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The finite element method has been applied to solve accurately the multi-dimensional neutron diffusion
equation on a modern computer. A new computer program FEM-BABEL has been developed by adopting
the solution algorithm based on the Galerkin-type scheme. This three-dimensional program makes use of
the combination of prism- and box-shaped elements to simulate reactor geometries efficiently. The succes-
sive over-relaxation method is adopted to solve the system equation and the inner iterations are accelerated
using the coarse mesh rebalancing technique.

Numerical calculations have demonstrated the present finite element method has advantages over the

finite difference method for solving realistic three-dimensional problems in view of computing cost.
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1. Introduction

The finite element method (FEM)"+? has been proved to be a very useful tool for discretizing practical
differential equations®. Since Ohnishi advocated the applicability of FEM to reactor physics calculations?,
FEM has been developed to solve neutron diffusion®'® and transport equations.”?% It offers many other
possibilities than the discretization by the finite difference method (FDM). For this, two reasons may be
mentioned ; The first is that with elements of appropriate shape the method can easily be applied to represent
complicated geometric structures flexibly (geometrical flexibility).”**!® The second is that within the ele-
ments the unknown functions can be approximated by using interpolation polynomials of any desired
degree (higher order approximation).”-1®!9:23 Thus it is possible to obtain very precise answers by using
FEM.

However, one must of course pay for these advantages; One is the complexity of the solution algorithm
introduced from the variability in the element shape and in the approximation order. The resulting equation
with an irregularly occupied matrix is to be solved by using a complicated method, mostly the direct
method.?® Even with this method, computer programs for solving a large system of matrix equations
require a sophisticated data management system. For this problem, however, we can find nowadays promis-
ing solution procedures.?” Another is that the user must specify a large amount of input data inherent in
the finite element method. To facilitate this, finite element mesh generating programs are being developed,
so that it will become sufficient for the user to specify a relatively small amount of data 292

Three-dimensional diffusion calculation is the most practical way to take account of all essential
features of realistic nuclear design problems. Among various kinds of three-dimensional finite elements,
like the tetrahedron, hexahedron, quadrilateral prism, triangular prism (prism-shaped element), rectangular
prism (box-shaped element) and so on,?” the prism- or box-shaped element is considered to be most ap-
propriate from the viewpoint of computing time and computer storage.’?" It is reported that calculations
using the terahedron element®? could not converge for a practical problem within reasonable computing
cost.>® Thus we have here chosen prism- and box-shaped elements in our computer program.

For realistic three-dimensional problems, a million unknowns may be needed to solve the system
equations accurately and the coefficient matrices have generally sparse and irregular structure. Accordingly,
the iterative method rather than the direct one shall be used to solve such large matrix equations from
its potentiality by taking account of the next generation computer, because the iterative method requests
less severe storage requirements and seems more efficient for most problems of large size. However, the
implementation and effectiveness of the iterative methods have not been clear in the finite element approach
to practical problems.”» Thus we here adopt the successive over-relaxation method in our computer
program,

The remainder of this report is arranged as follows. In Chapter 2, we present the formalism of the
finite element method for the multi-dimensional neutron diffusion equation. Chapter 3 describes the three-
dimensional computer program developed here according to the formalism in Chapter 2. This chapter is
intended to read also as user’s manual for our program. Chapter 4 gives the verification of the program by
solving a problem for which the exact solution is known. In addition, the applicabilities are demonstrated
through a realistic large problem of a pressurized water reactor.
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2. Solution of the Neutron Diffusion Equation by the Finite Element Method

We start to express the multigroup neutron diffusion equation in the form of the Galerkin approxi-
mation.” Next we construct concrete expressions of the basis functions (called the shape function in
engineering) for triangular®, rectangular®, prism-shaped and box-shaped finite elements. It is noted that
the numerical integrations over these elements are shown to be performed analytically. Finally, we derive
the matrix expression of the system equations by the Galerkin approximation and generate the concrete
expression of the coeflicient matrices.

2.1 Multigroup Neutron Diffusion Equation and Finite Element

In the general multigroup formalism, the neutron diffusion equation is represented by a coupled system
of differential equations on the scalar flux, ¢:

~TDETHO+ Zs09,0) = B Tayshe)t B L0508,

P =1 Kegr
(¢%9)
9=1,2,---G, for re@2, (1)
where the notations are defined as follows:
g the energy group index,
, the flux in the g-th energy group (cm~2 sec™}),
D, the diffusion constant (cm),
2., the total removal cross section (cm 1),
2o the scattering cross section from ¢’ into g (cm™!),
G
X, the fission source spectrum normalized as 3] z,=1.0,
g=1
Ko the effective multiplication factor,
v, the average number of neutrons produced by fissions induced in group g,
DI the fission cross section (cm™1).

By denoting the external boundary of a domain £ by 2,2, the general form of boundary condition
associated with Eq. (1) is described as

(D, Y +bws =0,  reao, (2)
where 8/dn represents the outward normal derivative at d,2 with unit vector n, and a=0 shows the free
boundary, b=0 the reflective boundary, and ¢>0 and 5>>0 the extrapolated boundaries. If a reactor is
composed of a finite number of subdomains, each of which is characterized by a specific material property,
then the bulk coefficients D (r), 3, ,(r), 2, (1), (v3/) (r), as well as the boundary coefficients a(r) and b(r),
are constant throughout each subdomain. In addition to Eq. (2), the usual interface conditions with
respect to neutron flux and current must be satisfied. That is, if the domain 2 is composed of matrials

having interfaces 4;£2, then the interface conditions are

¢,(r) and (D, %)(r) are continuous across 9;2 . (3)



JAERI 1256 2. Solution of the Neutron Diffusion Equation by the Finite Element Method 3

global index

1/ 20
zﬂfﬁe 8 50

Qe &z

Mo @ ek’
Qo | By

Mt
5

Fig. 1 Partition of a polygon into subdomains, or trianglar and rectangular elements
and their global node indices.

EX)

For more explanation, the domain 2 is assumed a bounded set in the two-dimensional Euclidean

space and £ is the union of a finite number N of contiguous subdomain £, what is called the finite element:

2 =

i

2; (4)

lCz

As shown in Fig. 1, a two-dimensional reactor can be divided into N=12 triangular or rectangular sub-
domains. The presence of a black absorber or hole subdomain is not allowed in the interior of the reactor
domain 2. The boundary 02 of £, which is the union of the exterior boundary 3,2 and the interfaces
9,2

02 =0.2U0:2, (5)

is assumed to be piecewise rectilinear. The cross-hatched region in Fig. 1 must be as small as possible for

a good approximation to the virtual external boundary. In later use, it is defined that
P=0UdR. (6)

Now to solve the generalized eigenvalue problem described by Eqs.(1)-(3) for the effective multiplica-
tion factor K, and the corresponding positive eigenfunction, {¢,(r); =1, 2, ..., G} we adopt the usual
outer iteration (also called the source iteration or the power iteration) procedure. That is, starting with a
positive but otherwise arbitrary estimate { ¢g(°)} for group fluxes and a positive estimated K5 for the effec-
tive multiplication factor, we generate successive estimates {¢,®} and K", n=1, 2, ..., according to

the following scheme:
—P DDV IV + 2, (N)PP(r) = 5 I+ T Tay ()95 D)
7'(<9) g’(>9)

1 G —
+ =i 20 T (20 ()85,
Kt g'=1
for g=12,---G, (7)
and

) )
n) __ —-1) <¢ 3 ¢ >
Kéﬂ‘ - Kg"f <¢(n), ¢(,,._1)> ’ ( 8 )
where <, > denotes any appropriate inner product. The scattering cross section 3., is parted into the
down-scattering cross section 37, (9’<g) and the up-scattering cross section 3%, (¢9">g).

At each step of this outer iteration procedure, we thus solve G uncoupled self-adjoint elliptic boundary
value problems of the form;
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—V DIV $(r)+2)p(r) = f(r), for reQ, (9)

where f'is a known function. The unknown ¢ is subject to the same boundary conditions, Eqs. (2) and (3).
The conservation of the self-adjoint character provides the Galerkin-type approximation procedure for the
solution of the elliptic boundary value problem as described in the following.

The matrix expression of Eq. (7) in the form of Eq. (9) is given by

[=F D(@)f + Z(r)]¢™(r) = FO-1)r), (10)
where
=354, (102)
FO=00) = | 2400+ ooy 100 Jpo-06r) (106)
eff
27,1
Zr,z 0
X, = . y (10¢c)
O Er,G
D,
D
D= 0 2 0 (10d)
\ DG
0
212 0 0
=133 X3 O , (10e)
Es,lG 2s,2G et Es,G—I,G 0
0 X2 2531 2sar )
0 Zin:-2ie
Su = 0 ; , (10f)
0 Ce . Zs66-1
0
=022 - x6)7, (10g)
S = (w1, @), -+ - WEp)e)T, (10h)
¢ = (¢1, 92, -+ $6)7, (101)

in which (.)T is the transposed vector.

2.2 Galerkin-Type Approximation

We proceed here as usual on a Galerkin-type approximate procedure.” The symbol x denotes a point
on the two-dimensional Euclidean plane. Let L,(R2) be the Hilbert space of functions which are square

integrable over £2. The inner product on L,(R2) is expressed by
(u,v) = S u(x)yu(x)dx (11)
2

and the norm by
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llul = &/, u) . a12)

we define D (L) as the set of functions in L,(2), which have the following properties:
(i) they are twice continuously differentiable in 2,
(ii) the functions and their first derivatives are continuous on 942,
(iii) they satisfy the boundary conditions Egs. (2) and (3).

Thus our problem is to find the function 4 € D(L) which satisfies the following equation:

(L+2u=f, [feL(2), 13

where we define the linear differential operator L by

(Lu)(x) = —%-D(x)a%u, on domain D(L), (13a)
and the multiplicative operator 2 by
(Eu)(x) = Z(xu(x), on ILA(2). (13b)

Furthermore, let W} (2) denote the Hilbert space of all elements of L,(2) that have generalized derivatives
of the first degree in L,(22) (which is called Sobolev space). The inner product in W3(9) is defined by

du dv
{u, v)1,2 = §D<u'v+ N -—a?>dx , (14)
and the norm by
lulhz = /{4, )12 (15)

If u € D(L) and all the coefficients in Eq. (13) are smooth, then it can be shown that the solution of
Eq. (13) is equivalent to find the function u € W(£2) which satisfies the following equations:

a(u,v) = (f,v), for all ve WXQ), (16)
where
a(u, v) = SQ(D(x) %’)‘7 : % +Z’(x)u(x)'v(x)>dx+ gaégZ—g%u(x)v(x)dS, (162)
and
(fiv) = Sg FOu)dx,  for any ve WXQ) (16b)
and
5.0 = [x|x € 3.2, alx)y>0} . (16¢)

The expression (16) is called the weak form of Galerkin approximation.
Here we shall define the Galerkin-type approximation to the present problem. The weak form of the

original problem is given by
a($, $) = (F,¢), for all ¢eWyDd), an

where

s,9) = | (DP9Pg+ Zog1av+| 2 osds, (175)
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9.2 = {r|re .2, a(r)>0} (17b)

and
F.) = Fgav. (17¢)

Let My be any finite-dimensional subspace of W1(2) as shown also in Fig. 1, and then our aim is

to solve the following approximate problem having a unique solution ¢ in M,

a(d, ¢) = (F, ¢), for all ¢(r)e My. (18)

With any subspace, there is a finite partition of My, into polygonal subdomains of element shape, like tri-
angles and/or rectangles. If we define a polynomial function ¢ with degree m as an element of the subspace
in each polygonal subdomain of the partition, then each polynomial can be uniquely determined by its
behavior within its associated subdomain. This approximate procedure is commonly referred to as the
finite element method.

In order to uniquely determine ¢ € M, from its local behavior, we need v data in each subdomain if
a polynomial of degree m in two variables (for two-dimensional space) has v degrees of freedom. These
data can be the values of the function or of its derivatives at a certain number of points in the subdomain.
Polynomials which are obtained in this manner are called interpolating polynomials or interpolants. In
the following study we will assume that only function values, and no derivative values, are used to deter-
mine the polynomials. This type of interpolating polynomials is commonly referred to as the Lagrange-type
polynomial. Thus, in order to uniquely determine a Lagrange interpolant over a subdomain we need v
reference points, which we shall take at the nodes of a grid over the subdomain: vertex nodes, equally
spaced nodes on each of all the sides of the subdomain, and interior nodes. Since we associate here one
degree of freedom with each node, the dimension of the finite-dimensional subspace M), is precisely N or
the total number of nodes in 2.

