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The calculation codes HONEYCOMB, FDCAL-2 and FATEC-3 have been programed for
the purpose of developing a series of computer programs to be capable of predicting the detailed
and fundamental informations about the core characteristics indispensable for supervising opera-
tional performance of the Japan Experimental Fast Reactor “JOYO™.

HONEYCOMB is a code for detailed calculations in analyzing nuclear characteristics of the
reactor. It performs criticality calculation in diffusion model and burn up calculation, for 3-
dimensional hexagonal-z geometry. It can predict the critical insertion depth of control rods
and calculate the 3-dimensional power distribution required by thermo-hydraulic calculation.
Power distribution and burn up are also obtained for fuel pins, if necessary, as well as for as-
semblies.

FDCAL-2 predicts coolant flow distribution in every coolant channel between inlet and out-
let plenums in the reactor vessel. In calculating the flow distribution in the assemblies, the sub-
channel model is used, and the thermal mixing effect is expressed in terms of an apparent heat
transfer coefficient.

FATEC-3 calculates temperature distribution within some assemblies, optionally specified in
the given core matrix. At the same time, it estimates the hot-spot temperature, one of the in-
formations for confirming the safe operation.

FACAL-2 and FATEC-3 have been combined so as to remove their unnecessary overlapping
parts, and have consequently formed a detailed calculation code for analyzing thermo-hydraulic
characteristics of the reactor, FDCAL-3. FDCAL-3 has been linked to HONEYCOMB as a
segment of overlay structure, and this combination of HONEYCOMB and FDCAL-3 forms the

* Work performed under the contracts between Power Reactor and Nuclear Fuel Development Corporation and
Japan Atomic Energy Research Institute.
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detailed calculation subsystem in the JOYPAC system.

The detailed calculation subsystem produces the data file of the detailed fundamental infor-
mations such as distributions of neutron flux, power etc. about the reactor under stationary
performance. This file is required by the quick and simple calculation subsystem SMART and
the recording subsystem MASTOR described in Part I. The code SMART predicts the various
characteristics changes in a short term, utilizing the informations stored in this file. Thus, times
of resorting to the time-consuming detailed calculation are reduced as far as possible, and super-
vision of reactor performance is realized in both features of practically sufficient accuracy and
reasonable computer cost.

In this Part 2, the outline of the detailed calculation subsystem is described mainly about
their functions and methods of calculation.
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1. Introduction

The JOYPACH* system is an off-line computation system for supervising and planning per-
formance of the Japan Experimental Fast Reactor, “JOYO”. The development work of the
system was commenced in 1971 for the purpose of predicting and checking the nuclear and
thermo-hydraulic characteristics of the reactor system in coming operation cycle, as well as for
the purpose of recording the operational history and statistics.

According to the required functions, the program system consists of four subsystems:

(1) HONEYCOMB¥*, the detailed calculation subsystem predicting the nuclear characteristics

(2) FDCAL* and FATEC*, the detailed calculation subsystem predicting the thermo-hy-

draulic characteristics

(3) SMART*, the simple calculation subsystem

(4) MASTOR*, the recording subsystem

This report (Part 2) is for describing the outline of the detailed calculation subsystems
HONEYCOMB and FDCAL-3 (a combination of codes FDCAL-2 and FATEC-3), mainly about
their functions and methods of calculations, while SMART and MASTOR subsystems are des-
cribed in Part 128, together with the general introduction of the JOYPAC system. A user’s
manual will be published separately in the future.

HONEYCOMB, described in Chapter 2, is a diffusion criticality and burn up calculation
program dealing with the geometry of the core as a 3-dimensional hexagonal-z mesh structure. It
produces the fundamental informations about the core under stationary operation, such as detailed
power distribution required by both FDCAL-3 and SMART, and 3-dimensional distribution of
neutron flux required by SMART. It can predict also the critical insertion depth of control rods,
3-dimensional density distribution of fuel nuclides etc., which will change through the burn up
of the core. Power distribution and burn up are also obtained for fuel pins, if necessary, as well
as for assemblies. For the 2-dimensional criticality calculation in z-y mid-plane geometry, a
triangular mesh diffusion code TRI-2D is also prepared in addition to the hexagonal mesh diffu-
sion code HEXA. The JAERI-Fast set is used for the group constants in this subsystem
HONEYCOMB, with some additions from the ABBN set. Neutron spectrum in each material
zone is calculated by 25-group r-z diffusion program with a coarse mesh structure, in order to
collapse the group constants into a few groups for use in 2-dimensional fine-mesh and 3-dimen-
sional coarse-mesh criticality calculations. Kinetics parameters are also prepared by this 25-group
r-z diffusion model. Three-dimensional adjoint neutron fluxes can also be calculated after regular
fluxes are obtained. In the calculation of the 3-dimensional power distribution, the effect of the
neutron-induced v-ray in the core is considered. Burn up calculation is made about nine nuclides
of 238577, 286(J, 238(J, 239Py, 240Py, 24Py, 242Pu, LFP (lumped fission products) and !°B.

In the development of the HONEYCOMB code, main effort was devoted to achieve both
accuracy of results and efficiency in computation compatible for practical use. Special imple-

"% Names of the subsy;:gms have come from the following meanitigs.
HONEYCOMB: The geometrical shape of hexagonal-z assemblies in the core

FDCAL: Flow Distribution Calculation

FATEC: Fuel Assembly Temperature Evaluation Code

SMART: Simplified Method to Analyze the Reactor Technical performance
MASTOR : Monitoring And Supervising Tool on Operation of Reactor

JOYPAC: JOYO Performance Analysis Code
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mentation can be summarized in the following three points:

(1) The 3-dimensional criticality calculation is applied only to the central radial zones, inside
the ficticious boundary set in the middle of radial blanket, so as to save the computa-
tion time. This is because the outer zones have very little influence on the reactivity,
which had been confirmed previously by design calculations. Hence, in these outer
zones, the 3-dimensional distribution of neutron flux is approximated by synthesizing
the 2-dimensional flux distributions obtained by -z and hexagonal calculations.

(2) Accuracy of the predicted flux values is enhanced in and around control rods without
making mesh sizes fine, by preparing separately diffusion coefficients, locally modified
by a simple transport model (§ 2. 4. 4).

(3) Efficiency in calculating the detailed power distribution for each fuel pin in fuel as-
sembly is raised by using 1l-group 2-dimensional diffusion model for each 3-dimensional
coarse volume segment and by engaging a method of potential theory (§2.5. 3).

FDCAL-3, described in Chapter 3, is a combination of the coolant flow distribution calcula-
tion code FDCAL-2 and the temperature distribution calculation code FATEC-3.

FDCAL-2 calculates the steady state flow rates in all coolant flow paths between inlet plenum
and outlet plenum in the reactor vessel. Flow rate distribution over these flow paths is calculated
to achieve an equal pressure drop for all flow paths between inlet and outlet plenums. In this
calculation, pressure gradient in each plenum such as high pressure plenum is assumed to be
uniform.

A net pressure drop of an assembly, in which fuel elements are arranged hexagonally, is
predicted taking account of flow distribution in the assembly, because power distribution is given
3-dimensionally in the assembly. Flow distribution in an assembly is calculated by using tri-
angular subchannel model. Thermal mixing effects in the subchannel, resulting from thermal
conduction and turbulent crossflow, are assumed to be expressed in terms of an apparent heat
transfer coefficient. Momentum interchanges are, however, neglected between adjacent schannels.
Each subchannel is assumed to contain 1-dimensional single phase flow. The equations express-
ing mass, momentum and energy balances are solved as an initial value problem by using finite
difference method, with a given inlet total flow rate into an assembly, inlet coolant temperature
as the initial condition and power distribution. The numerical procedures involve an iterative
technique keeping pressure drop in each subchannel equal. In other coolant channels not ad-
joining fuel elements, pressure drop is calculated by using friction loss coefficients determined
from experiments, and by taking account of approximate uniform v-ray heating.

FATEC-3 calculates the temperature distribution of coolant and fuel elements in an assembiy.
Coolant temperature distribution is calculated by using again subchannel model. There, sub-
channel flow distribution is given by FDCAL-2 results, or if necessary, FATEC-3 itself can
calculate it as well as coolant temperature distribution. The temperature within a fuel element
is calculated in the 1-dimensional (r) or 2-dimensional (-6) model. FATEC-3 is applied to some
assemblies optionally specified in a given core configuration. At the same time, hot-spot tem-
perature can also be estimated as one of the informations in order to make sure the safe oper-
ation.

The subsystem FDCAL-3 has been linked to HONEYCOMB as a segment of overlay
structure, consequently forming the detailed calculation subsystem in the entire system JOYPAC.
The detailed calculation subsystem produces the data file of the detailed fundamental informations
about the reactor under stationary performance, this data file being supplied to the SMART/
MASTOR combination. SMART predicts changes of the various characteristics in a short term,
utilizing the informations stored in the data file. Thus, the time spent by resorting to the de-
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tailed but expensive calculation is reduced as far as possibel, and supervision of reactor perform-

ance is made possible with practically sufficient accuracy and within the practical limit of
computation time.

Listed below are the members of the Working Group on Fast Reactor Safety Analysis Codes including those who

were once members of the group.

Japan Atomic Energy Research Institute: S. KATSURAGI, chief of the Nuclear Codes Evaluation Sub-Committee
T. SUZUK]I, group leader of the Working Group
A. HASEGAWA, M. AKIMOTO, Y. MIYAMOTO, K. SANOKAWA,
K. IKAWA, Y. MURAO

Power Reactor and Nuclear Fuel

Development Corporation : T. INOUE, F. YOSHINO, Y. MIYAWAKI, H. MIZUTA
Tokyo Shibaura Electric Co., Ltd.: M. SUZUKI, A. SHIMIZU
Japan Atomic Power Co., Ltd.: S. NAGAYAMA, Y. KUGE

Mitsubishi Atomic Power Industries Inc: T. IWAKI, M. KITAMURA, Y. SEKI, K. SAKAI
Tokyo Institute of Technology : R. TAKAHASHI
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2. HONEYCOMB, the Detailed Calculation Subsystem Predicting
the JOYO Nuclear Characteristics

2.1 Summary of the Code HONEYCOMB

In this section, the fundamental concepts or outlines are described in order to make it easy
to understand each method given in Sections from §2.2 to §2.7.

2.1.1 Configuration of the Reactor Treated in Calculation

HONEYCOMB deals mainly with hexagonal assemblies, which are regions of fuel, blanket,
control rods and reflector materials arranged in a hexagonal cell. The outer regions of pressure
tube and shielding material are not treated in this code with the exception of the subroutine
RZ (§2.4.1). Boundary condition for vacuum (@/|Vd|=0.71044,) is given at the radial outer
surfaces of reflectors, at the top of upper sleeve and at the bottom of lower sleeve. Core ma-
trix in the horizontal plane at the middle height is given in Fig. 2.1.1-1. Let the central as-
sembly be the first zone, the six assemblies around it be the second zone and so on, then the
core matrix consists of 11 zones.

The 3-dimensional, hexagonal-z, criticality calculation is performed for the region containing
up to the 8th zone, whereas the outer 3 zones are dealt with by 2-dimensional 7-z and 2-dimen-
sional hexagonal calculation, because these outer zones have very little influence on criticality of

the core. Thus the number of assemblies are reduced to about half for the time-consuming 3-
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Fig. 2.1.1-1 The core matrix of JOYO (pitch=8.15cm). Fig. 2.1.1-2 Vertical cross section of the reactor

simulated for r-z calculation.
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dimensional calculation. Figure 2.1.1-2 shows the right half of schema of the reactor in the
vertical plane (r-z plane).

2,.1.2 Summary of Input Data

The input data for HONEYCOMB are divided into two kinds.

(1) Data invariable by problems, which are supplied in binary form by means of a mag-

netic tape or disk.

(2) Data variable by problems, which are given by cards in decimal or character form.

The kind (1) is the library of reactor constants in 25 energy group structure, consisting of
tables of cross sections and resonance self-shielding factors for 20 nuclides (the major part being
taken from the JAERI-Fast set?), fission spectrum, atomic weights etc.

The kind (2) consits of

(a) Data about components of each material composition.

(b) Data of reactor configuration.

(¢) Data to control the calculation.

Nuclides and their densities, and temperature for each material are contained in (a). The
(b) defines the size of calculational object, mesh structure and arrangement of material zones for
each of 25-group r—z (§2.2.3), a few group =z (§2.4.1), hexagonal (§2.4.2) and hexagonal-z
(§2.4.3) calculations, and the detailed hexagonal-z calculation for each fuel pin (§2.5.3 and
§2.6.2). In (c), contained are a few group structure, total generation rate of thermal power
from the reactor, time intervals for burn up calculation, condition for stopping the burn up cal-

culation, specifications for each optional item of calculation, output print control and so on.

2.1.3 Flow of Calculation and Code Structure

Flow of calculation in the code HONEYCOMB is illustrated in Fig. 2.1.3-1. Since the
period of one burn up cycle is usually about 45 days, variation of material densities will be small
in the term. Thus, their effects are considered to be negligible on the effective microscopic cross
sections and 25-group spectrum in each material zone. In other words, a-few-group microscopic
cross sections are assumed to be constant through a burn up cycle. So, the control returns to
a-few-group r-z calculation after 4¢ days’ burn up step (see the mark @ in Figs. 2.1.3-1 and
2.1.3-3).

Effective macroscopic cross sections after 4¢ days’ burn up are obtained by the products of
these constant microscopic cross sections and effective densities of nuclides, the latter being ob-
tained by averaging the new densities after 4¢ days’ burn up in each volume segment, over
each material region shown in Figs. 2.1.1-1 and 2.1.1-2. These new densities in each detailed
3-dimensional mesh region (volume segment) are stored in a disk storage and used as initial
values for the burn up calculation at the next time step.

The principal axis of burn up calculation consists of iterations of the next two kinds of cal-
culation.

(1) Obtaining the neutron flux distribution over space and energy at a fixed time.

(2) Obtaining the densities of each burnable nuclides after 4t days by the use of the flux

values at the beginning of this time interval.

Around this axis, added are various calculations of output data such as the distribution of
power generation rate so as to meet requirements from other subsystems. About the details of
each procedure, Sections §2.2 through §2.6 describe in the order of the flow of calculation.

HONEYCOMB has been programed in the so-called overlay structure with the following 19
segments (the 18th segment is FDCAL-3).
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(1) Control segment

(2) Data reading and 25-group effective cross sections

(3) Effective cross sections for control rod assemblies

(4) 25-group r-z flux

(5) 25-group r-z adjoint flux

(6) Kinetics parameters and few-group effective cross sections
(7) Few-group r-z flux (with more detailed mesh than in (4))
(8) Few-group r-z adjoint flux

(9) 2-dimensional hexagonal or triangular flux

(10) 2-dimensional hexagonal or triangular adjoint flux

(11) Correction factor for net current into control rods

(12) Hexagonal-z flux and criticality adjustment

(13) Hexagonal-z adjoint flux

(14) Detailed hexagonal-z flux for each fuel pin within some specified assemblies
(15) 3-dimensional distribution of heat deposition by y-ray

(16) 3-dimensional power distribution

(17) 3-dimensional detailed power for each fuel pin

(18) (Subsystem FDCAL-3)

(19) Data file for SMART and MASTOR

l;od Input Data Card

Library Data of

Reoctor X-Sections Effecfive Microscopic X-Sections for‘ Each 3-Dimensional Hexagonal-Z Calculation
etc. Materiol '_n 25 Energy Grou?s jonfomin:w and Criticality Adjustment by Insertion
Heterogensity Effect for Material of Control Rods Depth of Control Rods (and Adjoint

Equation Colculation )

25-group Spectrum for Each Material in l
Coarse Mash R-Z Calculation (ond Adjoint
Equation for Kinetics Parameters )

3-Dimensional Detailed Mesh Hexagonai~-Z
Colculation for Each Pin in Some Assemblies

l (in which pin burn up calculation is necessary. )
Collapsing Group X-Sections into l
o Few-Group (S6) Structure Heat Deposition by Neutron-Induced 7—myJ

Bumn Up Time(t)=0

3-Dimensional Distribution of Power Generation
Rate in Each Coarse Volume Segment

@——( R-Z Colculotion (and Its Adjoint) | 1
l Detalled Power Distribution for Each Fuel Pin

Hexagonal Colculation (and Its In Eoch Fuel and Blanket Assembly
Adjoint )

l Subsystem for Analyzing the Detailed
Correction Foctor for Neutron Net Thermo-Hydraulic Characteristics
Current into Control Rods (FDCAL and FATEC codes)

Fig. 2.1.3-1 Flow diagram of HONEYCOMB code. Fig. 2.1.3-2 Flow diagram of HONEYCOMB code
(continued).
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Editing of Various Output Data on Disk or Tape
for Use in the Simplified and the Recording
Subsystems (input file for SMART and
MASTOR codes )

Is time step for Final Editing
burn up last ? (Changes of BP,
™ Kefs . Fuel Mass)

Burn Up Calculation ( Stop >

Pin Burn Up in Some Assemblies

New Macroscopic X-Sections after

at Days’ Burn Up

|1‘+A1‘—>f|

Fig. 2.1.3-3 Flow diagram of HONEYCOMB code (continued).

(20) 3-dimensional burn up, 3-dimensional pin burn up within some specified assemblies,
macroscopic cross sections used in the next time step (control transferres to (7)) and
the final editing of burn up history (only at the last step).

On IBM-360/K195 computer, HONEYCOMB uses about 500K bites of core memory and 10

auxiliary memories (disks) for storing input/output data and intermediate results.

2.2 Preparation of Few-group Cross Sections

2.2,1 Library Data of Group Constants

There are such many input data invariable with each problem of the criticality calculation,
such as fission spectra, lethargy widths, atomic weights of nuclides, infinite dilution cross sections
for various reactions of neutrons with nuclei, group transference matrix for elastic or inelastic
scattering, and resonance self-shielding factors. It is convenient that these data are automatic-
ally supplied through a library tape/disk in binary form. The code LTFR-4? was used to make
the library tape from 25-group JAERI-Fast and ABBN® constants data punched on cards. Twenty
nuclides were selected for use in fast reactor analysis, and reactor constants of these nuclides
have been stored in the library for the HONEYCOMB code (TABLE 2.2, 1-1).

This library would be easily updated if some new constants for any nuclides are given by
cards in the format of JAERI-Fast or ABBN type.
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TABLE 2.2.1-1 Nuclides stored in the cross-section library tape for
HONEYCOMB code

Or(ggr t%fentl:i (;lédes I(\g];é;demfgb}:g' Nuclide Data source
1 925 257 JFS*
2 949 29Py JFS
3 940 240Py JFS
4 926 2877 ABBN?®
5 928 2387 JFS
6 942 242Py ABBN
7 40 Zr ABBN
8 42 Mo JFS
9 999 LFP(239Pu) ABBN
10 11 Na JFS
11 24 Cr JFS
12 26 Fe JEFS
13 28 Ni JFS
14 8 O JFS
15 Be ABBN
16 6 C JFS
17 105 18 JFS
18 115 up JFS
19 1 H ABBN
20 941 241Py JES

* jAERI-Fast Set?

2.2.2 Twenty-five-group Effective Cross Sections

Microscopic cross sections are obtained for each energy group and for each mixture in the
same way as in the code EXPANDA-4?. Densities of nuclides and temperature (°K) are given
by card input. First, the table of self-shilding factors, f,™/(R, 0o, T'), are inter- or extra-polated
to the value R, 00,2™', T:. There m, i, z and k2 mean nuclides, group, reaction and mixture,
respectively. The R;™ is defined for only three nuclides (35U, #°Pu and 2%Pu) by

Rym=N28/N=,

and 0o,;™ is defined for these three nuclides by

Oo,s™= 2 Ni"o™i. (2.2.2-1)
nem, 238

For other nuclides, R is not defined and
Oo, ™= 3 Ni"o.™. (2.2.2-2)
n3m

The tables of self-shielding factors (f-table) are given for two values of R which are shown in
TABLE 2. 2. 2-1, and for up to six values of o, ((0, 10, 102, 103, 104, 10°) or (0, 1, 10, 102, 103, 10%),
and for three values of temperature 7 (300, 900, 2100). First, interpolation about the parameter
R is performed linearly as illustrated in Fig. 2.2.2-1, for each tabulated value of ¢, and T.
Then, f-tables are unified in the form f(o,, T). After that, procedure goes completely same as
described in Ref. 2) or 4), that is, the iteration technique is used in the interpolation about o

TABLE 2.2.2-1 Values of R1 and R: for 235U, 23%Pu and ?4°Pu and for each value of
go used in tabulation of the self-shielding factors

TSR R Ra
Element ™~J7° | 10 102 | 108 | 104 10 102 | 100 | 104
wsy 0.2 | 1 20 0.6 5 50
2Py 1 5 50 2 10 100

40Py 5 20 200 15 50 500
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f(R106.T) fIR™G.T) f(Re.06.T)

> R
R, R™ Ry

Fig. 2.2.2-1 Interpolation of f-table values about R.

for determination of fi,s™, Fe,s™, fe,x™ and Gyx™. Then, f,z™ and f.™ are obtained with-
out iteration. In the above, f, ¢, e, t and r mean the kinds of reactions, that is, fission, capture,
elastic scattering, total and elastic removal, respectively.
Effective microscopic cross sections are now given by
oy k™ =fe, ™0™ 1m0 - fe, g™ 0™ 0™,
Fp,4™ = {Fo a0 — (o™ — Feya™0e™ )} (1 — pte™) + (2™ — Fe 4™ 0e™),
L™ =m0,
T, k™ =Fe, k™0™,
2 k™ =060™ 0,0,
Vag) ™ =m0, ™,
T,kmi:5-',,kmi_{_fr,kmio-rmi_J‘_o-‘."mi_‘,ainm,i—»i,
o k™ =fe, 4 ™0™ + 0™,
3, yminiti =g hiniti, m=H, j=0,1, -, 11,
G a™ii=fo ymig mi— f, ymig mif g, meimi
Ty, 1™ imi4L zf—‘r,kmiarmi g i
Ty, 4™ i =g, it §=2,3, . 11,
Ty, a™—iti =0, 1+7>25.

Macroscopic cross sections Dyf, Zo i, 3o i', 21,45, (21 and X, =i+ are obtained using

Q o= Ql Ql Sl

Ql

Ql

above microscopic cross sections and effective densities of individual nuclides in the mixture
E(N™).

We obtained these cross sections in homogeneous model. In fact, heterogeneity effect due
to the hexagonal arrangement of fuel pins can be neglected as having been confirmed by Suzuki
and Katsuragi®:® for JOYO fuel and blanket assemblies. In control rod assemblies, however,
heterogeneity effect can not be neglected because only seven rods of B,C are arranged in each
of them, rather in the neighbourhood of the center of the hexagonal region. Thus, collision
probability method is applied to estimate the effective macroscopic cross sections for these

control rod assemblies.

2.2.3 Weighting Spectra for Collapsing Group Constants

For obtaining the 25-group spectrum for each mixture, 25-group diffusion equations are solved
with a fairly coarse mesh structure for a 2-dimensional r-z geometry simulating the reactor
(Fig. 2.1.1-2). Numerical method is almost the same as in §2.4.1, where a few-group model
with fine mesh structure is used. From the resulting flux, obtained is the 25-group weighting
spectrum for each mixture region V, as

ov={ #2av,
Va

for use in collapsing the 25-group cross sections into a few group (<6) structure.

