temperature is sufficiently high, Egs. (2.13) and (2. 14) can be conside-
rably simplified. Using Eq. (2.10) in Eq. (2.13) and the condition A1, we get
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(O)=C %3? , (2.15)
1 if |el<ap,

Gi(e)=1 2 &1
0 , if [EI>COD)

{(n—2v)wp—le|}n-!

[ O DI (i

2.1
if |e| < nop, 217y

0, if |e| > nwp,

where

_[1(,__le
ND_{?(’Z @p )J
The bracket [A) means the largest integer which is smaller than A.

Since a computer can not deal with the delta-function, at first we do not calculate zero
phonon term and we take the summation in Eq. (2.11) from n=1. We redefine S(x,¢) here :

Si(k, €)= e-2Wi- ﬂv; (2W1> CWD" 6 .

The contribution of the zero phonon term is evaluated as the elastic scattering cross section in

the later stage of our calculation.

2. 3 Phonon Expansion and Doppler Approximation for High Frequency Modes

We use phonon expansion method when the condition 2W2<N is satisfied, where 2W is
the Debye-Waller factor for the high frequency modes :

2W2_J‘ 72(0), (2.18)

7,(0) =J:jdw@ coth (). (2.19)

N is an input number, @, and w; being the lower and higher boundaries of fa(w), respectively.
The normalization factor for fo(w) is (1-C).
1) The first method. When 2W,< N and 0<n< NP2, we use the exact phonon expansion?

NP2
Sa(k, €)= 2152(“(15, €)n, (2.20)
where NP2 is an input number and
S0 (k, s)nze—ZWZ"ﬁg—'(ZE@n H,(2), (2.21)
Hi(e)=h(e) = 128

2€72(0) sinh (Be)’ (2.22)

Hn(e):Jiowde’h(e’)Hnwl(s—e’).

As in the case of the calculation for low frequency modes, we do not include the zero phnonon
term in the summation of Eq. (2. 20).
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2) The second method. When 2W><N and NP2<n<NT, we apply the central limit
theorem to each term of order #n. Here NT is fixed at 30. The phonon expansion is then given
in the form of the Edgeworth series, the n-th term in which is¥

S, (k, ©)p=e-2:(

’;;)nflfzfs, (2.23)

where

PO

v:_f:“, a=lss b=

s2=aty— (ap)?, al:TéOT’ a,=2Ta,

T — jdwfz(w)wcoth (Bw),

et o+ () o+ LA (e o

C=nkKs,
k3= a3 — 3102+ 2(a1)?,
3= ,80(1,
H,(v)=Hermite polynomials,
= rzdco Jo(w)a?,
d= nKs,
ky=ay—3(a2)?—4ai02+12(ar) %0 —6(a1)?,
A= 2D,

D =.; j “do fo(@)? coth (Ba).

3) The third method”®. When the condition 2W,> N is satisfied, we use the Doppler ap-
proximation. If 2W, is sufficiently large ((»1), we can expand Y(#) in powers of ¢ and take
only two leading terms

T(®)—-7(0) = it—-é-Eth, (2.24)
where
Ec:3j:2dco fol@) 2 coth (o), (2. 25)

E./2 being the mean kinetic energy of atoms Ein. In the high temperature limit Eyn approa-
ches to 3T/2 which is the mean kinetic energy of free atoms. In this case Si/(x,¢€) is given in
the form of Doppler broadened function

1 (e+ 2,§4>2 (2. 26)
So! (£, €) =72=”76xp g .
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where

2 K2
24 M
4 3 2ME°'

2. 4 Convolution of Dynamical Structure Factors

The total dynamical structure factor is obtained by convolving the partial ones, S;(k, €) and
Sz(#,€).  The zero-phonon contributions, which have been omitted from the phonon expansion
series for Si(#,&) and Su(,¢), must be added to the partial dynamical factors to be convolved.