2.3 Construction of Basis Functions

We make here a choice of a finite-dimensional subspace and construct a basis for it. With each node
(global index i; i=1, 2, ... N) in £ we now associate a basis »; which has the minimum support. That is,
u; vanishes outside the union of the finite elements (triangles and/or rectangles) to which the i-th node
belongs. Furthermore, #; assumes the value 1 at the i-th node and the value 0 at all other nodes within its
support. It is easily verified that u; is continuous across inter-element boundaries, so u € My, implies u €
C(£), in which C (2) means a class of functions continuous over £.

Now we construct the basis function u, (r). The solution &,(r) of the approximate problem described
by Eq. (18) will be of the form:

34r) = Z (), 19)

or the matrix expression is
$(r) = qu(r), (19a)

where
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qui1 q12 "IN

q21 4922 - 42N

g= , (19b)

q.Gl ¢];72 o q;;N
u= (u,uy, -+ uy)’. (19¢)
The coefficients ¢,;, i=1, 2, ... N, in the expansion (19) represent the values of ¢ ,(r) at the node, that is,
) =q,, for i=12---N. (20)

Our goal is now to determine the basis # in terms of the values of the nodal parameter g. The coefficient ¢
is called the generalized coordinate in the finite element terminology.

We use triangle and rectangle for two-dimensional domain (prism and box for three-dimensional
domain) as the shapes of the finite elements, as shown in Fig. 2 (in Fig. 3). The nodal indices shown in
Figs. 2 and 3 are called the local indices written later. Their indices are numbered in counterclockwise

order on the plane and the order does not generally coincide with the global indices (written as i or j).

(X4
3 X; yS) (xq qu) (x3 QYB)
4 3
g)’
1 ¥,) 2
(x||Y|) (xnyq) (xzyyz)

(a) Triangular element  (b) Rectangular element

Fig. 2 Local node indices and their coordinates for two-dimensional finite elements.

CJREIIA B
s ‘{x,,.y”z,) (xg¥5 7))
(xp¥p2,) 1 3
(x")‘(zl) lx‘v zZ,
Q
Balts ¥3.22) 4
8 fxaY¥a 2| 7
(X3.Y502)
4 5 6
(g ¥122) (x2.¥2.25)  (xq.y.2 (x3.¥2.25)

{a) Prism-shape element (b) Box-shape element

Fig. 3 Local node indices and their coordinates for three-dimensional finite elements.

The solution ¢ has the general form expressed with a polynomial of x and y for two-dimensjonal

element (a polynomial of x, y and z for three-dimensional element):

q?z(xa Y, Z) = kgl a;kPk(xa Y, Z) s (21)
or in matrix form by

éf(x, ¥, Z) = aTP(x’ Y, Z) s (213)

where v is, for instance, 3 for triangular element, 4 for rectangular element, 6 for prism-shaped element,
and 8 for box-shaped element if applying the first degree polynomials. Then the basis function P(x, y, z) is
expressed by

(1, x, y)T, for triangular element,
PG,3.2) = PGy) = | (1)

(1, x,y,xy)T, for rectangular element,
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1,x,y,z,xz,yz)T, for prism-shaped element,

PG5 = | @10)
(1, x,¥, z, xy,yz, zx, xyz)T, for box-shaped element .

Here, let QT be the subdomain to which the i-th node (global index) belongs and let i(k) be the index
corresponding to the k-th local index. On each subdomain .Q,, the basis function w; is represented by, say

7 e
u:

"i(x’ Vs Z) = utt(k)(x’ Vs Z) ’ fOI‘ (x’ Vs Z) € ‘Qr and 7 € Fi b (22)

where I, is the set of suffixes y on !?T to which the i-th node belongs. Using Eq. (22), Eq. (19) is rewritten
as

6ix.7,2) = B a5 (% 3, 2) (23)
or in matrix form by
¢r = qu] . (23a)

Now, we express the basis function u by the polynomial P (x, y, z). First, we define the following

functional:
Li[$3] = ¢yl Yoo 26),  for k=1,2,---v. 24)
From Eq. (20), we must have the identity,

L¢l =g, for k=1,2,---v, (25)
or in matrix form by

LT = (o), (252)
where LT=(L,, L,, ... L).
Putting Eq. (21) into Eq. (23), we obtain

(g)" = (LPT) (@) = C(a)". (26)

The matrix C is non-singular, so that

@ = g((CNr, @7

where
C=LPT(x,y,z2). (27a)
Putting Eq. (25) into Eq. (21), the result is given by
¢ = g(C-HP. (28)
Using Eq. (28) together with Eq. (23), we obtain finally the expression about #] (x, y, z) as follows:
ook 3, 2) = 3 (CDaPdx, 3,2, 29)

or in matrix form by

ui(x,y,z) = (C-HP(x,y,z). (29a)
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4

’1\ 5 1
2

(a) Triangulor element  (b) Rectangular element

Fig. 4 Basis functions (at the first node) of linear Lagrange-type interpolant.

Here, on QT, u] is the unique Lagrange-type interpolant which has the value 1 at the i-th node and value
0 at all other nodes. Linear Lagrange-type interpolants are shown in Fig. 4. The concrete expressions of
u] (x, y, z) for two- and three-dimensional finite elements are then represented, by writing uy, as uj, as
follows:

1
U y) = - {x293— %392+ x(y2— y3) + y(x3— %2) }
7

1 .
uy(x, y) = A {xsy1—x1y3+x(y3—y)+y(xi—x3)} 4, for triangular element, (30)
T

1
U(%: ¥) = 7 (X172 = Xay1+ X(y1— y2) + y(%2 =X}
T /

where
Jy = xi(y2—y3)+x2(y3—y)+x3(y1—y2) %0,
and
; 1 \
u(l)(x’ ») = Tr (x—x2)(y—y2)
1
Ui (%, ¥) = *E(x—xl)(yz—y)
), for rectangular element, (30a)
; 1
us(x, ) = E(X—xl)(y—}ﬁ)
1
Uy, ¥) = K (x—x2)("1 —.V)/
where

K, = (ea—x)(y2—y) 0.

The expressions for the prism- and box-shaped elements are written by using the above expressions of

the triangular and rectangular elements, respectively:

r _ 278 r
"(k)(X, »nz= 21—22 “(k)(x’ »)

, k=1,2,3, for prism-shaped element, 3D

7 _ A=z s
”(k+3)(x, »2)= Z1—22 u(k)(xs »
and
2 _ —22 7
u(k)(x, »z2)= Zi—22 "(k)(x’ »)

, k=1,2,3,4, for box-shaped element. (31a)

zZ 7
U (%
Zi—22 (X ¥)

u€k+4)(x’ »z) =

These four finite elements were already referred to in Figs. 2 and 3.
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2.4 Solution Algorithm in Galerkin Approximation

We start to determine the nodal parameters ¢ of Eq. (19) by adopting the basis ; (i=1, 2, ... N)
constructed in the previous section as the trial function. Equation (17) is rewritten as

a($?, u) = (Fo=D,u)+K?, for i=1,2,---N, (32)

where n is the outer iteration index and
a(P", u)) = SQ[D,V¢gn) P43, 60 uldV + SM% ¢ . uds (32a)
KO = SQ[quS(”)],uidV. (32b)

Moreover, the fission source term F in Eq. (32) is expanded with the basis u; as follows:

N
FP(x,3,2) = 3 fPuix, 7, 2), (32)
or in matrix form,
FO)(x,y,z) = f®™u(x,y,z) . (32d)

Substituting these expressions into Eq. (32), we obtain the following linear system equations for the

generalized coordinates:
N
i§1 qg!)a(uj, ui) - f(” n(“h u,)+K5’:) ] for i= l; 2) <« N ’ (33)

or in matrix form,
(g™A),; = (f*DB+K®™),;, for i=1,2,---N, (33a)

where 4 and B are the following symmetric matrices:

'a(ul’ ul)’ a(ul’ u2), M a(ub “N)
A= a(u%’ ul), a(llz., uZ)’ e a(uZ., llN) , (34)

ka(uN, ul)’ a(uN, u2)9 M a(uN9 uN)

(u,wy), (Ui, uz), -+ (U, un)
B (u2, :ul), (u2, l.lz), oo (“2,.uN) ’ 35)
(uN,.ul), (un, ;12), (HN; un)

and f is represented by using Eq. (10b) as
foo = [ 2ty S Jgoo. (36)
Consequently, we obtain the following equation from Eq. (32) is to determine the nodal parameters:

qg’x') = {[(Zu K(:— n xs>q(" PB+K® |4~ } ) i=12---N,
eff g

for g=1,2,---G, 37
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and then K 4 is expressed by the following equation if 2* is zero,

= 2 A(n)
Zl Z] Xg(vzf)n’(qsan > ¢0,; )
g=1g'=
G
2

g=

. e — -1 STgOB(g™)Ty
K& =K% G o A K&V STqn—DB(geTy * (38)
2 Xa(v2f>n’(¢a")’ Pgr ))

g’=1

—

The solution ¢ is thus obtained through Eq. (19).

2.5 Generation of the Coefficients in the Approximate Equation

We give here the concrete expressions of 4, B, and K. Though the descriptions are mainly made for
two-dimensional elements, the expressions for three-dimensional elements are easily derived with the help
of the results for two-dimensional elements as shown afterwards.

We begin to describe B. An element B;; in the symmetric matrix B is given by,
B = X wdxdy . (39)
2

Therefore the value of B; is non-zero only when the global node indices i and j belong to the same sub-

domain £, according to the property of the basis function ». Consequently B; is expressed by

Bj= 2 By, (40)
r€ly
where
Bljgy = S gruak)u?wdxdy (40a)

and I'; denotes the set of indices (7) of the elements (Qr) which belong to the intersection of the domains
of u; and u;. The meaning of indices i(k) and j(4) was already described in Eq. (22).

We start on the triangular element. In order to most efficiently calculate B, we map the triangle
2, onto a standard canonical triangle, say 7,. Let 2, have the vertices, (x,, y,), (x5, »,) and (x;, y5), and
let T, have the vertices (0, 0), (1, 0) and (0, 1). This mapping is easily performed by linear transformations
x=a,+b§-+¢;p and y=a,+b,§+-c,n. Then by solving these equations about the constants a,, b, . .
we obtain the following equations:

A

x = x1+2—x)§+(x3—x1)y

(41)
Yy =y1+—-y)é+ -y,
and the inverse mapping is given by
1
§= T{(—-xl)’3+x3J’1)+(J’s—J’l)x-l-(xl—xa).V}
’ (42)
1
7 = {(xy2—x2p)+ 1 —y)x+ (- x1)y}
7
where
ox  ox
95’ oy
= = (x1=x)(P1—y3)— X1 —x3)(Y1—2) (42a)
dy dy

FEY)
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which is the Jacobian or the functional determinant.

After the linear transformation (written with tilde ~), we obtain the following equations:

1 & 1 00
C=|1 & n|=|1 1 0], (43)
1 & 1 0 1
1 00
C-t=[-11 o}, (44)
—10 1
and
1
P=|¢}. (45)
7

Accordingly, the basis function @, (¢, 7) corresponding to Eq. (29) is given by
ai(k)(e, 77) = ak+bk5+ck7] s for k= ]: 27 3 s (46)
where

a1=l, blz-—l, C]=—1,
a2=0, b2=1, €2=0, (46&)
a3=0, b3=0, C3=1.

By using these expressions, Eq. (40) leads to the following expression:
By = S gru{(k)u}(,,)dxdy
= S Toﬂi(k)ﬂj(e)lfrldfdﬂ
1o(1-¢
= Sodfso Tigoip|J;|dy

1
= o4 [ =x2)(P1=y3)— (1 = x3)(¥1 =32
X (12axay+ 2biby+2ckcy+darhy+ brcg+4cga),  for k,4=1,2,3, 47)
where a,b,=a,b,+ab,.