Adjoint flux distribution ¢*i(r, 2) is also obtained if kinetics parameters are necessary to be
evaluated.
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2.2,4 Few-group Cross Sections and Kinetics Parameters

From the 25-group cross sections and spectrum for each mixture %, few-group cross sections
can now be calculated. In the following equations, the indices 7 and j are for fine groups, and
n and ! for coarse groups. With the notation iEn, for instance, we mean that i-th groups are
collapsed into one coarse group that becomes the n-th group in the few-group structure.

= S,
tEN

@kn: Z @kis
1en

Din= 33 Di'0i|Dsm,
ten

Soi"= 2 o' 0[Py,

tEn

Zs,k" = Z 25, ki@ki/@kns

ten
W= 2 (30)' P (D,
ten
S mt= 2 (X T )P O,
fen jel .
where I=n,n+1,---, NMAX and NMAX is the total number of coarse groups (NMAX<E6),
and
ST,nkZZa,k"+Zs,k"_Zs,k”_’n-
For burn up calculation, 01,z™", 0c,2™" and ¢,,:™" are also obtained. In addition, the y-ray
production constants
SE=?7=238,"0,,;" Ny™
m X

(where the product S,™i~9G,,;™ is given in §2.2.5) are collapsed to Si*~%.

When the kinetics parameters are needed, they are directly obtained from 25-group cross
sections, and regular and adjoint flux distributions. In what follows, 7 denotes six fissionable
nuclides (235U, 238U, 23%Py, 24Py, 241Pu and 242Pu) and ! means the six families of precursors.
Delayed neutron fraction for material m is /3'":;,8;"'. Then, we have

%Blmsv[; (sz)mi¢i]['zxdmi¢*i]dv

ﬁeﬁ,l =

I, [0 g I8 Shmig*i 4+ (1~ ) TA4* 14V

B [DE)mp I Amig*1dV
Bett™ = : : s

%SJ?(DE f)""'¢‘][/9’";xa""¢*‘+(1—-ﬁ"‘)‘Zpri¢*f)d \%

.Beff=2;ﬂeff,z=Z/9eff”‘ (effective delayed neutron fraction),
m

| m@grmiav

(prompt neutron life time),

[;(»2 f)’”"¢‘][Z,_pr‘¢*‘]d 14
T3 migidV

h Z'fmiqsid"/',
mJV §

S [ WS¢l Xamig*1dV
W m— v 3 H

d >
SV;(uzf)m"qde
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Svtz_<»2f>mf¢f1[zxpf¢*f3dv
W= ' :

S S (I )migid V

Vi

2.2.5 Three-group Constants for y-ray Production and Transport

For the class of fast experimental reactors, for example “JOYO?”, it is recognized that the
heat produced by v-ray is about 10% of the total heat generated in the reactor and its contribu-
tion in the blanket exceeds 30% of the total heat generated in that region”. Therefore, in this
HONEYCOMB system more detailed and more accurate heat production calculation is requested
in order to estimate detailed coolant flow distribution. As the neutron flux distribution is calcu-
lated in 3-dimensional geometry, it is desirable to calculate the y-ray flux in the same geometrical
condition for consistency with the neutronic calculation. In this occasion, however, the computer
core memory and computer running time force us to employ a few-group y-ray flux calculation
inevitably. In the v-ray flux calculation, the results depend on the accuracy of the y-ray source
intensity. Therefore, first of all, we concentrated our attempt on the preparation of secondary
v-ray production constants and the related code preparation.

The available data files for the photon production cross section are POPOP4® and ENDEF/B®
data library. In the ENDF/B-III file, there are only a few nuclides that have the ry-ray produc-
tion data and these nuclides are not important for fast reactor design. Therefore, POPOP4 has
been mainly used for the shielding calculation. Recently distributed ENDF/B-IV contains photon
production cross section data for almost all of the important nuclides for FBR. It is expected

TABLE 2.2.5-1 Neutron and photon energy

Most i
ster  library group structure

ENDF/8 Photon energy group structure
l’ Upper Lower x
Group energy energy DELU
ENDFBGM 1 10.0MeV | 3.0MeV | 1.204
3. 0MeV 500KeV 1. 790
2 3 500keV | 10KeV | 3.912

Temporary library
(Composed from desired nuclides only ) Neutron energy group structure

UP- LOW-
GROUP pNERGY ENERGY DELU*

Resonance ~\,__exist 1 1.0500E 07 6.5000E 06 0.4796
ameter, 2 6.5000E 06 4.0000E 06 0.4855
in future present 3 4.0000E 06 2.5000E 06 0.4700

' 4 2 500011:% 06 1.4000E 06 O. 5738
not exist 5 1.4000E 06 8.0000E 05 0.5596
PROF-GROUCH SUPERTOG 6 8 0000E 05 4.0000E 05 0.6931

G-I 7 4.0000E 05 2.0000E 05 0.6931

8 2.0000E 05 1.0000E 05 0.6931

,[, 9 1.0000E 05 4.6500E 04 0.7657

J, 10 4.6500E 04 2.1500E 04 0.7714

File 3 11 2.1500E 04 1.0000E 04 0.7655

12 1.0000E 04 4.6500E 03 0. 7657

13 4.6500E 03 2. 1500E 03 0.7714

14 2.1500E 03 1.0000E 03 0. 7655

o 15 1.0000E 03 4.6500E 02 0.7657

Pointwise data only 16 4.6500E 02 2.1500E 02 0.7714

17 2.1500E 02 1.0000E 02 0.7655

R 18 1.0000E 02 4.6500E 01 0.7657

> LAPHANO 19 4.6500E 01 2 1500E 01 0.7714

20 2.1500E 01 1.0000E 01 0.7655

\[, 21 1.0000E Ol 4.6500E 00 0. 7657

22 4.6500E 00 2 1500E 00 0.7714

23 2.1500E 00 1.0000E 00 0.7655

P Toble of photon production 24 1.0000E 00 4.6500E-01 O0.7657
25 4.6500E-01 2.1500E-01 0.7714

* lethargy width

matrices

Fig. 2.2.5-1 Process flow for photon production matrices calculation.
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TABLE 2.2.5~2 An example of photon production matrix for
298]

PHOTON  PRCDUCTIOR  MATRIX

NUCLIDE = L=238 MAT= 1262

NE U TRON GAMMA  GHOUP
GROUP b 2 3
1 5.14330£=0). 6.00135E+C0 4,15686E+00
2 4,16298F=01 6,35625E+C0 2,31081£+00
3 1.40276F=01 4,.58160E+00 3.62481E+00
4 1.17361g~=01 2,88253E+C0 5.1171GE+00
5 6,15T15£=02 &,48005E=Ci1 4,09877E+00
[ 6,67120E~02 4,280¢6t=C1 2,3269%E+00
1 3,1R1E6E=02 2.78788E~C1 1.65454E+00
8 4,21918¢=02 3.69674t=01 1.,22655E+00
9 6, 66TB5E=02 5.864225E=C1 T414660E=-01
10 1,12921¢-01 9.,89470E=01 1.78750E~01
11 1.90646£=01 1.67T057€+00 2.99835€=01
12 2,48112E=01 2.17392E+00 3,90054E~01
13 3.40032E~01 2.97928E+00 5,34530E=01
14 .85771£=01 4.,25632E+00 T.63750E=01
1 2,94955=01 T.841T0E+C0 1.40T20€+00
16 1.23190£+00 1.07936E+L1 1,93655%E+00
17 5.52945£+400 4.848T76E+01 8,69230E+00
18 4, 60592E+00 4.03%560E+C1 T.24035E+00
i9 1.61004E+01 1.41068E+02 2,53099E+01
20 2,13731E+01 1.87265E+02 3.35985E+01
21 4,60347€+01 4,03345E+02 T123670E+01
22 2,00314E-01 1.75510E+060 3,148933E=01
23 1,40831g=01 1.23393E+C0 2.21387=01
24 1.49128¢=01 1.30662E+CO 2.34430E~0]
25 2.03165g=01 1, 78008E+00 3.19576E=01

that the photon production cross section data in ENDF/B file will be supplemented further, and
it is desirable to have y-ray production constants consistent with neutron data. From the reasons
stated above, we decided to produce the few-group vy-ray production group constants from
ENDF/B-IV file.

For the processing we used the code system coupling the following two codes; PROF-
GROUCH-G-II'? : a system of fully automated multigroup cross section set production routine,
and LAPHANO! : a P, multigroup photon production matrix and source code for ENDF. The
process flow is shown in Fig. 2.2.5-1.

For v-ray energy groups, a fairly coarse group structure was chosen, i.e. 3 groups. The
group structure is given in TABLE 2, 2, 5-1. For neutrons, we adopted JAERI-Fast 25 group struc-
tureV, and hence the produced photon production matrix was 25 (neutron energy group)X3
(photon energy group) matrix. We processed the photon production matrix for the 11 nuclides,
238]J, 298(J, 239Pyy, 1°B, Na, Al, Fe, Cr, Ni, C and O. These nuclides cover almost all the im-
portant nuclides for the typical fast reactor composition. We used ENDF/B-IV only for pro-
cessing the matrices. For further details of the process method and numerical calculation, the
manual of the code LAPHANO! and the specification manual of the ENDF/B y-ray file® should
be consulted. In this processing by the code LAPHANO, the original code gave many troubles
in logics, and hence we had to correct and to modify it in use.

As an example, produced secondary vy-ray production matrices for 238U nuclide is shown in
TABLE 2. 2. 5-2. In this table, the photon production cross sections are given in the units of barns-
photons (10-24cm?-photons). In this example, you may read as 2.88253 b-photons for photon
production cross section from neutron energy group 4 to photon energy group 2.

Other y-ray transport group constants are prepared using GAMLEGJ'? code.

2.3 Two-dimensional Triangular Diffusion Code TRI-2D

In the earliest stage of developing this HONEYCOMB system for 2-dimensional diffusion
calculation, a uniform hexagonal mesh configuration code was intended to be programed for
simulating a real core configuration. In this geometry, however, fairly large mesh spacing is
taken. The calculational accuracy is, therefore, feared poor to some extent. By the reason stated
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above, we have decided to develop a 2-dimensional diffusion code in uniform triangular mesh
geometry, which allows more fine mesh spacing than hexagonal mesh.

In this section, a 2-dimensional calculation routine in uniform triangular mesh configuration
will be described together with the calculation methods and their results.

2.3.1 Subroutine TRI2D: A 2-dimensional Diffusion Calculation Code in Uniform Triangular Mesh
Configuration

Described in this section are the procedure to obtain a finite difference equation of neutron
balance over discrete element of volume.

Any triangular element in the hexagonal lattice is denoted by “S” and its adjacent elements
are denoted by “L”, “R” and “T”, where L, R and T mean “Left”, “Right” and “Top” posi-
tion of the specified element S, respectively. A schematic layout of the mesh configuration is
given in Fig. 2.3.1-1. The mesh (nodal) point is defined in the center of gravity in each tri-
angle, so the finite difference element S has the uniform nuclear properties.

A basic equation in the diffusion approximation is written as

DV2p—Z+¢+S=0. (2.3.1-1)
Integrating Eq. (2.3.1-1) over a finite difference volume element S, we get

SS D"V¢"ndS—SV ZTf¢de+SV $idv=0, 2.3.1-2)

where D=diffusion constant,
X r=macroscopic total cross section,
S =source,
p=real flux,
S,=surface area of element S,
V.=volume of element S,
suffix ¢ refers energy group.
We define effective diffusion constant along the direction of adjacent mesh point as follows :

dp  4p
= . 2t 2 23 1-3
- _("—P 1 ,4p 1 ):Dm“+D.—1’ 2.3.1-9)
2 Dni ' 2 Dy

t : Pitch in hexagonol lottice

Fig. 2.3.1-1 Schematic layout of the mesh configuration for TRI-2D code.
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m=L, R or T (adjacent element index),
where 4p=t/3 stands for the distance between adjacent mesh points in triangular mesh configu-
ration and ¢ is the pitch of the hexagonal mesh configuration.
Approximating V¢ term in the following way,

bn—tr_4n=0 )
7=t i 2.3.1-4)
3
m=L, Ror T
leakage in the z direction is written as
L :SD‘i(B;, S)g'dV, (2.8.1-5)

where (B,,,?) was taken from the value of the preceding 2-dimensional -z calculation and Si is
the sum of slowing down source and ﬁssion source :

Si= = AL Ty I+ Z 313, @.3.1-6)

in which X-—elgenvalue,
vX=macroscopic fission source,
X =fission spectrum,
2Yi~J =macroscopic transfer cross section.
Equation (2. 3.1-3) will be rewritten in the following form :

Ei;é%EFS@n—mh/§h+a§;;;5—§@n —$)VBh
e b #1=90V Sh= DB ) s,
— 1,8y \/_h+x(z(»fzf,,f)¢sf)xf I f/.g.h
+(Z¢ E,,s*)‘w—h =0, (2.8.1-7)

where £ is thlckness of the element S.
Now, we obtain the final equation for the flux in the finite difference element S.
P = (FL" +Fro+ Fr*+ L) Y F*¢o" + Frrgr* + Frgr" + Q" + R,*), (2.3.1-8)

— /3D _(——2——)«/%,

where For= Doig Do

A,:SSJ_ndS =surface area perpendicular to the adjacent direction,
L= {¥1,,"+D(B,?)" V,,

Q=1 L, (308,

Ryr= Z 2.V,

Ve=1—=h.

4«/ 3
In this code, we uses conventional successive over-relaxation (S. O. R.) method to solve the system
of equations given above.

In Eq. (2.3.1-8), on the reactor boundary, F, (m=L, R or T) is not defined, because D,,
is not given there. Following paragraphs will be devoted to the description of the treatment of
the boundary condition.

We use vacuum boundary condition. Flux profiles around the physical boundary is illust-
rated in Fig. 2.3.1-2. The flux at the physical boundary is denoted by @, and, from the vacuum



JAERI 1247 2. HONEYCOMB, the Detailed Calculation Subsystem Predicting 15
the JOYO Nuclear Characteristics

¢ core vaccum
6 sy S
7 @1 flux in the boundary element
/ X @01 flux on the physical boundary
et flux dies out on the extrapora-
'; ted boundary
=0
Z T
e—é29—>i<-—o7mr—a'
' ¢ extraporated boundary

T
physical boundary
Fig. 2.3.1-2 Flux profiles around the physical boundary.

boundary condition, on the extrapolated boundary extended from the physical boundary by
0.712,, the flux @, should die out.
For the leakage from the physical boundary, we write

SDV¢ndS-:. Dy 48,

where AS:S nds,
S1
@ = —bo — —&o
0714, 2.1313Dy
1
hw=5-=3D,

D,=diffusion constant in element .S,

Po=0, +¢0’A7P=¢s—_‘¢o 4p

2.1313D, 2°
_ L)"
¢°_(1+2><2.1313Ds b
At (=F) o 1 (=1
SD V¢ndS=Digi/ 45=D “2.1313D.AS_ V3 (2.1313 1 )“"h'
¢ 2%x3D,

Therefore we use the following Fry®, Fry® and Frp” instead of Fr”, Fr* and Fr* in Eq. (2.3.
1-8) on the boundary elements.

1 1
* n— po k
Fuv=173 21313 1 )
t 2.3D,
F z,b”zvzs *Fiph, (2.3.1-9)

where [ takes L, R or T.

The last expression of Eq. (2.3.1-9) represents the edge correction. Because the edge of
the reactor boundary is not always perpendicular from the overall point of view for the reactor,
the boundary leakage value is corrected by a factor of cos(z/6).

The expressions defined by Eq. (2.3.1-9) are adopted only in the first factor on the right
hand side of Eq. (2.3.1-8). It should be noted that Fy,,"¢;=0 (!=L, R or T) by the definition.

In the S.O.R. method, the iteration is made in the order of energy groups and triangular
element. The convergence criteria are as follows:

a. Eigenvalue convergence;

Aoy
Ar

<e1=10"5,
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where
1= LOSS+LEAK
"~ PRODUCTION
idV— R ¥ Fp1,vidiéndS
:;<SkeactorL av JE:’SReactorZ’ ’ ¢ dV)-l-cZSReactor Surface £ b¢ " ,
ZS VS (03, ) dV
j JReactor i
1
ket = RJ’

J=iteration index.
b. Flux convergence;

#1_1.0

<e;=1073.
Br1 =7

¢. Residue;

'\/"Z (¢ (Fr"+ Fr*+ Fr"+ L") — (Fr*¢." + Fr*dr"+ Frigr* + Q.+ R,") |} 2
1”25; (DZ f),"¢."

Residue=

§8R=10_4.

Convergence check prints are made at each ten iterations. When a negative flux appeared
or iteration exceeded prefixed maximum iteration number (=300), the calculation is stopped. If
convergence criteria are fulfilled, the following outputs are given:

(i) Neutron balance table,

(ii) Composition maps,

(iii) Flux prints in triangular mesh configuration,

(iv) Flux contour map,

(v) Flux prints in hexagonal mesh configuration.

2.3.2 Subroutine TRI2DA: A 2-dimensional Diffusion Calculation Code for Adjoint Flux in Uniform
Triangular Mesh Configuration
It is desirable to develop an adjoint flux calculation routine in the same core configuration
as TRI2D for the use of the reactivity worth calculation.
The basic equation for adjoint flux is written as

S D."V¢,"*n¢dS,-—S Z‘Tf¢.i*dV.+S $§*dV,=0, @.3.2-1)
S, V. Ve

where d.*=adjoint flux,

S.* =source,
N
Sa* =/2(UZ'£, li)zxj¢!*j + Z ¢I*j2b si_’j’ (2' 3. 2_2)
) =1

i, j=energy suffixes,
N=maximum energy number.
Other notations are the same as those in §2.3.1. Final equations to be solved are
PF=(F "+ Frr+ Frr+ L*") N F g *" + Frrgr*"
+Frigr*"+ Q. *"+ R.*"), (2.3.2-3)
where L}n= {31+ Dg*(B,,*)"} Vips*,

N
Qs*" =D2f, ."X 'Zl (xj¢.*j) Vu
j=
R.*n= Z z’."n—bl¢’*l V'.
ngl
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Other terms are the same as Eq. (2.3.1-8) in the case of real flux calculation. In addition,
the treatment of the boundary conditions are the same as those for previous real flux case. Ordinary
S.O.R. method was adopted to solve the systems of Egs. (2.3.2-3). That is, the iteration was
made in the order of energy groups and triangular elements. Convergence criteria and outputs
are the similar to those used for the real flux calculation code TRIZD.

2.3.3 Subroutine TRIPOW: A Power Distribution Calculation Routine

For the 2-dimensional detailed power distribution calculation in triangular mesh configura-
tion, we prepared the routine TRIPOW. In this routine, power is usually used as the informa-
tion of relative value because the results are obtained from 2-dimensional calculation. Therefore
the following normalization is adopted to have unit total power:

S S 65 dVAE=10
energyJreactor

1e: Z(Z¢sj2f, sj) = 1‘0’
s s

where macroscopic fission cross sections are transferred from the logical unit F03.
The output form is similar to those in TRI2D real flux case.

2.3.4 Inclusion of TRI-2D into HONEYCOMB System

TRI2D and TRI2DA had been originally developed for the standalone code in order to
check the accuracy of the hexagonal mesh configuration code. So as to increase the generality
of the HONEYCOMB, inclusion of these codes was requested. By this time, besides the original
HONEYCOMB flow, RZ-HEXA-HEXAZ, new flow RZ-TRI2D-HEXAZ was added. Selection
of the flow is made by user’s choice.

In the inclusion of TRI2D and TRI2DA, we combined these two codes to make a new
package of 2-dimensional calculation module TRI2ZDP. This TRI2DP calculation module has
been constructed from following subroutines: TRI2D, TRIH, TRI2DA, TRIPOW, XREFH,
CDEFH, EDDEFH, TRIEDT, TRIADT, TEDITH, TRPRTH, TRCNTH, TRPNTH, REACTB,
HEXPRT, HXPR and HXPRA.

Due to the inclusion of above routines, modified subroutines in the original HONEYCOMB
system are MAIN, HEXA, COLLAP, MICRO and HXAD].

For the choice of the calculational flow of TRI2D or HEXA, one more data card becomes
necessary from the above modification. Other input cards are the same as the original HONEY-
COMB system. A new HONEYCOMB system including TRI2ZDP requires the computer core
memory of 512K bytes in the standard overlay structure. The items of the core memory are
shown in TABLE 2. 3.4-1. Typical running time for a 2-group problem with one through flow of
TRI2D-TRI2DA-TRIPOW, is about 60sec on the IBM-360/K195 machine. On the occasion of
running, one more logical unit (F51) is necessary in order to keep the data of ¢, $*, macroscopic
X, core specification data ete.

TABLE 2.3.4-1 The items of the computer core memory

PROGRAM AREA 424 K Bytes
WORK AREA FOR MULTI-JOB 12 K Bytes
AREA for DD STATEMENT 6 K Bytes
I/O BUFFER AREA 70 K Bytes

TOTAL 512 K Bytes

2.3.5 Comparison between Calculational Results of TRI2ZD and HEXA
In this section, we discuss about the intercomparison of the nuclear characteristics obtained
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by TRI2D and HEXA. Detailed description of the 2-dimensional hexagonal diffusion code HEXA
is given in §2.4.2. The main point of the discussion is that the influence of the mesh size on
the nuclear characteristics such as the effective multiplication factor, control rod worth and flux
distribution.

For the calculational model, we adopted a similar matrix to Mark I core configuration of
“JOYO?”, but not an exact one. The calculational conditions are the same for both codes. For
example, macroscopic cross sections including B,? are the same as those values prepared by r-z
calculation routines in the HONEYCOMB system. And we adopted the same convergence

criteria.

e F'). 7
Position Index A
A Fuel Element The elements that have no index refer
B Control Rod
C Na-Channel element of type E, ie. Oshould be
D Fuel Element read as@.
E Radial Blanket

F SUS Reflector

Fig. 2.3.5-1 Standard core configuration for the calculational model of
Case 1 and Case 2.

TABLE 2.3.5-1 Composition index for each sample case

S Position
) index | A B (o} D E F Note
Case#\
1 $1 #1 #1 $1 #1 #1 1 Region problem
2-1 #1 $1 #1 $4 $5 $7 2 Region problem
2-2 #1 #3 #3 #4 #5 $7 Standard core rod-out case
2-3 $1 #2 #3 $4 15 7 Standard core rod-in case

Dictionary of composition index

$1, $#4 Fuel element
$2 10B control rod
$3 Na-channel

#5 Radial blanket
$7 SUS. reflector

(#1 and $4 are the same composition.)
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TABLE 2.3.5-2 Calculated k.is for Case 1
(one region problem)
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TABLE 2.3.5-3 Neutron balance for Case 1 with the production rate

=100

Code Rett Code Absorption rate Leakage rate
HEXA 1. 32584 HEXA 65. 737 9. 688
TRI2D 1. 32389 TRI2D 65. 737 9. 800
Difference —0. 00195 B Production

(TRIZD—HEXA) = Leak + Absorption

Case 1. Cross check of the TRI2D and HEXA

For the cross check of these codes, we tried the calculation in the simplest core configura-
tion with only one region. All reactor elements (core and blanket elements) are composed of type 1
(#1) fuel elements only. For details, Fig. 2.3.5-1 and TABLE 2.3.5-1 should be consulted. The
multiplication factors obtained from these codes and the difference between the values are shown
in TABLE 2.3.5-2, and the components in neutron balance are given in TABLE 2. 3. 5-3.