The total (elastic+inelastic) dynamical structure factor for the low frequency modes is
Si/(k,€)=e~W19(e)+S1(k, €). 2.27)
Those for the high frequency modes is
So' (£, €) =e~W24(e)+Sa(k, €). (2.28)

When 2W,<N, Sy(,¢€) is the sum of the values calculated by means of the first and second
methods :

NP2 NT
Sa(k,e)= 2152(1) (&, E)ut --1\%2 152@(/:, €)n. (2.29)

When 2W,> N, the Doppler expanion method was used. In this case the elastic contribution
is included in Sy'(k,e). We separate the contribution with e=0 from Sy (%, €) in analogy with
Eq. (2.28);

1 1 K2 \2
’ . _ ~a—2W,
St (5, ) =75 exp[ () J5(s)+Sg(ls, &) ~e~2Wd(g) + Sa(k, €). (2. 30)
The convolution of Sy/(k,€) and Sy’'(k,€) gives the total dynamical structure factor S(x,¢€) :
SC )= 81/, S (1, £~/ )de/ =e=W1-2W:8(e)+ Sun(r, ), (2.3)

where the first term in the right hand side of Eq. (2.31) is the contribution from the elastic
scattering and the second term is the inelastic part:

Sin(k, €) =e~W:8,(k, &) + e 2W1.S,(k, €) —i—J de’' S1(k, €') Sa(k, e—¢"). (2.32)

2. 5 Scattering Kernels

Once we get the values of S(k, €), we can obtain scattering kernels from Eq. (2.5) by per-
forming the Gaussian integration over g. Usually the elastic contributions are not included in
the so-called scattering kernels. But when we use a code in which total, transport cross sec-
tions, #(E), etc., are to be computed from scattering kernels, the elastic contributions have to
be included in the input kernels.

The elastic angular scattering cross section for crystals is

doe1 _ 1

,,1 B 2 —2A(Ey) sin2 (8/2) 2 33
dQ _Eofree<l+ M) € > ( . )

where @ is the scattering angle and £ is the solid angle.

A(Ey) = 2% 7(0).
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The elastic scattering cross sections are given by

oa(Eoy) _ 1 1, 2t —AEN -]y — 1 12 71 —e—2A(Ep) .
"""""" =5{1+37) J—le Pdp=-g (14 ) ACEy (T (2-34)

Ofree

and the Legendre moments of order 1 is

oa,1(Eo) 1 I zr —AGEYA-)
- 2_(1+_M) 1° Py

Cfree
= (1) e A X (4 (AE) — 1)+ (AE) +11). (2.35)
2 M [A(E))? T
The contributions of the elastic scattering to the diagonal jj elements of thc scattering kernels
are 0. (E)/4E, where AE is the input energy mesh size. Thus we have the following scatter-

ing kernels,
0By B) =0, (B, B+ 415 (2.36)

where /=0, L.
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3. Description of Computer Code HIKER

3. 1 General Description

The computationl method described in Chapter 2 has been programmed using the FOR-
TRAN-IV language. Our program is named HIKER, which means HI-gh temperature KER-nels.
The physical quantities which can be obtained by HIKER are
1) the dynamical structure factor,' S(k,€),

2) the scattering law, S(a, B),

3) the scattering kernels, 0,(Fy, E), [=0, 1,

4) THERMOS kernels, Py, {=0,1,

5) the total scattering cross section, o,(Eyp),

6) the transport cross section, ai,(FEp),

7) the mean cosine of the scattering angle, u(Ep).

Now we explain the over-all structure of HIKER. The main program controls the over-all
flow of the calculation and performs the calculation of quantities 1)~7) listed above, using su-
broutines and function routines for the detailed calculations. The main flow of the program
is decribed in Fig. 1. The numbers in parentheses in the following explanation refer to the
numbers on the flow chart of Fig. 1.

(1) Subroutine HIINP reads most of control and physical input data and performs
preliminary calculations. Physical quantities which are calculated by HIINP are

CAPT=T, CAPB=B3, CAPC=D, GAMZ=",(0), ALP l=a, ALP 2=a,
ALP 3=a;, ALP 4=aqy, AKAP 3=kx3, AKAP 4=, ENGC=E.
The calculation of integrals

j“’zdw fol@)ar coth (o),  n=-+1, 3, jwzdco fol@)a?

is performed by Subroutine INTEG which uses the trapezoidal rule of integration.
’ (2) Subroutine EPSKAP is used to generate € and ¥ meshes. The input numbers DEPS
(=4e), EPSS (=¢.), DXKAP (=4k) and XAPP (==£.) are used to generate uniform ¢ and &

meshes over the ranges:

e=0, de, 24e, ------ , &,

b

K:A,‘f 24,{, ......... s h:c-

H

In the remained range the &, & meshes are determined with geometrically increasing € and &
intervals arranged to reach EMAX (=¢nu) and XMAX (=kumwx) with the number of meshes
required in the input.