Thus, after some algebraic maniplations we obtain the final expression about B as follows:

2 11
Br = —2‘%- 1 2 1}, for triangular element, (48)
11 2

where J, was already defined by Eq. (42a). Similarly, we obtain

4 21 2
Br—Kf 4 2

1

=35 > for rectangular element, 49

36 |symmet. 4 2 or o & 49
4

where K =(x;—x,) ri—»d)-
Next, we derive the expressions for three-dimensional elements. Since the three-dimensional inter-
polant Eq. (31) is factorized into the axial and planar components:
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Uiy (%, ¥, 2) = fiao(@ujge(X, ¥) 5 (50)

the expressions B corresponding to Eqs. (48) and (49) for the three-dimensional elements are represented

by
By = S Siw @) fiw(2)dz- Sgruf(k)(x, Pt (x, y)dxdy . (1)
7y

As the result of planar integral in the right hand side of Eq. (51) has already been obtained as Eq. (48) or

(49), the concrete expressions of Eq. (51) are easily written as follows:

_ Uy .
Br = 144 (V U) > for prism-shaped element, (52)
where
4 2 2
U= 4 21, (522)
symmet. 4
211
V= 2 1). (52b)
symmet. 2
and
fr = @ma g (52¢)
_ K; UI VI )
Br = 216 (V’ U') ,  for box-shaped element, (53)
where
8 4 2 4
U = 8 4 2 .
B 8 4| (53a)
symmet. 8
4 21 2
4 2 1
= ; 53b
4 4 2 (53b)
\symmet. 4)
and
K; = (z2—z1K; . (530)

The expressions of J, and K, in the above equations were already described in Eqgs. (42a) and (49), re-
spectively.
We now describe the concrete expression of the symmetric matrix 4, Eq. (34) The matrix element is

expressed with the help of Eq. (32a) as
Ay = Sg[DVu,- Vgt Souuydxdy , (54)

where the last term for the boundary condition on the right hand side of Eq. (32a) is excluded because
Eq. (32a) can be solved for the generalized coordinate g for the natural boundary conditions since they are
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satisfied automatically in the Galerkin approximation. For the non-natural conditions, the ¢’s must be
constrained to satisfy the conditions.

The value of 4 is non-zero only if the domain to which »; and »; belong is common on the finite
element. By assuming that reactor parameters D, %, ... are constant within a finite element, Eq. (54)

is rewritten as

Ay= X Alirg 5 (55)
rely
Ay = D Qg+ 2By (56)
and
OQlwpy = S o F ol gdxdy . 57
7

The values of B}, for triangular, rectangular, prism and box finite elements were already given by
Eqs. (48), (49), (52) and (53), respectively.
The Qf,’s (writing Q%,, as Qf, for simplicity) are obtained through the linear transformation in a way
similar to obtaining B,

For the two-dimensional triangular element, we use the identity:

0 _96 .3 093
dx ~ dx 9¢ ' ax oy
1 0 2
= T[(}’s “yl)a—$+(yl -‘J’z)a—v] (58)
and
0 1 7} a
a—y = Tr[(xl_x3)—ii_£_ +(x2—x1)—é—”—:| . (58b)

Thus we obtain

Qs = —JI-T; S To[{bk(y3 =)+ ayi—y2} - {bys—y1)+ci(y1—y2)}
+ {(Bi(x1 — x3) + calxz—x1) } - {bg(ox1 — x3) + (2 — x1) } 1, dé dy
1 1

1 1-¢
= Wil @&\ “an =5 Wi, for Ku=123,
T WkeSoeo i 27 ko or k,y=1,2,3 (59)

where

Wiy = bibg[(y3— 3124 (%1 — x3)1] + creg[(y1— 3202 + (02— x1)?]
+bicg[(y3—y1) (1 — y2) + (o1 — x3) (02— x1)] (59a)

or by rearranging, we get

2 (ar—a3)t, —X (a—a3)(ar—a3), — X (a1—az)(az—az)

Q, = _217 Ll—a), —X(a—a)ae—ar) |
7 a a
symmetric ay—a
. 7 ( 2
for triangular element, (60)

where Y, denotes the summation over x and y like
a

2 (az—asz)? = (x2— X302+ (y2—y3)?.
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Similarly, we obtain the expression for the rectangular element as follows:
2X+2Y, XxX-2Y, -—-X-Y, =-2X+Y
1 2X+2Y, =-2X+Y, —-X-Y
r o= , for rectangular element (61
2" =5k, 2X42Y,  X—2Y 8 6D
symmetric 2X+2Y

where X=(x,—x,)* and Y=(y,—y)%
We can obtain @7 for the three-dimensional elements in a similar manner to B?. The Q/, is given by

Ok = | “dsfonte) fota)- | |
_,_S” 2z Yiaf2)__dfjf2)

= 0P\ fiakerds + B
1

Quigo(%, y) g%, ¥) | Buluo(x,y) dujig(*, y)

dz dz

z1

z
z

ox

Z1

ox oy

S i i (%X, Y)ijef(X, y)dxdy
T

dfiwy diw g,
dz ?

z2

dz

3y ]dxdy

(62)

where Q7% and B[ are respectively 0, and B, for the two-dimensional elements already described.

Consequently, we have the following concrete expressions for the three-dimensional elements:

1 Uy
= %7 (V U)’

where

4ZQ11 + 2.]72,
U=

symmetric

2ZQ11—2J2,
V =

symmetric

for prism-shaped element,

4ZQ12+J,2, 4ZQ13+J,2
4ZQ0xn+2J2, 4ZQ0yn+J?
4ZQu+2J7

2ZQ12"'Jr2, 2ZQ13—J72
2ZQp—2J3,  2ZQxn—J?
2203—2J?

(63)

(63a)

(63b)

and Z=(z,—z,)?, and Q, (i, j=1, 2, 3) is given by Eq. (60) without the factor 1/(2J,).

In addition,

—2ZQX—Y)+2XY
—2Z(X+ YY)+ XY
2Z(X—2Y)+2XY

AZ(X+Y)+4XY
(64a)

b

—ZQ2X—Y)—2XY
—Z(X+Y)—XY

1 /U VvV
Qr = 36K, (V’ U') , for box-shaped element,
where

AZ(X+Y)+4XY, 2Z(X—2Y)+2XY, —2Z(X+Y)+XY,
U= 4Z(X+Y)+4XY, —-2ZQX-Y)+2XY,
- 4Z(X+Y)+4XY,

symmetric
2Z(X+Y)—4XY, Z(X—2XY)-2XY, —Z(X+Y)—XY,
v 2Z(X+Y)—4XY, —-ZQ2X-Y)-2XY,

symmetric

2Z(X+Y)—4XY,

where X=(x,—x,)%, Y=(y,—,)* and Z=(z,—z,)%
With these expressions B and Q7, we obtain 4" from

>

Z(X—2Y)—2XY
2Z(X+ Y)—4XY
(64b)
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Ar = DQr+3,Br (56a)
Finally we describe the scattering source matrix K in Eq. (37). We start from the two-dimensional

elements. The matrix element K, is written as

K= S (346 uidxdy
or

’

g—1 N
= Sn 34, (x, )b, - widxdy
7

—
|
Ll -

N
= qa’js ngg(x’ y)uiuidxdy
’=1j=1 9

Q W
]
Lo —
It

244448 (65)

Il
M=

Y
i
-
~
I
-

where
Bij = S u,-uidxdy
or

= 2 Bjuy- (65a)
if

rel’
Thus we obtain the following matrix expression:
(K),i = (XqBr),, for two-dimensional elements , (65b)

and the concrete expressions of B’ were already described by Eqgs. (48) and (49).
We obtain the same expression for the three-dimensional elements in a similar way as for the two-

dimensional elements,

g—1 N d
Ky= 3 X 204,18, (66)
g’=1j=1
where
By=|_ux, 5, 2ucx, y, 2)dsdydz. (662)
or
Thus,
(K),i = (X9%Br),; . (66b)

where the concrete expressions of B” wer already described by Egs. (52) and (53).
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3. Three-Dimensional Computer Program FEM-BABEL

The program is all written in the FORTRAN-IV language for implementing on the FACOM 230/75
operating system. Significant features are summarized as follows;

(i) Arbitrary combination of the prism-and box-shaped elements is adopted for simulating reactor
geometry. Use of two types of the elements will give more geometrical flexibility and save the com-
puter storage by taking account of the symmetry appropriate to the geometry.

(i) Successive over-relaxation (SOR) method is adopted for solving the system equation having a
large and sparse coefficient matrix. Taking advantage of the feature (i), the data transmission is
performed on each x-y plane and then the point SOR is applied successively to the plane.

(iii) Inner iterations are accelerated by using the coarse mesh rebalancing technique and the power
iterations to solve eigenvalue problems are accelerated by adopting the extrapolation by SOR.

(iv) Use of free field FIDO input form, complete restarting procedure, automatic mesh generation
routine and so on will give users a help to prepare the input data more easily.

(v) Any down-scattering of neutrons is allowed, but up-scattering and region-dependent fission
spectrum are not permitted.

(vi) Free and reflective boundary conditions can be imposed but logarithmic boundary condition can
not be.

(vii) FEM-BABEL has special mesh generator program for PWR calculations.?®

3.1 Solution of the System Equation by the Relaxation Method

In this section, we derive the matrix expression of the total system and then describe the equation
two-dimensionally because of the use of the prism-and box-shaped elements. That is, it is shown that the
equation is solved by applying SOR successively to x—y planar layers.

The system equation to be solved is rewritten from the result of Galerkin approximation in the following

form:
[H]-¢* =87, for g=12,.--G, (67)
where
[H)e = D/[Q)+32(Bl (cf. Eq.(56)), (67a)
§0 = 21 5 [F1o97 + 3 [KIwoge, (67b)
eff g’ g’
[F]9' = (v35)'[B], (67¢)
[K]r#'e = 32'9[B]", (67d)

and [Q]” and [BY]" are the integrals over finite elements, Q7 and B, already shown in Chapter 2 (see also the

following Eqs. (68) and (68a)) and r is the supercript which shows the prism- or box-shaped element.
The local node indices of both the elements are ordered on x—y planar layers as shown in Fig. §.

Since the three-dimensional [Q] and [B]' have already been described by two-dimensional ones in
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i \
1
(a) Prism-shape eiment  (b) Box-shape element

Fig. 5 Local node indices on x-y planar layers.

Chapter 2, the matrices in Eq. (67) are written by the submatrices having planar indices:

Or PI)
7T = 68
or = (5 (68)
and
By Dy
[B] = ( Dy B}). (68a)
Consequently we obtain the expressions for [H], [F] and [K] as follows:
Ar C,)
H] = , 69
=g ©9)
F[ G[
[F] = (Gz Fu), (69a)
and
S] RI )
K] = s 69b
K] (RI Su (690)
where
Ay = Ap = D0+ 23,By,
Cr= DP(+2,Dy,
Fr = Fy = (v3y)By,
(69¢)

G[ = (DZ[).D},
St = Su = YsB1,
Ry= 33Dy,

In addition, @y, P;, B; and D are expressed by two-dimensional submatrices as shown in Chapter 2:

P = Az-QT—%-BT, (70)
Or=2-4207+ Aiz~ -Br, (70a)
B;=2.Dy, (70b)
D= % -4z-Br, (70¢)

where B7 and Q7 are the two-dimensional ones shown in Egs. (48) (49), (60) and (61).
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AN
Cr | An|Cy o]
N . L] L ]

% 0} 4
N

symmetry ° Ciea|Arer| Gt

Qe Ciea]Pk | .
Submatrix Global matrix

Fig. 6 Structure of the global matrix.

Our ultimate object is to solve Eq. (67). Here we investigate the property of the coefficient matrices.

The submatrices are symmetric banded matrices as follows:
[A] = A(NB, N), an
[C] = C(NB,N), (71a)

where NB and N stand respectively for the half band width and the total dimension as shown in Fig. 6.
The global matrix [H] is composed of these submatrices and has the tridiagonal structure shown also
in Fig. 6. Considering the structure and the rather large dimensions of the global matrix and the sub-
matrices, it is pertinent to solve Eq. (67) by the successive over-relaxation method (SOR)** that has less
storage limitations to computers.??
The inner iterations with SOR are performed in the core memory successively for each planar layer.