In this check calculation, disagreement of these codes is relatively small. It is seen from
TABLE 2. 3. 5-3 that the difference of 0.2% in k. is caused by the leakage term. This would be
the consequence of a minor difference in treatment of the boundary conditions in these two
codes, that is, correction factors in Fj,," are different in a few boundary elements. In this case,
because of the lack of reflector or blanket elements, fairly large leakage (~9.7%) occurred at
the vacuum boundary. But in the usual core configuration such as JOYO, LEAKAGE RATE/
PRODUCTION RATE is nearly equal to 3%, therefore the difference in ks obtained with
HEXA and TRIZ2D will be less than 0.19%. So there is no problem for these two codes to deal
with reactor systems with homogenized non-isolated compositions.

Case 2. The difference in ke’s produced by the inclusion of singular elements

The standard core configuration is already illustrated in Fig. 2.3.5-1, the composition of
which is given in TasLe 2.3.5-1. The composition index #2 is the °B control rod (fully in-
serted) and #3 is the Na-channel left after the withdrawal of °B rod out of the core.

The following three cases of calculation were performed by both the codes under the same
calculational conditions. Case 2-1 where B and C elements are replaced by #1 fuel elements
simulates a simple 2-region problem. Case 2-2 where B and C elements are replaced by #3 elements
simulates the system in which all control rods are out of the core, and Case 2-3 where B and
C elements in the standard core configuration exist in the core simulates the state of six control
It is clear from the above description that in the order of Cases 1, 2-1,
2-2 and 2-3, a singularity of nuclear property is gradually introduced into the system.

rods are fully inserted.

The difference between these two codes are evident from TABLE 2.3.5-4. As the singularity,
the difference in the ks is enlarged from 0.2% for Case 1 to 2.29% for Case 2-3. This differ-
ence is much serious for the calculation of control rod worth.

As for the control rod worth, from the results of Cases 2-2 and 2-3, we obtained the values

TABLE 2.3.5-4 Calculated ker’'s from HEXA and TRI2D
codes for Cases 2-1~2-3

TABLE 2.3.5-5 Calculated control rod worths
obtained by HEXA and TRI2D

Case #| HEXA TRI2D Difference codes
(TRI2D-HEXA) Code dp (rod worth)
2-1 1. 1485 1. 1429 —0. 0056 ~ HEXA 9.419
2-2 1. 07448 1. 06593 —0. 00855 TRI2D 10.92%
2-3 0. 97669 0. 95475 —0.02194
Difference *1.51%
(TRI2D—HEXA)

__k(Rod Out)—4(Rod In)

P E(Rod Out)  k(Rod In)
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shown in TABLE 2. 3.5-5. There is about 1.5% difference in the absolute total rod worths of these
two codes. This value is recognized as extremely large for the rod worth calculation, because
the total worth is about 109 with 6 control rods, and the difference of 1.5% amounts to about
1/6 of its value say one rod worth value. This difference is too large to be allowed for the
reactor design calculation. Also this affects the neutron economy and other nuclear characteristics.

For the flux distribution, very large differences are also found between these two codes.
Flux ratios of TRIZD and HEXA normalized at the flux peak position (at the core center) in
the energy group 1 are shown in Figs. 2.3.5-2 and 2.3.5-3. The former figure shows Rod-
Out Case and the latter Rod-In Case. In these figures, the ratios are shown only for three
zones around the control rod position. These area in the standard core configuration is shown
in Fig. 2.3.5-1 with horizontal hatched lines.

Fairly large differences are seen in Figs. 2.3.5-2 and 2.3.5-3. In Rod-Out Case of Fig. 2.
3.5-2, disagreements of the group 1 fluxes around the Na-channel (#3) is within 1.59%, but in
the blanket element, about 49 disagreements are seen for almost all elements. For the group
2 flux, as contrast to the group 1, the difference around Na-channel is remarkable. The differ-
ences are 149 in Na-channel and 9% in fuel elements of type #4.

In Rod-In Case of Fig. 2.3.5-3, at the control rod position there is about 109% disagreement
of the group 1 flux and 5% in the second zone around the control rod, but beyond these re-
gions, the disagreement is not so large. For the group 2 flux, a marked 30% difference is found
at the control rod position and a fairly large deviation is seen around the control rod. Also
disagreements of 5~109% are still found in the third layer, particularly in the blanket elements.

It is seen from above results, that in the lower energy region the HEXA code considerably
overestimates the flux depression in the control rods, and in turn it fairly underestimates the
control rod worth.

From these results and discussions, the following conclusions can be drawn; (1) When a
locally isolated strong absorber such as !B control rod is introduced in the system, the difference
in the fluxes in that position is very large, about 309, between these two codes. (2) When a
locally isolated strong scatterer such as Na-channel is introduced in the system, the difference in
the fluxes is still found between these two codes but the extent is not so large. (3) For the

ROD—-OQUT CASE (CASE 2-2) ROD—IN CASE (CASE 2-3)

P=1
GROUP =1 GROU

Moaterial  Index
{ t
Materiol Index Fuel Elemsn
Contrel Rod
Fuel Element ::h :
= onne
Na-Channel
- Fuel Element
Fuel Element el Bhonker
1al *

GROUP=2 Radiol Blanket GROUP=2

(o ey
(s

ESC

Fig. 2.3.5-2 Flux ratios ¢(HEXA)/¢(TRI-2D) for Case Fig. 2.3.5-3 Flux ratios ¢(HEXA)/#(TRI-2D) for Case
2-2 (values are shown only for three zones 2-3 (values are shown only for three zones
around the control rod position). around the control rod position).
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system without singularity, the agreement is quite well between these two codes

Summarizing these, the introduction of the singularity in the system brings about substantial
deviations between HEXA and TRI2D codes in the nuclear characteristics such as the flux and
ke, that is, the mesh configuration or mesh spacing leads to a considerable effects to the nuclear
characteristics. So it is very important for the calculation of the accurate nuclear characteristics
in multi-dimensional problem to find a preferable mesh configuration and appropriate mesh sizes,
or some correction methods for the approximation.

2.4 Three-dimensional Criticality Calculation

In this section, the few-growp constants prepared in §2.2 are utilized in 2- and 3-dimen-
sional criticality calculations based on the diffusion model. Consequently, obtained are 3-dimen-
sional neutron flux distribution, critical insertion depth of control rods and 3-dimensional adjoint
neutron flux distribution. One nodal point is taken at the center of each hexagon illustrated in
Fig. 2.1.1-1. On the axial coordinate (see Fig. 2.1.1-2), mesh intervals are taken rather freely
and a nodal point is fixed at the middle point of each interval.

As described in Chap. 1, the neutron flux in outer radial zones are approximated by 2-
dimensional 7-z (§2.4.1) and 2-dimensional hexagonal (§2.4.2) fluxes.

From the conclusion obtained in §2.3.5, a correction method is applied so as to enhance
the accuracy of the predicted neutron flux in and around the control rod assemblies (§Z.4.4).
The section 2.4.5 describes the method of criticality adjustment by varying the insertion depth
of some control rods. Calculational method of adjoint flux is shown in §2.4.6.

2.4.1 Two-dimensional r-z Diffusion Code RZ

Here, the few-group diffusion equations are solved in r-z geometry shown in Fig. 2.1.1-2
with more detailed meshes than in the code RZ25 described in §2.2.3. The r-z space is divided
into rectangular mesh regions (area of each mesh region is 4r;x 4z:), and a nodal point is fixed
at the center of each mesh region. The flux value obtained at the nodal point is assumed to be
the spatial average over the mesh region. As to energy variable, the regular flux ¢u" is, as
well known, the integrated value over the n-th energy (or lethargy) interval, while the adjoint
flux ¢;i*" is the average value in that interval. This is clear because the scattering matrix ¢,/
is defined as an averaged value about group 7 but integrated value about group j, and is used
in the NMAX-group diffusion equations as follows:

-1
— DnV2¢n + ET"¢" — /'anZl: (DZ()IQSI + :Z:l Z”I-m¢l,

NMAX
_Dn72¢*n+Z’Tn¢*n:1(vzf)n§xl¢*l+ Z: Z’sn—‘l¢*i’

I=n+1
where 1 is the reciprocal of the effective multiplication factor k..

The difference equations for numerical solution is obtained by integrating the equations over
the (j, £)-th mesh region (Vj:), that is, the j-th annular zone from the cylinder axis and the k-th
layer from the top.

We describe here only the equations for the regular flux:

-1
{ 2erar{ @[ Dwign— gt oz 0syg+ s 09|
dr; 4z I I=1

[— X +2X"§(v2’ )it + ;f::ll 2.‘~"¢’:|d V=0.

]

:SS” [D"qus"]dS-{—SVj

The net current through a unit area of an interface S;ji is assumed, for example, at the bound-
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ary between Vi and Vjii,i, to be written as
drj  Arin

2 2 Dkt — it
1 Arj 1 Arj“ Arj Ar,-+1

— Llivt 205 STt
Dy 2 +D_,'+1,)g" 2 2 2
(L 4, 1 _/-'_rf;l)"l o gan

Then the difference equation becomes

D"V_L¢" -

g . g 1S o e
aulz"¢:—1,k"+ax,;+1,k"¢f+1,k"+azjk"¢j,k-1”+az,j,k+x”¢j,k+1"+1X"ledm’¢1k +121 asjx* "G )

Pjr"=

(@ja*+ay, jr,p" Fazin” +az, j, k1" +asin™)
(2.4.1-1)
where

1 dr; 1 Ar;\7Y Amry 4r; 1 1\

(1) aljbn=2nrlljdzk<Djk".—2*J+Dj_1,k"' 2’ 1) = A?';:JIAZI‘(Arj}—I'Djlz"-*-Dj—l,Ic")

(suffix L means the left side of the region Vj).
By the symmetry condition at cylinder axis, we can put @;1x"=0.

. Anre; Arj, 1 1\

(2) ay,jra"= ArjjAzk( A?J”j .Dj+1,k"+Djk">

(rrj=71,j+1 where R means the right side).
At the outermost boundary (j=N), ai,n+1,2" is determined from the relation :

ay, N+, k" PNk = 28Ry Az [ — DV -9 (rrw, 22)]-

Using the vacuum boundary condition (rry being sufficiently large),

—V.4n __ ¢"(rrw,za) _ $"(rea, 24)
O R = 570440, w7 21313 D"

we can write

(R, 2 1
al,N+1,k":2n'rRNA2k?—“_( RN, Z2),

21313  om™
Now, by using the following form:

Onr" =¢"(7‘RN — %ATN, Azlz) = ™(7TrN, 2) —A—’ZEV:'?V(?'RN, 2k)

e dry, ¢"(ren, 2e)
=¢"(rrn, 22) + 2 2.1313Dpy"
we obtain
) . ALN.—l—)_I
P (rrn, 22)/Pne _(1+ 2 21313Dpy")

Then finally we have

al,N+1,k”:ZITRNAZI:(Z.1313+A%V-D]I;””) 1=4Z:§Ndzk<4jfi6+D]1.\m") 1.

When j=N, this a;,y+1,2" is used only in the denominator of Eq. (2.4.1-1). In the numerator,

the term of §y41,2" should be zero. The same are the cases of the following az;,* and ay, j, m+1™
1 Az, 1 A, du | Bz >-1

Dj)," 2 Dj,k_l" 2 Dj/," Dj,),_l ’

At the uppermost boundary (k=1),

Az, \7!

Djl") )

Az Az \ !

Dj,’;:"-i-ﬁj_:;) )

-1
(3) azjk":n'(erz_rsz)( ) =275("Ri2“?'1-12)<

azj1\" =2n(rri2— 1'1,,-2)<4.2626 +

(4) azjen" =21t(rka—rx.f2)(



JAERI 1247 2. HONEYCOMB, the Detailed Calculation Subsystem Predicting 23
the JOYO Nuclear Characteristics

At the lowest boundary (A=M),

a2, jy " =20(rR 2 =1L %) 4.2626+"g‘%:;
J

(5) aspp*=n(rri2—rLiNd4z2tii" = Vi 2rin™
(6) auj"= Vi) "
(7) asipt="=Vjdsji'™"

The equation (2.4.1-1) is solved by a simple iterative sweeping method (EQUIPOISE
method). The ¢;" is calculated using new values of @;_1,4", @j,s-1" and @;i* (<n), and old
values of @j.1,4", @j,e41" and pjz- w=n). To accelerate the convergence, the ordinary over-relaxa-
tion method is applied in the same way as in the EQUIPOISE code'®. After each iteration,
eigenvalue A is renewed by

A= Z{Z (@zin"Pjr" +az, j,m41"Pim™) + Zk:al,Nu, ' ONe"
n

NMAX
25w = 5 o} | SR Tauep
J ok I=n+1 n j k
=[{Total Leakage} (L)+ {Total Absorption —Net Gain by
(n, 2n) or (n, 3n) Reaction} (A)]/{Total Production} (P).
It is clear that A becomes k.~! when convergence is attained. Criteria for convergence!® are
10-5, 10~ and 10-2 for the eigenvalue, residual and flux ¢;", respectively.
When ¢,:" is obtained, two kinds of the following data are prepared for use in §2.4.2 and
§2.4.3.
(i) Buckling in z-direction for each group is obtained for use in the mid-plane hexagonal
(§2.4.2) or triangular (§2.3) calculation. Letting  be the zone index, the buckling is given by

Fid

(B2 1"= 3 {az,j,k821™(@j,kB21" — Pj,KBZ1-1") + @2, j, KBZ241" (P, KBZ2" — B, KBZ2+1")} /
je

KBZ2
2 2 wmrrif—riAdzd i Dt
j€l’ k=KBZ1
where KBZ1 and KBZ2 are respectively the first and last mesh interval contained in the fuel
region in the z-direction. This equation is derived from the following reasoning :
BZ¢= - 2¢:
D(B.*+B*)¢p= —DPzg,

(B,2+B,2)SVD¢d V=SS’ J,dS+SS 7.dsS,

B :S& J.dS / SVD¢d V.

(ii) For synthesizing the 3-dimensional approximate flux ¢;:x", a normalized distribution
function ¢ is defined for each hexagonal zone I:

M
du"=2 E(TRjz—TLj2)¢jk"/ 2 D r(rrit—rL)dzdiat
jel k=1jel

(%}(ﬁzk”dzk:l for each n and I).

2.4.2 Two-dimensional Hexagonal Diffusion Code HEXA

In z-y mid-plane, 2-dimensional flux distribution is obtained at the central height of fuel
part. The x and y axes are fixed to cross with angle of 7/3, and the coordinates are taken so
as to contain the 331 assemblies of pitch # shown in Fig. 2.1.1-1. Then each assembly is
numbered like (j,7) as illustrated in Figs. 2.4.2-1 and 2.4.2-2, where h=j+i—11.

By integrating the diffusion equation over one hexagonal assembly, we obtain the difference
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—>j (x)

1 10,11,

KN 21

Fig. 2.4.2-1 Coordinates for the 2-dimensional hexagonal lattice.

/ a3 02

Fig. 2.4.2-2 Arrangement of the hexagonal assemblies in the upper-left
corner A shown in Fig. 2.4.2-1.

equation in the same way as in §2.4.1:

n—1
$ji*= (bj."' +XX"ZI:dsji’¢ji’ + E:l aejil—m¢jil)

i (2.4.2-1)

where
bii"=a1;i"j-1,i" a1, j41,i"Pjr1,i" + A2ji"Pjyi-1" Az, i1 "Dy i1
+a3, j+1,i"Pjr1,i-1" T+ a3, jy 41" P i1, i41%
Cii"=ayji" Ay, j1,i" FQ2ji" t s, i1" A3, j41,i" T s, i A",
A=(L+A)/P,
21
L= Z{ 2 (@17, ji" Fa, jur1,i"Pjai”™)

n (i=1

21
+ 'Zl (azji,”¢ji." + Qaz, j, il+1n¢jit")
j=

21
+ hzl (aS, Jatl, i:”¢fﬂ"n + A3,y !'a+1n¢j‘l'¢”)]’

in which (f),7) neans the cordinates of 21 assemblies along the side of (AB+BC) in Fig. 2. 4.
2-1, and

(jan?) : (FE+ED),

(4,41 : (BA+AF),

(7,22) : (CD+DE),

(fss 75) : (AF+FE),

(juid: (BC+CD),
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NMAX
A=ZZZ<d4ji"— 2 asji""')(bﬁ"»
n j s =n+1
P:%]%:;asj,-"gbﬁ".

The directions of vectors ax (E=1,2,3) are shown in Fig. 2.4.2-2, whose components are
defined as follows:
t (1 ¢ 1 &\t 2 (1 1 )“
1 'inziz' . -« — = — .
(1) @ \/3<Dj,-" 2 +Dj_1,,~" 2) ‘\/3\Dj,-”+Dj..1,,~"
When =1 (AF) or i=21 (CD), a;;;" is multiplied by 1.25 because a,;;"* is the coeflicient of
the current in the j-direction, and the jagged part (see Fig. 2.4.2-2) must be flatten.

When j=j (AB+BC), the vacuum boundary condition is used like in the previous section,
a2 (4. 2626 , 1 )“1_
V'3 ¢ D;.»
However, when ix11, a,;,” is multiplied by v/ 3/2 in order to convert the leakage to the
direction perpendicular to the macroscopic side of reactor (AB or BC). Then,

«/2‘ é’(Dl,.,.nJr D :1, in>_1 (%1, i1, i¥21),
23@( Dljl,,.+ Dfi,s")_l (7%, i=1 or i=21),
a1t =
) (4' Zf%ﬁjljp)ﬂ (j=ju i%11),
Al Dlj,.,)—l (j=js i=11).

(2) ay,jri _"4/_§<Dj+1,i"+Dji"> .

The treatment at the outer sides is the same as in Item (1).

P NS A
(3) azji _,\/§\Dj,-”+Dj,i—1" .

a2 1 1)—1
(4) az,ii+1 _\/g\Dj,in"TDj"" .

P S
(5) A3, j+1,i _a\/‘g\D."" ' Dj+1,l'—1n )

ol 2 / 1 1 >"1
(6) asjm"=glp——tp ) -
(7) am”'—‘«/fﬂ {Zrji"+(BAjiDjit-
(8) asji"= “/23 £2(v2) ji".

V'3

(9) aji"=

) tZZ'.,-,J-"'.

Using the hexagonal flux ¢;;" obtained by solving the Eq. (2. 4.2-1), 3-dimensional approxi-
mate flux @;;" is synthesized as the product of ¢;;" and ¢u:" of §2.4.1.

V'3
2
where (j,7)€l, that is, the lattice (j,7) belongs to the /-th ring. (When j=:=11, then /=1.)

For the outer 3 zones (/=9, 10, 11), this @ is applied as the final result ¢;".

i =d;"du"| 2 %ZZ} 24z (02') jir"Pji"du”,
nk i j

In the next section 2. 4.3, 3-dimensional diffusion equations are solved in the central radial
zones including up to the 8-th ring and in all range in the z-direction. It is necessary to pre-
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2

Fig. 2.4.2-3 The boundary surface between the 8-th and 9-th zones (—e—).

pare the following two data:
(i) Normalization factor for ¢;i*:

8
TS=3%3% » Y3

n ki=1(.nel 2

t24z; (sz)jik“é;‘ik"o

(ii) For each surface element between the 8-th and 9-th zones shown in Fig. 2.4.2-3, and
for each group, a homogeneous boundary condition is determined as as below:
aBéin':ASJBs
where 48 = V%Azk,
JB= _D(éout—éin)/ta

then we obtain a3=71§—Asz(g5in—$om)/¢3in-

2.4.3 Three-dimensional Hexagonal-z Diffusion Code HEXAZ

By using the normalization factor 7°'S and the boundary condition as prepared in §2.4.2,
criticality calculation is executed in the 3-dimensional hexagonal-z diffusion model, only for the
inner 8 zones consisting of 169 assemblies of fuels, control rods and inner half of the blanket.
A parallelogram like in Fig. 2.4.1-1 is drawn so as to contain the 169 assemblies. At this time,
coordinates (j,7) are up to (15,15) and A=j+i—8. The axial mesh structure is made common
to that in §2.4.1. Integrating the diffusion equations over a volume segment (hexagonal column
of height 4z and width ¢), the difference equations are obtained as

n—1
Pia"= (bjik" + XX"ZI:aejik’m;k’ + Igl avjik"”'¢j.-b')/c‘j£k”, (2.4.3-1)

where bii» =it Pi-1,i k" A1, j1, i B D1, 1, k" F A2jik Dy io1, k" T A2, a1,k Py i v, k"
+aa, ji1y iy " Pia1yi-1,2" F s, jyie1, B Di—1,i41, 4"
F Q45" P iy k1" T Asy gy iy k41" Py k41"
Ciik"=aujir" +au, j11,i, 2" T Qi+ Az, jyiv1, 4" A3, 41,0,k A3, 541,47
+ayjir” +as, j,i k1" +asjix",

A=(L+A)/P,

15 15
L=§{Zk: Zl (@1juik"Pjuir" + a1, jrer,is k" Pjain”™) + Zk: ‘21 (@2ji"Pjiik"+ 2, jyivt1, " Pink™)
1= =

15
+ ;3 hzl (@3, jst 1, isk" D jaisk™ + A3, juyict 1, " P i k")
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+ ZZ(d4j.'1"¢jn" +au, i M+ 1"¢jeM")]

(i 4o B), (2+1,4, k), -+, (4,4, M+1) mean the volume segments outermost of the region dealt

with this 3-dimensional calculatlon),

NMAX
A= ZZZZ(asJ.k 2 d7j.'1e""’>¢j£k”,
n j i I=n+1

P ZZZZ%;:&"%;&

nj i

The coefficients a are defined as follows:

-1
(1) Arjik —/\/—Azk( 1 + L k”> ’

th" Dj—l,i,
a1,k =amijiir".
(asij,is* has been obtained in §2.4.2. At the boundary in radial direction, treatment is
similar also to Items (2)~(6) below.)

1 1\
(2) @i ﬁAzk( + )

Dy, it" Dija®

-1
Azk< 1 + l ) .
k

Djuy" Dji-1,"

(3) au"=_%

2 1 L\
; =—"-A
(4) a2>19 +1’k ,\/ k D_;,H'lak +D )

,uk

1
(5) da,;+1,h ,\/3Azk( _uk D_,+1,z 1,k )

Dj 1yi+1, e th )

V3t Az 1 1 >-
. , for k=1,
Azp_y \dzs— J:k"+Dj,i,k—1" or

V'3 t2/4. 2626 1 )_1 .
- =1.
Q4jit doi \ dz, +Dj.-1" , fork

V'3 tZ(AZkH 1 1 )—1
f M,
dzx \ Az Df,i,k+1"+D,-.-,," ’ or k3

-1
_ V3242626, 1 ) for k=M.