(3) When the several cases are to be calculated in a single run, the routine (2) is skipped
in the case continued from the preceeding one.

(4) Subroutine CLEAR is used for zero clearance.

(5) IOPT controls the calculation in Subroutine CONGH.

(6) Subroutine COHGH calculates H;(¢) when IOPT=2 and G.(¢) (n=1~NP 1) when
IOPT=1.

(7) Brock (7) performs the convolution calculation
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(1)

N '
ew Problem 7 Continued

M @)

[Calt CLEAR(STEM. 00,9030) | (4)

. ot Tt e o . o e e e T S i e i o S St S S T o ot e e B

D
r
]
]
I
I
i
|
1
|
]
i
|
|
]
I
|
|
DO IP=M!,2 !
m—— = ———— s — - — e 1 |
I Lo
i ' '
| | '
I 3 ! : N T
I I I L
t | 1 J1=302-J ATEM(30Y)= S
] :‘ “““““““““““““““ 1 I I J2=300+J
! |
D (6) N I ATEM(INI =S )
1 Pl ! ATEM (J2) = S* EXP (€/T)
b I
| |
I ]| ) L] Continve }—m—e—
He (E) I I
I I
b P 100 J=0, NUM__ T ____ .
i e
|
1 I [FNW=FLOAT (II*Wp | [FNW = FLOAT(E ) *w | L b 1
L — i | |
L I D —— @, | ] I
|
Pt = = It DO K=i NT |
Pl ﬁfs £(33), TEST ‘Eﬂ I‘ll : IE;)-O —————————————————————————— 1 I
| 1! Yes ||| | 1! I |
I Il ||= | :I } i
| i }
| o o) o
| | | ~2wrBE (2w, )" It K=NP21, S2(1), S4 |
I l Hll ! i Frrne ns_ o | !
L I | sieeee] vl
Py Mi=TEST/A W ”: | |1 [st=steree i : '
I M2= 1001 + M| Hy Fyl i
|| ||| [ I I
| iy Lo i
I 1 il
1 hloo o
R I b
LL | I |
| | |
I by | n XK2W !
It _ 2wy (KPR 1 [
} } Il STEM (J7,11,1P) = GFAI (M2) H: ! ¥ se(2= " (KRN | | so2)exaw | : !
; I I +(GFAIM3) = GFAT (M2)) (LEEL- -M1) III: i }, XK2W =52 (2) I :
.| ! 101 |
b I — H oy 52(2)= 5, (K,Ehy | (13) b
| mm———mm= CONTINEfF === — — === —=——=——-~_ ] [N ks |
____________ : :I No k= np21)—Yes 1 :
- 1 11
NCo=0, 71(0) P TEST =1 S2(21/({$4+SN } : !
| |
Coll CLEAR (ATEM, 00, 601} I h ST o e ! ! :
[} Pt Y I
Cail CLEAR (BTEM, 0.0, 6011] 1] No(TEST €, | :
| | I
NUM? =NUM-1 : :'I [5a=sa+s2(2] 14) [S4=354+52(2) b :
I
1PAGAB=0 : | L= Continge f———==—f—==—==—==== 4 :
1CD) 1603 I
® =
(a) (b)

Fig. 1 Main flow of HIKER

The numbers in parentheses in the figure refer to the numbers of explanations in section 3.1.
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@@ ®

DO JJ=1,NUM
—

1603 )
‘
Ec.d, S (K.E)](15)

BTEM(301)=51+54

BTEM (J1) = 51+ 54
BTEM(J2) = ST

SKE(KS,I)=0

J1=301+JJ- KS
J2=303~(JJ+KS)

J1 21 ond J1<601

[521=ATEM(300+J7) « BTEM (72))
|

|
|
|
|
]
|
|
!
|
|
|
i
|
|

No Yes

[s1=0.0]
L

Yes

£‘° JI=1)

‘ SKE(Ks,1)= 5, (k,g")s, (K,e-z')de‘—l
j -

el T ST =

SKE(KS, ) = €2 s, (k,6)+ 872" S(K, €)

+js.u<,e')szuc,a—s') ag!

P e e e o ————————————

“““ B
_______ —
[call_cLEAR (P, 0.0, 10100)]
BE(I), V(D)
I=1,NERGY (18)
FoI=TNERGY . _ |- T T T T T
r “““““““““““““““““““ ;|

!
L

)

Continue

) =1
[1tiskE<0.0), sSKE=10F | |
[SKE(KS,T)=In SKE(KS,D) ] !

