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Program for Solving Two-Dimensional Neutron Transport
Problems in Cylindrical Geometry by the
Finite Element Method
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A computer program based on the finite element method has been developed for solv-
ing multi-group neutron transport problems in two-dimensional cylindrical (r,z) geometry.
In the solution algorithm, the method of higher order finite elements has been applied to the
spatial variables on rectangular (#,z) subregions. It is based on the discontinuous method
with Galerkin-type scheme.

Some calculational examples are given for a guide to practical applications. The results
and discussions are given in comparison with the S, method to illustrate the effectiveness of
FEMRZ. It is seen that FEMRZ solutions obtained from the biquadratic approximation are
accurate and stable enough even for the considerably coarse meshes.

KEYWORDS: Finite Element Method, Neutron Transport, Cylindrical Geometry, Higher
Order Approximation, Galerkin-type Scheme, Discontinuous Method, Coarse Mesh Rebalance,
Code Manual, Discrete Ordinate Method.
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1. Introduction

The FEM (the Finite Element Method) was originated in early times in the field of
structure analysis,” but its application to technical or mathematical fields other than struc-
ture analysis has only a short history. Nowadays, the FEM are applied extensively for solv-
ing problems in many fields because of its geometrical flexibility in applications and stability
in numerical calculations.? It has been applied also to the reactor physics calculations since
1971.®

In the neutron transport calculations, many numerical methods have been proposed, but
it is notable that the finite difference discrete ordinate method (the so-called S, method) has
occupied a dominant position in practical applications to multi-group and multi-region reactor
core analyses. Experiences on the S, method have proved its excellent usefulness, but math-
ematical foundations for its general application to complicated geometries have not yet been
established. The S, method may sometimes fail to give uniform convergence in iterative
solutions for some sensitive problems.?

The application of the FEM to a space spanned with spatial variables seems to have fol-
lowing advantages over the S, method ;®

1) Any higher order approximation of arbitrary basis functions can be applied.

2) Any complex geometrical configurations can be simulated accurately.®

3) A reliable mathematical foundation has been established on the Ritz-Galerkin vari-
ational principle®? adopted in the FEM.

In contrast to the S, method, the FEM has been tried for solving transport problems
only in academic circles and is not yet popular partly because of its somewhat tedious for-
mulation. The FEM, however, still in its infancy in reactor physics, has great possibilities
to grow to a powerful tool in reactor analyses and designs. Since only the case of onedi-
mensional® and two-dimensional planar geometries*” have been treated as yet, we have de-
veloped an FEM algorithm in (7,2) geometry.® Our work is also supported by the fact that
most of the two-dimensional core analyses are of (r,z) geometry.

Main features of the algorithm are as follows:

1) Discrete ordinate S, approximation is used for angular variables. (Application of
the FEM to the angular space is feasible. However, this may not be advantageous
because of introducing additional complexities into the algorithm.)

2) The whole system is divided into a number of axisymmetric tori with rectangular
cross sections in (r,2) plane.

3) Four and nine nodes are allocated for a subregion as shown in Fig. 1, corresponding
to bilinear and biquadratic approximation, respectively. (Other higher order approxi-
mations are not practical since they require so much computing cost.?)

4) Spatial distribution of the angular flux in a subregion is represented as a linear com-
bination of Lagrange’s interpolating polynomials, coefficients of which are matched
with nodal values of the fluxes.

5) The discontinuous method which allows discontinuity of the flux at the boundaries
of a subregion is used. (It has been indicated in Ref. 4) that the continuous method
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may bring about numerical instability caused by negative fluxes.)

Galerkin-type scheme is adopted to eliminate the residual. (Lagrange’s interpolating
polynomials are well-conditioned on the linear independency and the choice of the
same weight function as the basis function simplifies the computations of inner pro-
ducts.?)

The resulting algebraic matrix equations are solved by the no-pivoting Crout’s me-
thod.'®

No recipe for negative fluxes is introduced. (Negative flux appearance being peculiar
to the finite difference method, S, programs have a “set-negative-flux-to-zero” recipe.!?
The FEM, on the other hand, does not need it.)

Space and angle variables are swept along the neutron flight direction to evaluate
the angular flux.

Iterations are accelerated by using a coarse mesh rebalance method!® in which the
rebalance coarse meshes can arbitrarily be set up.

(@) For bilinear (b) For biquadratic
approximation approximation
Fig. 1 Node arrangements in a subregion for bilinear and

biquadratic approximations.

The code FEMRZ has been developed by using these algorithms on the FACOM 230-75
computer. It can, however, easily be converted to the other computers because of the use
of the standard FORTRAN. For the convenience of the programing, the FEMRZ is formed
in a structure very much similar to the diamond difference S, code TWOTRAN-II,® but the
method of solution is considerably different on account of having used the FEM as shown in
the next chapter. The program informations for users and discussions about some illustra-
tive examples are given in Chapters 3 and 4, respectively.
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For the convenience of readers, the same notations and angular coordinate system as those
in Ref. 12) are used. The coordinate system is shown in Fig. 2 and the notations are listed

below.

2. 1

The time-independent two-dimensional transport equation in (7,2) geometry is written as

follows;

p o

r

2. Method of Solution

velocity direction of particle
direction cosines of £

horizontal angle of 2

azimutal angle of £

index of discretized energy

index of discretized angle

g-th energy interval

m-th element of solid angle about £
macroscopic total cross section
macroscopic scattering cross section
macroscopic fission cross section
numder of particles emitted isotropically per fission

fraction of emitted particles liberated in g-th energy interval

Fig. 2 Angular coordinate system in (r,2) geometry.

Energy and angular discretizations

(;fa) _ _3;_ 3(35;{") + 7/,‘7a¢zv +ol? =8, (g=1~IGM¥*),

* The meanings of FORTRAN variables are give in TABLE | or 3.
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where
¢ = S AE'¢(1', z, 1, o, E)dE.

By the assumption of the ¢-symmetry of the angular flux ¢, Eq. (1) in the S, approxima-
tion on the angular space leads to

1 a(r¢", a¢e, 1 ,
wml‘m7 (—?f'—) + wm’?m‘%— + 7(am+1/2gugn+l/2_am—l/2¢1gn—l/’2)

+ Wt = waSh,  (g=1~IGM, m=1~MMT), @

where the unit angular sphere is partitioned into 2x MMT sections. Quantities with angular
suffices are given by

Wy, = SSAgmd,udgo/er,
¢ = ||, o, 90dude/2) fwn,

Umi1/2 = Am-1/3 — Wl

respectively, and the initial values «,.,, vanish on each » level (see Fig. 3).