That is, if ¢ is the inner iteration index, i and j nodal indices and I plane index,

P = ¢+ B(*— D), (72)
where

¢* = A1, i)~ (Si— Xi— Y:i—Z), (72a)
Xi= % ALY+ Y, A, Do) 72b
i -—j§2 1(J, 1)¢L,,I +j§2 1, l)¢M,-,h (72b)
Yi= % Cra( ISR o+ % CriCy DAY (72¢)

=& 1-1\Js Lj)Pr,1-1 2 1-1J> V)P 1-1 5
=N i LG N i 1Ye® d
Z = _Zz i, Lj)¢1_,,1+1+j21 1(J, DM, 141 (72d)

F= -

for Li=i-(G-D (Li=1), M=i+(j-1) @M<N),

and ${"; is the neutron flux for node L; within plane I at #-th iteration. The 8 is the relaxation factor and

it is approved by the Ostrowski theorem that the iterations converge for 0<<f<2.39

3.2 Acceleration Techniques and Convergence Criteria

The outer iterations are accelerated by the extrapolation of the SOR because of less storage require-
ments for computers. If P, is the fission source at a nodal point i and P* the value normalized by the
eigenvalue (K ), we obtain
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IP*

Pi - Keff g

(73)
where
G
Ko = S P}dv and P} = 3 (v3p),9!
reactor g=1

If n is the outer iteration index and (P’)"*? the point fission source calculated by the n-th flux, then we

obtain

PD = P+ B (PO —PM), 4
and by calculating

KO+D = SPl(n+1)dV ,

we get finally

1 ,P(n+l) .

¥\(n4+1) —
(Pi)(" ) = Ke(;,fg) i

The (P¥)"*" is the extrapolated fission source for the next outer iteration. This acceleration is adopted
after the 4-th outer iteration and continues until the effect of acceleration satisfies the criterion ERR <10 X
EPS1, where ERR is |[K®—K@+D|/K#+D and EPS1 the input for the outer interation criterion written
later in Section 3.7.

The inner iterations are accelerated by the coarse mesh rebalancing technique.’® This technique is
adopted neither for the one coarse mesh region nor for the case when satisfying the following condition.
That is, let K be the number of the coarse mesh regions and f}, the rebalancing factor for the region k, then

the condition is given by
[1.0— fmax| < 0.01, (75)

where foax = max {1, /2 -+ -, fx}
The algorithm of the coarse mesh rebalancing technique is as follows. If ¢; is the accelerated point

flux, it is given by
K
¢i=¢1k2 fiRe, for 1<i<N, (76)
=1

where

R _{1, for ick,
k= 0, for i¢k.

The rebalancing factor {f} is calculated as follows. The weight function {w} is defined by

¢j’ forjeka

Wj:[O, for jetk, for 1<j<N. an

Multiplying Eq. (67) by W, putting the resulting residual to zero and substituting Eq. (76) into the obtained

equation, we get

(H)*{f]1 = {S}*, (78)

where
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Hy= 3 X ¢:Hyé;, for iek,jes, (78a)
i j

and

St= L #:Si. (78b)

Equation (78) is solved by the direct method (Gaussian elimination)*®,

Determination of the band width is also important for solving Eq. (67), because it affects the computer
storage and computation time. If the nodal indices are numbered on plane as shown in Fig. 5-(b) for instance,
then the half band width NBAND (=NB of Eq. (71)) is determined by

NBAND = max {By, By, -+, By, - - -, BnpLem} » 79
where NELEM is the number of finite elements on the plane and

B, = max {a;, a;, ax, a;} , (792)
in which

a; = |i—j|+1,  for cyclic i,j,k and 4. (79b)

If the user mistakes input for NBAND, the edited print for input data messages the correct NBAND
calculated by the above algorithm.

Finally we describe the convergence criteria. The program recognizes and stops when the following
two convergence criteria are satisfied. The inner iterations continue until the number of iterations reaches
a given inner maximum (NIMAX) or the following criterion is satisfied in SOR iteration ¢ for an energy
group:

P+ g0
o®

After the above conditions are satisfied, the calculation is transmitted to next energy group.

< EPS 2 (input). (80)

On the other hand the outer iterations continue until the number of iterations reaches a given

maximum (NOMAX) or the following criterion is satisfied for the eigenvalue K4 in the outer iteration n,

1
K&+ — KR

+1
KD

=< EPS1 (input). (80b)
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3.3 Flow Diagrams of Programs

i) FEM-BABEL

FEM-BABEL

main program

set the blank

common

print the input data with

CALL DTLIST card image*)

CAIL MAINI

STOP

*) The program which prints the data with the very card image after reading, was programed by H. Ryufuku and
registered already in JSSL37.
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ii) MAINI

MAINT program control

set time &
data, and
initialization

{

CALL ELAPS print CPU time for each module

!

CALL INPUT read input data

y
CALL ELAPS

Yes skip matrix routine if

NSTART=3 or NMTRX=4

No

CALL CHGFL1

i
CALL MEMSET

i

CALL MTRXEL make matrix

!
CALL ELAPS

|
=

CALL CHGFL1

!

CALL MEMSET

i

CALL OUTER outer iteration
¥

CALL ELAPS
!

CALL CHGFL1
i

CALL MEMSET
i

CALL OUTPUT final output
i

CALL ELAPS

!

end message

STOP
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iiiy INPUT

A Computer Program for Solving Three-Dimensional Neutron Diffusion Equation

by the Finitc Element Method

INPUT

read title,
and
print title

J

CALL FIDO

CALL FIDO

{

set entry for
input data

i

CALL PRINT1

TRX=1 No CALL DMPRD
Yes
No
NAUTO>0 CALL FIDO
Yes
CALL FIDO
|
CALL AUTOM
L
Yes ~| CALL PRNT2
o ]
Yes CALL DMPRD
"No
CALL FIDO
t
Yes | CALL PRNT3
(o]

®

read data and set
variable dimension

read [15]

stop by error in [1$]

skip read if restart

read [2¥]

print [18], [2*]

read tape [3$], [4*], [5*]

read [38], [4*], [5*]

read [6*], [7*]

auto-mesh-generator

print [38], {4*], [5*],
[6*], [7*]

read tape [8%], [9*]

rcad [88], [9*]

print [88], [9%]

JAERI 1256
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CALL FIDO

T

l CALL DMPRD

NMOPT=0 & N
NMTRX<3
Yes

CALL FIDO

CALL DMPRD

Y |
No

CALL PRNT4

CALL FIDO

es
No

| CALL. DMPRD

CALL PRNT5

CALL FIDO

|

[
Yes
No
No
Yes

CALL DMPRD

| amed

CALL PRNTG

BCON=0

Yes

CALL FIDO

CALL DMPRD

I
|

CALL PRNT6

®

read tape [10$]

read [10%]

read tape [115]

read [115]

print [108], [115]

read tape [12*]

read [12¥]

print cross section

read tape [13*]

read [13*]

read tape [158]

read [15%]

25
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CALL FLXST

CALL DMPRD

No
Yes

CALL FIDO ‘W
|

-
CALL PRNT6

CALL DMPRD

No
Yes

CALL FIDO
| e

y
CALL PRNT6

Y
NEDNO<0 es

CALL DMPRD

| caALL FIDO |
|

=
[7CALL PRNT7

¢—

error
message

CALL DZSET

!

CALL FPTAB

L

make tapel3

i

set entry for
blank common

STOP

set flux guess

read tape [17%]

read [178]

print [178]

read tape [18%]

read [18$]

print [185]

read tape [195]

read [19%]

print [199]

check data error

set 4z

JAERI 1256
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CALL RESTAR restart
@ .—%
CALL CHECK check overflow of
location
Yes RETURN
No
Yes )
CALL MTXRD set matrix data
No
-

RETURN
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iv) MTRXL

control the routine
MTRXEL making matrices

GOTO (1,2,3) NMTRX

CALL XY34
O

CALL XYZ
O—=

CALL MTRX

RETURN

v) XY34 make two-dimensional
Xy34 [BY, [OF

4.4

—-C DO L=1,NELEM )

set element coord.

prism
CALL PRISM prism element
box
CALL BOX box element
=
! [BY, [QY
write on tape 1

RETURN

<._
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vi) XYZ

XY7Z make three-dimensional
[P}, [Q], [D] and write on tape

Yes

No

read tape 1
[

——
write IQEAB
on tape

;

DO NZ=1,NZRN )

DO L=1,NELEM )

!

compute

[p],[Ql,[D]

|

write

on tape 2

RETURN
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vii) MTRX

MTRX

Yes

No

read IQTAB

from tape 2

L

DO g=1,NGRP >

:

CALL GMTRX
I

—
——<D0g1NGRP )
e

:

CALL GMTRX

|
]

DO g=2,NGRP )

i

_-C DO i=1,NDW
i

compute ong'

over the range

CALL GMTRX

RETURN

make planar global matrices,

(4], [C], [F], [G], [S], [R]

(IQP=1)

compute [4)2, [C], and
write on tape 3

(I1QP=0)

compute [F]¢, [G]?, and
write on tape 4

compute [S]P'?7[R]?’? and
write on tape 8

JAERI 1256
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viii) GMTRX

GMTRX

<

clear T

l

————{( Do wz=1,NzRN )

{
read [D][P][Q]

from tape 2

;

clear X, Y

No
I0P=1

Yes

X=x24D%[Q]+2,.8[D]2
Yn=Yn+Dg[P]+ng[D]

i
XD=xN45,8[D]2
YR=yt+5,8[D]

I

-
Th=TN4x0
write T, YD
on tape

Yes

No

Tn=2 oXn
write TO
on tape

Yes

No
Tn=Xn

|
write Xlon tape

!

RETURN

3. Three-Dimensional Computer Program FEM-BABEL

make planar sub-global
matrices and write on tape

compute [AJ[C]?

compute [F]?, [G}¢ or
[S]ﬂ’l' [R]ﬂ'ﬂ

NZ-1
XN YNz

X NZ (within region)

Xlast

31
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ix) OUTER

OUTER outer iteration

<

| caLL IniT | initial setting
No
NG=IGCDMP restartin; ti
IGCDMP=0 § option
>
Yes
—
CALL LAMBDA Py= Y [Fl{g)*
l g
PijPi /Reff Ket= 2 P
¢i'¢i/ Kef f ¢
'
CALL MEMSET clear NFLAG
©
NG-1
1
CALL PICKHM set [AJ[C)?
y
CALL SOURCE Si#=x"P+ L[S (¢} o
gl
!
set g-th flux
¥
CALL INNER inner iteration
!
I CALL MONITR monitor printing
{
NG=NG+1
Yes Q
No
No
Yes

IGCDMP=NG @

JAERI 1256
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CALL LAMBDA

|

CALL MONITR

!

Si=Si/Keff

converge?
No

converge inner?

o
CALL EL

ACC
—
Py = 54

i

: | 1ccDMP=1

CALL DUMP

|

RETURN

compute Keg

reach maximum outer iterations ?

converge in inner iterations ?

within 3 outer iterations?

acceleration of pointwise fission
source

make dump tape on tape 12

33
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x) INIT

xi) LAMDA

A Computer Program for Solving Three-Dimensional Neutron Diffusion Equation
by the Finite Element Method

INIT

set b.c.$=0

i

make IZTAB,
MXIM

|

CALL INSKIP

Yes .
No

set header
of tape 3
with group g

!

set ¢ on
tape 9, 11

|

RETURN

WDA

CALL MEMSET

N

— DO g=1,NGRP )

CALL MPYM1

Keff = Z P

A

initial set before outer iteration
and boundary condition (b.c.)

skip records of inscattering
matrix on tape

set g at restart

calculate fission source and
Keﬂ'

Ps=§:[F]”{¢}”

JAERI 1256
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SOURCE calculate g-th source term
S; = xBp; fission source

-<57DO i=1,NDW ;)
{

set g'

No

xii) SOURCE

CALL MPYM1 source per iteration

RETURN
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xiii) INNER

inner iteration

CAIL BALANC coarse mesh rebalancing

M=1

Or—

CALL MEMSET

!
DO IZ=1,NZRN
()

read [A]iC] ,
N=N+

calculate ¢ (t) calculate Egs. (72) (72a)

calculate ¢ (t)

______1______

CALL MEMSET

|
Yi=§;Cij¢j(t)

®

JAERI
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Yes ‘lal’

No

read [A]last
N=N+1

cal. ¢(t) calculate Eqs. (72), (72a)

converge?

check inner max.

M = M+l

RETURN
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xiv) BALANC

BALANC coarse mesh rebalancing

not accelerate for
C. M. region=1

CALL MEMSET

;____< DO IZj;,NZRN<>
{

read [A][C]

NBOTOM=0

CALL MPYM2 calculate Eqgs. (78a), (78b)

read [A]
v
DO JZ=2,NZ ‘)
)
CALL MPYM2

No

read [A]1,¢

N=N+1

|

CALL MPYM3 calculate Eqgs. (78a), (78b)

1256
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cal. {f}

accel, {¢}

Ex = |1“fk!