Call GAUSS (NCOS,~1.,1., LGEND, SSS, Pt, P2
EPSE, AMASS, TEMP, SALB, ALP )

ANSO = SSS(f1)
I (LGEND %0}, ANS1=S5SS (2)

¥
[61€0.E): SM1(IK.1)=TEMxANSO]
¥
IF(LGEND%0), 0}(E, E): SMI{IK,2)=TEM*ANS1

T
-
1
Iy
I
[
[
I
|l
§
:
o
N
i
!
I
|
[
|
I
I
I
|
!
|
]
L

Fig. 1

———————— e e ]
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I
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I
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]
|
|
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|
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!
I
!
:
I
I
!
I
I
|
I
I
I
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I
I
!
I
|
!
I
[
|
I
|
|

Description of computer code HIKER

[BUFFER OUT(SM1(1), SM1(10100)]

[Call CLEAR(SM2, 00, 10100)]
[Call CLEAR(SMI,0.0, 10100)]
[]

[BUFFER IN (SM2, SM2(10100) |
DO I=1,NERGY

[avj, 8Ej]  [avy, 8E ]

[7(0, A(Eg), 051+ F|

11

i
[Gea(E)=05(1+ 3 7 PAPTI (X, AA VAE)] (19)
v

[1(LGEND=1,Gep (E01=05(1+5 P PART1(X. AL 21/ARES] (19)

No

NN =KNK(I,J)

{1 (LGEND=1), SIGI (J)= SM2(NN,2)]

NN =KNK (J,T)

20 |

[EE=(E;j/E)exp ((Ei~Ej)/T) ||
A

[SIGO (J)=SM2(NN,1)}%EE] |
¥

[IFILGEND=1), STG1 (3 1= SM2INN, 2% EE]
T

[THERMOS kernel :Pjj o, Pij,; | (21)

L. — — —— —{Continue

DO I=!, NERGY

Gin (E ): SIGMAO(1)=SIGMAO(I}H{SIGO( L)+
SIGO(I-1))* DE (1)

If (LGEND=1) Gin 1(Eq): SIGMAI(I) =
SIGMAI (1) +(SIGI (I)+SIG| (T+1)}*aE(T)

[
|
| ¥
|
|
|

e

[O1EQ)=0in (Eg) + 0,z (E,)]|

TF (LOEND=1)
0, (Eq)=0pn, 1 (Eoi Gty (Eo)
Oy (Eq)=01Ey) =0 (E,)
Z (Eg)= 0y (Eo) /61 Eq)

i
|
|
|
|
|
|
|
|
I
|
|
l
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
i
|
|
|
|
|
I
|
I
|
!
|
I
|
|
!
|
|

[Write , Punch the results]

[1f (NPROBZ2) NB=NB+1]

(d)

Main flow of HIKER

The numbers in parentheses in the figure refer to the numbers of explanations in section 3.1.

L
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Ha(e) :wah(e’)Hngl(s—e’)de’.

The defining € region for H,(¢) is given by
0<le| <n+NOMG- 4w

where NOMG is the number of meshes for the frequency distribution and dw is its mesh size.
We calculate Hy(¢) for negative € only. The FORTRAN symbol STEM (JJ, II, 1) refers to
Gn(e) and STEM (JJ, 11, 2) to H,(e).

(8) In the block (8) the partial dynamical structure factor Si(x,€) is computed for the
negative £&. As soon as the convergence criterion for the phonon expansion series controlled by
input is satisfied, the calculation of S)(k,€) is terminated even if #<NP 1.

(9) Values of Si(k,¢&) for -& (¢ negative) is obtained using the detailed balance relation
Si(k, —e)=e’TS\(k, €).

(10) The dynamical structure factor for the high frequency modes, Sy(x,¢), is computed
by means of the first method.

(11) The K<NP 2 calculation begins with the preliminary calculation of quantities nec-
essary to perform the second method.

(12) When v>3.5, we approximate f3 to be 1. For v<3.5, we calculate Hermite poly-

nomials using the recurrence formula
H(v)=1,  H)=y,
Hn('v) = HlHn_l— (n-— l)Hn_z.

Subroutine ZENKA is used for the calculation of H,(v).