(6) Asz, jyit+lyk —,\/2*—Azk(

( 7 ) a411k”

( 8 ) a4,1,:,k+1

a4’JH,M+1 - AzM \ AZM +DjiM"

(9) asju"= VzthAszTjik"-
10) ausur=" 2 ttm030s0.

(11) arjutr= '\/23 tZAz;,Z',,-,-,,’—"'

After the iterative procedure is completed for Eq. (2. 4.3-1), the 3-dimensional neutron fluxes
¢;u" are normalized to yield neutron source of the amount of TS, that is, ¢;u™s are multiplied
by a factor of

TS/ZZZZaenk Pije"

n i i
Then ¢;::"s obtained in the last section 2.4.2 are substituted by these normalized @;u"’s
except the outer three zones, and finally the flux distribution for 21X 21 matrix (see Fig. 2. 4.2-1)
is determined:
qgju,,z[gbi—s,i—s,k"; (1=I<8),
Pjir™, O=sigl),
where @;-s,i-5,s" means that the normalized flux as the solution of Eq. (2.4.3-1) in the 15x15
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matrix is adjusted to the 21X 21 matrix about their coordinates.

2.4.4 Improvement of Accuracy of Predicted Neutron Flux Values in and Around Control Rods!4

From the conclusion given in §2.3.5, it is desirable that some correction method is devised
to enhance the accuracy of the predicted neutron flux inside and in the vicinity of control rods.
It is, however, difficult to increase the number of nodal points because the 3-dimensional calcu-
lation needs much computation time even in hexagonal-z mesh structure. Thus, the need is felt
for a means to determine accurate flux values in the regions of interest without increasing the
computing time, that is, without making mesh sizes fine.

We consider a hexagonal lattice of pitch # shown in Fig, 2.4.4-1, one hexagon of which is
a homogeneous control rod. In §2.4.3, the net current through a unit area on S was expressed

by

5 p (2.4.4-1)

from which the difference equation for @., Eq. (2.4.3-1), was derived. The ¢, means the aver-

I (D1"1+D2-1>“$2—q§1’

age flux in the hexagonal lattice n. However, when the lattice 1 is an absorber stronger than
the neighbors and the lattice 2 is a fuel producing neutrons, the curvature of the spatial flux
distribution changes its sign at the interface S, so that the expression (2.4.4-1) becomes a very
poor approximation. It is noted that the solution obtained with the hexagonal mesh diffusion
scheme gives a too small value of @, compared with the triangular mesh diffusion, while, on the
other hand, @, is overestimated.

Fig. 2.4.4-1 Hexagonal lattice of pitch &

TABLE 2.4.4-1 Group constants used in test calculations

Control rod Fuel
% — 1 TABLE 2.4.4-2 Cylindrical geometry
D (cm) 1.8% 1. 689 for test calculations
Group 1 2 (em™) 0. 02911 0. 007385 Region Outer radius (cm)
s -1 . 2 0. 24! -
(10. 5MeV~465eV) 2+ (em™) 0.2075 51 Control rod 4
v3¢ (cm™1) 0 0. 01031 Fuel u“
X (em™?) 0. 2065 0. 2443 Blanket 76
12 -t 0. 0010 . Of 2
X (cm™Y) 09 0. 000779 Reflector 85
D (cm) 0. 4744 0. 6735
Group 2 Y. (em™) 0. 2362 0. 02631
(465eV~0.215eV) 3.7 (em™) 0.5933 0.5728
v2¢ (cm™) 0 0. 02294
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$(r)

Rod (reg.1) Fuel (reg.2) i Fuel (reg.3) Fuel (reg.4)

Fine mesh Sg and its average

T 2 T Fine mesh diffusion and its average
a Coarse mesh diffusion
45F |
1 L 1
]
o +t t 3t 2t 2t 3t o

Fig. 2.4.4-2 Behavior of group 1 fluxes by various conventional schemes.

TABLE 2.4.4-3 Mean flux for each region normalized as S S rrerdV=1
Reactor n
ao | F
Ss (fine mesh) 4.512 5. 380
G 1 Conventional diffusion (coarse mesh) 4.301 5. 482
roup Conventional diffusion (fine mesh) 4. 802 5. 404
Corrected diffusion (coarse mesh) 4. 480 5. 450
Ss (fine mesh) 0. 05044 0.1335
G 9 Conventional diffusion (coarse mesh) 0. 03507 0.1484
roup Conventional diffusion (fine mesh) 0. 05280 0.1337
Corrected diffusion (coarse mesh) 0. 04917 0.1377

Some trial calculations to examine this circumstance more in detail were made in cylindrical
geometry (see TABLES 2.4.4-1 and 2.4.4-2), with an absorber set in the central zone. Figure 2.
4.4-2 and TABLE 2. 4. 4-3 show that the value of @, turns out to be excessively small when de-
rived by coarse mesh diffusion, while the corresponding value by fine mesh diffusion is some-
what larger than obtained from the fine mesh transport Sy calculation!®. As for @, the estimate
by coarse mesh diffusion is rather large, while an acceptable close approximation is obtained with
the fine mesh diffusion equation by using the volume weight 277 to integrate ¢(r) to obtain @,.

From the discussions given above, it may be concluded that the errors in the coarse mesh
diffusion scheme originates from two causes:

(1) In the control rod, the value of ¢ at the center differs from the average ¢,.
(2) It is not adequate to use grad ¢=(¢,—@:)/t at S where the curvature of the spatial flux
distribution changes its sign in the direction normal to S.

The above difficulty can be resolved if the accurate values of the flux p(z) and the current
in a reference cell can be obtained by some means, and if the relation between the net current
and the average flux to be used in the coarse mesh diffusion scheme can be derived. This would
be implemented by improving the expression of J as

J-‘:T(éz—éx),



30 The Off-Line Computation System for Supervising Performance of JOYO . Part 2 JAERI 1247

e=J/(B—0y),
where J means the accurate net current through the unit area of the interface of control rod
and fuel in the reference cell, and g, means the average of p(x) in each region of thickness ¢.

The factor ¢ would be given numerically for each group and for individual surfaces of the
rod. Moreover, ¢ could be incorporated into the data before the 3-dimensional criticality calcu-
lation based on the coarse mesh diffusion model, so that the accuracy of flux would be easily
improved without increasing the computer time.
2.4.4.1 Calculation of Correction Factor
(1) Functional of p(x)

In the case of hexagonal geometry, each side of the lattice is plane and it is considered that
the value of 7 is not very much influenced by the flux distribution far from this plane. Hence
an appropriate value of 7 can be calculated for every group in a simple slab lattice consisting of
two regions arranged periodically and having the same compositions on both sides of S. Let us
consider an infinite periodical lattice of slabs as illustrated in Fig. 2.4.4-3, where =0 and x=
b are planes of symmetry, so that only the region (0, ) needs to be considered. We let a=¢/2
b=2¢. While there is no inherent necessity to let #=2¢, it has been found that the variation of
b exceeding 2¢ does not influence the resulting value of 7 to any significant extent. The values
of the transport solution p,(x) and p.(x) are assumed for the regions 1(0,a) and 2(a, b), respec-
tively, with the boundary conditions:

mm=L%M@ﬂ at z=0,

01(z) =p2(x) at z=a,
diipz(x) =0 at x=b.

When the source distribution is given, pi(z) and p,(x) must be renormalized s0 as to pre-
serve the neutron balance, which requires the total source to be equal to the total absorption
plus removal in the interval (0,5). For the normalization factor we introduce the value f~' (f
being given in §2.4.4.1 (3) later). Letting # be the infinite multiplication factor for this cell
(0, b), the source term for the i-th group is given by

P(x) |« Reg. 1= Reg. 2

R(x)

B (x)

1
(o] a 2a 3a b X
Fig. 2.4.4-3 Infinite slab lattice of periodical two regions and trial function for
the neutron flux.
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i-1
Si(z) =X‘ﬁ“‘§(v2 1) (z)o’ () fF + El 2 z)el (2)[f,

where the cross sections (vbX¢)’ and 2,7~ are constant in each region. In what follows, we will
denote the cross section for scattering into the self group by the abbreviation 2, or %, instead
of X~

The integral transport equation for a slab system is written as
o) =12 E(12-2 )30z + FS(a")1d!, (2.4.4-2
X
where X=X(x)=so Zy)dy, ¥ =A(x") and Ay=ad,+(b—a)¥; is the optical thickness of (0, 5),

and the group index 7 has been omitted. Noting the periodicity and symmetry of the functions
contained in the brackets, Eq. (2. 4. 4-2) becomes!®

b
o@)={, T ~2)L3.("o(a") +£S (@' 1d’ (2.4.4-3)

where  T(z'—z)=1/2 io (E[2720+ | 21— 2| 1+ E[2(n+1) A0 —A—2']

+E\[2nA0+ A+ ]+E[2(n+1)A— | A—2"|]}.
Equation (2. 4. 4-3) is solved by using a source iteration technique. Since S(z’') is a known
function in each iteration step,

d@)=1{ TSz,
so that Eq. (2. 4.4-3) can be written as
p(x)=SZT(x’—»x)Z,(x’)p(x’)dx’+q(x).
The homogeneous equation without the term q(z) is
pla) =, Ta'—2)3.( ol
where v, is the lowest eigenvalue and v,>1. From the adjoint equation
pH(@)=1f, Taa!)3 (20" (@),

pH(x)=2(x)o(x) is easily obtained since T(z—z')=T(z'—>z).
When p(z) is replaced by a trial function g(z), a functional of g(zx) is defined by
b

10)=(

b
Op+(x)[go T(z'—2)Z:(z)p(z")dz' — p(z) +2q(x)]dx. @.4. 4-4)
b
If p(x)=p(x), the functional has a stationary value Soﬁ*(x)q(x)dx, and this is the maximum

of I(p) when v,>1. It is proved'” that

5 b
Kp) _S_SOP+(x)q(x)dx+ (/vo— 1)SOZ (2)Lp(z)—p(z)JPdz

b
gsow(x)q(x)dx:ﬂp),

and I(p) gives a good approximation to I(p) even for relatively poor trial functions.
Equation (2. 4. 4-4) is rewritten, again using the S(x):

b b
1(p) =§Oz.(x>ﬁ<x>[go T(a'—2) (3.(2)5(a") + 2 @) dz' —p(z) |dz,

For numerical calculation, the region (0, @) is divided into N; intervals of equal width, and
the region (a, ) into N, intervals of equal width (N,+N,=N). The mesh intervals are num-
bered 1,2, -, N from the side of x=0. The value of z at the middle point of the zn-th mesh
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interval is denoted by x., and the value g,=@g(x,) is treated as the mean value of g(z) in the
n-th interval. Defining

Tu=L T(xr—xa) > = 1 Sd dzx LS; dx'T(z'—zx),
Zn Zh

Az, Az

we obtain the equation for the numerical calculation as follows:
N N
Ip)= 3, Axnz,,p,[kzlek Tk (Subs+27 S} — 0 | (2. 4. 4-5)
n= =

(2) Trial function
A simple trial function written as
- o(x) =1+ A, 2%+ Azt 0=x<aq)
=L B ah Bb—a)t (a2t
is used. From the boundary condition at x=a, we have
C=1+aA,+BA;+vB,+0B;
where a=a?, B=a% y=(b—a)? and 6=(b—a)*. Hence, if only four coefficients are determined,
f(x) is given by
o(x)=1+ A x2%+ Ax*
{Pz(x)=(1+aA1+ﬂA2+’>’Bl +0B,)— By(b—x)*— By(b—x)*.
In what follows, the notations X,, are replaced by 2, or X,; with the numeral suffix re-
presenting the region number, and the symbols n&€1 or 2€1l are used to mean that mesh inter-
vals n or % belong to region 1 or 2, respectively. From Eq. (2.4.4-5), we can write

I(ﬁ):z:ul”gl Axnpl(xn)[ké Axk Tnk {Zslpl(xk)+2fSk}

+k§1 Az Tar {Ze202(x2) +21 S} —p1(x4)]

+2;2 Z Axnpz(xn)[ Z Akanlz {Eslpl(xk) +2fSk}
nell kel

+ kZ:IIAxk Tk {2 s202(xr) + 21 Si} —paza)]- (2. 4. 4-6)
[=]
The defining
1n= 2 Azx T, kan= 2, 421 Ths
kel kel

ha= 2 Az Trrzi?, b= 3 Az Tui(b—x)?
kel kel

2.4, 4-
Min= 2, Azi Tar i, Mon= 2, s Trr(b—zx)* ( 4D
kel kell

Mia= 2, AkankSk, Non= 2, AkankSk
kel kell

Eq. (2. 4. 4-6) becomes
I(ﬁ) ':Eal Z:I A.Z,, {1 +A1x,.2+A2x,,‘} [Esl {kln+Allln +A2m1n} +2f7lln
ne

+ 2 {(1+aA;+BA;+vB,+08Bs)ksn— Bilyw— Bymizn)
+2fnm— {1+ A1za®+ Arzat} ]
+ Z%IAx" {14aA,+BAz;+vB1+0B;) — Bi(b— )2 — By(b— z4)*)
ne

[ {bin+ Aidin+ Aomia) +21 718
+3 o {(1+ad;+BAs+vBy+0Bs)ksw— Biloa— Bamisa)
+2fnm— {(1+aA;+BAz+vB,+0B,) — Bi(b—za)?— Bx(b—za)4} 1.
The coefficients, A,, A,, B, and B, are determined by solving the simultaneous linear equa-

tions

9

s 0y 0
8AlI(p)_0’ aAZI(p)_O

,
0B,
but the coefficients obtained thereby are expressed in linear functions of f, and so is C.

o 0
I($)=0 and aBzf(p)—O,
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(3) Neutron balance

Neutron balance is preserved in each group i, so that
b b
[, Bi@ -2 pr@)dz=r S

Since the coefficients obtained in §2.4.4.1 (2) are expressed in linear functions of f, p(z)
also is in a form like &(x)+f&(x). Then, the above neutron balance equation is reduced to
Qi+ Q7 fi=f1SY,
from which f7 is determined as @.//(Si—@Q5").
(4) Source iteration
The initial flux guess may be ¢i(z)=1, and in the succeeding iterations, ¢*(x) is given by

¢'(x) = p*(x)] f*,

and G(z) =X ()i (x)p’(x),
j
b
I§=S G(z)dz,
0

i1
Si(z) =x's"'G(z)+ jé]lz’s"""(x)ﬁﬁj(x)-

On each iteration step, only the values of 7;, and 7., are altered in Eq. (2.4.4-7), from
which A, B and C are recalculated. The criterion for convergence is that the relative error of
& reduces to a value below 10-% between two successive iterations, this being attained generally
after a few iterations.

(5) 7 calculation

Considering again the neutron balance in the region of absorber (0, a), the value of ¢ is

now obtained as follows:

a
pri= l/ag0 pi(x)dz,
- 3a -
pr=1/2a| pi(2)dz,
a

i—1 a
Ji:(Eu"—Eu"*")Sa pi(z)dz—fi 3 Z’slf"‘g o (x)dz[f,
0 =1 0

i =Ji/(B, —prf).
2.4.4.2 Test Calculation in Cylindrical Geometry
As a simple test on the effect produced by the adoption of 7 in the coarse mesh diffusion
scheme, axially infinite cylindrical systems were utilized in the same way as in the test calculation
shown in Fig. 2. 4.4-2. There it was confirmed that, by incorpolating = in the coarse mesh
diffusion scheme, ¢, and @, acquire values giving a better approximation in each region of thick-
ness ¢. For this test calculation, 4z, in the procedure of §2.4.4.1 was replaced by 2zr,dr,,

and de by Sandr. Then, T, was calculated by the second order Bickley function K;y(2)=

12 . . . . . .
SK e=%5¢<0 cosf df in an annular cell consisting of N concentric regions with the reflective boundary
0

condition at =&, similarly to the treatment by THERMOS code!®. The results are given in
TABLE 2. 4. 4-3 together with those of the calculations described in the former part of §2.4.4.
The errors of the mean fluxes corrected by the present method are about 1% in the group 1 and
about 3% in the group 2. This means that the error is reduced by a factor of 12 or more in
the control rod through this method of correction for the coarse mesh diffusion scheme which
will be the most practical approach to three dimensional problems.

Figures 2.4.4-4 and 2.4.4-5 show the results of similar examination for the cases with
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1.0 -, -
4",/4’2 (group 1)

(1)

(3)

0.5 (1) Sg(fine mesh)

(2) Conventional diffusion
(coarse mesh )

(3) Conventional diffusion
(fine mesh)

(4) Corrected diffusion
(coonse mesp)

0] 2 49 6 8 12 16

Rod radius (cm)
Fig. 2.4.4-4 The flux ratio §1/$z vs. control rod radius for group 1
(coarse mesh size=rod radiusx2).

51/‘—#2 (group 2)

(1) Sg (fine mesh)

(2) Conventional diffusion
(coarse mesh)

(3) Conventional diffusion
(fine mesh)

(4) Corrected diffusion
(coarse mesh)

05

(4)

0 1 ) ] 1 1 —
0 2 4 6 8 12 16
Rod radius (cm)

Fig. 2.4.4-5 The flux ratio §1/¢2 vs. control rod radius for group 2
(coarse mesh size=rod radius x2).

different values of ¢, the rod radius and the mesh size being varied simultaneously. The appli-
cability of this method is thus confirmed over a wide range of .

The method has now been incorporated into the HONEYCOMB code. The value of ke is
reduced by about 0.749 through the adoption of 7 for an experimental fast reactor with four
control rods fully inserted and two partially in depth. It is thus concluded that use of this cor-
rection method provides appreciably better accuracy in the predicted value of k. or of the critical
insertion depth of the control rods, as well as of the control rod worth. Further examinations
are made in §2.7. 2, for 2-dimensional hexagonal and triangular geometries, about the effect of
mesh sizes on the accuracy of criticality calculation. It is confirmed there that this correction
method is very useful for more general situations where several parameters are varied over their

practical ranges.

2,.4,5 Criticality Adjustment by Insertion Depth of Control Rods

In HONEYCOMB, it is able to search the critical insertion depth of control rods so that the
value of ket can always have the value equal to K. (which is ordinarily 1) as a result of the
criticality calculation described in §2.4.3. The rods, which are controlled their insertion depths,
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are assumed to have a common insertion depth Z. in the z-coordinate (see Fig. 2.1.1-2). First,
the criticality calculation is made by using the depth 2®, the initial guess of the value Z.. Let
! be the index of trial times of the search, then, k. =£k is obtained for the depth 2.
Test for attainment of the criticality is made by
|k — K| <1075,
When this condition is not fulfilled, the next guess for insertion depth is obtained as follows:
(1) in case of [=2,
2@ =2 (1-10(K.— W)},

(2) in case of [=3,
2O =2® (2@ — 2 W)(K,—k@)/(R@ — kD),

(3) in case of /=4, parameters @, b and ¢ is determined by solving bilinear equations:
(20=9 —a)(kRU-¥ —b)=c,
(-2 —g) (kU2 —b)=c,
(24D —g)(kU-V —p)=c,

and 2D =a+c/(K.—b).

For [=2, the guess 2 usually does not coincide with any interface of z-mesh intervals,
because z-mesh structure has been fixed from the beginning. So, we set one more temporary
mesh point in the z-interval in which 2 happens to fall, and the interval is divided into two
intervals at . The actual 3-dimensional calculation is thus performed by using (M+1) mesh
intervals in z-direction. The resulting value of ¢;" is obtained by averaging the two values
for the intervals on both sides of z®, with weights of the mesh sizes. In addition, the technique
for saving the computation time is engaged in the same way as in FURNACE code.!®

2.4, 6 Three-dimensional Distribution of Adjoint Neutron Flux

HONEYCOMB is possible to prepare the adjoint neutron flux for use in perturbation theory
codes. The adjoint equation written as

NMAX
_Dn72¢*n +Z'Tn¢*n :;{*(Dz’f)n ; xl¢*l+l Z lzsn—»tsé*l
=n+

is solved in the same way as described through §2.4.1 to §2.4.3. The (B.?)” in §2.4.1 and
7# in §2.4.4 are used commonly. The eigenvalue 2* is defined as

SdV %}[—D"72¢*n+< ng_’l'g gs:q,’)q;*,,]
oo T

When convergence criteria are fulfilled as a result of the iterative treatment, A* becomes equal

*=

to 4, in due courses of r-z, hexagonal and hexagonal-z calculations. Three-dimensional approximate
distribution is also defined as

Pinn*r =i du* 2 % AV;uxrdi*rdu*,

n ji

where (J, el AVjik=(ﬁ/2)t2Azk, and
AP Viax gin*"=1.

n i
The normalization factor for the 3-dimensional hexagonal-z adjoint flux in the inner regions
up to the 8-th ring is
8
TS*=3 22 2 AVux dia*",
n kiI=1 (el
and the boundary condition at each radial surface element for each group is given by

ap*= :/—1—§4sz1=3(¢31=3* — Br=9*)/Pr=s*.
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As described previously in §2.4.3, the 3-dimensional distribution of adjoint neutron flux is
made up by ¢;:*” for the inner 8 zones with supplement of @;;x** for the outer 3 zones.

2.5 Three-dimensional Power Distribution

It has been estimated”:!? that the heat deposition by secondary gamma rays produced by
reactions between neutrons and nuclei will occupy about 10% of the total heat generation for
experimental FBR, and for blanket region more than 30% of the integrated heat generation rate
in the region. In the present code system, the predicted distribution of the heat generation rate
is to be evaluated accurately, since the distribution is the fundamental input information to the
subsystems FDCAL-3 and SMART. By these reasons, HONEYCOMB has been made capable
of taking account of the v-ray heating though it is designed only for the core region of
Figs. 2.1.1-1 and 2.1.1-2,

In §2.5.1, the 3-dimensional distributions of y-ray flux and the heat generation rate are
calculated using the source distribution due to (n, fission %), (n, v) and (n, n’y) reactions. Next,
in §2.5. 2, the total heat generation rate, containing fission energy yield, is obtained as 3-dimen-
sional distribution and is normalized to the total power generation rate of the reactor.

The detailed power distribution in each fuel and blanket assembly is required by FATEC
and SMART. Therefore it is necessary to estimate the power generation rate for the individual
fuel pins in every axial mesh interval. The section 2. 5. 3 is devoted to this purpose. The 1-group
2-dimensional flux distribution is obtained in a hexagonal region by engaging a method of boundary
value problem based on the potential theory. The coarse mesh fluxes in §2.4 provide the
boundary condition, and the coarse mesh power is used as the normalization factor to the fine
distribution in each volume segment. This new method has made it practical to obtain the
extremely fine distribution of power generation rate in a short computation time, which was a

difficult problem in the past.