7>0
in—up out - up
sweep sweep
(d=3) (d=4)
> (>0
in-down out-down
K>0 sweep sweep
(d=1) (d=2)

(a) Sweep through angular suffix (b) Sweep through direction

Fig. 3 Order of sweeps through the angular suffix m (for MMT=12) and the
direction d.

2. 2 Flux and source approximations

In each rectangular subregion with NPT nodes (see Fig. 1), the NP-th order Lagrange’s
interpolating polynomial L'=L' (r,z) is defined so that it takes the value unity at the /-th
node and zero at all other nodes. Using these polynomials, we can give an approximate ex-
pression ¢4, (7,2) to the unknown ¢?, (r,z) in Eq. (2) with the following linear combination:

7 =NPT¢01LL
m g m ’

where the coefficient ¢% can be interpreted as the value of the angular flux at the /th node.
We show only the local expression for the subregion for simplicity, but the global expres-
sion can be derived easily.

Next, we approximate the source term SY (r,2) in Eq. (2) where it is treated as known.
For this purpose, let us define the nodal flux components (the coefficients in spherical har-
monics expansion of the angular flux) as
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MMT
Ot = S waRBgl,  (k=0~n, n=1~ISCT),
using the spherical harmonics R, (¢tn, ¢.) of #-th order. This means that the flux components :
1 T
P = S_ld”SDdSDRnk(I‘v )47/ 2x

are approximated by

Assuming the neutron cross sections are constant in the subregion, the nodal source compo-
nents are represented as follows:

15cT , , ey,
St =31 @+ D)ot g% + 1o Svoy ok + (2n+1)Qsh ®)
= g'=

(g=1~IGM, I=1~NPT),

where the Q%’s are also the nodal values of the external source components. As we keep
the flux components instead of the angular flux to save the computer core storage, the source
term is given by

ISCT n NPT
S4 =31 SIRRISUL,  (9=1~IGM, m=1~MMT).

2. 3 Discontinuous method

This method can be compared with the discontinuous method formulated in TRIPLET.®
The sweeping orders of space and angular meshes are simslar to those of TWOTRAN-IL
In the beginning, let us consider a subregion;

Du = {(r, 11 =r=<V1:1/2 zj—1/2§z§21+1/8}

which belongs to the #-th interval in the r-direction and the j-th interval in the z-direction.
Let L, R, B and T be the sets formed from the nodes which belong to the left, right, bot-
tom and top boundaries of the D,, respectively. Then, two kinds of Lagrange’s interpolat-
ing polynomials of one variable are constructed from the function L' as follows:

LYr, 25-up)  if IEB,

{L‘(r, Zjap)  ifIET,

r

and

L0 {L‘(n—x/mz) if leL,
L #esa/m 2)  if IER.

With the above notations, we define the following three kinds of inner products in the
Du;
PSD“fgrdrdz, if f+g is a function of r and 2z,
hHgy=

gljunfgdz' if f.g is a function of Z.

o« 5j-3/2

lg:‘“/’fgrdr’ if f-g is a function of 7,
t-1a

The following nine inner products are sufficient for the discontinuous method using the
Galerkin-type scheme.?
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¢ 14 1] l'll\ 14 a, 3 l'j i
<1’L>) <L ,L.>) <L y rL/r <L ’ 37’L>’ <L ’ azL>’

<1) L£>, <L£,1 L£>y <1) L£>’ <Lg’ L§>-

In addition, we can simplify the calculations of the inner products with the help of, for in-
stance, the following relations:®

KLY, LY =LY LYY, for any pair of (I, 1),
LY = L, for facing nodes (r;-1p2s 20) and (Vysvys, 21)-
Now, by using the condition :
% = Phsm  (I=1~NPT),
for the initial angular mesh of the sweep in each 7 level and the relation :
Pivrse = 208 — P81, (I=1~NPT),

the residual RY, (7,z) of Eq. (2) is defined as follows:

R = walttalrsars (00~ PEILL G0 +0as) + wnl 7l (2en ~PIILYOay+84)

+ Wl 7o s (Y0~ PIILL(Bar+0as) + Wl 7m] $¥ (4 —E)ILY0 a5+ 0a,)

NPT

a NPT 0 NPT 1
+ a8 1) + wnn Fo( 2 1) + w0 S0 (1)

=
xer NPT 1,, .
+ olw, [Z} PRLY — (pi1fa+ Q) L~21 h-1/a 7'L — W, Sh,

(9=1~IGM, m=1~MMT).

The d4s’s are the Kronecker’s deltas in which d refers to a direction of the sweeps as
shown in Fig. 2 and (¢%—¢%) is the difference between inside and outside values of the angu-
lar flux at the same point on the boundary of the subregion D,. The flux discrepancy is
peculiar to the discontinuous method, which, however, can avoid overitting of the approx-
imate solutions, so that ensure a good stability. The residual contains NPT unknowns o5
for the fixed suffices g, 7, j and m, if we assume the values ¢ ., and ¢¢ to be known.

Thus, the Galerkin’s method

<Ll'; R'rgn> = 0, (1/31WNPT), (4)

can be applied to yield the equations of the unknowns.

This situation can be compared with that of TWOTRAN-II,'®> which is based on a con-
tinuous method. The residual is given by

2 < Vit1/2 ok ___ Vi-1/2
m
Yicsat¥iia) \Peasat+vioiye Vivr/2—¥i-1/2

Wil ( ek — sb',’.f’)

1 2
b 0 — (A7~ 45) + (et )t
T (2j+1/2—2j-1/2) o= mfa Ve (rearpa+Tirsa) ™"

2 ISCT n
+ o2 + (@mirsat Cnas iy — a3 3 RuSHD),
(Tsvrsa+7i-v/a) =0 £=0

where ¢5°, @55, 955, o8, OB, ¢%2,. and S97 stand averages of ¢f, over the subregion D,
its left boundary, right boundary, bottom boundary and top bounbary, and averages of ¢%,_,,
anb S% over D,;, respectivery. If one of directions of the sweep is assumed, the two of
bounbary fluxes are regarded as knowns, and the diamond difference equations ;
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202 = 8- + P5F,
2090 = I8 + i
lead to a single equation with only one unknown of ¢g’.