(13) The flow through (11), (12), (13), (14) is for the calculation of So(%,€) by the second
method. The calculation of S:(#,€) is terminated and skipped to the next step, as soon as the
convergence criterion is satisfied.

(15) The computation of S»(k,€) is performed using the Doppler approximation when the
Debye-Waller factor W3 is larger than a value controlled by input.

(16) Values of Sy(k,€) are obtained for all (positive and negative) meshes of using the
detailed balance. BTEM refers to Sa(k, €).

(17) Block (17) is for the convolution of Si(k,€) and S:(, €).

(18) Subroutine GAUSS is for the intergration of S(k,€) over #. The 10 and 20 point
Gauss integrations are available in our program. The value of S(k,€) corresponding to the (x, £)
point deterimened by input (i, E;) and the Gaussian mesh g, is obtained by the Function rou-
tine FUN, which calls Subroutine TERP. Subroutine TERP is used to seek intermediate values
of S(k,€) by linear interpolation of In S between successive values of ¥ or &. The values of ¢
extend from 0 to €max but £ starts. from a non zero value dk. For k<dk, S is assumed to be
proportional to k% The value of % is determined form S(#1,€) and S(#», €) using the relation

p— In (S(r2, £)/S(k1, )]
In (£2/K1)
This scheme of interpolation and extrapolation is used in FLANGE® which calculates scattering
cross sections from the scattering law S(a, B).

In Block (18) half kernels o(E;, E;) and 01(E;, E;) are determined.

(19) The calculation of elastic scattering cross sections is performed.

(20) The full kernels are obtained using the detailed balance relation

01(Eq—E) Ege~Fo/ T=g,( E—Ey) Ee~E/T,
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(21) THERMOS kernels defined by®
Pi;, 1=0. 0506 viv;dvijo,(E;— E))

Description of computer code HIKER 13

are calculated, if required, where v; is the neutron velocity in units of 2200 m/sec and is calcu-

lated from E; (eV);
v, = 6. 286944 VE;.

(22) Integration over E is done by the formula

NERGY-1
o (Ey) = 2 (0:(Ei—E)+0,(Ei—E;1)) 4E;

where

4E;=0.5(E;1—E)).

3. 2 Input Form

The form of input to HIKER is described on the following pages. Input data have to be
prepared for items 1~3 in FORMAT (215, 6 F10.0/(7F 10.0)). The first integer indicates
the relative location of the item and is fixed in our program. All numbers other than given

on the following pages will result in an unexpected error. The second integer gives the number
of data included in that item. For items 4~10 data should be given in FORMAT (215, 6 E10.5/