2.5.1 Three-dimensional Distribution of Heat Deposition by Neutron-induced y-ray

The HONEYCOMB subsystem deals with only the regions of hexagonal assemblies where
the heat generation by fission is dominant. This is the reason why it is not necessary to demand
so much accuracy as in the shielding calculation. We adopt here a 3-group 3-dimensional
diffusion model for determining y-ray flux distribution. In the 1-dimensional cylindrical geometry,
a comparison was made between diffusion and S, transport solutions for the y-ray flux. A
satisfactory agreement was observed between the solutions in the above two models for the fuel
and blanket regions. In the reflector or sleeve regions, the amount of y-ray flux becomes 10-2
or 10~* times of that in the core center. In the calculation of heat generation rate by #v-rays,
the resulting power distribution is added to the dominant fission power distribution, and after
that, the total power distribution is normalized to the thermal power output (P) of the reactor.
So, the error due to the v-ray calculation is expected to be reduced.
2.5.1.1 Source Distribution of Photons

Here, we consider only three kinds of reactions to be important as the source of y-ray,
namely, (n, fission v), (n, v) and (n, n’y) reactions. Since the 3-dimensional distributions of 6-
group neutron fluxes are already known at the step described in the previous section (§2.4), the
source distribution is easily obtained as

Sijk”=§§ S0 2xjik"¢j|’k"=§ Sjik" 0 jix",

where x, # and ¢ stand for the kind of reaction, groups of neutron energy and of photon energy,
respectively, and $,"¢ or S"7 has already been given in §2.2.4 or §2.2.5. As to the reaction
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x, fission has the most dominant contribution to the resulting y-ray dose as compared with other
two reactions of absorption and inelastic scattering. The vy-ray energy range is divided into three
groups of 10~3 MeV, 3~0.5 MeV and 500~10 keV.
2.5.1.2 Cross Sections for Photon Transport Calculations
By the use of the code GAMLEG, the following 15-group cross sections are calculated for

each nuclide m :

o : total cross section,

gn™% : P, component of scattering cross section into self group,

0™~/ : Py component of scattering cross section from Z-th group into j-th group

(j=i, i+1, -, 15),

and for each mixture, the following macroscopic cross sections are obtained :

P =§N’”(atm‘—aslm:"—"’),

2 =33 Nmomi,

P i) =;’_,“ Nmggmi=i,

T
Hi =Ei3i-»Ei5ii,
1=t
where H' is the heat generation constant. We assume that all energy of a photon is converted
to heat at the place where the photon is absorbed by an atom. The Ei is the mean energy of
the i-th group in units of MWesec (1MeV=1.60206x 10" MW .sec). Therefore, the dimension
of Hi is MW -sec/cm.
Next, the 15-group structure (7, j) is collapsed into 3-group structure (g, £). Using the photon

number spectrum S¢ given in TABLE 2. 5. 1-1, the weighting spectrum is assumed as

i—1
=S 5, B (203,
j=
where S.f and S;,’ are neglected because S¢ is much larger than them. The ¢ is derived from
the transport equation with the source emitted by one fission,
i—1
Wi+ (Ze =B =S+ T B gl
]=
neglecting the first term on the left hand side. The X,/ is very large in case of photon-atom
reaction as compared with neutron-nucleus reaction. In the same way as in §2.2.4, we have

TABLE 2.5.1-1 Fifteen group structure for photon transport cross sections
Group Euy (MeV) EL (MeV) ' 8%

0. 00018
0. 00020
0. 00023
0. 00493
0. 03067
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0. 2089
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PI= 2. ¢,

=y

Do= 3 (9'/33 %) ]9?,
feg

2= 232199,
ieg

Z‘ﬂ—*h: Z (Z Zsi"j)Qoi/GD”,

1€Eg jEhA

He= 3 Higilge,
ieg

Yr¢=39—39-9 (total removal).

2.5.1.3 Three-dimensional Distribution of y-ray Flux
~ As mentioned above, the term (/¢ has a smaller value than X.¢ (at most 10%), so it does
not cause errors to a considerable extent even if the term is substituted by —DF2¢ (diffusion
model). This fact is confirmed by a comparison between the diffusion and Sg transport models
in a 15-group calculation for 1-dimensional cylindrical geometry. This is valid, however, only
in the core matrix region where photon source distribution almost determines the flux distribution.

Now use is made of the 3-group 3-dimensional diffusion equation: -
g—1
—Dep2je4 3 oo =Se +hz hah,
=1

for obtaining v-ray flux ¢¢. In each group g, the problem is of fixed source distribution, if the
equation is solved from the group 1 (g=1). So, it is easy to treat the whole region (up to eleventh
zone) in 3-dimensional hexagonal-z mesh. For saving computation time, initial flux guess written
as

a—1
¢"=<Sﬂ+ > ZJ"%") / R
h=1
is used, and after each iteration step (a sweep about 3-dimensional mesh (7, 7, £)), the renormaliza-
tion is performed to ¢ so that the amount of photons suffering absorption plus leakage becomes
equal to the amount of source in the group ¢ when they are integrated over the whole region.
2.5.1.4 Heat Generation Distribution by vy-rays

In each volume element, 3-dimensional distribution of heat generation rate by y-rays is given by
B = Hju¢;a? (MW/cm?).
9

The P, ;i is, however, not yet normalized to the reactor total power P, in the same meaning
that the flux ¢” used to obtain the photon source is not yet normalized to P (see the next section).

2.5.2 Total Power Generation in Each of 3-dimensional Volume Segments

The 3-dimensional power distribution can now be obtained by summing up the y-ray power
distribution Py ;ir in §2.5.1 and the fission power distribution, and by normalizing the total power
to the reactor total power P given in input data. Let the word *“fission power” mean the fission
energy without including fission v energy. Energy yield of 195.1MeV by one fission?? contains

the fission v (prompt and delayed) energy of 14.3MeV. So the “fission power” means an energy
of 180.8MeV in what follows. We neglect here the effect of accumulation of the delayed v-rays,

that is, the treatment is under the stationary condition. The conversion factor from fissions to
energy, C=3.1x10% fissions/MW -sec, had been previously used without taking account of y-ray
transport like in §2.5.1. In our calculation, however, this factor is modified as

Cr=3.1x 101 x %=3.345 %1016 fissions/MW -sec.

Then, the factor for obtaining power normalized flux is defined by
F=P[(Zk 2 Ziin i AV i/ Co) + Zk-pyjikdvj:‘k]-l:
R n 7
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TABLE 2.5.2-1 Power generation rate from each region (MW)

Fuel Blanket %’?;ggcfgf: Total Fuel (%)
Neutron 61 éO | 4.58 — | 65.78 93.0
y-ray 6.85 2.22 0.15 9.22 74.3
' Total 68.05 680 | 0.5 75.00 90.7
y-ray (%) 10.1 32.6 — 12.3 —

and the normalized y-ray and fission power distributions are obtained like
Pyju=F:P,;ux105 (W/cm?),
Pfjik =F.Ci! > ijik"¢jik” x 106 (W/cma)
n

The final result is then given by
Piip=Piji+Pyja (W/em?®).
An example of output is given in TABLE 2. 5.2-1, which shows the power generation rates
(integrated over some regions) obtained for the problem given in §2.7.1, later.

2.5.3 Detailed Power Distribution for Each Fuel Pin2D

The detailed power distribution in the fuel assemblies, namely, the power generation rate for
each fuel pin, is particularly important for predicting the temperature distribution in coolant
channels as well as in fuel pins by the use of the FDCAL-3 code. On the other hand, the
detailed power distribution is also required by the SMART subsystem for preparing the power
peaking factor in each assembly.

The method for efficiently obtaining this detailed power distribution has been derived for
HONEYCOMB without sacrificing accuracy obtainable by the conventional fine mesh difference
scheme, which spends so much computation time even for one assembly that it is impractical to
solve the problem for every assembly in the core. When the effective fission cross section
averaged over the whole energy range does not vary in a coarse volume element to any signi-
. ficant extent, the power distribution in the volume segment is directly obtained by solving a 1-
group diffusion equation with appropriate constants. Moreover, the total power in the segment
(P;u) is already given in the last section so that the present problem is 2-dimensional for finding
the relative power distribution at each pin in the segment.

Thus the problem is reduced to a l-group 2-dimensional boundary value problem for the
hexagonal region of homogeneous medium. This problem can be solved using the 2-dimensional
Green’s function of infinite medium with superposing an image source distribution on the bound-
ary.?? The present treatment is to obtain an integral representation as the solution of the
Helmholtz equation in a 2-dimensional domain under any arbitrary boundary condition on a
contour boundary, by using the 2-dimensional infinite medium Green’s function, or its derivative
on the boundary in the outward normal direction. This is so called the method of using the
potential due to a single or a double layer. The density of the image source distribution is
determined with the boundary condition by solving an integral equation, in which the kernel is
expressed by the Green’s function connecting the two points on the boundary. The discontinuity
of the potential (or its derivative) on the boundary is taken into account in the integral equation.
Then the neutron flux at any point inside the region is obtained from this density of the image
source distribution on the boundary and by the kernel connecting the inside point to the boundary
point.
2.5.3.1 Coefficients of 1-group Equation to be Solved

For each volume segment, the 6-group constants and neutron fluxes have already been ob-
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Fig. 2.5.3-1 Hexagonal regions of pitch 2.

tained in the previous sections (§2.2.4 and §2.4.3). The total power of the segment is also
known (§2.5.2). Now, we use the l-group diffusion model because the collapsing scheme usually
conserves reaction rates, and so, also released power rate. In a hexagonal geometry of pitch #
illustrated in Fig. 2. 5.3-1, the group constants are collapsed into 1l-group in region 1, and the
fluxes in the regions 1~7 are summed up over groups. Then we obtain D, 5, v3y, 3, O, (n=
1,---,7) and DB,? as 1-group data. The X, may contain the effect of increase of neutrons by
(n, 2n) or (n, 3n) reactions, and @, means the l-group flux averaged over the region n. The
l-group diffusion equation in the region 1 is now written as

V2$+ B?=0,

B:=(u¥i+3.—3.—DB,?/D.
2.5.3.2 Boundary Condition

The boundary condition is approximately given around the region 1 as follows:

(1) The flux value at each vertex of the hexagon is assumed to be equal to the arithmetic
mean of the three @, values around the vertex.

(2) The flux value at the middle point of each side is assumed to be equal to the arithmetic
mean of the two @, values on both sides of the boundary.

(3) From the flux values thus determined at the twelve points on the hexagonal contour, the
boundary value of the flux is set up on this closed line as a linear interpolation of the
two flux values on the end points of each half side, and is denoted as &(s) where s is
the distance measured along the contour from an origin on it.

Thus the problem has been reduced to a Dirichlet problem that the homogeneous equation
V2p+ B?%=0 should be solved with the inhomogeneous boundary condition ¢(s)=5&(s) on the
hexagonal boundary.
2.5.3.3 Green's Function

The Green’s function for the Helmholtz equation is given? as the solution of

V2G(r, ')+ B*G(r, 'Y= —dnd(r —7').
The solution for 2-dimensional case is written as
G@r, ') =—nYo(BR),
where Y,(x) is the Bessel function of the second kind and R=|/r—#']| is the distance between
the two points 7 and #/. In case of B*<0, G(r, #’) should be written as
G(r, r")=2K, (kR),
where Ky(x) is the modified Bessel function of the second kind and x2=— B2,
2,5.3.4 General Solution
Generally the inhomogeneous equation :
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Vig(r)+ B*(r) = —4zp(r)
has the solution expressed as

(1) =0,(7)+8o(7) + (),

where
8u(r)={ pr')Glr, 7)ar,
1
84(7) =z,;Sco<s>G<" s)ds,
and 8,(7) =417:Sc ASW.Glr, s)ds.

The ¢, is the potential due to a mass distribution with the density p on S. The ¢, is the
potential due to a single layer distribution with density g on C, and the ¢ is the potential due
to a double layer distribution of density f on C. The contour C, the boundary of the region S,
must be composed of a finite number of arcs or straight line segments, each of which is congruent
to a curve or line represented by continuous and continuously differentiable function, that is, C
is a piecewise smooth contour.
2.5.3.5 Properties of Solution

Properties of ¢,, ¢, and @, are described in Ref. 22 (§IV. 1) in cases of the Laplace or Poisson
equations. These properties are analogous to the case of Helmholtz equation because only the
kernel log R is substituted by Y,(BR) or Ky(kR), which is represented by a sum of log R and
regular function of R. We show here only conclusions. When p is a function satisfying the
Hélder condition in S, ¢, is continuous and has uniformly continuous first derivatives and con-
tinuous second derivatives, and @, satisfies V%@, + B?p,= —4rp in S. When ¢ is a function satis-
fying the Hoélder condition on each smooth line segment of C, @, is continuous and its tangential
derivative varies continuously as crossing over C. However, the normal derivative has a jump
of magnitude ¢ and its second derivatives are continuous in S, and ¢, satisfies 2$,+ B%),=0 in
S. When f is a function satisfying the Holder condition on each smooth line segment of C, ¢y
has a jump of magnitude f across the contour C, and the derivative of ¢y in the direction normal
to the contour varies continuously when 7 crosses over C along the normal at s, (Fig. 2. 5. 3-2).

f

However, the tangential derivative varies discontinuously in accordance with the jump of P~ and
¢}

its second order derivatives are continuous in S. In addition @, satisfies V%@ + B2%;=0 in S.
In our case of the homogeneous Helmholtz equation with p=0, the general solution is given
by ¢,+¢s. But ¢, or ¢s can be the solution by itself. Now, we show some properties of @, or

Fig. 2.5.3-2 The normals (# and ») and the chord (8—8o)
of the contour C.
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¢r when they approach to the boundary C from the inside. Notations are taken as shown in
Fig. 2.5.3-2. As C is composed of “convex and smooth” or “linear” segments, that is, C is
the piecewise smooth contour having no reentrant cavities, the angles between the normals and
the chord:

O=n/\(s,—s),

r=v/A\(S—So)
always satisfy cos#=0 and cosy=0.

For instance, in case of B2>0 and G(7, s)=—n Y,(BR), we obtain

lim g, () = —%chg(s) Yy(BR)ds, 2.5.3-1)
lim 7 ,(7) = %gm,) +§chg<s) cosd Y1(BR)ds, 2.5.3-2)
limg (r) = ——% Aso) +%PSC A(s) cosy Yi(BR)dS, 2.5.3-3)

where P means the Canchy’s principal value.
Equation (2.5.3-1) is evident because Yo(BR) has only logarithmic singularity. Equation
(2.5.3-2) is proved using symbols shown in Figs. 2. 5.3-3 and 2. 5.3-4 as follows:
. .4 1 1
lim Vo, (#) =lim lim [uzsc'g(s)V,, Yo(BR)d —ZSc_c, 9 YO(BR)ds]

r—s, . &0 r—s,

=lim liml:—i—g(so)sc (— Bcosh) YI(BR)ds]—%Pscg(s)(—Bcosﬁ) Y\(BR)ds,

€—0 ros,

where =nA(r—s) and cosf<0 in the first term. So, it is now sufficient to show that the first

term

gg(so) lim limS cosd Yy(BR)ds

E—0 r—s,JC,
becomes %g(so). The coordinates are taken as

n/lx, r=(z, y), so=(£o, 7o) and s=(&, )

1
BR

B \im Lm Jﬁ)(_i._l_)
40(50)}51-1»% E?E.S:,—e( R ©r BR n

_1 _ S‘ R,
T g(so) £1_rg 1&90 0 Ro2+52 ds

and when R—0, YI(BR)—>——%- and C; is regarded as a straight line. Then,

1 .. (SR gy 1 °dt 1
=L (s0)lim 1 =1 S___z_
ng(SO)el—I?) Rl.,r—nm o 1422 7tg(s°)ol—l—z:2 20(50)
/R sle
,'<r0?\ 7 /t n

Fig. 2.5.3-4 Path of integration for the singular part.

Fig. 2.5.3-3 Path of the principal value integration
along the contour.
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by taking the limit R,—0 preceding e—0. Equation (2.5.3-3) is also proved by

fim lim -58 f(s) cosy Yy(BR)ds

&—0 r—s, 4 Ce

= Bf(So)hm hmg R°< 2 -—l—>d7?

4 £-0 z—éd—e R\ © BR
L e vtim tim C_Ro 1
=— F(s0) ll_rg I%l.,TO R02+Szds 26(50).

Though there are some vertex points or connection points of two line segments on the contour
C, and the coefficient of g(s;) or f(so) in the above derivation differs from 1/2 or —1/2 on those
points, the measure of line integrals in ¢, and @s is zero on those points. When ¢(s) is given
on C, that is, the problem is of Dirichlet type, Eq. (2. 5. 3-1) or (2. 5. 3-3) can be used to determine
g(s) or f{s), respectively. Equation (2.5.3-3) seems more convenient than Eq. (2. 5. 3-1) as cosy
=0 if s and s, are on the same straight line segment. When V,#(s) is given on C (Neumann
problem), Eq. (2.5.3-2) is available and convenient because cos#=0 if s and s, are on the same
straight line segment.

2.5.3.6 Numerical Solution in o Hexagonal Lattice
We apply Eq. (2.5.3-3) to the Dirichlet problem given in §2.5.3.1 and §2.5.3.2:
V2$+ Bxp=0, B?>0,
@(s)=b(s) on a hexagonal contour C.

If we assume g(s)=0, ¢(#) for an inner point 7 is given by

1 S AWV —1 Yo(BR)Ids

o) =¢sr)=4 c

:gs F(s)cosy Y (BR)ds,
C

then f{s) is determined by the Fredholm’s integral equation of the second kind:
== fls)+ P () cosy Yi(BR)ds=b(s0).

For numerical calculation, the contour is divided into N line segments C; (for example, each
side of a hexagon is divided into ten segments of equal length, giving N=60), then f(s) is as-
sumed to be constant f; on each Cj, the value f; being assumed to be defined on the middle
point of C;. The value of &(s;) at the middle point of C; is also taken as the representative
value on C;. Consequently both  and & are assumed to have piecewise discrete values on C,
and

——~f +B i Z}f. S cosy Yy(Bl|s—sol)ds=b:. (2. 5. 3-4)
We assume s, to be fixed at s;, the middle point of C;, and define
B
Luj=7 P cosy Yi(Blls—sil)ds.

The value of I;; is numerically calculated by using three values of s at both the end
points and the middle point of C;, and integrating them using Simpson’s 1/3 rule. It is found
by the numerical integration that

>1 for each i,

N
2| X Lij
=1

so that the Neumann series expansion is not convergent for solving this integral equation about
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Fig. 2.5.3-5 Arrangement of the fuel pins in the assembly.

S(s). Therefore, we adopt the direct matrix inversion method using a library subroutine in the
computer system in double precision mode. We define a matrix A whose element a;; is given by
Li; (i=7),

1 .
Ilii_E (E=7).

Equation (2. 5. 3-4) is now written simply as
Af=b5,

and f is determined as f=A"'b6. Even when N=60, it takes only about 3 seconds on the
FACOM-230/60 to invert A, and the results are sufficiently accurate, as A is a diagonal dominant
matrix. The A-! is necessary to be calculated only once for the regions of the same value of
B (or ). This is an advantage of the present method because, once A-! is obtained, f is directly
determined for any boundary condition b.

Defining Izkizgsc cosy Yi(Bl|s—74|[)ds,

i

and using its numerical value prepared once for the value of B (or k) in the same way as for
L;;, the flux value is given for each fuel pin placed at 7, inside the region S (see Fig. 2. 5.3-5)
as follows:

N
Pr=(7:)= i§1I2“ﬁ'

As the total power has been given for the coarse volume segment, the pin power is simply
obtained by Pi=const-¢:.

By repeating this procedure for all the coarse volume segments arranged axially, we can
obtain the 3-dimensional detailed power distribution about fuel pins and the power peaking factor
in the fuel assembly.
2,5.3.7 Example of Application

Two examples of results are given in TABLES 2. 5.3-1 and 2. 5.3-3, which were obtained by
applying the present method to volume segments in fuel assemblies. TABLES 2. 5.3-2 and 2. 5. 3-4
show the deviation of each pin power generation rate from that obtained by the conventional
difference scheme. TABLES 2.5.3-1 and 2. 5.3-2 are for the segment placed just at the center of
the core, whereas TABLES 2. 5.3-3 and 2.5.3-4 are for the segment placed between a control rod
and a blanket assembly, which is expected to have a rather complicated distribution. The error
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TABLE 2.5.3-1 The detailed power distribution for each pin (W/cm) in the
assembly placed at the center of the core (100 MW)

517.8
519.0 518.7
519.7 520.0 §19.2
519.8 520.9 520.7 519.2
519.3 521.3 521.8 520.9 518.7
518.3 521.1 522.3 522.2 520.7 517.8
520.4 522.4 523.0 §22.2 520.0
519.3 522.0 523.3 523.2 §21.8 519.0
§21.1 523.1 523.7 523.0 520.9
§19.8 522.4 523.7 523.7 522.3 519.7
521.3 523.3 523.9 §23.3 521.3
519.7 522.3 523.7 523.7 522.4 519.8
§20.9 523.0 523.7 5§23.1 521.1
519.0 521.8 §23.2 523.3 522.0 519.3
520.0 522.2 523.0 522.4 520.4
517.8 §20.7 522.2 §22.3 521.1 518.3
518.7 520.9 521.8 §21.3 §19.3
519.2 $20.7 520.9 §19.8
519.2 520.0 519.7
518.7 519.0
517.8

TABLE 2.5.3-2 Deviations of the detailed power distribution obtained by. the
present method (Table 2.5.3-1) from the 2-group conventional
difference scheme ([P(present)— P(conventional)]/P(conventional)

(%)
0,058
0.069 0.035
0.112 0,065 0.037
0.112 0.079 0.038 0.037
0.108 0.090 0.069 0.044 0.035
0.139 0.111 0.082 0.056 0.038 0.058
0.115 0.096 0.071 0.056 0.063
0.108 0,109 0.090 0.075 0.069 0.069
0.111 0.090 0,076 0.071 0.079
0.112 0.096 0.082 0.076 0.082 0.092
0.090 0.090 0.084 0.09¢0 0.090
0.112 0.082 0.076 0.082 0.096 0.112
0.079 0.071 0.076 0.090 0.111
0.069 0.069 0.075 0.09%0 0.0950 0.108
0.065 0.056 0.071 0.096 0.115
0.0s8 0.058 0.056 0.082 0.111 0.139
0,035 0.044 0.069 0.090 0.108
0.037 0.058 0.079 0.112
0.037 0.065 0.092
0.035 0.069
0.058

TABLE 2.5.3-3 The detailed power distribution for each pin (W/cm) in the
assembly placed between the control rod and the blanket
assembly in the core (75 MW)

169.9
171.9 170.4
173.8 172.5 171.0
175.3 174.4 173.1 171.6
176.8 176.0 174.9 173.7 172.3
178.1 177.4 176.5 175.5 174.3 173.1
178.7 177.9 177.1 176.2 175.0
179.9 179.1 178.5 177.7 176.8 175.7
180.2 179.6 179.0 178.4 177.5
181.3 180.5 180.1 179.7 179.1 178.1
181.3 180.9 180.7 180.4 179.7
182.1 181.5 181.4 181.4 181.1 180.4
181.9 181.8 182.0 182,1 181.8
182.0 181.9 182.3 182.8 182.9 182.4
181.8 182.3 183.1 183.7 183,7
181.5 181.9 182.9 184,0 184.7 184.4
181.2 182.3 183.9 185.2 185.7
181.2 183.2 185.1 186.5
181.9 184.4 186.6
183.2 185.9

184.8
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TABLE 2.5.3-4 Deviations of the detailed power distribution obtained by the
present method (Table 2.5.3-3) from the 6-group conventional
difference scheme ([ P(present)— P(conventional)]/P(conventional)

(%))
-0.967
-0.555 -0.965
-0.144 -0.559 -0.956
0,309 -0.200 -0.580 ~0.941

0.718 0.205 -0.211 -0,584 -0.914
1.239 0.550 0.074 -0.267 -0.548 -0.831

0.932 0.401 0.001 -0.249 -0.500
1,346 0.686 0.253 0.011 -0.214 -0.527

0.964 0.487 0.241 0.039 -0.180
1.358 0.675 0.373 0.201 0.084 -0.157

0.845 0.428 0,311 0.306 0.184
1,088 0,532 0.371 0.360 0,377 0.256

0.531 0.320 0.336 0.508 0.553
0.519 0.182 0.231 0.495 0.682 0.684

0.017 0.038 0.312 0.718 0.956
-0.143 -0.285 0.011 0.568 1.039 1.224

-0.641 -0.377 0.256 0.921 1.393

-0.967 -0.229 0.592 1.403
-0.937 0.119 1.188
-0.554 0.611
-0.00S

is less than about 1.59% at each pin even in severe cases such as the latter. This error also
contains the contribution due to the l-group model. The accuracy seems sufficient in these ex-
amples. Moreover, the time required in computation is estimated virtually about 1/50~1/100 of
the conventional fine mesh scheme because the resolvent kernels are necessary to be prepared
only once for one value of B or &, and the geometrical symmetry can be fully utilized in calcula-
tion of the kernels. Number of the values of B or £ can be limited to the number of mixtures
which contain fissile elements, that is, the inner fuel, outer fuel, radial blanket, upper axial blanket
and lower axial blanket.