For the present case, after dividing Eq. (4) by w,, we have a linear system of equa-
tions as follows:

Ap = b, 5)

where the explicit expressions of the matrix A=(a,,) and the column vector b=(b) are re-
spectively given by

_ v 0 5 v 0 gy voTe Cmirfs tOmays oy 171
az'z—#m<L,arL>+vm<L,azL>+0?<L,L>+ ” KLY, LY

+ | talrianCLE s L (0as+0as),  if U, IER,
+ 9l LE, L0434+ 045), if U, 1T,
+ 1l ¥oerpalLY s L(Oaa+0as), if U, IEL,

+ [7]m|<L£’9 L£>(5d3+5d4)’ lf U, lEB,
©6)
by = (ﬁmu/z:}‘am-!/z) Ag“/’%-xlz(Ll': %Lt> 4+ <LY, S5

+ |l KLY, L O+ 0a)s  if VER,
+ 11l ALY, LD Gar+8a),  if VET,
+ |l i KLY, LD Gar+0a),  if 'EL,
+ 1l SAKLY, Lo Gart0a)),  if I'EB,

(', |=1~NPT).

Since the matrix A is diagonally dominant, it will not be necessary to use techniques
such as the pivoting for solving Eq. (5). Equation (5) is therefore solved with a subroutine
based on the simple no-pivoting Crout’s method.’®

2. 4 Other remarks

We describe here some featnres which are specific to our algorithm.
1) Boundary condition for the vacuum right boundary is described by

S[l‘,’,f =0, fOf /“m<01

at any node on the right boundary. Other boundary conditions can be specified similarly.
2) Neutron flows which cross the right boundary of a subregion D, from the right to
the left is calculated with

i l
“Ermym(lgz%(l, LY.

Neutron flows across the other boundaries are calculated similarly. These quantities are
used for coarse mesh rebalance calculations.
3) Convergence of the inner iteration is judged by the criterion:
AP—1
max 1—23’,,——
i if

< EPSI,
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where

- “}_ﬁ:ma, Ly / SSD"rdrdz

is an isotropic flux component averaged over D, in the p-th iteration.

JAERI 1253
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3. Guide to Users’ Applications

A schematic flow chart and structure of FFMRZ are given in Figs. 4 and 5. In the fig-
ures readers may find a close resemblance to TWOTRAN-II. Apart from the difference in
the algorithm used in the program, FEMRZ is based for its structure on TWOTRAN-IL
Hence those subroutines with the same names have the same functions as in TWOTRAN-II,
though some modifications have been made to adapt to the FEM algorithm. There are,
however, several subroutines which have newly been developed for FEMRZ, and some have
been deleted from TWOTRAN-II. The new subroutines are as follows, and also indicated in
Fig. 5 with.*

IWRITE ; print integer arrays.

NWRITE ; print four dimensional arrays.

PONTER ; point out values from inner product tables.

FTMAIN

(INPT 11
Chain 1 |vTCcALL Input [=
LINPT 15
[ Enatzaton
nitialization
FLIDP I
y
R ] [Outer_iferafion Je——
INNER
I y
- [Inner iteration
TBC
STORAF Rebalance
factors
Chain 2 . J
INNER iteration converged
Q limit reached 2
yes
FISCAL {Fisson source ]
TESTS
igenvalue
(INEWPAR search (if any) =
[FINAL
Chain 3 |EDCALL
(IFOUT
FTMAIN

Fig. 4 Program flow and representative subroutines.
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in TABLE 2.

the problem in a short-time run.

VALUE ;
VTCALL ;
FLIDP ;
CROUTM ;

FEMRZ : Program for Solving Two-Dimensional Neutron Transport Problems

in Cylindrical Geometry by the Finite Element Method JAERI 1253

calculate inner products.

prepare for obtaining inner products.

calculate flux-independent coefficients in Eq. (6).
solve Eq. (5) by Crout’s method.

Major variables which appear in fundamental equations or input descriptions are listed
in TABLES 1 and 3. Main files which are necessary for the input and output are summarized

The easiest

The FEMRZ requires, in addition, scratch files as seen in Appendix.

way to know .the computer core storage required for a problem is to load
The computation of the core storage is made very early

in the execution and the result is printed before most of the data is read.

FTMAIN MONITR ERROR CLEAR  MPLY WRITE  IWRITE"
Main Chain | NWRITE* ECHECK DUMPER PCMBAL REED RITE ECRD
ECWR SECOND PONTER™ vALUE*
Chain 1| INPUTI LOAD Chain 2 | GRIND2 REBAL Chain 3 | OUTPT 3
| ] ] l L I | L | 1
INPT11 INPT12 INPT13 INPT14 INPT15 GRID2!{ GRID22 GRID23 OUTT3! OUTT32 IFOUT

VTCALL* CSPREP READQF SNCON CSMESM INITAL OUTER TESTS
DUMPRD IFINXS IFINQF IFINSN MAPPER INITQ

FIDO

FINAL EDCALL IFRITE
GENFLO
EDITOR
EDMAP

INNER NEWPAR
FISCAL IN

FLIDP* ouT .
CROUTM

SETBC

STORAF

SAVEAF

GSUMS

PNGEN

*Newly prepared

Fig. 5 Program structure.

TABte 1 Definitions of major variables (see Table 3 for input variables)

Name Remarks

TIMBDP Program variable which is defined in FTMAIN to take a periodic dump
every TIMBDP seconds.

IMP Sum /MC+1

JMP Sum /MC+1

IT Total number of radial fine mesh intervals

JT Total number of axial fine mesh intervals

ITP Sum IT+1

JTP Sum jT+1

IP Sum IM+1

JP Sum JT+1

NP Order of Lagrange’s interpolating polynomial

NPP Sum NP+1, number of nodes on a boundary of a subregion

MM Number of directions per octant

MMT Number of directions per hemisphere

EPSI Inner convergence precision set equal to EPS

NM (ISCT+1)x (ISCT+2)/2, number of anisotropic components of flux

NMQ (IQAN+1)x (IQAN+2)/2, number of anisotropic source components
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3. Guide to Users’ Application

TABLE 2 Main files used for input and output

Name* Contents

NAFLUX Binary anglar flux by group
generated only on a special
last outer interation when
requested

NDUMP1 Restart dump

NDUMP2 Restart dump

IAFLUX Interface form of angular
flux

ITFLUX Interface form of total flux

ISNCON Interface form of S, con-
stants

IFIXSR Interface form of source

ISOTXS Interface form of the cross

section multi-group file

Remarks

The contents for each group consist of
2%]JTP records of length NPP*IT*MM#*2
plus 2%JT records of length NPP*ITP*
MM*2,

This unit is used to make the first restart
dump when the problem is not restarted
from a previous dump. The unit must
contain the restart dump information when
the problem is restarted and will then be
used to make the second restart dump.
Second restart dump unit

Output of the angular fluxes in interface
form is placed on this file for one problem
only.

The code requires that this unit be used
when a flux guess is requested from the
total flux interface file. The wunit is
rewound and the records of the first file
are used as the input guess. The interface
form of the total flux is prepared on this
file as problem output.

When the file is used as input, only the
first one-fourth of the values of weights
and direction cosines are read as input.
When used as output the file is rewound
and written.