(7E 10. 5)).
Item Columns F;ilciggirln Explanation
1 1 ~60 Title Card (A-Format).
2(1) 1~5 should be 1.
6~10 should be 17.
11~20 NPROB Number of problems to be calculated.
21~30 KERPR Zero or non-zero. If non zero, the values of E,,
. E and 6,(E,, E) will be printed. If zero, this print
is not given
31~40 KERPC Zero or non-zero. If non zero, half kernels will be
punched in FORMAT (5E12.3) in the order ¢
(1-1), e(2-1), ¢(2-2), 6(3—1), 6(3—2), «wevee .
If zero, no punched card will be obtained.
41~50 KPIT Zero or non zero. If non-rero, THERMOS kernels
will be punched.
51~60 ISPR Zero or non zero. If non-zero, the Scattering Law
S(a, B) will be printed. If zero, this print is not
given. :
61~70 LGEND Zero or 1. If zero, the calculation will be done only
for /=0, where [ is the order of Legendre moments.
If 1, the calculation will be done up to /=1 and ¢
and z# will be obtained.
2(2) 1~10 NP1 The number of phonon terms for the low frequency
modes.
3<NP1<L15.
11~20 NP2 The number of phonon terms for the high frequency
modes. Terms of order #<NP 2 are calculated by
the second method.
3<NP 2<10.
21~30 NERGY The number of energy points<110.
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Item Columns P;;Orﬁf;)rln S;lrﬁilgls Explanation
31~40 NOMG* The number of mesh points for f,(w)<101.
41~50 NOMGL The number of mesh points for the lower cut-off of
o value for f,(0)<NOMG. o,=d4dw *NOMGL.
51~60 NRE Zero or Nonzero. If zero, points are given with
equal mesh size. If non-zero, ¢ will be given in
uniform size up to &, beyond which geometrically
increasing mesh sizes will be used to generate
points.
61~70 NUM The number ef ¢ points <301.
2(3) 1~10 NRK The same explanation as for NRE is applied to &.
11~20 NUKK The number of & points <100.
21~30 NBAR N The control number to select methods in the calcu-
lation of S,(x,¢). I 2W,<N, the first and second
method are used, otherwise the third method is
used.
31~40 NCOS The number of mesh points in Gauss integration
over g. Only 10 and 20 point values are stored in
our program (should be 10 or 20).
3L 1~5 should be 31.
6 ~10 should be 10.
11~20 AMASS M Atomic mass.
21~30 TEMP T(eV) Temperature of crystal.
31~40 DOMG wp(eV) The Debye cut-off frequency for the low frequency
part of the frequency distribution=4w* NOMGD.
41~50 OMGU w,(eV) The cut-off frequency for the high frequency part
of the frequency distribution=de* (NOMG-1).
51~60 CWEIT C Weight of the low frequency modes.
61~70 SIGF oiree (barns) Free atom scattering cross section.
3(2) 1~10 DEPS de Interval for uniform ¢ meshes.
11~20 EPSS €e ¢ value at which mesh interval begins increasing
geometrically.
21~30 EMAX Emax Maximum ¢ value.
31~40 EPS & Convergence criterion for the phonon expansion se-
ries (The same value is used for the Debye appro-
ximation, the first and second method).
4 1~5 should be 751.
6 ~10 should be 3.
11~20 DXKAP 4k Interval for uniform x meshes.
21~30 XKAP Ke x value at which mesh interval begins increasing
geometrically.
31~40 XMAX Kmax Maximum x value.
5(1) 6 ~10 NERGY The number of energy points <110.
11~20 ENRGY (1) E; Energy mesh.
61~70 ENRGY (6)
5(2) 1~10 ENRGY (7)
6(1) 1~5 should be 151.
6 ~10 NOMGD#® The number of mesh points for f,(@)<NOMG.

*  Values of NOMG and NOMGD should be chosen to generate the same 4o for fi(w) and f3(@). dw=aw;/(NOMG-

1.
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Item Columns I';ryor;glge(l)r;l E;lrﬁ;gls Explanation
11~20 RHO (1) Fi(w) Values of f,(wi) for wi=ixdw, i=1~NOMGD.
When the Debye approximation is to be used,
e f1(@)=0. When non-zero values are given, the
61~70 RHO (6) first method will be applied to f,(w).
6(2) 1~10 RHO (7)
7(D) 1~5 should be 151+NOMGL.
6 ~10 NOMGU The number of mesh points for f,(w) in the high
frequency region=NOMG-NOMGD.
11~20 RIO (1) flw), Value of f,(®) in the high frequency frequency
region. {=NOMGD+1~NOMG. Values of f,(w)
21~30 e - for @< w, should be given. (Let f,(@)=0 for w<w,).
T(2) e eeeeeeeee,

Following cards are not necessary, if(x, &) meshes are to be generated as decribed above.

If one wants to

give (x, &) meshes arbitrarily, following cards are needed. When cards of item 8~10 are given, cards of item
2(2) and 3 should be omitted.

1 ~72 Blanck card.
9 1~5 should be 252.
6 ~10 The number of & points<301.
11~20 ETS (1) & Values of &
10 1~5 should be 553.
6 ~10 The number of x; points<100.
11~20 XKAP (1) ki Values of #i.
21~30 e
TABLE 1 Sample input data
SNPUT BATA FORM B BasE. 1w
v 2 " e i L PN
5 Xk‘ ERE 5 TEREEY
ZRetls 5 (1000 :
1 17 3.0 L 0
15« 0 1000 : 80,0 140 44,0
‘ - : ;
1.9 400 ! 1¢.0 ¢ :
33 10 1.0 ﬂ.ms b.0:2 0.1 8 0,AAFITE 20 B
L0 Lo e L 201
751 2 0.05 1.9 4.5
61 5C L 40000-02 500002 ,17500-01 , 3020001 L TESNG - 01

LETRO-0L

SEED V40

FO0soenn

L1TLC00L o2
151 11 .

1.8 6700001,

32 400 *095 .'7‘7

11000 ¢+ 00
B QoY F Ol

VLR O U0 L, 220 OC/@GO
CAZHD e U0 L4830 df‘“!