< Yes
Enax=0.01

No

solve Eq. (78) by
direct method

calculate Eq. (76)

NFLAG=1

r
RETURN
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xx) OUTPUT

OUTPUT

CALL PRESET

CALL POWERS

NEDOP>0

CALL OUT1

CALL 0OUTZ2

CALL OUT3

CALL OUT4

CALL OUT5

RETURN

edits

calculate SdV, S¢dV

calculate item on power

edit planar flux

edit element-averaged flux
edit element-averaged power
edit region-wise flux

edit region-wise power

1256
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3.4 Descriptions of FIDO Input Form

The FIDO input format used in the FEM-BABEL has been widely used since it was developed at
ORNL and has been adopted in the neutron transport programs ANISN, DOT*® and so on. The input
form is specially devised to allow the entering or modifying large data arrays with minimum labor. The
options for repeated data and for symmetric data are especially of advantage to the finite element com-
puter program. Accordingly, users may easily prepare data cards compactly if they are familiar with the
FIDO format.

Fixed Field Input

Each card is divided into six 12-column data fields, each of which is divided into three subfields, as
shown in Fig. 7. Three subfields are always composed of 2, 1, and 9 columns, respectively. To begin with
the first array of a data block, an array originator is placed in any field on a card as follows:

Subfield 1: An integer array identifier (<<100) specifying the data array to read.

Subfield 2: An array type indicator,

“$” if the array is integer data,
“*» if the array is real data,
Subfield 3: Blank.

Column — 12 24 36 48 80 72 80

1st field |2nd fieldl3rd field [4th field[Sth field|6th field

Subfield | 1 |2 3

Column —{ 1, 21314, 5 6 7 8,9 10 1l 1

Fig. 7 Preparation of a data card in the FIDO format.

Data are then placed in successive fields until the required number of entries has been entered. In
entering the data, it is convenient to think of a “pointer” which is under control of the user, and which
specifies the position in the array into which the next data entry is to go. The pointer is always positioned
at the first location of the array by entering the array originator field. The pointer subsequently moves
according to the data operator chosen. Blank fields neither cause any data modification nor move the
pointer,

Data field

It has the following form:

Subfield 1: The data numerator (an integer <<100). This entry is referred to as N, in the following
explanation.

Subfield 2: One of the special data operators listed below.

Subfield 3: A nine-character data entry, to read in F9.0 format. It will be converted to an integer if
the array is a ““$” array or if a special array operator such as “Q’ is used. Note that
an exponent is permissible but not required. Likewise, a decimal is permissible but not
required. If no decimal is supplied, it is assumed to be immediately to the left of the
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exponent, if any, and otherwise to the right of the last column. This entry is referred to

as N, in the following description.

Data operators and their effect on the array are as follows:

“Blank”

“R”
“I”

“Nn

“M”

cssn

“A”

‘GF’,
‘6E’$

“Z”

indicates a single entry of data. The data entry in the 3rd subfield is entered in the location
indicated by the pointer, and then the pointer is advanced by one. However, an entirely
blank field is ignored.

indicates exponentiation. The data entry in the 3rd field is multiplied by 10=¥!, where
where N, is the data numerator in the Ist subfield, and the sign is indicated by the data
operator itself. The pointer is advanced by one. In a case where an exponent is needed,
this option allows the entering of more significant figures than the blank option.
indicates that the data entry is to be repeated N, times. The pointer is advanced by N,.
indicates linear interpolation. The data numerator, N,, indicates the number of inter-
polated points to be supplied. The data entry in the 3rd subfield is entered, followed by
N, interpolated entries equally spaced between that value and the data entry found in
the 3rd subfield of the next non-blank field. The pointer is thus advanced by (N;+1).
The field following an “I” field is processed normally according to its own data operator.
The “I” entry is especially valuable for specifying a spatial mesh. In “$” arrays, inter-
polated values will be rounded to the nearest integer.

is used to repeat sequences of numbers. The length of the sequence is given by (N,+N;).
A sequence of (N;+N;) is repeated one time only and the pointer is advanced by (¥,+
N3). This feature is especially valuable for geometry specification such as regions.
indicates an inverse repetition of sequence of numbers analogously to “Q” except
that the sequence is repeated in the inverse order.

has the same effect as “N”* but the sign of each entry in the sequence is reversed in
addition.

indicates that the pointer is to skip N, positions leaving those array positions un-
changed. If the 3rd subfield is non-blank, then data entry is entered following the skip
and the pointer is advanced by (V,+1).

moves the pointer to the position N; specified in the 3rd subfield.

fills the remainder of the array with the datum entered in the 3rd subfield.

skips over the remainder of the array. The array length criterion is always satisfied
by an “E”, no matter how many entries have been specified. No more entries to an
array may be given following an “E’ except that data entry may be restarted with an
“A”.

causes (N, +XV,) locations to be set to 0. The pointer is advanced by (N,+N;).

The reading of data to an array is terminated when a new array originator field is supplied, or when

the block is terminated. If an incorrect number of positions has been filled, an error edit is given and a flag

is set to abort later the execution of the problem. The FIDO then continues with the next array if an array

originator was read but otherwise it returns control to the calling program.

A block termination consists of a field having “T” in the 2nd subfield. All entries following “T” on a

card are ignored and control is returned from FIDO to the calling program.
Special Field Input

If the user follows the array identifier in the array originator field with the character “U”, “V”, “W”

or “X” in the 2nd subfield, the input format can be selected by the user. If one of these characters is speci-
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fied, the FORMAT explained below must be supplied in columns 1-72 of the next card. Then the data for
the entire array must follow on successive cards. If the array data do not fill the last card, the remainder
must be left blank. In a field with “U”, “V”’, “W” or “X"* the 3rd subfield must be left blank.

“yg” inputs the following cards in the format (6E12.5).

“v” inputs the following cards in the format 4 (1X, E16.9, 1X).

“Ww» inputs the variable format data with (18A4) in the next card. In the following cards
the data are read according to the specified format.

“X” inputs the data in the following cards according to the variable format already read as
type “W”,

3.5 Use of Restarting Procedures

The FEM-BABEL cannot run different problems successively. However, the restart procedure is
designed to effect the continuation of the iterative process terminated in a previous run by saving the dump
tape (tape 12; restarting procedure). In the restarting procedure, one can use optional data by taking out
of the dump tape, for an example, the nuclear cross section data and/or the pointwise flux, etc.

The restart is specified by NSTART=3 or 4 in the input card “1$” and the calculation is continued
following the last iteration in the previous run.

A. Complete restarting with NSTART=3

User should input “title” card and “1$” card only and specify “NSTART=3" in the “1$” card.
All the data (the fluxes, the node points, the nuclear cross sections etc.) are read to be used as input data
and/or initial guess fluxes from the dump tape.

B. Modified restarting with NSTART=4

This restarting procedure is to modify partial data which does not change the program flow and then
to restart. One should input “title” card, “1$” card, and “2*” card. The data in the last run is taken for
unmodified data. The data which can be modified are for the following items (see Section 3.7): 12., 13.,
22,23, 24, 25., 26., 27., 33.,in “1$” card and 1., 2., 3., 4., 5., 6., 7. in “2*” card.

3.6 I/O File Unit Requirements

The contents in each tape file unit are described in the following, including those in the dump tape.

Unit No. Contents

Geometrical matrix data for each clement on x—y plane;
1 record 1: ((B7(i, £), Q7(i, ), i=1, 10), IQTAB (¢), {=1, NELEM),
record 2: (45(4), 4=1, NELEM)

Geometrical 3-dimensional matrix data for each z mesh and region;
2 record 1: (IQTAB (4), {=1, NELEM),
record 2~record NZRN+1: ((D(Z, £), P(i, §), QG, 8), i=1, 10), {=1, NELEM)

x—y plane global matrix data of every z region for each energy group, that is, 49 (NBAND,
NPOINT), C? (NBAND, NPOINT);

— g=1 < g=2
Pl ala|ala|a| s o |a o | 432 | Aw
e NZ—=1—fe—NZ=2— . —NZ=NZRN—

Tt is noted that there is no Ay% when the number of meshes within a region, NZ is equal to 1.
N7 q
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F7 (NBAND, NPOINT), G¢ (NBAND, NPOINT), and fission source term.

4 The same form as for file unit 3.
5 Card input
6 Print output
7 Not used
Scattering term in the same form as for file unit 3:
§9-¢ (NBAND, NPOINT), R?"~¢ (NBAND, NPOINT) up to maximum NDW in the following
order.
8 l(—— 1 2 > < g
} SR | SR | SR S, R S, R
152 1-3 2-3 1 - g(KNDW+1) g—1—-g¢
Point-wise fluxes are written for each energy group and this file is used also as the external tape
9 for initial flux guess;
record 1~record NGRP: (FLUX (i, j), i=1, NPOINT), j=1, NZMAX)
10 Temporary file. It is used at the inner iterations for [4]¢ and [C}e.
11 Temporary file for fluxes (the same contents as in file unit 9)
12 Dump tape. See 17. and 18. in the card B in Section 3.7
13 It is used for restarting or constant data at editing.
14 It is used only as the external tape for the geometrical x—y element data. For instance, it is
directly read from the edit file of LOOM-P2®
No. Record Contents of the dump tape Description
1 1 M12 (22) Flag for reading the dump tape
2 1 A (1)-A (260) Entry table and input constants
3 1 387, g4, 5 Geometrical data of x-y plane
4 1 8%, “9*» Geometrical data of z mesh
5 1 “108” Regional data on x-y plane
6 1 “118” Material table
7 1 “12% Cross section data
8 1 “13%» % data
9 1 “15%” Data of the zero flux boundary conditions;
it is skipped if NBCON<0
10 1~NGRP FLUX (NPOINT, NZMAX) fluxes
11 1 “17%” x-y planar data for coarse mesh rebalancing
12 1 “18%” z mesh data for coarse mesh rebalancing
13 1 “198” Data for editing flux
14 1 PS (NPOINT, NZMAX) Point fission source
15 1 DZRN (NZRN) Azlfolr3each axial region; record 1 of file
unit
16%) 1 MFPI1 (NXYRN) I’o.int1 ;able for each region; record 2 of file
unit
17%) 1 MFPI2 (MPOINT) Pojnt] gable for each region; record 3 of file
unit
18 1 NFLAG (NGRP) Flag for convergence performance of g-th
group
19 1 B, Qr, IQTAB Record 1 of file unit 1
2 48 Record 2 of file unit 1
20 1 IQTAB Record 1 of file unit 2
2~NZRN--1 D,P,Q Record 2 of file unit 2
21 1~MXLM A, C Copy of file unit 3
22 1~MXLM F, G Copy of file unit 4
23 1~MXLS S, R Copy of file unit 8

*) If NEDOP>>0, it does not have these contents.
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3.7 Input Specifications

The input data array for FEM-BABEL is read using the FIDO input system described in Section 3.4
except for “title” card. The data arrays are organized into blocks, which are terminated by a “T”* delimiter
as explained already. The FEM-BABEL does not permit to run the successive cases of 3-dimensional calcu-
lations, since they need too much computer time even on today’s computers. However, the code has the
various restarting functions in order to save the computer time as described in Section 3.5. An input ex-
ample is shown in Appendix together with necessary control cards for the execution.