This file is used only as input for the
subregion centered inhomogeneous source.
Boundary sources (if any) are obtained from
the code dependent input file.

This file is only used as input when cross
sections are requested from an interface
file library.

* File name is often read as logical unit.

3.1

311

Details of program options

Cross sections

11

The FEMRZ program accepts nuclear cross sections either from the standard file ISOTXS
{(see TasLE 3), in FIDO format,’® or in the standard Los Alamos format'® (see Section 3.2).
From the assumption that cross sections are constant in each subregion, the input is made
in the same way as in TWOTRAN-II for their mixing, anisotropy and pointwise spatial

variation.

3. 1.2 Mesh spacing
In FEMRZ, the user specifies the domain of the problem according to the following steps
as illustrated in Fig. 6.

If the user needs the details, refer to Ref. 12).
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1) Material coarse mesh is defined by IMP r-boundaries (with the variable name of
XRADA) and JMP z-boundaries (YRADA) in the respective ascending order.

2) Fine mesh is defined by dividing uniformly each coarse mesh specified in the step 1).
The user enters two sets of IMC and JMC integers (IHXC and IHYC) indicating
the number of fine mesh intervals in each coarse mesh in the » and z direcions,
respectively.

3) Rebalance coarse mesh is defined by additional two sets of IM and JM integers (IHX
and THY) indicating how many fine mesh intervals are in each rebalance coarse mesh
in the respective direction.

4) The user must supply a number (IDCS) for each of material coarse mesh zones to
designate which cross section block corresponds to the zone.

It would be convenient to specify the rebalance coarse mesh so as to coincide with the
material coarse mesh. However, too many rebalance coarse meshes may cause numerical
instability and too few may be ineffective for accelerating the convergence. Experiences with
TWOTRAN-II and FEMRZ will help to establish optimal coarse mesh strategies.

moqt. mgt. mgt.

material {mat. |mat.
1 2 3

(a) Material coarse meshes and
cross section identification numbers

IMC=3 JMC = 2 (IMCxJMC=6)

IDCSW)=1 IDCS(2)=2 IDCS(3) =3
IDCS4)=4 IDCS(5) =5 IDCS (6) =4

(b) Fine meshes (¢c) Rebalance coarse meshes

IHXC(1)=4 IHYC(1)=4

IHXC(2)= 2 IHYC(2) = 3 _ IM=2 _ dm=2
IHXC(3)=3 IHX(1)=5 IHY (1)=3
IT=9 JT =7 IHX(2)=4 IHY(2) =4

Fig. 6 An example of mesh arrangement in a domain.

3. 1.3 Source options
An anisotropic distributed source (2,+1) @% in Eq. (3) is entered in the following order :

(@, I=1, NPT), i=1, IT), j=1, JT),
for k=0~n, n=0~IQAN,

where the order of anisotropy IQAN must be at most ISCT. In addition, the in-down
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boundary sources, for example, is entered in the order given by

((QR1%, I=1, NPP), j=1, JT), m=1, MM).

They are supplied for each group, from group 1 to group IGM.
In addition to JQOPT =2 as mentioned above, where the complete array Q% is entered,
there are five options to simplify the reading of @%.:

IQOPT Option

0 Q%.; is automatically set to zero.

1 Enter an energy spectrum (GRY, g=1, IGM) for each n and %, in order
to have Qu,;=GR, for all 7, j and ! for each g, » and k.

2 The entire array Q% is entered in the block of NPT x IT x JT continuous
numbers for each g, n and &

3 Enter first a spectrum (GRY%, g=1, IGM) as in option 1. Then enter a
spatial shape ((Fux; /=1, NPT), i=1, IT), j=1, JT) in a continuous block
of ITx JT numbers.

As a result, Q%;;=GRF,.,; for all i, j and / for each g » and %

4 Enter a spectrum (GRY%, g=1, IGM), a r-directional spacial shape (Xpu;, i =
1, IT), and a z-directional shape (Y, 7=1, JT). Then, Q%y=GR%uXaksYnr;
for all 7, j and / for each g » and 4.

5 The entire source is read from a standard interface file FIXSRC mounted

on unit IFIXSR.

3. 1. 4 Flux options
As is shown below, optinos for reading an input flux guess are similar to those for an

input source.

They are selected by an integer ISTART and the negative value indicates

that only the scalar flux is to be read.

ISTART Option
-5 An entire scalar flux guess RTFLUX (regular flux) or ATFLUX (adjoint
flux) is read from standard interface file ITFLUX.
—4 Same as option 4 except that only the istropic components are entered.
-3 Same as option 3 but isotropic components only.
-2 Same as option 2 but isotropic components only.
-1 Same as option 1 but isotropic components only.
0 No flux guess is required, but a fission guess (unity in every subregion)
is automatically supplied.
1 As in source option 1, a spectrum is spplied so that ¢f;;=GRé.
2 The entire array ¢, is entered in the block of NPT xIT x JT continuous
numbers for each g, » and 4.
3 A spectrum and a shape are entered, so that ¢%.;;=GR%Fa;
4 A spectrum, an ¢ shape and a j shape are entered, so that ¢%;;= GR%XnxY nise
6 A problem-restart dump is read from unit NDUMP1.

3. 1.5 Flux dumps and restart procedure

Three types of dumps are provided in the same form and each dump may be used to
restart a problem. A periodic dump is made every TIMBDP seconds in CPU (central pro-
cessing unit) time. The TIMBDP is a program variable set in the main program FTMAIN
to meet the processing speed of the computer. A final dump is always made after the suc-
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cessful completion of a problem, and a time limit dump is made after a user-specified period
time. Dumps are written alternately on unit NDUMP1 and NDUMP2. An output message
is written to indicate which unit contains the latest dump.

When the problem execution is continued by using a restart dump, certain input para-
meters can be changed and edit specifications can be added or modified. It is also possible
to use the program to edit a final dump. However, if this option is selected and more in-
formation is required to perform the edit, one more outer iteration may be required before
performing the edit.

To restart a problem, a special input consisting of three sections is required. The first
section is the same as for the normal problem. It is composed of the job title cards and the
three integer control cards with the value of ISTART set to six shown in TABLE 3. During
the restart all other integer values except ISTART are ignored. The second section makes
use of the namelist feature standard to FORTRAN to permit the user to change some input
parameters and enter only those to be changed. The parameters are IITL, ITLIM, IEDOPT,
12, 14, I6, IANG, IFO, EV, EVM, PV, XLAL, XLAH and XLAX, which are explained
in TasLe 3. However, even if no changes are desired, this section cannot be omitted.