BI600 400 JBEDD040 5 *10090 401
30451

QGa% 91 238
0 .0
G » 0
b} it
3 L0
o] + 0
i . C
3 ¥id

7’?30* '101 + 92 400+001 957{)

500 *00
D0 . BUDOG YOO

LZASOC D0 L2 TR0 00
.wsmvuo LE4n

107 90*&"1

A X2 od0l L 15000 501

I .

a
.0 : .0 .0
.9 0 -
] ) . 0
. 0 - .0
PR . » .« O
it o « D

+0 ’)». €05002+00
7‘707% Lt 8
D01

TC0T790 *\31
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3. 3 Output Form

1) Printed Output

The first section of output gives physical input data; E;, M, T, wp, o1, w2, C and unnor-
malized f2(w). The normalization of f2(w) is done in the program and the normalized f2(@) is
also printed, which is followed by some quantities depending on f2(w): T, B, D, 72(0), ai, az,
as, a4, 0% k3, k4 and Ec.

Values of generated € points are printed. The block is headed by €max, NUM, &c and the
expansion factor for geometrically increasing series. Next, values of generated £ points are
printed in the same form as for &

If ISPR+£0, values of 8, S(a, 8) are printed for each a value.

If KERPR+0, values of E;, 6;(Ei—E;)/0. are printed for each E;

If KPIT=+0, values of E;, P(i<j) are printed for each Ej

The rest of output relates to 0,(E), 0(E) and #(E). When the whole calculation has
been performed without any troubles, the phrase “ SUCCESSFUL END” will be printed on
the last page.

2) Punched Output

If KERPC=+0, half kernels will be punched in the Format (5E12.3) with 5 data per card.
The order is

O1-1, 0251, 0252, 03-1, 03-2, 0353, 041, 04,2, ****** .

If KPIT+0, THERMOS kernels are punched in the THERMOS-MUG Format (5 (212,
E10.3))D. The THERMOS kernels are given in the form of full matrix and the order is, for
example, when NERGY =4,

1,1, Pioy; 2,1, Pouy; 3,1, Paeyy 4, 1, Paer; 1, 2, Preo; 2, 2, Poo;
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4. Application to Zirconium Hydride

What motivated us to develop our new program was the necessity of calculating scattering
kernels for zirconium hydride at high temperature. When values of scattering kernels for cry-
stalline moderators become necessary, we generally use UNCLE®. UNCLE is a very excellent
and useful program, but is very time consuming at high temperature. For example, it took 1hr
29 min sec to evaluate the 60 group THERMOS kernels for ZrH; 5 at 1000°C on an electronic
computer FACOM 230/60. On the other hand, HIKER can compute the same promblen in 1
min 49 sec on CDC-3600 computer. Morever, values of the scattering cross sections calculated
with UNCLE for incident energies above 1 eV were found unreasonable (See Fig. 2 e and Fig. 3).
The deviation of cross section values results from rapid increase of 72(0) with temperature. The
large 72(0) at high temperature makes the Debye-Waller factor 2W3; too large for large mo-
mentum transfers (Remember the relation: 2Wso=(x?/2M)72(0)). The large Debye-Waller
factor violates good convergence of the phonon expansion series and causes the deviation of cross
section values at the relatively high energy range. The Doppler approximation used in HIKER
has been found very effective in such a case.

In what follows, we show results of our computations for zirconium hydride ZrHj s. We
calculated scattering cross sections by means of HIKER and UNCLE, using the same physical
model. Some comparisons between HIKER and UNCLE results will be given in the following

discussions.

1) Frequency Distribution of Lattice Vibrations for Hydrogen in Zirconium Hydride

Models to describe atomic motions of hydrogen in zirconium hydride were studied extensi-
vely at GGA in connection with the zirconium hydride moderated TRIGA reactor®)?.1 The
Doppler broadened Einstein oscillator model proposed by Nelkin and Rosenbluth has been found
to give a good theoretical prediction as to thermal neutron scattering by hydrogen in zirconium
hydride. We used this model in our calculations.