A. Title card
one card; format (18A4)
B. Integer data

1% [33 parameters]

1. NGRP number of energy groups

2. NDW maximum number of groups for down-scatterings
3. NPOINT  number of node points on x-y plane
4. NZMAX  number of node points along z direction
5. NELEM number of elements on x-y plane
6. NXYRN  number of geometrical regions on x-y plane
7. NZRN number of geometrical regions along z direction
8. MTT number of materials
9. NBCON number of node points with the zero flux boundary condition on x-y plane
10. NBOTOM bottom boundary condition;
0: zero flux,
1: reflective
11. NTOP top boundary condition;

0: zero flux,
1: reflective
12. NIMAX inner iteration maximum allowed for energy group
13. NOMAX  outer iteration maximum for execution stop
14, NBAND  half bandwidth in the global matrix (see Section 3.2)
15. NKXY number of coarse mesh rebalancing regions on x-y plane
16. NKZ number of coarse mesh rebalancing regions along z direction
17. NSTART starting option for initial guess for flux;
flat,
guess read from the external tape (file unit 9),
guess read from the dump tape (file unit 12),
complete restarting from the dump tape (file unit 12),

S W NN = O

modified restarting from the dump tape (file unit 12)
18. NMTRX  option for matrix calculation;
1: calculate all the matrices for a new case,
2: read the geometrical matrix on x-y plane from the dump tape (file unit 12),
3: read the 3-dimensional geometrical matrix from the dump tape (file unit 12),
4: read all the global matrices from the dump tape (file unit 12)
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19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

A Computer Program for Solving Three-Dimensional Neutron Diffusion Equation JAERI

NPRNI1

NPRN2

NPRN3

NXYOP

NMOPT

NCSOP

NFISOP

NBCOP

NKOPT

NAUTO

NXP1

NYP1
NEDOP

NEDNO

NEDPT

by the Finite Element Method

print option for the material cross sections;

0: no print,

1: print

print option for regional data;

0: no print,

1: print

print option for elements and coordinates;
0: no print,

1: print

input option for regional data on x-y plane;

0: by cards,

1: from the dump tape

input option for material number data;

0: by cards,

1: from the dump tape

input option for nuclear cross section data;

0: by cards

1: from the dump tape

input option for ¢ data;

0: by cards,

1: from the dump tape

input option for zero flux boundary condition data;

0: by cards,

1: from the dump tape

input option for the coarse mesh rebalancing region data;

0: by cards,

1: from the dump tape

option for auto-mesh generating routine (on x-y plane);

0: not used (input by cards),

1: generate grid meshes all composed of right angle triangles,
2: generate grid meshes all composed of rectangles,

3: read from the external tape (file unit 14)

number of node points along x direction for auto-mesh generating routine
number of node points along y direction for auto-mesh generating routine
edit option for flux; ‘

0: edit the point-wise fluxes on x-y planes,

1: edit the element-averaged fluxes on x-y planes,

2: edit the element-averaged fluxes on z meshes

1256

number of edit fluxes for x-y planes or z meshes; the number of z meshes with x-y

planes for edit x-y plane fluxes, or the number of x-y points with z meshes for edit

z mesh fluxes

input option for parameter 32, NEDNO;
0: by cards,

1: from the dump tape



JAERI 1256

“T”

3. Three-Dimensional Computer Program FEM-BABEL 47

terminator

C. Floating point data
2* [7 parameters] (input for NSTART=:3 in “1$” card)

1. EPSI

2. EPS2

3. SORF

4. POWER

5. TIME

6. FAl

7. FA2
w

D. Geometrical data

criterion for outer iteration convergence (K,q)

criterion for inner iteration convergence (point-wise flux)

over-relaxation factor 8 due to SOR method; 1.0<SORF<L2.0

operating power level in megawatts for normalizing fluxes

CPU execution time limit in minutes

coefficient on geometrical symmetry of a nuclear reactor for power-normalized
fluxes (such as 1/FAl-reactor core)

number of nuclear fissions per watt-sec (1/K;, see also Section 3.9)

terminator

point data on x-y plane (input for NMTRX=1 and NAUTO=0 “1$” card)
3$ NELNO (4, NELEM)

input the number of the node points which compose an element in anticlockwise,
put NELNO (3, NE)=NELNO (4, NE) for a triangular element

4* PX (NPOINT)

input x-coordinate on each node point

5% PY (NPOINT)

“T”

input y-coordinate on each node point

terminator

data for auto-mesh generating routine (input for NMTRX=1 and NAUTO>0)
6* XNODE (NXPI)

distance from center to each mesh-division in x-coordinate

7* YNODE (NYP1)

uT”

distance from center to each mesh-division in y-coordinate
terminator

z mesh data (input for NMTRX L2)
88 NDZR (NZRN)

number of divisions in each region in z-direction (from bottom)

9* ZNODE (NZRN)

“T”

region width in each region in z-direction (from bottom)

terminator

regional data on x-y plane (input for NXYOP=0 and NMTRX <3)
10$ NXYGN (NELEM)

(13 T’ 3
E. Material data

assign the region number on each element

terminator

material table (input for NMOPT=0 and NMTRX <3 in “1$” card)
11$ NMRGN (NXYRN, NZRN)

(6T!’

assign the material number on each region (from bottom)
terminator

cross section data (input for NCSOP=0 and NMTRX<3)
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12* CS (IHM, NGRP, MTT)
input macroscopic cross sections on each energy group for every material; within

a group, the order of data in cross section tables is:

Position Entry

1 h

2 D

3 v

4 :

5 g—’n +1

6 Fomet?
IHM Eg—»y +NDW

where NDW is the number of groups for down-scatterings
“T” terminator
F. Fission spectrum (input for NFISOP=0 in “1$” card)
13* AKAI (NGRP)
input the energy-wise ? in order of g=1, 2, ... NGRP
“T” terminator
G. Data for the zero flux boundary condition on x-y plane (input for NBCOP=0 and NBCON>0 in
“1%” card)
158 NBPOT (NBCON)
input all the numbers of node points with the zero flux boundary condition
i terminator
H. Data for coarse mesh rebalancing region (input for NKOPT=0 in “1$” card)
x-y plane data
178 KRPNT (NPOINT)
assign the coarse mesh rebalancing region number to each node point
“1” terminator
z mesh data
188 KZRN (NZRN)
assign the coarse mesh rebalancing region number to each region (from bottom)
“1” terminator
I. Edit data (input for NEDNO>0 and NEDPT=0 in “1$” card)
193 NEDTB (NEDNO)
position table of edited fluxes or powers for specifying;
the node point numbers in the z direction for NEDOP=0 (from bottom), or
the mesh (element) numbers in z direction for NEDOP=1 (from bottom), or
the element numbers on x-y plane for NEDOP=2.
It is noted that the power in z meshes is edited even for NEDOP=0 at power edit.

T terminator
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3.8 Operating Instructions

Since the variable dimension in the blank common is adopted in FEM-BABEL, users must determine
the amount of data storage required for a problem in the program in order to use the computer efficiently
as well as to prevent the storage from overflowing.

The required amount of data storage space, MEMORY, is given by MEMORY=PL+BLK,
where PL, the program size which contains the labeled common, is 41 kilowords on the FACOM 230/75
operating system. The BLK, the length of blank common, is given by

BLK=INPUT+max {MTRXEL, OUTER, OUTPUT},
where INPUT, MTRXEL, OUTER and OUTPUT are the lengths of blank common in their modules,
respectively. Usually user can refer to the memory arrangement printed at the beginning of the edit as
shown in Table 1. Otherwise, one can calculate the length of blank common in each module as follows:

INPUT=260-+6 x NELEM+NPOINT (3+NZMAX)+NZRN (4+NXYRN)-+NGRP+NBCON-+

NEDNO-+IHM X NGRP xMTT,

MTRXEL=31 x NELEM-}3 x NBAND xX NPOINT,

OUTER=KPNO x KPNO1+2 x NPOINT (NZMAX-+NBAND+-1)42 xNGRP,

OUTPUT=NELEM (3 x NZMAX —2)-+NXYRN (14+NZRN (742 X NGRP))+NGRP.

Table 1 Memory arrangement edited as an example on FACOM 230/75 computer

Module name Required size (words) Allowed size (words)
INPUT 25125 100000
MTRXEL 86584 100000
OUTER 98844 100000
OUTPT 82508 100000

3.9 Edits

Input edit

Following the title, the edit prints the input data B., C., D, E., F., H.,and L. explained in Section 3.7.
The table for the memory arrangement is printed at the end.
Output edit

It begins with editing the convergence performance (on K 4 and flux) and the calculation time for
each outer iteration. Additional edits are described in the following (i=node point, g=energy group,
e=clement and r=region),

i) point-wise fluxes normalized by power for each region (859);
#1 = agy,

where

POWER x 106 x FA2
FAL x S ¥ S9goav

core ¢

(see “2*” in Section 3.7 for POWER, FA1 and FA2).
ii) point-wise powers (PP);
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PP = 3 Zj¢¥7.
g

iii) element-averaged fluxes and powers (¢¥?, PP,);

S grdy
$o = =F ’
S av
e
PPAV
PP, = -=%
S av
iv) region-wise edit;
regional volume: V,= 3] S av,
ecrJde
regional power: PR,=J, S PPAV ,
ecrJe
regional volume-averaged flux: AF?= 1 » S ¥ dV,
r ecrJe

regional maximum flux: FM?=max{¢}*:ier},

regional maximum power: PM,=max{PP;:ier},

. . FM?
regional flux peaking factor: PFF’= ,
AF?
) . Ve
regional power peaking factor: PFP,—=PM,- PR
v) edit for total system
system volume: V=>V,,
system power: POW= 3 PR,,
r
system flux peaking factor: PFF=FMAX 4
S ¢*9dV
system
system power peaking factor: PFP=PMAX Y
pPow’

JAERI 1256

where FMAX and PMAX are the maximum point flux and the maximum point power in the system,

respectively. In addition, the element numbers and the mesh numbers in z direction are edited for maximum

point powers.

The descriptions about error message are omitted as they are self-explanatory in the code.
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4. Program Application and Comparison with Other Methods

The main purpose of this chapter is to establish the reliability of FEM-BABEL. For this purpose we
have treated in Section 4.1 a homogeneous cubic reactor problem which is exactly solvable and in Section
4.2 a modified IAEA three-dimensional problem for comparison with the finite difference calculations.
Comparisons have been made for the eigenvalues, power distributions, convergences of outer and inner
iterations, computer storage requirements and computation time.

In discussion of the power distributions, the element-averaged powers (see Chapter 3.9) are used since
the finite difference program CITATION®” adopts the central difference scheme. Program sizes are 41
kilowords for FEM-BABEL and 60 kilowords for CITATION on the FACOM 230/75 operating system.
The calculations are performed with 3 and 4 inner interactions per outer iteration for the 1st and 2nd
problems, respectively, for both the programs. Material constants used for these test problems are listed

in Table 2 (see also Fig. 12 for the corresponding material number of the IAEA problem).

Table 2 Material constants for the test problems

Mate- Energy X, D vy, X, Xeg.g+1
Problem rial group (cm‘gl) (crrz) (cm‘vl) (cr‘;lg‘) (én‘;‘gl) g Comment
Exact : 1 1.2334x10°2 2.6800 3.0834x 102 1.3785x 10-2 4.0792x 102 0.575 c
Ore
problem® 2 1.0080x10-2 1.5788 2.5200x 10-2 1.4496 x 102 0.0 0.425 °
. 1 00 1.50 0.0 0.01 0.02 Fuel 1
_ u
2 0.056 040 0.135 0.08 0.0
) 1 00 1.50 0.0 0.01 0.02 1.0 Fucl 2
[+
2 0.056 040 0.135 0.085 0.0 0.0 “
IAEA 3 1 00 1.50 0.0 0.01 0.02 Fuel 2
problem® 2 0.056 04  0.135 0.13 0.0 o +absorber
. 1 00 20 0.0 0.0 0.04 Reflect
2 0.0 03 00 0.01 0.0 cliector
5 1 0.0 20 00 0.0 0.04 . Reﬂector
2 0.0 0.3 0.0 0.055 0.0 +absorber

4.1 Verification of the Program through Exact Solution

In order to verify the computer program FFM-BABEL, it will be best to deal with an analytically
solvable problem. We therefore consider here a homogeneous cubic reactor in a two-energy-group model.
The reactor configuration is illustrated in Fig. 8. In this case, the multigroup diffusion equation is exactly
solvable. Now, set 2={(x, y, z): 0<x<L, 0<y<L,0<z<L}, and the system of Eq. (1) takes the form:

—Dulr+ Zoat = 2= [GE 0+ 6]
8D
—Dodpr+ 3, 202 = 21201+

S 0l G I+ 3],
eff

for (x, y, z) € 9, with the boundary conditions
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2 0.%,0) = 56,50, = 28,063, 0), (812)

O, (L, x,2) = ¢y(x,L,z) = ¢ ,(x,y, L) =0, (81b)
for (x, y, z) € 3, and g=1, 2.

If we set B>=3 (z/2L)? and EazDﬂB2+2,m for g=1, 2, then the multiplication factor K 4 is given by
the expression

| =
s #0
y 40‘1 '/'/
{cm) :g}#’l:o COI% $=0

1wl /7,
o0 |
0 10 20 30 30 5

x{cm)

o

50
40

Z  30{¢4
(cm) o $=0 Core $=0

10l
o}

$0

Fig. 8 Reactor configuration of the exact problem.