The description of namelist block may vary with machine. For the FACOM 230-75 com-
puter (FORTRAN H), an example is shown below.

Column 1 234567 8 90123 4

¥ NOCONY

Cards b& TWOINPDLI 2
bEV=0.0&END
¥ CONYV

= 1 y

The third section of restart input is the edit section. In FEMRZ, the editing (as well
as eigenvalue searches and adjoint computations) is performed in almost the same way as in
TWOTRAN-II, and hence the options are described only briefly in TasLe 3. If the user reg-
uires details of the options, he may see Ref. 12).

3. 2 Description of input data

As shown in TasLe 3, the input data for FEMRZ are arranged in exactly the order of
entrance in the code. They are classified into three categories; 1) job title cards, 2) control
numbers and 3) problem dependent data.

With the exception of cross section from the code dependent input file and three edit
parameter specifications, all the data of category 3) is loaded with the LASL block loader
using the special formats.

These formats are [6(I1, 12, 19)] for reading integers and [6(I1, 12, E9.4)] for floating
point numbers. In each word of both of these formats, the first integer field, I1, designates
the options listed in TAsLe 4. The second integer field, 12, controls the execution of the op-
tion, and the remainder of the field, 19 or E9.4, is for the input data. We denote these for-
mats by S(I) for integers and S(E) for floating point numbers.
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TaBte 3 Input data cards for FEMRZ

1) Job title cards

15

Column Format

4 Comments

First card
1—6 16

Title cards
1-72 18A4

’ Number of title or job description cards.

. Title or job description

2) Control numbers

Comments

Column Format Symbol

Card 1
1— 6 16 ITH
7—12 16 ISCT
13—18 16 ISN
19—24 16 IGM
25—30 16 M
31—36 16 M
37—42 16 IBL
4348 16 IBR
49—54 16 IBB
55—60 16 IBT
61—66 16 IEVT
67—72 16 ISTART

Card 2
1— 6 16 MT
7— 9 I3 MTPS
10—12 I3 MCR
13—18 16 MS
1924 16 IHT
25—30 16 IHS

0/1 (direct/adjoint) type of calculation.

0/N (isotropic/N-th order anisotropic) order of scattering
calculation. There are not used to compute a scattering
source unless some zone material identification number
is negative. See IDCS below.

S, order. Even integer only. If negative, quadrature
coefficients are taken from interface file ISNCON.
Otherwise, for ISN=2 through 16, built-in constants are
used.

Number of energy groups.

Number of rebalance coarse mesh intervals in the
r-direction.

Number of rebalance coarse mesh intervals in the
z-direction.

Left boundary condition: 0/1=vacuum/reflective.

Right boundary condition: 0/1/2=vacuum/reflective/
white.

Bottom boundary condition: 0/1/2/3=vacuum/reflective/
white/periodic.

Top boundary condition: 0/1/2/3=vacuum/reflective/
white/periodic.

Problem type: 0/1/2/3/4=inhomogeneous source (Q)/k.s,
calculation/time absorption (alpha) search/nuclide con-
centration (C) search/zone thickness (delta) search.
Input flux guess and starting options: —5/—4/—3/—-2/—1/
0/1/2/3/4/6. See section 3.1.4.

Total number of materials (cross section blocks including
anisotropic components) in the problem.

Number of input material sets from the interface file
ISOTXS. (Caution: each material set from this file
yields ISCT+1 materials. See IDLIB below.)

Number of input materials from the code dependent
input file. If this number is negative, FIDO format
cross sections are read.

Number of mixture instructions. See items MIXNUM,
MIXCOM and MIXDEN below.

Row of total cross section in the cross section format.
If IHT <0, the code assumes that there is no up-scatter-
ing in cross section table.

Row of within-group scattering cross section in the cross
section format.
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Column Format Symbol Comments

3136 I6 IHM Total number of rows in the cross section format.

37—42 I6 IQOPT 0/1/2/3/4/5: options for input of inhomogeneous source.
See Section 3.1.3.

4348 16 IQAN Order of anisotropy of inhomogeneous distributed source.

4950 12 IQR Right boundary source to be specified as input (0/1=no/
yves). The source is the value of the incoming flux on
the right boundary. See QRI and QR2 below.

51--52 12 1QB Bottom boundary source to be specified as input (0/1=
nofyes). The source is the value of the incoming flux
on the bottom boundary. See @BI and QB2 below.

5354 12 QT Top boundary source to be specified as input (0/1=no/
ves). The source is the value of the incoming flux on
the top boundary. See Q71 and QT2 below.

55—60 16 IPVT 0/1/2=none/k,;;/alpha parametric eigenvalue entered.
See entry PV below.

6166 16 IITL Maximum number of inner iterations allowed per group.

67—72 I6 IXM 0/1 (no/yes). Are the r-direction zone thicknesses to be
modified? See entry XM below.

Card 3

1— 6 16 IYM 0/1 (no/yes). Are the z-direction zone thicknesses to be
modified? See entry YM below.

7—12 16 ITLIM O/seconds. If an integer number of seconds is entered,
a restart dump is taken after this number of seconds
and then the problem is terminated.

13—18 16 NPT Number of node points in a subregion.

19—24 16 IEDOPT 0/1/2/3/4 (none/option). Edit options. Option 1 is a macro-
scopic edit and option 2 is a macroscopic plus microscopic
edit. Options 3 and 4 give the information of options 1
and 2, respectively, plus a zone relative power density
edit. If IEDOPT is —1, —2, —3, or —4, an edit will be
performed immediately if all necessary data are present.
If additional data are needed (e.g. angular fluxes), one
outer iteration is performed and then an edit is per-
formed. If IEDOPT= -5, direct access to the program
output section is provided, for example, to create an
output interface file from a final dump.

25—30 16 ISDF 0/1 (no/yes). Density factor input indicator. See entry
XDF and YDF below.

31 1 Il 0/1 (no/yes). Full input flux print suppression indicator.

32 1 12 0/1/2 (all/isotropic/none). Final flux print indicator.

33 n I3 0/1/2 (all/mixed/none). Cross section print indicator.

34 1 14 0/1 (yes/no). Final fission print indicator.

35 I1 I5 0/1/2/3 (all/input/normalized/none). Source input print
indicator.

36 I1 16 0/1 (yes/no). Prepare and print balance tables for the
rebalance mesh. (Caution: The preparation of these
tables requires an additional outer iteration after problem
convergence).

37—42 16 IANG —1/0/1 (print and store/no/store). Angular flux indicator.

The preparation of angular fluxes requires an additional



7

JAERI 1253 3. Guide to Users’ Application
Column Format Symbol Comments
outer iteration after problem convergence as well as
additional storage.