This method seems promising not only for 1-group problems but also for multigroup problems
involving ¢,.

2.6 Burn up Calculation'®

Burn up is calculated under the assumption that neutron flux does not vary in the time
interval of 4z days. Four kinds of isotope chains:

(1) 2U—27U

(2) 238U—»239Py—240Py—241Py—»242Py

(3) (Fissile+Fertile nuclides)—Lumped Fission Product (LFP)

(4) B
are dealt with in HONEYCOMB. The problem is to solve the first order ordinary differential
equations for densities of nuclides as initial value problems, and to obtain 3-dimensional distribu-
tion of each nuclide after 4¢ days. From the new densities thus obtained, the new macroscopic
cross sections (X and D) are determined as average values of the mixture region, and the
calculational control is turned back to the few-group -z calculation (Fig. 2.1.3). In §2.6.1,
the equations are solved in each of 3-dimensional volume segments. In §2. 6. 2, the equations are
solved at each fuel pin and at individual axial mesh interval in some specified assemblies. This
is for preparing the data required by fuel behavior analysis and fuel inspection.

2,6.1 Burn up Calculation in Each 3-dimensional Volume Segment
(a) Burn up coefficients
In the volume segment (J, 7, k), the burn up coefficient Z for nuclide 7 and reaction x (x
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means fission, capture or absorption) is defined as
Zyjir™=F 3 (0xjia™" X 10~24)p 5",
n

where 7 is the group index in a-few-group structure and 10~2 is the conversion factor of the
unit of ¢ from barns to cm2 The factor F has been defined in §2.5.2, and ¢ in §2.2.4, and
¢ in §2.4. It must be noticed that Z multiplied by the density gives the reaction rate, that is,
NZ=X¢.
(b) Burn up equations

Burn up equations are represented using the Z defined above for each nuclide appearing in
the burn up chains. In what follows, the suffixes of the volume element (j, 7, k) will be deleted
for simplicity. The unit of time # is second. But the unit of densitiess N™ is still 102
cm™3,

( 1 ) iNzaﬁ_‘_ZaZSSNZSS:O,

dt
( 2 ) %NZ36+ZHZ3GN236:Zc235N235’

a ppess 238 \J238 —
(3) dtN +Z, B8 N#8=(),

( 4 ) diNzae + Za239N289 = Z°238N238
' ]

( 5 ) §N240+Z5240N240—_—Z¢239N239,
t

( 6 ) §N241 -+ ZBZ41N241 = ZCZ4ON240’
¢

( 7 ) %NZAZ + Za242N242 — Zc241N241’
( 8 ) %NLFP + ZLFPNLFP — ,72352f235N235 +')’2362f236N236 +'}'23825238st8

_I. 72392f239N239 + 724OZf24°N240 + 724IZ£241N241 + ,724ZZf242N242,
i 10 10 NJ10 —
(9) dtN +Z ONW=0,
(c) Solution of burn up equations
The above equations are written generally as
d _
o &) +af(t)=g(2),
and the solution is given by
t
f#) =e‘“‘Soe“"g(u)du+e“” £0).
Equation (8) is, however, approximately solved by using the following average quantity:
g=[o@)+g(t+n)]/2,
where h=86400x 4¢sec. Thus we have solutions for Egs. (1)~(9),
(1) N25(t+h)=N?35(t)exp(— Z.235h),
(2) N26(t+h)=N236(t)exp (— Z,2%h)
+Zc235N235(t) {exp(_ZaZSGh) _exp(_Z8235h)} [(25235_23236)’
(3) N28(t+h)=N25(t)exp(— Z,*h),
(4) N29(t+h)=N29(t) exp (— Z.2%h)
+C, {exp(— Z,29h) —exp(—Z,**h)},
Cl — Zc238N238(t)/(Z.238 —_ Z.239)’
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(5) N2z 4 ph)=N240(¢) exp (— Z,24%h)
—C; lexp(—Z,*°h) —exp (— Z,***h)}
+Cs {exp(—Z24%h) —exp (— Z*h)}
C’2 — Z0239C1/(ZaZSB — ZBZ40)’
C3 o Zczss {N239(t) + Cl} /(23239 _— ZAZ40),
(6) New(¢+h)=N21(t)exp (— Z.24th)
+Cy{exp(—Z.24'h) —exp(— Z.2*h)}
—Cs {exp (— Z.'h) —exp (—Z,2*h))
+Cs{exp(—Z.24'h) —exp(—Z*h)},
Cy=Z.C,[(Z,238 — Z,241),
Cs=Z24C,/(Z,29— Z,24),
Co=Z 240 [ N240(£) — C, + Cs} (Z,240 — Z,241),
(7) N2t +h)=N22(t) exp (— Z,"h)
—C7 {exp (—Z,242h) —exp (— Z,>**h)}
+Cs {exp (— Z,242h) —exp (— Z,%°h)}
—Cs (exp (— Z2h) —exp (— Z°h))
+Cio {exp (— Z,242h) —exp (— Z.241h)},
Co=Z2MC,)(Z,238 — Z,242),
CB — 2024105/(23239 — Za242),
C9 —_ Z‘:241C6/(ZBZ40__ Za24z)’
Cro=Z2 (N*1(2)4-C,— Cs +Cs} (2,241 — Z,29),
(8) NLFP(z4h)= NLFP(z) exp (— ALFPA) +h(7zaszfzasﬁzas
236 Zfzats]\_fzaa 238 Zfzas]vzss 239 Zfzasﬁzas
240 Zfz40]\_[24o 241 Zf241N241 242 Zf242N242)’
N={N@®)+N(¢+h)}/2,

(9) NWO@E+h)=N¢) exp(—Z,1%).

In the actual calculation of the above solutions, we must be careful to avoid the decrease in
the number of significant digits due to cancellation caused by taking the difference between two
numbers having almost the same values, that is, in our case,

e*—e b (0<a<0.1, 0<b6<0.1).
We used the Taylor’s series expansion for these cases as follows:
et—et=(b—a){l—(a+b)/2+ (a®+ab+b2)[6—(a+b)(a®+b%)[24} .

The resulting N™(¢+h) of all the volume segments thus obtained are stored in an auxiliary

memory, and are used as the initial values at the next time step.

2,6.2 Burn vp Calculation for Each Fuel Pin

In a few (up to 10) fuel or blanket assemblies, the 3-dimensional burn up calculation can be
carried out within a reasonable computation time. For this purpose, the 3-dimensional fine distri-
bution of neutron flux is calculated in a 6-group model independently in each specified assembly.
The axial mesh structure is taken in common with that in §2.4.1, and §2.4.3, whereas radial
meshes are made so fine that every small hexagonal mesh region contains a fuel pin in its center.
Letting the pin pitch be ¢, a fine mesh difference diffusion scheme is used for the present
calculation where the each coarse volume segment (a hexagonal column of height 4z2) is assumed
to have homogeneous composition for the flux calculation. Boundary conditions for the radial
boundary are given in a homogeneous type (V.$/¢) by interpolating the coarse mesh fluxes as
obtained previously. As illustrated in Fig. 2.6.2-1, the boundary surface A has an area of
(21/4/3 )4z, where the neutron current must be determined by the fine mesh flux £ in the small
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n
¢i—1.i+1,k

Fig. 2.6.2-1 Radial boundaries (A or B) for “pin-hexagonal-z” criticality calculation.

hexagon, £ being not yet known. The coefficient of the current term aaf is estimated from

1
PR S Biin" =5 (@i-1,5,4" + iy i-1,47)
aa® jik J-bdsk” M1 AZ;D_,',-;" )
2 V'3 éx ¢
2743

that is,

zﬁil_dszmnzﬂbﬁk" —i1yi "= Pjri-1,k"
312 Giin"+@j-1,i8"

aa”

At the boundary B adjacent to A, as” is obtained with the same formula, where ¢;,; ;"

49

is

substituted by ¢;-1,i+1,#". These coefficients, thus obtained at the radial boundaries, are naturally

so roughly approximated that the neutron balance in an assembly cannot be maintained. For

the correction of that, a factor @ is multiplied to all the aa® or as” to maintain the neutron

balance in the assembly. This means that a kind of criticality adjustment by the Q wvalue is

needed besides the usual iterations. In the following, a;, a, -+, a; are defined like in §2. 4. 3 under

a fixed (j, 7).
(1) au"=au"=a3k”=%Dm" (between two pins),
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T -1
Vaszflz<4'jz612 6+Dj,-1"> (k=0),

(2) ayin™= “/z:‘z("j;’;l Dj"l,k+1"+ D,l-,-kn)_l (1<k<M-1),

”

el 5= (k=M),

(8) aw=Y 2t tm T,

(4) am"= ?tlzdzk(uzf)jik"’

(5) antr=" 30,5,

These coefficients, except for aa® and as”, are all independent of the location of pin (7, #),
whereas they are dependent on only axial mesh %2 and group zn. The fine distribution of neutron
flux & is obtained by solving the diffusion equation:

-1
—_ DnVZén + Z'Tnén — Xxn ; (sz)lsl +’:¥128!_."El’

using a difference scheme in the mesh structure (j/,7/,%). The factor @ is searched so as to
make A=1.

The resulting values of ;4" are used to determine the burn up coefficients for pin burn up
calculation:

CiPyjird Vi . s 102
Z (Efjikn Z Ej’i’k"d Vj’i'k) ‘? (Gx'“k X )S] i’k
n 7

Zyjrin™=

where the first factor is the power normalization factor to £;:4%. The C; and P; were defined
in §2.5.2. The other symbols (m, x etc.) have the same meanings as in §2.6.1 (4Vun=
(v 3 /2)t:24zy).

The initial compositions of fuel pins are given by input data for the inner fuel, outer fuel,
radial blanket and axial blankets, apart from the smeared densities used in the criticality calcula-
tions. The burn up equations in §2. 6. 1 (except that of 1°B) are again solved using the coefficients
Z.jwx™ and the initial density of each nuclide composing the fuel pin. The resulting densities
at the time after 4¢ days are printed out and stored apart from the results of §2.6.1.

2.7 Applicability Tests of the Code HONEYCOMB

In this section, two kinds of test calculations are presented so as to confirm the applicability
of this code HONEYCOMB for predicting the nuclear characteristics of fast reactor systems.
The section 2.7.1 shows an example of each input item and the computation time (CPU time on
IBM-360/K195) required in each calculational part as a typical case of applications. The section
2.7.2 is for a detailed examination of mesh size effects in an z-y mid-plane. There, the 2-
dimensional 6-group calculations are performed in hexagonal and triangular mesh structures vary-
ing the control rod blackness, the material composition and the size of hexagon, over the ranges
used for the most of actual fast reactors. By these test calculations, it has been concluded that
HONEYCOMB has a sufficient accuracy and efficiency for the practical use in a wide range of
each parameter surveyed.

2.7.1 A Sample Problem
2.7.1.1 Example of Input Data
An example of input data by cards is shown in Figs.2.7. 1-1~2.7.1-9. Figure 2.7. 1-1 gives
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$& JCYD NUCLFEAR CHARACTFRISTICS AT TNITTAL CNRF., FINE FISTRI. NF 444, 5AS $* PAGE 1

FTATA FN2 MULTIGROUP R-Z CALCULATION

MIXTURE
o

NO. NF FLEMENTS FOR EACH MIXTIRE
14 9 4 14 14 14

EXPECTED KEFF

GROUPS DPWN-SC. COLLAPSE
5 ttr L] 1.,00000006 OG

K~PARAM R-BLOCKS 2-BLOCKS
? n 3 5

JUROD) 1(ROD}
o o
4 s L]

TEMPFRATURE FNR EACK MIXTURF

3N0ACOF A2 3,00000E NZ 3.0000ME (2 3.MC0NF 02 3,00000F 02 3,00000F 02 3.00000E 02 2.00000E 02 3.000006 02

LAST GROUPS FNR CNALLADSE
4 ] 8 11 16 25

INTERFACE POINT NUMBERS FOR RADIAL BLCCKS
3 4 6 1C 131 12

RADNTAL MESH SIZFS

6.T6300E 00 2,54B0OF OC 6.96150F CC 8.727450F 00 6.04600E 00 1.12960F N}

INTERFACE POINT NUMPERS FOR AXIAL BLOCKS
1 11 1< 1¢

AX TAL MESH SIZFES

2.00000F 01 t.000COF €1 1,000CCF

COMPOS ITION MAP

C1 1.00000E Ol 2.00000E 01

1 2 3 4 5 6 1 &8 91¢ 1t 12
1 4 82 8 2 8 8 8 8 8 8 7 7
2 6 6 6 2 6 & 5 5 § § T 7
3 6 6 & 2 6 6 5 5 5 & T 7
& 6 6 6 2 6 6 5 S 5 5 1T 7
5 6 6 6 2 6 6 5 5 5 5 7 7
& 1 11 2 4 4 S 5 S s 1 71
T 1 1 1 2 4 4 5 5 5 85 17
8 1 11 2 4 4 5 5 S5 5 71 7
9 1 1 1 3 4 4 5 %5 § 5 7 7
1n 1 1 1 3 4 4 5 5 5 § 7 7
1 1 11 3 4 4 5 5 5 5 7 7
12 6 6 6 3 &6 &€ 5 S 5 & 17 17
13 6 6 6 3 6 6 5 5 5 5 1 17
14 6 6 6 3 6 6 5 5 S & T 7T
15 6 6 6 3 6 & 5 S S S 1 1
16 9 9 9 3 9 9 9 9 9 9 7 7
Fig. 2.7.1-1 Data for 25-group r-z calculation.
*% JNYD NIKLFAR CHARACTERTSYICS AT INJTIAL COREsy FINE DISTRI. OF 4A4, SAS %¢ PAGE 2
ELEMFNT CODE NUMBERS
MIXTURE 1
949 a94n 941 942 925 928 926 899 8 11 24 26 28 42
MIXTYURFE 2
105 15 & 1! 24 26 28 42
MIXTURE 13
1 24 26 28
MIXTURE 4
949 940 941 94z 925 928 926 999 8 11 24 26 28 42
MIXTURF §
949 940 941 942 925 528 926 999 8 11 24 26 28 42
MIXTURE 6
949 940 G41 942 925 s28 928 999 8 11 24 26 28 42
MIXTURE 7
11 24 26 2e
MIXTURE 8
11 24 26 2¢ 42
MIXTURE 9
11 24 26 2t 42
Fig. 2.7.1-2 Nuclides in each mixture.
* JNYD NUCLEAR CHARACTFRYSTICS AT INITIAL CORE., FINE CISTRI. OF HLA4y SAS % PAGE 3

EFFFCTIVE DENSITIES
MIXTYURF 1

1.1300N€-93 2.T79000F- 04

342740NE-03 1.19300E-C2

MIXTURE 2
2.06607F-02 1.85900F-02

MIXTURE 3
2,08400E-0Z 1.39200F-C2

MIXTURFE 4
1.13000E-03 2.79C0CF-C4
3.27400E-03 1.19300F-02

MIXTURE S
0.0 0.0 .
2.84600E-03 1,03700E-C2

MIXTURE &

0.0 0.0
3.27400E-03 1.193006-C2

MIXTURE 7
4.41900€-02 1,405006-02

NIXTURE &
9.49300E-03 3,37400F-C2

MIXTURE 9
1.40000€-02 5.97700E~C2

5.411COF-0S
2.389C0F-03

5.630C0F-C3
4.E43C0F-(3

5.41100€-C5
2.389C0E-C3

0.0
2,0760CF-C3
0.0

2.385C0F=03
4.888C(E-C2
1.229CCE~C2

2,177CCE-C2

1. 01900E~05 1.60500E-03 5.,294N0F-03 0.0

2.6100NE~04

1.25300E-02 3.53900F-03 1,.28900E-02 2.58200E-03 Z.821CCE-C4

6. 489C0E-N%

1. DI90CE-N5 1.60500E-03 5.29400E-03 0.0

2.61000F-04
0. 0
2.26800E-04

0.0

2. 61 000E-04
64 550006~03
2,461 00E-03 2.68900E-04

4,36100E-03 4.76400E-04

2.22900E-05 1.10120€-02 0.0

1.68300€E~05 8.31200€~03 0.0

Fig. 2.7.1-3 Smeared densities of nuclides in each

1.65800E-02 9, C8800E-C3

1.658C0E-02 9.C8800E~C3

2.20600E-02 T7.343006-C3

1.66600E=-02 9.(8800€E-C3

mixture (initial values).
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4

PAGE

*¢ JOVO NUCLEAR CHARACTERTISTICS AY INITIAL CORE., FINE OISTRI. OF 4A4, SAS #+

DATA FOR TWN-~DIMENSIONAL R-Z CALCULATION

NO. OF RADIAL BLOCKS = &

12 13 14

L]

RADIAL MESH SIZES
S.07200E 00 2.548N06 OC 4#.574CCE 00 8,27450E 00 6.04600E 00 1.12960€ 01

INT ERFACE POINT NUMBERS FOR RADJAL BLOCKS

NN. OF AXIAL BLICKS = %

24

22

AXTAL MESH SIZES
2.00000F 01 B.C0000E 6C 5,00CCCE OC 8. 0000CE 00 2.00000€ 01

MESH POINTS FOR EACH RADIAL ZNNE

INTERFACE POINT NUMBERS FOR AXTAL BLOCKS
L

11 12 13

10

2 3 € 7 L]
MESH POINTS FIR TOP AND BOTTOM OF THE CORE

1

18

7

NO. OF RACTAL BLOCKS OF 8SQ-2 = §

INTERFACE POINT NUMBERS FOR RADIAL BLOCKS OF BSQ-Z

8 12 13
Fig. 2.7.1-4 Radial and axial block data for few-group r-z calculation.

5

.

5

PAGE

#+ JOYD NUCLEAR CHARACTERTSTICS AT INITIAL CORE., FINE DISTRI. OF 4A&, SAS *»

CONPOS 1T ION MAP

1.2 3 4 5 6 7T 8 910111213 14

e o N ol o R o S A N N A A NS
e L o o S e N L
DRV RNEBV RN NE I SN W G0N N
AN DD WD DA DD W 0 DGO
TRV VNLNNOPELERREEROENInNe v o
LAl N N R N T R RN T PR T
COOVVVIECCTETEILTCLCCOOO0
DOOVVOXLTILT T LT ELLCEVOCO0O
DOOVCOTIT LT CCITTILOTOOWE
NRNNNNNANNNANNNNNNNN N AT @
€0 5 0 O 0 O r o ot gt gt it okt et et et 9t 0D S0 D QO DOV
€00 0 000ttt =ttt ot i ot 1 et 1t 0 D GO O O
D 00 DD G ot ot o h ot et 4G C O O O

B 30 8 W0 OO o P et gl ot et ot gt ot gt 30 C O C O O

123‘;675910..

11

Fig. 2.7.1-5 Composition map for few-group r-z calculation.
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PAGE

#¢ JOYD NUCLESR CHARACTERTSTICS AT INITIAL CORE., FINE DISTRI. OF 4A&4y SAS #¢

DATA FIR TWO-DIMENSIONAL HEXA CALCULATION

PITCH = 8,14999S56F (C

COMPOSITINN HAP

MRRANANAAANODOROC0000

FRBEANDLENECR~O0DOOCODCO

FOREPr R RN RO O0C OGO

ARV NERNNNRINRCDOOCCOC

MARBLEANNNRRENEDCO 00O

FABRORETEFNRNONINNFO0OC0

FAREr ST eICNNANNNOOCDD

FOANOE I I TN PN NN ODO

PO I Nt e OOO

FRORIN =PRI O

FRVNNING C i i TR NN~

L Y S e e L AL AL AL AL A

COFPCERC C P mmet it NE N O P 0~

CCCPRNE NI TIC me et N EN~

COCCHINNEPRNeT LI TN INN N~

[P ey T T TR TR R TR Ty

CODCCORMNENINVOE T NNNLE-

CCOCOOORNNRVNNNNAG LM

CCLOOOOORMNNNNIGINNINE M

CCOCCODCOMRRMVEINE RN~

©CCECECECOCCOr AN AN N

BSO-Z MAP

VRN ERrEINNooC oo 00
nVeeTeTerrrTTrnococoecco
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Fig. 2.7.1-6 Composition and BSQ-Z maps for few-group hexagonal calculation.
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Fig. 2.7.1-9 Data for burn-up calculation.

the data used mainly in §2.2.3 and §2.2.4. “Expected k" in the upper right corner is the K,
in §2.4.5. It gives also the number of mixtures, number of nuclides in each mixture, and Kelvin
temperatures (=300). Figure 2.7, 1-2 shows the kinds of nuclides in each mixture where the code
numbers of nuclides are used as defined in TABLE 2.2.1-1. Figure 2.7.1-3 shows the smeared
densities of nuclides in each mixture. The ordering of the data is common to that given in Fig.
2,7.1-2. Few-group cross sections are obtained from the above data.

Figure 2.7.1-4 gives the data for the few-group r-z calculation (see §2.4.1). The values
of Iin ¢* and ¥ in (B,2);” are specified there. Figure 2.7.1-5 is the composition map for this
r-z calculation corresponding to Fig. 2.1.1-2. Figure 2.7.1-6 is the data for 2-dimensional
hexagonal (§2.4.2) or triangular (§2.3) calculations. The composition map corresponds to Fig.
2.1.1-1, and the BSQ-Z map shows the assignment of the values of I/ in (B.?);" defined in
§2.4.1. Figure 2.7.1-7 is the data concerning the 3-dimensional criticality calculation (§2.4.3)
and the criticality adjustment by insertion depth of control rods (§2.4.5). The composition maps
are easily understood in comparison with Figs. 2. 1.1-1 (up to 8-th zone) and 2.1.1-2 (left region
of vertical dotted lines). The coordinates of the rods, which are going to be adjusted their
insertion depth, must be less by 3 than those defined in Fig. 2.4.2-1 (5-3, i-3).