Table 3 Comparison between the numerical and analytical values
of the multiplication factor for the exact problem

Mesh size
An‘ﬂﬁ};cal 2cm 5cm 10 cm
Korr Relative error K Relative error Kerr Relative error
FEM-BABEL 1.33537* 0.010% ;;:;1;/183* gg;z;%, 1.33211* 0.25%
1.335506 — — . .054% — —
CITATION 1.33562 0.009%, 1.33623 0.054% 1.33842 0.22%
* With octant symmetric configuration
o Exact
| ob—o—0—0 FEM-BABEL
1.340 b—t—b—n  CITATION e
13367 -
1330 o é 1'0

Mesh size (cm)
Fig. 9 Comparison of Kes between FEM-BABEL and CITATION as a function of mesh refinements.
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XOENE+11(v )X 12+ 120 2)2Ex 82)

Kerr = E.E;

and the unnormalized flux corresponding to K4 is written as follows:

dq(x,y,2) = A, cos (%x) -COS <2—72—y>~cos (37%2) , for ¢g=1.2 (83)

where
Al = aA2 ]

_ 0k
vE+ 122

If the flux is normalized to one fission in the entire reactor, then

4y BB
a(Zn+(2f):

For the program check of FEM-BABEL, we used this exact solution and the finite difference solution
from CITATION.* The finite difference calculations were performed for a quarter symmetric configura-
tion for a sequence of mesh sizes of 2 cm, 5 cm, 10 cm. On the other hand, the finite element calculations
were carried out for an octant symmetric configuration for the same mesh size sequence and for a quarter
symmetric configuration with the mesh size of 5 cm.

From a comparison of the effective multiplications with the exact value given in Table 3, the finite
element solutions are seen to come as near to the exact value as the finite difference solutions. As illustrated

in Fig. 9, we also note the finite element solutions approach the exact value from smaller values as the mesh

Table 5 Comparison of the numerical and analytical values of the power distribution
for the mesh size of 5 cm

x (cm)

2.5 1.5 12.5 17.5 22,5 27.5 32.5 37.5 42.5 415

Analytical 10 09754 09267 08553 0.7628 0.6515 0.5241 0.3839 02342 0.07870
Octan 10 09742 09254 08541 07617 0.6506 05234 03834 02339 0.07860
ctan

FEM. —  0.12% 0.14% 0.14% 0.14% 0.14% 0.13% 0.13% 0.13% 0.13%
BABEL ouarter 0 0.9754 0.9268 0.8553 0.7628 0.6515 0.5241 0.3839 0.2342 0.07870
— 0.00°% 001% 000% 000% 0.00% 0.00% 0.00% 0.00% 0.00%

CITATION 1.0 09754 09267 0.8553 0.7627 0.6515 05241 03840 02342 0.07869

— 000% 000% 0.00% 001% 000% 000% 003% 0.00% 0.01%

Table 6 Comparison between the numerical and analytical values of the power distribution
for the mesh size of 10 cm

x (cm)
5.0 15.0 25.0 35.0 45.0
Analytical 1.0 0.9021 0.7159 0.4597 0.1584
FEM-BABEL 1.0 0.8979 0.7119 0.4574 0.1576
— 0.479%, 0.56% 0.50% 0.51%
1.0 0.9021 0.7160 0.4596 0.1584

CITATION . 0.00% 0.01% 0.02% 0.00%
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4. Program Application and Comparison with Other Methods

1.35¢
| Exact
1.30
5
X
1.25}F o—c—o—0 FEM-BABEL
- s—t—r—A CITATION
1.20F
L L L i L L 1 1 1 1 1 i L L 1
& 50 5 10 15

Number of outer iterations
Fig. 10 Comparison of Keg’s iterative perfromance for mesh size of 5 cm.

-t

10
e o—0—0=—0 FEM-BABEL
=2
10k e
s l o—o—o—o CITATION
l improvement by ]
§ extrapolation 1
®
S s
'é 10 3 .
g X
s ]
£
3 ;
‘,65 1 L 1
5 10 15 20

Number of outer iterations

Fig. 11 Comparison of the inner iterative performance for mesh size of 5 cm.
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sizes decrease, while the finite differences solutions approach from larger values. From comparisons be-
tween the power distributions for various mesh sizes given in Tables 4 to 6, it is here ascertained that both

the numerical solutions agree well with analytical results within adequate precision.

Table 8 Comparison of the computation times and storage requirements

Mesh size
2cm 5 cm 10 cm
Storage CPU time Storage CPU time Storage CPU time
(words) (sec) (words) (sec) (words) (sec)
FEM-BABEL 50669* 1775 5394 >4 1469* 10
i 10337 92
CITATION 158585 342 15228 38 4709 25

* For octant symmetric configuration

Table 9 Comparison of iterative performance at the same error range in case of mesh size of 5 cm

Error range* Kerr at the Outer Computation Relative
(%) range iterations time (sec.) ratio
FEM-BABEL 0.060 1.33470 6 96 1.0
CITATION 0.052 1.33620 10 22 1.4

* Analytical value (Kegr=1.335506) is taken as reference one.

160 0\/'

1401 4 8
120] _—i_L II,-/

100 %
y ao% 2¢] $=0
sty

{cm)

Bt:efam
0 20 40 60 80100120ﬂ0|6q
: x {cm)
: 'b;
360@-;’4‘ 3
é A Vi
3
7
2501 4 '%
2 2 |1}j4le=0
z
{cm)
E %
L
?.OI a
9=0

Fig. 12 Reactor configuration of the IAEA problem.
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Next we investigate the convergence mechanism of the outer and inner iterations. Figure 10 presents
a comparison of the eigenvalue convergence as a function of the number of outer iterations between the
finite element and finite difference calculations for mesh size of 5 cm. It is of interest to note that the finite
element calculations indicate rather higher convergence than the finite difference ones. Inner iteration
error for the finite element calculations given in Fig. 11 is seen to decay rather smoothly and fast, even
though these calculations use the simple SOR. On the contrary, the finite difference calculations show that
the speed of error decay is drastically increased in the midway of convergence, for it comes from the fact
that CITATION adopts a sophisticated technique like the flux extrapolation for the inner iterations. Con-
sidering together with the results summarized in Table 7, we may infer that both the outer and inner
iterations of the finite element calculations converge in the same rate as the finite difference calculations.
Comparison of computation times and storage requirements between two programs in Table 8 indicates
that the differences are resulted from those between their data processing procedures. In addition, from
the iterative performance in Table 9, we find that FEM-BABEL has rather less computing cost. From the
above mentioned results, we may conclude that FEM-BABEL calculations give proper solutions and are

utilizable.

4.2 Calculation of a Pressurized Water Reactor

In this section we discuss the efficiency of FEM-BABEL for a real scale problem, which comes from
a slight modification (for reason of consistency to the boundary condition of the finite difference method)
of the three-dimensional IAEA water reactor problem®? illustrated in Fig. 12, by comparing with the finite
difference calculations. A comparison is performed for mesh size of 5c¢m on x-y plane and 10cm in z

direction up to 34 outer iterations due to saving computation time. The reference value for comparison

Table 10 Comparison of the multiplication factor and convergence between FEM-BABEL
and CITATION for the IAEA problem

FEM-BABEL CITATION
Koy 1.02261 (0.589%,) 1.02075 (0.76%)
10th Outer error 4.5x10- 7.4x10-4
outer iteration Inner error 4.7 3.4x10t
CPU time (min) 44,2 941

Kegr 1.02510 (0.34%) 1.02416 (0.43%)
20th Outer error 1.6x 104 2.2x107*
outer iteration Inner error 3.5x10"2 1.6x101
CPU time (min) 85.7 19.0
K 1.02635 (0.22%) 1.02572 (0.28%)
30th Outer error 9.6 x10°° 1.2x10°*
outer iteration Inner error 2.5x10°2 2.7x1071
CPU time (min) 128.7 28.5
Kewr 1.02670 (0.19%) 1.02614 (0.24%)
34th Outer error 8.0x10? 9.7x10-%
outer iteration Inner error 2.2x10-8 1.6x10-2
CPU time (min) 146.3 32.2

Percent values in Ker are the fractional deviations from the reference value Keg= 1.028615 calculated by
CITATION with 63 outer iterations, outer error of 1. x 10-%, inner error of 6.1 X 10-* and CPU time of 59 min.
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Fig. 13 Comparison of convergence performance of Kerr between FEM-BABEL and CITATION.
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Fig. 14 Comparison of performance of inner iterations between FEM-BABEL and CITATION.

Table 11 Comparison of iterative performance at the same error range

59

Error range* Kerr at the Outer Computation Relative
(%) range iterations time (min.) ratio
FEM-BABEL 0.24 1.02615 28 120. 1.0
CITATION 0.24 1.02614 34 32. 0.27

* See about the reference value the margin below Table 10,
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Relative power (normalized to the average)

by the Finite Element Method
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Fig. 15 Comparison of radial power distribution between FEM-BABEL and CITATION.

Relative power (normalized to the average)
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Fig. 16 Comparison of axial power distribution between FEM-BABEL and CITATION.

was obtained from the CITATION calculation for the same mesh size, when converged within the outer

error of 1.0 x 10~* and inner error of 1.0 x1073.

The results on iterative performance given in Table 10, Figs. 13 and 14 show that the finite element

calculations converge in similar rates for the outer and inner errors as in the finite difference ones except

for the timing comparison. The locally better performance in the finite different calculations seen in Figs. 13
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Table 12 Comparison of the solution techniques and assumptions for the IAEA problem

. FEM-BABEL CITATION
Program size
41 kilowords 61 kilowords
; SOR for every 4 inner ADI for every 4 inner

Solution method iterations with $=1.6 iterations with adaptive 8
Acceleration use only SOR but not coarse SOR +adaptive
for inner iterations mesh rebalancing technique extrapolation
Acceleration fixed extrapolation by SOR Chebyshev extrapolation
for outer iterations with g,=1.7
Storage requirements and 126 kilowords; only planar 455 kilowords; all data in
data processing data in core memory core memory
CPU time 120 min for 28 outer 32 min for 34 outer
(see Table 11) iterations iterations

and 14 is due to the adaptive extrapolation technique as already described in the previous section. On outer
iterations the finite element calculations indicate rather better performance than the finite difference ones,
although the former doesn’t adopt such sophisticated technique as the latter does. A comparison of the
timing performance at the same error range is shown in Table 11.

Comparisons of power distributions illustrated in Fig. 15 for x-y plane and Fig. 16 for z direction
show that within tolerable errors the finite element results agree globally with the finite difference ones
except near the core-reflector interface. It may be inferred from a sense of reactor physics that in this point
of view the finite element calculations are more reasonable than the finite difference ones.

Finally we present in Table 12 the comparison of the solution technique and the assumption between
FEM-BABEL and CITATION. The FEM-BABEL requires solely a smaller core storage and then can
easily perform realistic three-dimensional calculations without being afraid of the computer restriction.
We can compute using FEM-BABEL the present problem with the same core storage (for reason of adopt-
ing the plane-like SOR in FEM-BABEL.: see also Section 3.1) for finer meshes in the z direction, for instance,
mesh size of 5 cm. However, CITATION in our version needs so much core storage in three-dimensional
problem that it cannot calculate this problem. It seems that FEM-BABEL is slower in iterations, but we
consider that the iterations are substantially fast from the fact that in the core storage the disk data transfer

rate is about 10 times slower than the multiply rate.
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5. Conclusions

Through the numerical calculations of the exact problem and a realistic large problem, it can be
concluded that FEM-BABEL is acceptable especially for the analysis of a pracitcal problem from viewpoint
of reasonable computing cost. It is seen that the iteration method is very effective also for the finite element
calculations. In the present calculations, we did not use the coarse mesh rebalancing technique, which is
known to have an effect for analysis of practical problems (it is reported that the computation time is
reduced to one fourth by adopting this technique for a two-dimensional TRIGA reactor calculation®?).
By using this technique the calculation time will be reduced to some extent compared with the present
calculation.

Some improvements to the iteration method have been reported so far.*"4? Data handlings like the
concurrent iterations (solving simultaneously several planar layers in the core storage) and the parallel
processing will improve the efficiency of the method.?®

Another question for the finite element calculation is the difficulty of mesh generation for practical
problems. To FEM-BABEL, the mesh generation program®® already developed by us gives the users
a help to prepare a large amount of data.
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Appendix

We present here the list of input cards together with control cards, for FEM-BABEL calculations on the repre-
sentative problems shown in the present report. Readers can therefore ascertain the results given in the text.