43—48 16 IMC Number of material coarse mesh intervals in the r-direc-
tion. The material coarse mesh is the same as the mesh
upon which all edits are done. When edits are requested,
the angular fluxes must be stored. See entries IDCS,
XM, IHXC and XRADA below.

4954 16 IMC Number of material coarse mesh intervals in the z-direc-
tion.

55—60 I6 IFO 0/1 (no/yes). Interface file output is created. Total
(angle-integrated) flux and ISNCON files are always
created. Angular flux file is created only if JANG=0.

61 I1 IADAF 0/1 (nofyes). Print node-wise angular fluxes.
62 51 IADFC 0/1 (no/yes). Print node-wise flux components.
Card 4
1—12 E12.4 EV Eigenvalue guess. It is satisfactory to enter 1.0 for
IEVT=3 and 0.0 for all other problems.

13—24 El12.4 EVM Eigenvalue modifier used only if IEVT >1.

2536 E12.4 PV Parametric value of k,,, for subcritical or supercritical
system or for 1/v absorption.

37—48 El12.4 XLAL Lambda lower limit for eigenvalue searches.!®

49—60 El12.4 XLAH Search lambda upper limit.

61—72 El12.4 XLAX Search lambda convergence precision for second and
subsequent values of the eigenvalue.

Card 5

1—12 El12.4 EPS Convergence precision.

13—24 El12.4 NORM Normalization factor. Total number of particles in
system is normalized to this number, if it is nonzero.
No normalization, if NORM is zero.

256—36 El12.4 POD Parameter oscillation damper used in eigenvalue searches.

3) Remaining da

E;%‘:]; Format N‘;?g?gs‘)f Comments

IHX S(I) M Integers defining the number of fine mesh intervals
within each rebalance coarse mesh in the r-direc-
tion.

IHY S(I) M Integers defining the number of fine mesh intervals
within each rebalance coarse mesh in the z-direc-
tion.

IHXC S{I) IMC Integers defining the number of fine mesh intervals
within each material coarse mesh in the r-direction.

IHYC S{I) JMC Integers defining the number of fine mesh inservals
within each material coarse mesh in the z-direction.

XRADA S(E) IMP Coarse mesh material r-boundaries.

YRADA S(E) JMP Coarse mesh material z-boundaries.

Three options are available for reading cross sec-
tions. The LASL input format may not be mixed
with the FIDO format.

1. LASL input. If MCR. GT. 0, MCR blocks of
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Block Format Number of

: Comment
name entries ents

IHM*IGM numbers are read in a 6E12,5 format.
Each block must be preceded by an identification
card read in a 18A4 format.

2. FIDO input. If MCR. LT. 0, MCR blocks of
data are created from FIDO input. FIDO input
data must be preceded by 14* (floating point block
number 14) loading card.

3. Interface file ISOTXS. When MTPS. GT. 0,
MTPS material sets are read from standard file
ISOTXS. On this file, each material set consists
of ISCT +1 cross section blocks for the isotropic and
ISCT anisotropic components. The first component
of the first material is stored in cross section block
MCR+1, the first component of the second material
is stored in cross section block MCR+ ISCT+2, etc.
If the ISOTXS file does not contain ISCT aniso-
tropic components, zeroes are supplied for the
components not present. If the ISOTXS file con-
tains more components than needed, only the first
ISCT+1 components are read.

IDLIB S(1) MTPS Position numbers of material sets to be read from
ISOTXS. Do not enter unless MTPS. GT. 0. The
material sets are read in the order specified in this
entry, and this order need not be in order of
increasing set identification number.

FLUX S(E) Input flux guess. Number of entries depends on
option controlled by ISTART. See Section 3.1.4.

Option Number
-5 Input from RTFLUX or ATFLUX standard
file
-4  IGM+IT+]T
-3  IGM+ITYT
—2  IGM blocks of IT*]T
-1 IGM
0 None
1 NM sets of IGM
2 IGM groups of NM sets of IT*]T
3
4

NM sets of (IGM+IT*]T)

NM sets of (IGM+IT+]T)
6 Input from problem-restart dump
Q S(E) Input source. Number of entries depends on option
controlled by IQOPT. See Section 3.1.3.

Option Number
0 None
1  NMQ sets of IGM
2 IGM groups of NMQ blocks of NPT*IT*]T
3 NMQ sets of (IGM+NPT*IT*JT)
4 NMQ sets of (IGM+IT+]T)
5 Input from standard file FIXSRC
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Number of

19

name Format entries Comments

QR1 S(E) NPP*JT*MM Right boundary source (flux) in the in-down direc-
tions. Do not enter unless IQR=1.

QR2 S(E) NPP*JT+*MM Right boundary source (flux) in the in-up directions.
Do not enter unless IQR=1.

QB1 S(E) NPP*IT*MM Bottom boundary source (flux) in the in-up direc-
tions. Do not enter unless IQB=1.

QB2 S(E) NPP*IT*MM Bottom boundary source (flux) in the out-up direc-
tions. Do not enter unless IQB=1.

QT1 S(E) NPP*IT*MM Top boundary source (flux) in the in-down direc-
tions. Do not enter unless IQT=1.

QT2 S(E) NPP*IT*MM Top boundary source (flux) in the out-down direc-
tions. Do not enter unless IQT=1.

IDCS S) IMC*JMC Cross section zone identification numbers. These
numbers assign a cross section block to each zone
defined by the material coarse mesh. If these
numbers are negative, an anisotropic scattering
source is calculated in the zone, but the numbers
need not be negative when ISCT>0.

CHI S(E) IGM Fission fractions. Fraction of fission yield emerging
in each group.

VEL S(E) IGM Group speeds. Used only in time absorption calcu-
lations.

MIXNUM S MS Numbers identifying cross section block being mixed.
Do not enter if MS=0.

MIXCOM S(I) MS Numbers controlling cross section mixture process.
Do not enter if MS=0.

MIXDEN S(E) MS Mixture densities. Do not enter if MS=0.

XM S(E) IMC Material »-mesh modification factors. Do not enter
unless IEVT=4 and IXM>0.

YM S(E) JMC Material z-mesh modification factors. Do not enter
unless IEVT=4 and IYM >0.

XDF S(E) IT Radial fine mesh density factors. Do not enter if
ISDF. EQ. 0.

YDF S(E) JT Axial fine mesh density factors. Do not enter if
ISDF. EQ. 0.

The effective cross section in a subregion Dj; is that
for the point defined by the IDCS array multiplied
by the factor XDF(i)*YDF(j).

NEDS 16 1 Integer defining number of edits to be performed.
Do not enter unless 0<|IEDOPT|<5.