Figure 2,7.1-8 shows the data for pin-hexagonal-z criticality calculation and pin-burn-up
calculation described in §2.6.2. Figure 2.7.1-9 is the data for the burn up calculation given in
§2.6.1 and the data for the computer control of the whole time steps of burn up calculation.
“Initial mass” is the integrated totals obtained immediately after input of densities, composition
map and volume of each segment. The mass “A” is used in the succeeding time steps for
calculating “degree of burn up” in the whole reactor region:

BP=[P MW)]x[Burn up time (day)]/[A4 (ton)].

In this example, only one step of burn up calculation is carried out with 4¢=45 days and
P=75MW. The option for adjoint flux calculation is skipped.
2,7.1.2 Computer Time Required for Each Item of Calculation

The core memories occupied in the computer for this sample problem are 484K bites including
all the library subroutines and input/output buffer areas. The time of usage of the central
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TABLE 2.7.1-1 CPU time required for each segment in case of the test problem
given in §2.7.1

Overlay segment CPU time (sec)
Reading of data cards, and some preparatory calc. 1.19
25-group effective cross sections 4.05
25-group R-Z calculation 24. 90

Collapsing of group cross sections 0.18

(Initial step before burn-up)

6-group R-Z calculation 14. 83
6-group hexagonal calculation 16. 69
6-group hexagonal-Z calculation 572. 49 (%)
6-group pin-hexagonal-Z calculation (91 pins) 630. 18(%)
6-group pin-hexagonal-Z calculation (19 pins) 56. 71 (%)
3-group v-ray flux distribution 41.57
Power distribution (coarse & fine mesh) 7.02
Burn-up calculation (coarse mesh) 9.97
Pin-burn-up calculation (two assemblies) 1.18
New macroscopic cross sections 12. 07

(First time-step)

6-group R-Z calculation 16. 55
6-group hexagonal calculation 16. 79
6-group hexagonal-Z calculation 522. 03(%)
6-group pin-hexagonal-Z calculation (91 pins) 622. 23(%¢)
6-group pin-hexagonal-Z calculation (19 pins) 55. 64 (%)
3-group v-ray flux distribution 42.24
Power distribution (coarse & fine mesh) 5.10
Total 2,674.24

(about 44.5min)

(%) means that the figure contains time for criticality adjustment.

TABLE 2.7.1-2 Variations of some integral quantities by 45 days’ burn-up

Quantitics }3:;3 (a%nsj% Cl;ii;i:fl-} i;}si::ri)on Mass of each isotope of U and Pu (kg)

control rods (cm) | 235U 2867 =8y 239Py 240pPy 1Py #2Py
Initial step 0 0 103.0 160. 3 0 8223 103.7 25.71 5. 006 0. 9470
First step 45 396. 2 96.1 158. 3 0.394 | 8219 105.7 25. 77 4.970 0. 9530
Increase 45 396. 2 —6.9 —1.98| 0.394 | —3.82 204| 0.0600 | —0.0361 I 0. 00606

processing unit (CPU) is shown in Taste 2.7.1-1. The computer used is the IBM-360/K195.
The number of groups is 6 and the number of axial mesh intervals is 24. One fuel assembly
containing 91 pins and one blanket assembly containing 19 pins are specified to perform the pin-
burn-up calculation. The CPU time is tabled following the flow of calculation of Figs. 2.1, 3-1~
2,1,3-3.

The variations of the main integral quantities by the 45 days’ burn up are summarized in
TABLE 2.7.1-2. All of output prints amounts to about 600 pages including detailed distributions
of the neutron flux, power and nuclide densities.

2.7.2 Examination of Mesh Size Effects

From the comparison between hexagonal and triangular mesh criticality calculations in the
2-dimensional diffusion model (see §2.3.5), it was seen that the main problem in the coarse
hexagonal mesh scheme was related to the accuracy of the neutron flux values in and around
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control rods. Another question existed also in the accuracy of the flux in the blanket regions.
For the former shortcoming, the correction method in §2.4.4 has been proved very effective.
For the latter, the extent of error was not examined but was expected to be negligible. In fact,
vY: in the blanket region is much smaller than that in the fuel region, so that the error in the
predicted neutron flux in the blanket will not influence ks and power distribution to a significant
extent.
On the above background, an extensive examination has been performed about the effects of
the mesh sizes, the blackness of control rods, and the composition of fuel, blanket and reflector
regions. The object of this survey is to know the limits of applicability of the coarse mesh
calculation, which is an only practical way in the 3-dimensional analyses, in addition to know
how much generality can be expected to HONEYCOMB in practical use. Thus, several para-
meters were varied so as to cover their ranges which can be considered in usual fast reactor
systems. Two-dimensional 6-group criticality calculations were made with varying four kinds of
parameters:
(1) To examine the effect of control rod blackness, the densities of nuclides in the composi-
tion of control rod (mixture 2 in Fig. 2.7.1-3) were multiplied by factors 1, 3/2 and 2.

(2) To examine the effect of the reactor scale, the compositions of a prototype FBR (MZB),
an experimental FBR (JOYO) and a critical facility (ZPR-3-6F2%) were adopted for fuel,
blanket and reflector regions.

TABLE 2.7.2-1 Calculated values of k. for various cases.
(M : Prototype FBR, J: Experimental FBR, Z: ZPR-3-6F“®)

Case | Black- | Compo- |Pitch of| 7}7Yith transport correction Without t.c.

No. ness sition O O A (1/6) A (1/24) @) A (1/6)
1 1 M 6 1 0.99118 0.99112 1. 00610 0. 98989
2 1 M 8 1 0.99131 0.99180 1. 00954 0. 99060
3 1 M 12 1 0. 99028 0.99113 1. 01251 0.99070
4 1 J 6 1 0.99343 0. 99338 1. 00270 0.99164
5 1 J 8 1 0.99341 0. 99396 1. 00520 0. 99204
6 1 J 12 1 0. 99259 0. 99344 1.00732 0.99211
7 1 Z 6 1 0. 99424 0. 99354 1. 00008 0.99278
8 1 Z 8 1 0. 99325 0. 99284 1.00143 0. 99195
9 1 Z 12 1 0.99188 0. 99186 1. 00285 0. 99098

10 1.5 M 6 1 0. 98981 0. 99081 1.01274 0.99025
11 1.5 M 8 1 0. 98965 0. 99159 1.01754 0. 99093
12 1.5 M 12 1 0. 98842 0.99058 1. 02058 0.99118
13 1.5 J 6 1 0.99235 0. 99361 1. 00746 0.99139
14 1.5 J 8 1 0.99213 0. 99423 1. 01084 0. 99175
15 1.5 J 12 1 0.99117 0.99330 1.01274 0.99193
16 1.5 Z 6 1 0.99372 0.99385 1. 00232 0.99246
17 1.5 Z 8 1 0.99249 0. 99316 1. 00432 0.99141
18 1.5 A 12 1 0. 99085 0.99194 1. 00602 0.99033
19 2 M 6 1 0. 98823 0. 99040 1. 01963 0. 99060

20 2 M 8 1 0. 98786 0. 99126 1. 02554 0. 99143

21 2 M 12 1 0.98676 0.98966 1.02810 0. 99225

22 2 J 6 1 0.99103 0. 99374 1.01266 0.99107

23 2 J 8 1 0.99070 0.99433 1.01666 0.99158

24 2 J 12 1 0. 98990 0.99283 1.01792 0.99223

25 2 Z 6 1 0.99291 0.99411 1.00502 0.99187

26 2 Z 8 1 0.99150 0.99343 1.00765 0.99076

27 2 Z 12 1 0.98984 0.99187 1.00931 0.98995

|
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The pitches of hexagonal lattices were made 6, 8 and 12cm.

Three cases of mesh structure were surveyed by making the number of nodal points in
a hexagon 1, 6 and 24, the latter two cases of which correspond to triangular mesh
structures.

Moreover, the cases without the transport correction to the control rod regions were also

examined in order to confirm the effect of the correction.

The geometry used is that of Fig. 2.1.1-1 filling the 18 assemblies in the six corners with

the composition of reflector.
structure, k. becomes 1.

The values of ks are adjusted so that, in case of hexagonal mesh
(Here, the word ‘hexagonal’ is used to mean the cases of 1 nodal point

in a hexagon.) The energy ranges of 6-group structure are: (1) 10.5MeV~1.4MeV, (2) 1.4MeV
~04MeV, (3) 400keV~100keV, (4) 100keV~10keV, (5) 10keV~1keV, and (6) 1000eV~

0.215eV.
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Flux distribution for the case No. 5,
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Fig. 2.7.2-2 Flux distribution for the case No. 5 (continued).

The values of k.4 are shown in TABLE 2.7.2-1. Considering the triangular cases (24 points)
as the standard references, the errors of ke’s are within 1% except for the hexagonal cases
without the transport correction. The satisfactory accuracy is obtained in the hexagonal cases
with transport correction, considering the fact that the CPU time required is much shorter than
that in cases of triangular mesh schemes. (The ratio of CPU time for the hexagonal, triangular
(1/6) and super fine triangular (1/24) cases is about 1: 19: 280.) The error does not seem to
depend on the blackness and the composition in the ranges surveyed. However, in case of
composition of ZPR-3-6F, the error seems to be decreased by making the mesh sizes fine, that
is, by making the pitch of hexagonal lattice small. It is known?? that S, transport model
evaluates ks somewhat larger than diffusion model. This fact gives an advantage to our results
of hexagonal calculation with the transport correction.
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Figures 2.7.2-1 and 2.7.2-2 show the flux distribution for the case No. 5, which is the typical
case dealt with by this code HONEYCOMB. This distribution is along the traverse through the
centers of 10 hexagons starting from the fuel assembly, which is adjacent to the upper left side
of the central assembly, outgoing in the upper right direction (see the arrow shown in Fig. 2. 1. 1-1).
Thus we can see the distribution through a control rod. In the control rod, especially for the
groups 4~6, the effect of the transport correction can be observed (the mark a is nearer than
the mark O to the average (—) of the finest case). For the groups 5 and 6, the gradient of the
flux distribution has the opposite sign to that of the other groups, at the fuel/blanket interface.
In these groups 5 and 6, the flux values (the mark a) in the first (leftest) blanket assembly are
estimated slightly large. The small difference of k. between hexagonal and super fine triangular
methods in TABLE 2.7.2-1 will have come from the difference of flux values in the control rods
and the above-mentioned blanket assemblies.

On the whole, the errors in the present method (the mark 2) used in the code HONEYCOMB
are small in the ranges surveyed here. It can be concluded that HONEYCOMB has a good
applicability to the practical usages.
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3. FDCAL-3, the Detailed Calculation Subsystem Predicting
the JOYO Thermo-Hydraulic Characteristics

3.1 Summary of the Code FDCAL-3: the Combination of the Codes FDCAL-2
and FATEC-3

The FDCAL-3 is a combination of the FDCAL-2 which calculates a flow distribution in a
reactor vessel and the FATEC-3 which analyzes a temperature distribution in a fuel assembly.
The FDCAL-3 provides not only the functions, which the FDCAL-2 and the FATEC-3 possess,
but also some additional options. The main features are summarized as follows;

(1) Calculation of the flow distribution in the reactor vessel

For the various flow channels between inlet and outlet plenums, the channel flow rates which
correspond to pressure losses and power profiles are calculated. Dividing the flow chanels into
many groups depending on the channel geometry and the axial power profile, the FDCAL-3

f Calculate
bchannel Flo
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Cadlculate Subchannel
Flow Distribution

Calculate Pressure Drop
of Assemblies

,l, COoff Fq_lcula etur
Calculate Pressure Drop ant lemesra
of Other Flow Channel Yes

Calculate Coolant
Temperature Distribution

| P—

Caluculate Fusel
Temperature

NO

f Pressure
Balance Converge

Correct Flow Distribution
in Reactor Vessel lr

I Editing of FATEC-3
&——d‘ .

Editing of FDCAL~-2 f Final

NO Assembly

Yes

GD

Fig. 3. 1-1 Flow diagram of FDCAL-3. Fig. 3.1-2 Flow diagram of FDCAL-3.
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treats a representative channel of the groups. The channel power distributions including the
fission power and vy-ray heat are given by the codle HONEYCOMB.

(2) Pressure drop of the fuel and blanket assemblies

Two options are provided for the total pressure drop calculation of an assembly depending
on whether the power distribution in the fuel pins can be assumed to be uniform or not. Being
assumed to be uniform, only three kinds of subchannels located at the corner, side and center
in the assembly are considered without the thermal mixing effect. On the other hand, if not
uniform, all subchannels in the assembly are treated with the thermal mixing effect.

(3) Calculation of the temperature distribution in the assembly

Both coolant and fuel element temperatures are calculated. The coolant temperature as well
as the subchannel flow rates are obtained beforehand in the FDCAL-2 part. Thus only the fuel
element temperature analysis is performed when the detailed subchannel model such as that with
the thermal mixing effect is applied for calculating the pressure drop of an assembly. Except
for the case mentioned above, the coolant temperature can, however, be recalculated and for tem-
perature analysis in the assembly, the results of the FDCAL-2 can be used without recalculating
the subchannel flow distribution by user’s option.

The temperature of a fuel element is calculated with a 1-dimensional model () or a 2-dimen-
sional model (r-6) at each axial mesh point. That hot spot temperature analysis is also performed
by the use of the nominal temperature and the uncertainty factor given by input data.

These temperature calculations are usually performed for the specified assemblies after the
flow distribution calculation in the reactor vessel. The independent calculation for an assembly
can also be permitted.

The conceptual flow diagram of the calculation is shown in Figs. 3.1-1 and 3.1-2.

3.2 Method for Calculating the Coolant Flow Distribution in the Reactor Vessel

3.2.1 Anadlytical Model and Equations for Predicting the Coolant Flow Distribution

(1) Arrangement of the coolant flow paths in the reactor vessel

The core configuration for fast breeder reactors consists of fuel assemblies, blanket assem-
blies, control rods, reflectors and neutron source element. In a region outside of the core, the
racks (pots) for cooling spent fuel assemblies are arranged. The coolant flow paths in the re-
actor vessel consist of not only core components mentioned above but also auxiliary and emergency
cooling systems and various leakage flows. The flow paths of JOYO are shown in Fig. 3.2.1-1
as an example.

The primary cooling system of JOYO is loop type and forms a closed loop with two primary
loops, an auxiliary cooling system, and an overflow system. The primary coolant flows into the
bottom of the reactor vessel through two inlet pipes and arrives at the inlet plenum. The coolant
flow from the inlet plenum ramifies to the auxiliary cooling system, a leakage flow path to a
low pressure plenum, fuel racks (pots) and a high pressure plenum. The coolant flow from the
high pressure plenum furthermore diverges to two kinds of flow paths. One leads to the outlet
plenum through core fuel assemblies, regulating rods and leakage paths through gaps. Another
goes to the low pressure plenum through slit of reflectors and leakage paths, and from there,
the coolant flow leads also to the outlet plenum through blanket fuel assemblies, reflectors, safety
rods, and leakage paths.

FDCAL-3 calculates flow distributions in these flow channels placed between the inlet and
outlet plenums. In FDCAL-3, the various flow channels are treated by grouping into six types
of flow paths as shown in Fig. 3.2.1-2. The flow channels within each type are furthermore
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Flow paths in the reactor vessel of JOYO.
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grouped into a number of kinds depending on geometry and axial power profile for each flow
path. If axial power profile for the flow channels having the same geometry is assumed to be
equal, the flow distribution in these flow channels is considered to be the same. Therefore it is
sufficient to calculate the pressure drop for one of these paths.

(2) Analytical model

The flow distribution in these flow channels is calculated under following assumptions :

(i) Pressure gradient in the high and low pressure plenums is uniform.

(ii) Acceleration pressure drop of flow channels is neglected except for fuel and blanket
assemblies.

(ili) Frictional and gravitational pressure drops in flow channels except for the assemblies
are calculated by taking account of the coolant property change due to the y-heat generation.

(iv) Pressure drop in the assembly is estimated by the method to be described in §3. 3.

(v) Flow distribution is calculated to achieve an equal pressure drop for each flow channel
between the inlet and outlet plenums.

(3) Equations for the pressure drop calculation for flow channels except for the assembly :

The frictional pressure drop in each flow channel except for the assemblies is estimated by
the use of the loss coefficient averaged over the channel.

Equation for the frictional pressure drop calculation in the flow channels (such as gas vent
holes, fuel storage racks, regulating rods etc. which are contained in the Flow Path Type No.
1, 2, 3 and 5) is given by

AP:K"E(A’)N_Z(PE)N'Z W, (3.2.1-1)
Y\Y v
where A4P=f{rictional pressure drop (kg/m?),

W=coolant flow rate (kg/sec),
y=coolant specific weight (kg/m3),

yo=coolant specific weight at the reference temperature (kg/m3),
v=coolant kinematic viscosity (m?/sec),

yo=coolant kinematic viscosity at the reference temperature (m?2/sec),

K =f{rictional loss coefficient,

N =exponent.

In the flow channels included in those of the Flow Path Type No. 2, the frictional pressure
drops are calculated by the following two equations:

AP=C,Wym +C, W (3.2.1-2)
and

AP=CWW, (3.2.1-3)
where AP=pressure difference between high pressure and low pressure plenums (kg/m?),

W=coolant flow rate to low pressure plenum (kg/sec),
Wr=flow rate at connecting pipe inlet,

C,, C;, C=frictional loss coefficients,

ny, n;, N =exponents.

Eq. (3.2.1-2) is applied to the leakage paths through the connecting pipe gaps of the core
assemblies and the regulating rods. This pressure drop is given by a function of the flow rate
at the connecting pipe inlet and of the leakage flow rate to the low pressure plenum, whereas
Eq. (3.2.1-3) is used for the leakage paths through the connecting pipe gaps of the safety rods,
inner and outer blanket assemblies, and reflectors. The gaps of reflectors consist of two kinds
such as mere connecting gap and a slit which is provided to regulate the flow rate to the low
pressure plenum.
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By using Egs. (3.2.1-1)~(3.2.1-3) with the constants based on experiments, the frictional
pressure drop from inlet to outlet for each flow path is calculated. Average coolant properties
used for this calculation are estimated by considering the coolant enthalpy rise due to the v-ray
heat generations. The outlet enthalpy for each flow channel is given by

Rout =hin* + Q| W, (3.2.1-4)
where
houi =outlet coolant enthalpy in the i-th flow channel (kcal/kg),
i =inlet coolant enthaply in the i-th flow channel (kcal/kg),
Qi=heat generation rate in the i-th flow channel (kcal/sec),
Wi=mass flow rate in the i-th flow channel (kg/sec).

The relation of coolant enthalpy with temperature through the isobaric specific heat capacity

Co(2) is given by

h@:&QWMﬂ 3.2.1-5)

where C,(¢) can be fitted by the following polynomial function of temperature®,

Co(t)=Cpo+Crt+Cpat?, (8.2.1-6)
where Cy, Cpn and Cp; are specified constants. Thus Eq. (3.2.1-5) becomes an algebraic equa-
tion and its solution is obtained by Newton’s method for a given value of A(f). The outlet
coolant density and the dynamic viscosity are calculated by the following two equations®", re-
spectively :

(&) =0+ vit+7at?, (8.2.1-7)

A,

t+273.2
where v,, 71 and 7., and A, A, and A, are specified constants and x(¢) is the dynamic viscosity.

].Ogm ,U(t) :Ao+ —Az logm(t +273 2), (3. 2. 1—8)

Channel average coolant properties; v and v (=u/vy) are estimated in terms of algebraic mean.

3.2.2 Numerical Method for Pressure Balance Calculation

Flow distribution is calculated to make the pressure drop in each flow channel equal. The
pressure blance is obtained from iteration procedures. Firstly, assuming the flow distribution in
reactor vessel, the total pressure drops in all channels are calculated by the use of the equations
given in §3.2.1 and §3.3.1. The iteration is continued until the total pressure drops in all
channels converge within an acceptable tolerance.

The initial guess of the flow distribution is given as input data or calculated in the program
by using the frictional loss coefficient. In the initial flow rate calculation, it is assumed that the
gravitational pressure drops are equal for all channels and the accelerational pressure drops are
neglected. By using these guesses, the pressure drops in channels are first calculated for each
flow path type shown in Fig. 3.2.1-2. The program checks whether the convergence criterion
is satisfied or not by the inequality :

APpax— APrin

APin

where e=input convergence criterion,

<, (3.2.2-1)

AP..s=maximum pressure drop between the inlet and outlet plenums,
AP, ;,=minimum pressure drop between the inlet and outlet plenums.

The AP and 4P... are obtained by taking account of the pressure dorps for all channels
from Flow Path Type No. 1 to No. 5. If the condition (3.2.2-1) is not satisfied, the assumed
flow distribution is modified on the basis of the current average pressure drops in each flow
path and between the inlet and outlet plenums. The average pressure drop without including
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the gravitational force is obtained by means of the conservation of the total flow rate:
4P, W, % / Lids }2 3.2.2-2
nv,!—[? -/'_ m , (3.2.2-2)

where W;=flow rate in the i-th channel,
A4P;=total pressure drop in the i-th channel,
A4P;,=gravitational pressure drop in the i-th channel,
AP, s=average pressure drop without including the gravitational force,
N=total channel number.
On the other hand, the average gravitational pressure drop is calculated in terms of the

algebraic mean written as
N
4P, ;=3 4P;/N. (3.2.2-3)
3

The average pressure drop in each flow path or between the inlet and outlet plenums is given
by
AP, =AP,,, s+ 4P, .
By using these average pressure drops, the mass flow rate for each channel is corrected to
give the following form:

172
W _._.{W.ZM} , (3.2.2-4)

" 4P;—A4P;,
where W i=uncorrected flow rate in the i-th channel,
W =corrected flow rate in the i-th channel,
A4P.,=average pressure drop,
AP, =gravitational pressure drop in the 7-th channel,
AP;=total pressure drop in the i-th channel.
Finally, the corrected mass flow rate W,/ is renormalized by the total flow rate, and then
new channel pressure drops are calculated. The flow diagram of these calculations is illustrated

in Fig. 3.2.2-1.
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Fig. 3.2.2-1 Flow diagram of pressure balance calculation.
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3.3 Method of Pressure Drop Calculation for the Assembly

3.3.1 Analytical Model and Equations for Pressure Drop Calculation

(1) Analytical model

The pressure drop calculation is carried out by dividing axially the assembly into the pin
bundle part and other parts. The net ‘pressure drop for the pin bundle part, in which fuel pins
are triangularly arranged, is predicted by taking account of flow distribution because power dis-
tribution is already given three-dimensionally. The pressure drop for other parts is estimated by
using the friction factor of Fanning type.