The frequency distribution f(w) of lattice vibrations for hydrogen is divided into two parts:
fi(®) for the low frequency acoustic modes and f»(w) for the high frequency optical modes;

f(@)=Cfi(@)+(1—C) f2(w), (4.1)
where C is the weight associated with the low frequency modes. Since reliable experimental

data on dynamical properties of hydrogen in zirconium hydride are rather scarce, simple models
for fi(w) and f2(w) have been tried. The acoustic fi(w) is approximated by the Debye distri-

bution
3
Si(w) = wp? w? 4. 2)

with a cut-off wp=0.02eV and a weight C=1/360%. The optical f2(w) is taken as a Doppler
broadened Einstein distribution given in the form of Gaussian distribution centered at wy=0. 13eV

with a full width at half maximum dw=0.03eV :

Si(w) =72?— ‘/2)2 exp [— (41n ag‘;z_woy J (4.3)
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TasLle 2 Normalized f,(w) for ZrH,
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Both fi(w) and f2(®) are normalized to 1, respectively,

j:”dw fi(w)=1, j:dco fo(@)=1.

Numerical values of f2(w) for 84 w; points are given in TABLE 2.

2) THERMOS Kernels

THERMOS kernels P;; for ZrH; s at 1000°C (0. 1097 eV) are shown in Fig. 2 in compari-
son with the UNCLE results for some typical incident neutron energies. The same physical
parameters were used as input both to HIKER and UNCLE. In the relatively low energy
region HIKER gives somewhat smaller values than UNCLE. The smaller HIKER values may
be explained by the fact that in HIKER the calculation for the low frequency modes is per-
formed throughout by means of the Debye phonon expansion method with phonon terms up to
order 15, UNCLE uses the short collision time approximation when the Debye-Waller factor
for the low energy modes exceeds a certain value. The maximum number 15 for the Debye
phonons may be small and it may be desirable to take the larger number. The weight C=1/
360 for acoustic modes may be too small at high temperature. Because the low energy scatter-
ing is not important in the high temperature crystal, the differences in the low energy Pij may
be expected to give almost no noticeable effects on integral reactor parameters.

In the intermediate energy region the agreement between HIKER and UNCLE results is
excellent. A marked discrepancy between them is seen in the hot energy region. In this region
we have to prefer HIKER values to UNCLE ones. In contrast to the case of low incident
energies UNCLE uses the phonon expansion method only for the high frequency modes. This
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is the reason why UNCLE gives too small values for large energy transfers, (i.e, large (E-E).
Notice that E; is the incident energy and E; is the energy of scattered neutrons). As can be
seen from Fig. 2, the UNCLE curve for Ej=1.5eV has a giant peak in the neighborhood of
E,=0.4eV. We are not clear about why this peak grows up as E; becomes larger.

3) Total Scattering Cross Section and the Mean Cosine of Scattering Angle

The total scattering cross section 0,(E) per H for ZrH;s at 1000°C is shown in Fig. 3.
The unreasonable divergence of the UNCLE value in the hot energy region is due to the grow-
ing of a giant peak seen in P;;.  The causes leading to the difference between HIKER and
UNCLE values are clear from the discussion on Pij.

Fig. 4 shows the mean cosine of scattering angle u(E) for ZrHs at 1000°C. Making a
comparison between UNCLE values and experimental data ZrH,s at room temperature, we
found that UNCLE values are systematically larger than experimental data. Morever w(E)
should approach to the value of 2/(3M) at E increases. This is the value for a free atom and
becomes 2/3 for a free hydrogen. As can be seen in Fig. 4, the UNCLE value becomes larger
than this limiting value. From these facts it would appear that HIKER results is preferable to
UNCLE ones at high temperature.  Unfortunately we have no neutron experimental data on
ZrH; 5 at 1000°C. This fact prevents us from making detailed discussions further on the ac-
curacy of the HIKER method.

10 T T T T TTT] T T T T T T T T T T T —TTTTrrT
o ———  HIKER -
~ { - \\ .
S ~. e UNCLE
S i
o5 _
o , l

o) ! bl ] Looaaaal I Lol 1 Lot

107 102 107" 1 10
E (eV})
Fig. 3 Total scattering cross section per H in ZrH, s at 1000°C
The divergence of the UNCLE value above 1eV is unreasonable.
10 T T T T T T T T T T T T T T T T T T
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- /,J"‘ i
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w.5 |
I3, N
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107 1072 107! 1 10
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Fig. 4 Mean cosine of scattering angle for H in ZrH, , at 1000°C

An arrow——indicates the value for a free hydrogen. The
UNCLE value exceeds this limiting value. The result of
HIKER calculation shows a reasonable behavior,
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