MN 16 1 Integer defining number of microscopic activities
to be computed. Do not enter unless |IEDOPT|=
2 or 4.

MICID S(I) MN Integers defining material blocks for which micro-
scopic edit is to be made (for JEDOPT=2 and 4
only).

NZ, 216 2 The integer NZ is the number of edit zones. The

NORMZ

integer NORMZ is the zone to which the power
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Block i Number of
name Format | entries Comments
density is normalized (NORMZ is not used unless
IEDOPT =3 or 4).
NEDZ SI) IMC*JMC Integers defining which edit zone each coarse mesh
material zone is in.
The edit blocks beginning with NZ, NORMZ must
be repeated NEDS times. Do not enter these cards
unless 0<|IEDOPT|<5.
TABLE 4 Options for special read formats'®
Value of I1 Nature of option
0 or blank No action

1 Repeat 9 field value by the number of times indicated in 12
field.

2 Place the number of linear interpolants indicated in 12 field
between 9 field value and the next value. (Not allowed for
integers.)

3 Terminate reading of data block. A 3 must follow last data
word of all blocks.

4 Fill the remainder of block with 9 field value. This operation
must be followed by a terminate (3).

5 Repeat 9 field value by 10 times the value in the I2 field.

9 Skip to next data card.
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4. Some Examples and Discussions

To demonstrate the performance of FEMRZ, several examples, including real scale prob-
lems, were calculated and are shown in this chapter. The results are also compared with
those by TWOTRAN-II for reference.

Example 1: This problem is to obtain the eigenvalue (effective multiplication factor) of
a nuclear reactor with a simple geometry for various numbers of subregions. The reactor
configuration is shown in Fig. 7 and the input data for the case of IT=2, JT=2 and NPT=
9 is given in Appendix.

It is shown in Fig. 8 that the solution of biquadratic approximation (NP=2) converges
faster than that of diamond difference scheme in the similar computing condition. In the
course of FEM calculations, the negative fluxes appeared in some nodes in the early stage
of calculations, but no recipe for correcting the values was needed for the convergences.

Example 2: This problem is for a large fast reactor illustrated in Fig. 9. We show in
Fig. 10 the solution of the isotropic componont of the first group flux along the radial direc-
tion indicated in Fig. 9.

It may be natural that the coarse mesh solution obtained from TWOTRAN-II can not
well represent the correct profile. In addition, uneven coarse mesh calculations may fail to
converge. The FEMRZ generally requires more computing cost than TWOTRAN-II to obtain
the solution of the same order of accuracy, but we can use it without considering about the
adequacy of sizes of subregions.

Example 3: This reactor system, shown in Fig. 11, is taken up to examine the feature
of discontinuity at the material boundary where the flux changes steeply. The cross section
are given in TABLE 5.

As shown in Fig. 12, the continuous solution of TWOTRAN-II at the B,C control rod-
core boundary is bounded from above and below by the discontinuous solutions of FEMRZ.
Such discontinuities are seen only in the very vicinity of the boundary.

Example 4: As stated in Chapter 1, FEMRZ can solve not only eigenvalue problems
but also other problems. As an example, a fixed source problem is shown here. The con-

z
A
reflective
25
_ reflector
G
2 L
.
£
6 core
£
r

S
o 6 refl 25 cm

Fig. 7 A reactor configuration and boundary
conditions for P, S,, 3-energy-group
sample calculations (Example 1).
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Fig. 9 A fast reactor configuration and boundary conditions for P,,
S,, 3-energy-group sample calculations (Example 2).
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Fig. 10 Comparison of the first group scalar fluxes along the
radial direction indicated in Fig. 9 for Example 2.
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Fig. 11 A reactor configuration containing a control rod
and boundary conditions for P,, S,, 2-energy-group
sample calculations (Example 3).

TABE 5 Cross sections (cm™') used for Example 3 (see Fig. 11)

Material B.C Core
Group 1 2 1 2
Onan 4.50%10"¢ 1.90x10-°
G 3.24x107! 1.05x 10" 3.27x10* 1.30x10"?
g, 2.59x10"? 1.29x 10! 7.21x10°3 1.19x10?
vo; 4,74%1073 2.00x107*
g, 3.24x107! 1.05x 10! 3.27x107! 1.30
Gyq 2.98x107* —2.44 2.84x107! 1.18
Gg-1,0 7.60x10"% 3.58x107*

__10% -
.’.‘::
3
>
5
5 o TWOTRAN-I
5 63x 63
16 J
x ——FEMRZ(NP=2)
= 5x5

L ] ] -

1.2 1.5 1.8

r (cm)

Fig. 12 Second group scalar fluxes in the neighborhood
of the control rod along the line indicated in Fig.
11 for Example 3.
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Fig. 13 A homogeneous reactor configuration
with fixed sources and boundary con-
ditions for P, S,, 1l-energy-group
sample calculations (Example 4).
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Fig. 14 Scalar fluxes along the axial direction
indicated in Fig. 13 for Example 4.

figuration of the system and the computing conditions are showe in Fig- 13. The solutions
of the scalar flux along the axial direction indicated in Fig. 13 are shown in Fig. 14. The
solution obtained with FEMRZ fits well with the fine mesh solution of TWOTRAN-IL.
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5. Conclusions

We have developed a new computer program FEMRZ for solving neutron transport
problems in (r,z) cylindrical geometry by the use of the finte element method. Several test
calculations are compared with the results obtained with a diamond difference S, program
TWOTRAN-II, on which the main flow of our program is based.

The results have shown that the discontinuous method in the biquadratic approximation
of FEMRZ gives an accurate and stable solution even with coarse mesh calculations. However,
FEMRZ requires more computer core storage and computing time compared with those for
TWOTRAN-II which has highly been optimized for both features. It is hoped that FEMRZ
will be improved to be more efficient through an accumulation of the application experiences.
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Appendix : Input Setup for Example 1

ll;lll--0*,0otozoiio'*'0o93.l..*olo-a'pco*oQQQSOQO‘*oc'u6looc*00lo7cloo*noota

N999, /
P.0/PCH 0
W«0/PAGE 40
C+1/CORE 64
T«4/TIME 5M
. 1142309FUJIMURA,T+446.01 /FEMRZ
COMMON /FWBGN31/ IDUSE(18) « LAST+LASTEC+IGCDMP+IPSO'LTSOIPFLLTFLs 00000500
LIPFXALTFX(LXFX s IPXSeIPXSCTJLTXS+LTOXS«LTAXS+IPOS+LTOS«IEREC+124+14,00000600