The flow distribution in the pin bundle is calculated by the use of a triangular subchannel
model?®. The subchannel analysis is an important tool to establish the thermal performance of
the assembly because it deals with the distribution of coolant flow and enthalpy in the pin bundle.
To predict the flow and enthalpy in selected regions of the pin bundle, FDCAL-3 uses a mathe-
matical model taking account of the lateral mixing process, details of which will be described in
§3.4. In this approach, the cross section of the pin bundle is divided into discrete flow sub-
channels as shown in Fig. 3.3.1-1. By making a suitable assumption concerning the flow and
lateral mixing process in these subchannels, the equations expressing mass, momentum and energy
balance can be derived for each subchannel. This set of equations can then be solved numeri-
cally by using the finite difference method.

Basic assumptions for deriving this set of equations are as follows.

(i) For the lateral mixing process, FDCAL-3 considers only the thermal mixing effect be-
tween adjacent subchannels. This effect, which results from thermal conduction and turbulent
crossflow, is assumed to be expressed in terms of an apparent heat transfer coefficient.

(ii) Momentum interchanges are neglected between adjacent subchannels.

(iii) Steady and one-dimensional single phase flow exists in each subchannel.

(iv) The pressures over the cross sections of the pin bundle inlet and outlet are uniform,
respectively.

(v) FDCAL-3 also provides another subchannel model neglecting the mixing effect for the

simplified calculations.
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Fig. 3.3.1-1 Position and number of fuel element and flow subchannel.
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(2) Analytical equations

In this section, equations are described for the pressure drop calculation in the assembly.
The axial flow channel in the assembly consists of the pin bundle and other parts such as en-
trance nozzle, handling head etc. The frictional pressure drop in the assembly except for the
pin bundle is calculated by the following two equations:

AP=§W2 (3.3.1-1)
where AP=frictional pressure drop (kg/m?),
K=frictional loss coeflicient,
W =flow rate (kg/sec),
v=coolant specific weight (kg/m?3).
This equation is applied to the entrance nozzle and to the diffuser in the JOYO assembly.
Another equation is given by

AP= f%lz%z, (3.3.1-2)

where f=Fanning friction factor,

L=length of flow channel (m),

D=equivalent diameter (m),

g=gravitational acceleration (m/sec?),

v=coolant velocity (m/sec).
Equation (3.3.1-2) is applied also to the flow channel below and upper the pin bundle, and
handling head in the JOYO assembly.

The gravitational pressure drop for the flow channel is calculated in the same way as in
§3.2. The accelerational pressure drop for flow channels except for the pin bundle is ignored
because the power generation rate in this part can be assumed to be very small comparing with
that in the pin bundle.

The equations of continuity of mass, momentum and energy for the pin bundle may be
derived by using the basic assumptions. This gives a set of 3N first order ordinary differential
equations, where N is the number of subchannels. These transport equations for the i-th sub-
channel can be written as follows:

%=0 (viAivi=const.), (3.3.1-3)
dz
Widvi | vi fip o0 1 7i(%0) £ o o) Vi Tt = —GE -
0 de +2g Di'vzz(z)+ zg fOtvxz(zO)ﬁ(z 20)+2gft7}:2+'7t— dz’ (3 3.1 4)
Wii,}: =Qu(z) +uji {tj(2) —t:i(2)} +usj {ta(z) —2i(2)}
i {ei(z)—2:(2)} (3.3.1-5)
where W,;=flow rate in the i-th subchannel (kg/sec),

v;=coolant velocity in the i-th subchannel (m/sec),
v:=specific weight in the i-th subchannel (kg/m3),
fi» foi» fi=Fanning friction factor in the i-th subchannel (kg/m3),
D;=equivalent diameter in the i-th subchannel (m),
P;=pressure in the Z-th subchannel (kg/m?),
- hi=enthalpy in the i-th subchannel (kcal/kg),
Q:=power addition rate to coolant in the i-th subchannel (kcal/sec-m),
t;=coolant temperature in the -th subchannel (°C),
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uj;—apparent heat transfer coefficient to the j-th adjacent subchannel
(kcal/sec+°C+m),
A;=flow cross-sectional area of the i-th subchannel (m?),
0(z—=z¢) =delta function,
vi=channel average specific weight (kg/ms3),
T;=channel average coolant velocity (m/sec).

The continuity equation (3. 3.1-3) states that the mass flow rate is axially constant for each
subchannel. In the momentum equation (3.3.1-4), the terms on the left-hand side include the
friction, spatial acceleration and elevation components of the pressure drop. The third term re-
presents the friction component due to local sudden changes in the cross-sectional area. The
fourth term gives the friction component expressed as channel average quantities. The right-
hand side of the energy equation (3.3.1-5) describes mechanisms of thermal energy transport
between the subchannels in the pin bundle. The first term is the power addition to the fluid of
a subchannel and gives the rate of enthalpy change if no thermal mixing occurs. Other terms
on the right-hand side represent the apparent heat transfer rate due to the thermal conduction
and turbulent cross flow.

If the radial power distribution in the pin bundle is assumed to be uniform, FDCAL-3
permits an option for the subchannel model neglecting the thermal mixing effect. In this optional
calculation, it is sufficient to set up only the flow channels with different shapes of the cross-
sections as the subchannels. For the JOYO calculation, three subchannels of the corner, side and
center subchannel are considered.

The Fanning friction factor correlation is assumed to be of the form:

fi=a[Reiz)} b+c, (3.3.1-6)
where @, b and ¢ are specified constants that depend upon the subchannel geometry, roughness
and the Reynolds number; Re.

3.3.2 Numerical Method of Pressure Balance Calculation in Subchannels Consisting of Pin Bundles of
Nuclear Fuel Elements
Equations (3. 3. 1-3) through (3.3.1-5) are solved as an initial value problem by using the
finite difference method with the given inlet total flow rate, inlet coolant temperature, and axial
power distribution for each fuel pin. Firstly, it is assumed that the flow rate for each sub-
channel is available to start the calculation. The energy equation (3.3.1-5) is solved by using
the forward difference equation :

hiz+42) =hi(z)+§%+u i 1t5(2)—2:(2)) A
o (81 (2) —t:(2)} dz+1y; [81(2) —£:(2)} d2. (3.3.2-1)
By using Eq. (3.2.1-5), the coolant temperature #(z+4z) is solved by the Newton method and
coolant properties are calculated from Egs. (3.2.1-6) and (3.2.1-7). The average specific weight
vi, 4. and average temperature #; 4. between axial mesh points z and z+ 4z are estimated in terms
of algebraic mean. By using this v; 4, the continuity equation is solved by
W;

’Yi,AzAi.

The momentum equation is also solved by the forward finite difference method :
AP.‘(Z‘*‘AZ):P;(Z)—P:(Z-{-’AZ)

vi(z+4z)= (3.3.2-2)

. Yi.dx o v;(z)+v,—(z+Az)}24§
’“')'x,dzAz+ 20 fx[ 2 D,+
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W;
gA;
For calculating the Reynolds number, use is made of the average coolant properties and average
velocity between axial mesh points 2 and 2+ 4=z.

After these calculational steps proceed to the final mesh point, the program checks if the
total pressure drop for each subchannel converges to within an acceptable tolerance. If con-
vergence criterion is not satisfied, the assumed flow rate for each subchannel is corrected in the
same manner as in §3.2.2 and the iteration proceeds until the criterion is satisfied.

+

[vi(z+42)—vi(2)}. (3.3.2-3)

3.4 Method of the Temperature Distribution Calculation in Coolant and Fuel

Elements in the Assembly

3.4.1 Analytical Model and Equations for the Temperature Caleulation

(1) Analytical model?®

In order to calculate the temperature distribution in coolant and fuel elements in an assembly,
we assume the following :

(i) Fuel elements in an assembly are arranged in a triangular pattern.

(ii) The cross section of subchannels remains constant for all axial locations.

(iii) Coolant flows in a single phase.

(iv) Coolant temperature in the subchannel is uniform in an axial plane.

For the calculation, first, the fuel assembly is divided into subchannels as shown in Fig. 3. 4.
1-1, and the subchannel and the element are numbered to form a relation with each other.
Secondly, the coolant temperature in the subchannel is calculated and the fuel element tempera-
tures (clad and pellet) are obtained by using the coolant temperature in the subchannels adjoined
to that fuel element.

(2) Analytical equations

(a) Coolant temperature

We introduce an apparent heat transfer coefficient which is defined as representing an effect
of thermal mixing between adjacent subchannels on the coolant temperature. Therefore, the
differential equation for the coolant temperature rise is obtained from the heat balance using a
differential quantity for the subchannel as shown in Fig. 3.4.1-1 in the 2-direction. This has
led to Eq. (3.3.1-5).

(b) Fuel element temperature

Two models are provided for the fuel element temperature calculation. The first is a sim-
plified 1-dimensional model. This procedure may be suitable for the calculation of the case where
the variation of the coolant temperature is small in subchannels adjoined to the fuel element.

Fig. 3.4.1-1 Triangular lattice model.
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For example, the radial power peaking is small in an assembly which is located near the center
of acore. The second is a numerical 2-dimensional model. This method gives the results which
are more realistic than the former and may be suitable for the assembly which has a large
radial peaking factor??.

1) One-dimensional method

In order to calculate the temperature of clad and pellet in the axial direction with the 1-
dimensional model, an average coolant temperature is defined as follows:

Dti(z) W,
_ 1 -
tc(z) - 2 W" 1) (3. 4- 1 1)
where t.=average temperature of coolant adjoined to a fuel element (°C),

t;=coolant temperature in the i-th subchannel obtained by Eq. (3.3.1-5) (°C),
W:=flow rate in i-th subchannel (kg/sec).
The outer surface clad temperature is calculated by

_qi(z)
t = +2:(z), 3.4.1-2
Pl(z) hlﬂ: Zp), (Z) ( )
where tp=outer surface clad temperature (°C),

qr=linear heat rate of a fuel element (kcal/m sec),
dy =outer diameter of clad (m),
hi=heat transfer coefficient (kcal/m?sec°C).

The heat transfer coefficient is written as:

hy=F N, (3.4.1-3)
de,
where Nu=CON-+Re2+ Pré, (3.4.1-4)
_dey Wy -
Re=7e: 78, (3. 4.1-5)

k=coolant thermal conductivity (kcal/m sec°C),
v=coolant kinematic viscosity (m/sec?),
y=coolant specific weight (kg/m?),
Pr=Prandtl number,
W,=flow rate related to the fuel element (kg/sec),
(W, is not the flow rate in the subchannel itself but is separately prepared.)
de,=hydraulic diameter (m),
A,=flow area (m?),
CON, a, B=constants.
The coolant properties are evaluated at the average coolant temperature for subchannels surround-
ing the fuel element. The W,, de, and A, are arithmetic mean values for ambient subchannels.
On the other hand, the inner surface clad temperature is calculated by

22(2) =QL(Z) ln(dm/de) +2n(2), (3.4.1-6)
2nk,
where t;=inner surface clad temperature (°C),

k,=clad thermal conductivity (kcal/m sec°C),
dy;=inner diameter of clad (m).
The outer surface fuel temperature is obtained from
_q.(2) 4.1-
tfl(z) hzﬂdi-‘l_tpz(z)’ (3. 3 7)

where ty=outer surface fuel temperature (°C),
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h;=gap conductance (kcal/m?sec°C),
di=1fuel diameter (m).
In addition, the central fuel temperature is calculated by

qr(2)
tra2) = 3.4.1-8
@) =2E 1), (3.4.1-9
but, in the case where % is a function of temperature, the code uses the following equation,
ts(2) t0(2)
S' * k@::S' ? b+ 22 (3.4.1-9)
const const 4
where ti,=central fuel temperature (°C),

ks=fuel thermal conductivity (kcal/m sec®C).
2) Two-dimensional method
The fuel element is divided into six azimuthal sections in the case where defining lines of
subchannels are drawn at the center line of the fuel element, but five sections for the fuel ele-
ment adjoining to the wrapper tube. The fuel element is also divided into some sections in
radial direction, and hence the sectors are formed. The heat balance for a typical sector (see
Fig. 3.4.1-2) leads to the following equation:

. 5 .
= ZlKil(ti—t1)+Q1,,y (3.4.1-10)
f=
where @Q,=total heat flow rate from the adjacent to the lst sector (kcal/sec),

@1/’ =heat source in the 1lst sector (kcal/sec),
K;;=thermal conductance between the i-th and lst sectors (kcal/m sec°C).

Fig. 3.4.1-2 General sector of fuel element.
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Fig. 3.4.1-3 Thermal conductances for various sectors.
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The thermal conductances are evaluated for various sectors shown in Fig. 3.4.1-3. The dimen-
sion of the conductance is the same as the thermal conductivity for the unit axial length of the
sector. For steady state conditions, the left-hand side of Eq. (3.4.1-10) is zero.

The fuel element temperature can now be calculated by applying Eq. (3.4.1-10) to all the
sectors of the fuel element and using the coolant temperatures obtained from Egq. (3.3.1-5) for
the boundary condition. An iteration method is used in the core. After the calculation of the
E-th step, the (k+1)st step temperature in the lst sector is calculated from the following:

5 .
2 Kiu®;® +Q,"
g, (kD) =2

3 (3.4.1-11)

2 Ky®
i=2
(¢) Hot spot temperature
The nominal temperature differences in the fuel element, obtained in the previous section,
are defined as follows:
coolant temperature rise Aty
temperature rise through film  4¢,,
temperature rise through clad 4z,
temperature rise at gap 4ty
temperature rise through fuel 4.
Using these temperature differences 4¢; and uncertainties factors F;; related to these differences,
the statistical temperature effect 4¢, and cumulative temperature effect 4¢, are obtained as

#=]% [% (4t;(Fi;—1) ]2, (3.4.1-12)
i=1L5=1
I' 5
Atc=2[,2 (de;(Fij—1)) } (3.4.1-13)
=1L =1

where I and I’ are the numbers of statistical and cumulative uncertainty factors, respectively.
Therefore, the hot spot fuel temperature ¢us can be expressed in the following way:

tus=ty+ 4t + 4t., (3.4.1-14)
where ¢y is the nominal fuel temperature.

3.4.2 Numerical Method for Temperature Calculation

(1) Relation between fuel element and subchannel

As the fuel assembly is divided into sectors as explained in the previous section, the fuel
element and subchannel numbers can be related as given in TABLE 3. 4. 2-1.

The addresses of the fuel elements and subchannels in the assembly are defined by the clock-
wise numbers in the code, as shown in Fig. 3.3.1-1. These relations can be described using
the following parameters :

(1) KPC is the number related to the i-th subchannel and the adjacent fuel elements as
indicated in Fig. 3.4.2-1.

(ii) NCC is the number of the other parts adjoining to the Z-th subchannel (see Fig. 3. 4.
2-1).

TABLE 3.4.2-1 Relation between fuel elements and subchannel numbers

Concentric circle No. (KPODL) 2 3 4 5 6 7 8 9 10
Fuel element No. (KPMAX)* 7 19 37 61 91| 127 169 | 217 | 271
Subchannel No. (NCMAX)* 18| 42| 78| 126| 186 | 258 | 342 | 438 | 546

* KPMAX=1+3(KPODL-1)x KPODL, NCMAX=6{14+(KPODL-1)x KPODL}
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Fig. 3.4.2-3 Flow area corresponding to the place
of fuel element.

(i) NUC is the number of the apparent heat transfer coefficients corresponding to the i-th
and adjacent subchannels as shown in Fig. 3. 4.2-2.
(iv) KTP is the index related to the place of fuel elements in the assembly (see Fig. 3. 4.
2-3).
(v) NTC is the index related to the arrangement of subchannels, distinguishing between
center, corner and side subchannels.
(2) Coolant temperature in subchannel
To obtain the coolant temperatures in the subchannels, the simultaneous ordinary differential
equations, Eq. (3.3.1-5), is solved with the finite difference method under the following set of
the boundary conditions :
At,(0)=A4t,(0)=--- = 4t 5(0) =0. (3.4.2-1)
In the equations, the apparent heat transfer coefficients are expressed as a function of the
Reynolds number in the following form:
U=A+ B(Re)C, (3.4.2-2)
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gap
Fig. 3.4.2-4 Sector of a fuel element in two-dimensional model.

where A, B and C are constants that depend on the subchannel geometry, and the Reynolds
number is the average over two subchannels. Also, the coolant flow rate in a subchannel can
be calculated in such a manner that every pressure drop in a subchannel is the same. This
calculational procedure is described in §3.3. 1.

(3) Fuel element temperature calculations’

In the code, there are two methods for the calculation of fuel element temperature as.des-
cribed in §3.4.1 (2). For the 1-dimensional procedure, the temperatures can be obtained ana-
lytically from Eq. (3.4.1-1) to Eq. (3.4.1-8). But, in the case where the fuel thermal conduc-
tivity varies with the fuel temperature, Eq. (3.4.1-9) is solved by an iteration method and the
convergence is assumed to be achieved when the following condition is satisfied by all fuels:

e e
S' kfdt—S' Bedt— 9%
const const 4m

For the 2-dimensional procedure, the fuel element is divided into three sections of the clad

<er. (3.4.2-3)

and four of the fuel in the radial direction, while six sections for the fuel element at the central
part and five sections for the fuel element adjoining to a wrapper tube in the azimuthal direction
as shown in Fig. 3.4.2-4. To solve Eq. (3.4.1-11) for these sectors, we can rewrite it in the

form :
[25: Kn®g;® 4Qy"
£ D — g (B | gy $=2 - —, @ (3.4.2-4)
K,®
By

where @ is an acceleration factor. If the heat of each sector will be balanced, the brackets on
the right-hand side of Eq. (3.4.2-4) approaches zero. Therefore, to decide the convergence of
Eq. (3.4.2-4), a parameter is defined as follows:
[ZSJ Ky ®t,® Q" 1
a® =gl =2 - — @ (3.4.2-5)
2 Kay®

1=2




JAERI 1247 3. FDCAL-3, the Detailed Calculation Subsystem Predicting 75
the JOYO Thermo-Hydraulic Characteristics

In the calculation, the iterations are continued until the largest value of ¢, for all sectors is less
than or equal to a given value of g. That is, the convergence criterion results in

max| e | <¢&,. (3.4.2-6)
The heat transfer coefficient in the sector adjoining to the coolant is calculated by Eq. (3. 4. 1-3),
and flow area, hydraulic diameter and flow rate are obtained with the configuration as shown
in Fig. 3.4.2-3.

3.5 Examples of Calculational Results of the Code FDCAL-3

In this section, calculational results are presented about an example problem for the code
FDCAL-3. For the calculational object, we adopted an almost similar model of MARK 1 core
configuration of “JOYO?”, but not the exact one.

The core includes sixty-seven fuel assemblies and fifteen reflectors with slit, and is at power
output of S0 MW. The fuel assemblies are divided into five zones according to the friction
loss coefficients for the entrance nozzles. In calculating the flow distribution over the reactor
vessel, the detailed subchannel model with the thermal mixing effect is applied to one assembly
in the central zone.

Coolant Inlet Pipe Core Assembly
o 5(67) = Over Flow
452.62
Iniet Pl High Pressure Regulating
603.2 gl;num T* 1(2) Outiet Plenum
. .9
| 2.92 9.50 603.2
Leak by Gap
> 3 (169) M
13.22 Outlet Pipe
Gas Vent Hole
> 1(2) -
0.76
Leak by Gap J
34.09
Blanket Assembly
r 3 (191)
83.54
Gas Vent Hole Low Pressure Safety Rod
sl 1) %] Plenum B 1(4) o
1.16 97.96 8.09
Fuel Storage Reflector In each box,
o g?%'b) LN 1(a8) s 9rr0ngemetﬂ of data
21.22 3.44 is_reod

Zone item
N{n)
w

Gas Vent Hole Neutron Souru#
1(2) 1 M 1(1) .
4.06 0.42 where

N: No. of zone,

Auxiliary Cooling Leak by Gap n:
N H’?’? | 20441 L No. of element,
3.86 2.46 W: Flow rate (Kg/sec),

Fig. 3.5-1 Calculated values of flow distribution for the sample problem.
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TABLE 3. 5-1
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Pressure drops in the reactor vessel for the sample problem

Low pressure plenum

Pressure drops to outlet plenum

High pressure plenum
to outlet plenum

Inlet plenum

to outlet plenum

kg/cm? 0. 362

2.473

2. 602

TABLE 3.5-2 Subchannel flow rate and outlet t

emperature for the assembly in the central zone

Subchannel number 1 (center) 180 (side) 186 (corner)
Subchannel flow rate (kg/sec) 0. 0346 0. 0770 0. 0164
506. 2 465. 3

Outlet temperature with thermal mixing (°C)

465.9

For the other assemblies, the subchannel model without thermal mixing has been used. The
axial power profile is assumed to be common for the assemblies in each zone and the radial

power distribution in each assembly is assumed

to be uniform.

Figure 3.5-1 shows the valuesof the obtained flow distribution over the reactor vessel. The

results of the pressure drops corresponding to this flow distribution are given in TABLE 3. 5-1.

this calculation, the convergence criterion in Eq. (3.2.2-1) equals 1073.
sults seem comparable to the JOYO design calculations.
TABLE 3. 5-2 shows the coolant flow rates and the outlet temperatures in such three repre-

sentative subchannels as center, side and corner

subchannels.

In
These calculational re-

These flow rates and outlet tem-

peratures are calculated in the model with the thermal mixing effect, that is, by Eq. (3. 3. 1-5).
From these results, it can be said that the FDCAL-3 has proved the reasonable applicability

of the calculational models.

However, it is a future problem to confirm the accuracy of the

results obtainable by the FDCAL-3 by various kinds of experiments including the full scale

experiments.
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4. Concluding Remarks

We have described, in this Part 2, the outline of the detailed nuclear and thermo-hydraulic
calculation subsystems, HONEYCOMB, FDCAL and FATEC, which have been developed since
1971.

Many special efforts were necessary to realize the 3-dimensional criticality calculations in
HONEYCOMB with sufficient accuracy and within the practical limit of computation time. For
this purpose, an effective method has been developed for enhancing the accuracy of predicted
neutron fluxes inside and in the vicinity of control rods. In addition, another efficient method has
been developed to obtain the detailed power distribution for each pin in the fuel and blanket
assemblies. The burn up can also be predicted for fuel pins in a few assemblies. It has become
possible to perform the criticality search by adjusting insertion depth of control rods, as well as
the calculation of kinetics parameters and 3-dimensional distribution of adjoint neutron flux.
Moreover, the distribution of power generation rate is estimated containing the effect of neutron-
induced 7-rays.

The FDCAL and FATEC have been combined into one thermo-hydraulic subsystem,
FDCAL-3. This subsystem gives flow distributions in many coolant channels in the reactor
vessel as well as temperature distributions. In addition, the hot spot temperature can be esti-
mated in some specified assemblies. Thus, the method has been established for confirming the
operational safety.

These detailed calculations supply the fundamental data to the SMART-MASTOR combina-
tion described in Part 1. They are also used for producing reference solutions of nuclear and
thermo-hydraulic characteristics, which are used to confirm the accuracy of the simplified calcu-
lations performed by SMART.

On the basis of the present subsystems for detailed calculations, more general code systems
will be able to be developed in the future, for dealing with not only the experimental fast re-
actors but also the prototype and commercial fast reactors. For this purpose, it is necessary to
adopt the feed-back of informations from the experiments, and to enhance the accuracy of vari-
ous data as well as methods of analyses.
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