216+ 1SPAN@« IPHAF + IPVAF L THAF \LTVAF 4 IFO 00000700
COMMON /FWBGN2/ TIMBDP«TIMSLD «TIMOFF +MAXLEN'MAXECSLENMCB+LENCIA+ 00000800
1IFNOVY «JRCOVY, 11413415 00000900
COMMON /LOCAL/ NERROR+ITLIM4ISNT «MCR«MTP MTPS NISOXS+LMTP+IEDOPSs 00001000
INEXTERe JFISCe JEDIT(2) L IMITVLENCLR 00001100
COMMON /SWEEP/ BAWBCeJeJ1+J2 : 00001200
COMMON /UNITS/ NINP«NOUT«NAFLUX «NDUMP1 +NDUMP2 «NEXTRAWNED | T+ IAFLUX 00001300
1ITFLUX ISNCON+ IFIXSRs ISOTXS 00001400
COMMON 1A(300)+A(28000)

EQUIVALENCE CTAC197) +TIN) 4 CLAC247) «TIMACCO) 00001700
REWIND 3

REWIND 17

REWIND 18

REWIND 40

REWIND 30

REWIND 31

REWIND 32

REWIND 8

REWIND 9

REWIND 33

REWIND 34

MAXLEN=28000

LENMCB=45 00002200
LENCIA=300

NINP = 5 00002700
NOUT = ¢ 00002800
NEDIT=17 00002900
NEXTRA=18 00003000
NAFLUX = 3 00003100
ITFLUX=30 00003600
JAFLUX=31 00063700
ISNCON=32 00003800
IFIXSR=33 00003900
1SOTXS=34 00004000
CONT INUE 00004400
NDUMPL1 = 8 00004800
NDUMP2 = 9 00004900
CALL REED (NDUMP1404040:044) 00005300
CALL REED (NDUMP240+40+0:044) 00005400
CALL REED (NEDIT«0410.0:¢044) 00005500
CALL RITE (NEDIT+040.04044) 00005600
TIMBDP=600.

CALL SECOND (TIMSLD) 00006100
1GCDMP=0 00006200
NERROR=(Q 0000630C

NEXTER=0 00006400
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.'..*Q'..1‘0Il*..I02l’!'*ll.'30'..*0.I14ll'0*'00Q5'00'*0|‘.60!"*""7‘0'.*""8

CALL INPUT1 000C6800
CALL GRIND2 00007200
CALL OUTPT3 00007600
T=TIN 00007700
CALL SECOND (TIN) 00007800
T=(TIN~T+TIMACC) /60,0 00067900
WRITE (NOUT+1100T 00008000
GO TO 100 00008400
110 FORMAT (1H0//////41HO****% TOTAL EXECUTION TIME IN MINUTES = 1PE1200023000
1.4) 00023100
END 00023200
¥HLIED J2309,FEMRZBxMAP+SIMPL=OVLY +RBSPC=99+DIRCT=TT
SGMT MAIN
SELECT  (FTMAINJMONITR+ERROR\CLEARWMPLY WRITE s IWRITE'NWRITE + /
ECHECK +DUMPER +PCMBAL + /

REED'R]TE+ECRDECWRVSECOND +DATEL +PONTER s VALUE)

SGMT LINK1CHN=MAIN

SELECT CINPUT14LOAD).

SGMT LINK11,CHN=|LINK1

SELECT CINPT11«VTCALL +DUMPRD)

SGMT LINK12 CHN=LINK1

SELECT C(INPT12+CSPREPIFINXS«F1DO)

SGMT L INK13,CHN=LINK1

SELECT CINPT13+READQF 4 | FINGQF)

SGMT  LINK14+CHN=LINK1

SELECT CINPT144SNCON+IF INSNePNGEN)

SGMT L INK15+CHNeL INK1:

SELECT CINPT15CSMESH 'MAPPER)

SGMT LINK2,CHN=MAIN

SELECT (GRIND2REBAL)

SGMT L INK21.CHN=LINK2

SELECT (GRID21L+INITALVINITQsFISCALWFLIDP)

SGMT L INK22CHN=LINK2

SELECT (GRID22OUTER INNER« IN+OUT +CROUTMFIXUP o /
SETBC+STORAF 1 SAVEAF +GSUMS)

SGMT L INK23,CHN=L INK2

SELECT (GRID23 TESTS NEWPAR)

SGMT  LINK3CHNaMA N

SELECT (OUTPT3)

SGMT L INK31,CHN=LINK3

SELECT (OUTT31FINAL)

SGMT L INK32,CHN=LINK3

SELECT COUTT32EDCALL +GENFLLOSEDITOR +EDMAP)

SGMT  LINK33,CHN=L INK3

SELECT CIFOUTVIFRITE)

FIN

¥HRUN

¥DISK FO03

¥DISK F17

¥DISK F18

¥DISK F40

¥DISK  F30

¥DISK F31

¥DISK F32

¥DISK FO8
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Q'0‘*‘..'1’000*0l'l2.l..*l.'.3'l0!*'l.!4.l.l*t”'5‘0"*!'q'6'l!.*'."7l|:q*l|ll8

¥DISK FO09
¥DISK F33
¥DJSK F34
¥DATA
3
FEMRZ EXAMPLE 1
PO+5443=GROUP CALCULATION
B.C, =1211
0 o] 4 3 2 2 1 2 1
4 Z 8 3 4 6 0 o 0
0 240 9 0 0000000 v] 2 2
0,0 0,0 0,0 0.05 045
1,0 =3 1.0 1,0
12 13
12 13
12 13
12 13
000 600 25-0 3
0,0 6,0 25,0 3
TEST CROSS SECTIONS FOR ELEMENT NUMBER 1 BY GROUP.
1.35 325 4,55 1.8 0.0
1,45 3,075 5.2 3.3 1,05
2,05 4,25 9.5 Tet5 0.45
TEST CROSS SECTIONS FOR ELEMENT NUMBER 2 BY GROUP.
0,6 1,35 4,45 1,9 0.0
0,15 0.05 5.0 4,25 1.5
0,3 0:0 9.5 9.2 0.6
0,56 0.341 0,099 3
11 313 43
0,56 0,341 0,099 3
22.19 12.5 5.599 3
104 3104 43
0 1 2 0
2 03
0,0 0,94 0,06 0,048 0.0
0,993 0.048 3

¥JEND

1 1

0.01

0.0
0,35

0.0

0.0
0.45

0,007

=1INT

OINT
INT
REAL
REAL
REB F.
REB F.
MAT F.
MAT F.
RAD]
AX1

NTITNITNIODNE N -

EL1GP1
ELiGp2
EL1GP3

EL2GP1
EL2GP2
EL2GP3
FLUX 3GD
REGION
CHI 3GD
VEL 3GD
NUM  3GD

1COM  3GD
COM 36D
DEN 3GD
DEN 3GD