A-1 Input cards set up for the quarter symmetric geometry with mesh size of 5 cm for the exact problem
A-2 Input cards set up for a new case of the IAEA problem
A-3 Input cards set up for a restart case of the IAEA problem
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A-1 Input cards set up for the quarter symmetric geometry with mesh size of 5cm for the exact problem

.|l'*lltolooli*llilztnnO*rntqulo.*o'noavtl.*ov!gsooot*ov'c6|0!c*tcol7no!l*00!l8

¥NO P666 /
T.5/TIME 15M
C,3/CORE 192
w,1/PAGE 80
P,0/PCH 0
¥GJOB 55211304T 4 1S€E+431,11FEMBABEL /J0B=CARD
¥HFORT
C PROGRAM FEM=BABREL
COMMON TAC 70000
CALL CHGFLO(MWN) BABEL 7
C * FACOM » BABEL. 9
[AC1)= 70000 1A -
C BABEL 12
CALL DTLiST
CALL MAIN] BRABEL 13
ST0P BABEL 14
END BABEL 15
¥HLIEDRUN RFNAME=J)1223,B8ABELAY EDITaYES, S1ZE=30

¥TPDISK FOl4DISP=DELETEWRSIZE=900+8S1ZE=6300
¥TPDISK FO24DISP=DELFTEVRSIZE=900+BS17E=6300
¥TPDISK FO34DISP=DELETEVRSIZE=900BSI2E=63G0
¥TPDISK FO4 DISP=DELETFVRSIZE=9004BS12E=6300
¥TPDISK FO8+DISP=DELFTE'RSIZE=900+&S12E=6300
¥TPDISK FO9WDISP=DELETEWRSIZE=900,85IZE=6300
¥TPDISK F104DISP=DELETEYRSIZE=900«KSI2E=6300
¥TPDISK F11+DISP#DELETEWRSIZE=9004+8S12E=6300
¥TPDISK F12+0ISP=DELFTE'RSIZE=900+8S12E=6300
¥TPDISK F13sD|SP=DELFTE'RSIZE=900+8512E=6300
¥TPDISK F144DISP=DELETERSIZE=9006S12E=6300

¥DATA
2 GROUPS 3 DIM,BARE REACTOKDX=5CMyQUARTER SYMMET, ALL SQUARE MESHES
1% 1%
2 1 121 11 100- 1 1= 6
1 1 21 0 1 3 7=12
300 13 1 1 0 1 13-18
1 1 1 o} 0 0 19=24
0 ) 0 2 11 11 25=30
0 3 N § 31~ 33
2% 2%
140 =05 1.0 ~05 1.7 1.0 3.0 8.0 1= 6
343 410 7 7= 9
6% 6%
91 0,0 50,0
T ™
91 0,0 5040 T
8¥ B¥
10
9% 9%
50,0 T
10% 10%
F 10T
11¥ 11%
F 1 T
12% 12%
1,2334=02 24,6800 3,0834=02 1.3785=02  4,0792-02
1,6080-02 1,5788 2,5200-02 1,4494=02 Cc,0 T
13+ 13%
0,575 0,425 T
15% 15¥NBPOT
8l 11 110 91 111 121 3
17‘ 1
F 17
18%
F 17
19¥
1 5 10 T

¥JEND
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A-2 Input cards set up for a new case of the IAEA problem

llt'*"l.lll!t

*oo!.Z.i|5*on.n3nour*ovova'vov

¥NO B333,
¥GJOb $5211304T,I5E+431,11+FEMBABEL
¥HFORT
C PROGRAM FEM=BABEL
COMMON 1A(14C000)
CALL CHGFLO(MN)
C * FACOM #
1A(1)=140000
¢
CALL DTLIST
CALL MAIN1
STOP
END

SUBROUTINE ACCEL(P+S)
DIMENSION P(1)+5(1)
COMMON ACl)

EQUIVALENCE (AC142) +NPALL)(A(128) +RAMDAJ + (A(253)+SORF)

T=0,0
DO 1 IsleNPALL
PCII=P (1) +1,70%(SCI)=PC1))
1 T=T+P(])
DO 2 I=lsNPALL
2 PCYSPCIN/T
RETURN
END
¥HLIEDRUN RFNAME=J1223,BABELAs EDITEYESWUPDT=YESSIZE=30

¥TPDISK
$TPDISK
$TPDISK
¥TPDISK
¥TPDISK
$TPDISK
¥TPDISK
¥TPDISK
$TAPE

#TPDISK
$TPLISK
$DATA

3D=1AEA(MODIFIED) FOR COMPARISON #1TH CITATION. UX35CM DZ=10CM

1%

2%
3%

FOLyDISPaDELETEsRSIZE=90CBSIZE=6300
FO24DISP=DELETEVRSI2E®900+85]2E=6300
FO34DISP=DELETE vRSIZE=90CB8512E=6300
FO4+DISPaDELETE YRS IZE=900+BS1ZE=6300
FOB+DISP=DELETE +\RSIZE=900+BS1ZE=6300
FO94DISP=DELETEYRS1ZE=900+8512E=6300
F10+DiSP=DELETEYRSIZE=900+8S12E=6300
F114DISP=DELETEYRSIZE®S0048512ZE=6300

F12+J1223,B333+NEW010215

F13+DISP=DELETEVRSIZE=®900,8512E=6300
F14DI1SP=DELETEIRSIZE®900+8512E=6300

2 1
5 4 5
6 100 36
1 3R 1 6R 0
1 2 o T
1.0 -09 1.0 -03
8, 3.265+10 T

wC N
LSO} V]
[ SRV AV

630
35
1
-0

1.6

o LWL

39

67

*Ql.‘j..l.*ll!.6.0'.*'."7‘lIl*."la

/
T« T/TIME 60M
C.4/CORE 256
W.,1/PAGE 80
P+0/PCH 0
'LRG/
/JOb=CARD

BABEL 7
BABEL 9

BABEL 12
BABEL 13

BABEL 14
BABEL 15

BABELA

595 1 ~05

55.¢C

0
0
0

6 =11
12=-17
i8=~30
31-33
l=~-5
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10
12
13
14
15
17
18

20
21
23
24
25
26
27
28
30
31
32
33
34
35
36
38
39
40
41
42
43
44
45
47
48
49
56
51
52
53
54
55
57
58
59
60
61
62
63
64
65
66
68
69
70

by the Finite Element Method

“l"lb'.'!*lll'?.'ll*l.'.a
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00..*....1!||l*t‘-020'0'*Oao-3nuqu*u-'04-0l.*"o'soovl*ctl06".!*l00l7-l'u*00008

59
60
61
62
63
64
65
6€
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
g2
83

70
71
72
13
74
75
76
71
79
(49}
81
42
83
84

113
114
115
116
117
118
119
121
122
123
124
125
126
127
128

71
72
73
74
75
76
77
78
80
81
82
83
84
85
86
87
88
89
30
91
93
94
95
96
97
98
99
100
101
102
103
104
105
107
108
109
110
111
112
113
114
115
116
117
118
119
120
122
123
124
125
126
127
128
129

60
61
€2
63
64
65
66
78
68
69
70
11
72
73
74
75
76
77
78
91
80
81
82
83
84
85
86
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*

oooo*oolol.n.l*.-noZoc.n*o....B...p*‘..'anvoc*oi.'Bo.oo 0"|600|l*000070000*'oc08

114 129 130 115
115 130 131 116
116 131 132 117
117 132 133 118
118 133 134 119
119 134 135 120
120 135 136 136
121 137 138 122
122 138 139 123
123 139 140 124
124 140 141 125
125 141 142 126
126 142 i43 127
127 143 144 128
128 144 145 129
129 145 146 130
130 146 147 131
131 147 148 132
132 146 149 133
133 149 150 134
134 150 151 135
135 151 152 136
136 152 153 153
137 154 155 138
138 155 156 139
139 156 157 140
140 157 158 141
141. 158 159 142
142 139 160 143
143 160 i61 144
144 161 162 145
145 162 163 146
146 163 164 147
147 164 165 148
148 165 166 149
149 166 167 150
150 167 168 151
151 168 169 152
152 169 170 153
153 170 171 171
154 172 173 155
155 173 174 196
156 174 175 157
157 175 176 158
158 176 177 159
159 177 178 160
160 178 179 161
161 179 180 162
162 180 181 163
163 181 182 164
164 182 183 165
165 183 184 166
166 184 185 167
167 185 186 168

168 186 187 169
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169
170
171
172
173
174
175
176
177
178
179
180
181
i82
183
184
1é5
166
187
168
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

187
188
189
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
221
228
229
230
232
233
234
235
236
237
238
239
240
241
242
243
244

188
189
190
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
<09
210
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
221
228
229
230
231
233
234
235

237
238
239
240
241
242
243
244
245

170
171
190
173
174
175
176
117
178
179
180
181
182
183
184
185
186
187
188
189
190
210
192
193
194
195
196
197
198
179
200
201
202
203
204
205
206
207
298
209
210
231
212
213
214
215
216
217
218
219
220
221
222
223
224
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224 245 246 225
225 246 247 226
226 247 248 227
227 248 249 228
228 249 250 229
229 250 251 230
230 251 252 231
231 252 253 253
232 254 255 233
233 255 256 234
234 256 257 235
235 251 258 236
236 258 259 237
237 259 260 238
238 260 261 239
239 261 262 240
240 262 263 241
241 263 264 242
242 264 265 243
243 265 266 244
244 2606 207 245
245 261 268 246
246 268 269 247
247 269 270 248
248 270 271 249 :
249 271 272 250 i
250 27¢ 273 251
251 213 274 252
252 274 275 253
293 275 276 276
254 277 278 255%
255 278 279 256
256 279 280 257
257 280 281 258
258 281 282 2259
259 282 283 260
260 283 284 261
261 284 285 262
262 285 286 263
263 286 287 264
264 287 288 265
265 288 289 266
266 289 290 267
267 Z9u 291 268
2068 291 292 269
269 292 293 270
270 293 294 271
271 294 295 272
272 295 296 273
273 296 2917 274
274 291 298 275
275 298 299 276
276 299 300 300
277 301 302 278

218 302 303 ey
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279 303 304 280
280 304 305 281
281 305 306 282
282 306 307 283
283 307 308 286
284 308 309 265
285 509 310 286
286 310 311 287
287 311 312 288
288 312 313 289
289 313 314 290
290 314 315 291
291 315 316 292
292 216 317 293
293 317 318 294
294 318 319 295
295 319 320 296
296 320 321 297
297 321 322 298
298 322 323 299
299 323 324 300
300 324 325 325
301 326 327 302
302 327 328 303
303 328 329 304
304 329 330 305
305 330 331 306
300 331 332 307
307 332 333 308
308 333 334 309
309 334 335 310
310 335 336 311
311 336 337 312
312 337 338 313
313 338 339 316
314 339 340 315
315 340 341 316
316 341 342 317
317 342 343 318
318 343 344 319
319 344 345 320
320 345 346 321
321 346 347 322
322 347 348 323
323 348 349 324
324 349 350 325
325 350 351 351
326 352 353 327
327 353 354 328
328 354 355 329
329 355 356 330
330 356 357 331
331 357 358 332
332 358 359 333

333 359 360 334
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334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
375
374
375
376
3717
378
379
380
381
382
383
384
385
386
387
388

360
361
362
363
364
365
306
367
168
369
370
371
372
373
374
375
376
371
379
380
381
382
383
384
385
386
587
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
4G 7
408
409
410
411
412
413
414
415
416

el
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
380
38l
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

405
406
408
409
410
411
412
413
414
415
416
417

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
378
353
354
355
356
357
35e
359
360
361
362
363
364
365
366
367

369
370
371
372
373
374
375
376
377
378
406
360
381
382
383
384

389
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389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
436
437
438
439
440
441
442
443
444
445
446
44'-_]
448
449
450
451
452
453
454
455
456
4517
458
459
460
461
462
463
464
466
4617
468
469
470
a7l
472
473

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
437
438
439
440
441
442
443
444
445
446
447
443
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
467
4638
469
470
471
472
473
474

75
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390
391
392
393
394
395
396
397
394
399
400
4C1
402
443
404
405
406
435
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
465
437
438
439
440
441
442
443
444
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444 474 475 445
445 475 476 446
446 476 477 447
447 4717 478 448
448 478 479 449
449 479 480 450
450 480 481 451
451 481 482 452
452 482 483 453
453 483 484 454
454 484 485 455
455 485 486 456
456 486 437 457
457 487 488 458
458 488 489 459
459 489 490 460
460 490 491 461
461 491 492 462
462 492 493 463
463 493 494 464
464 494 495 465
465 495 496 496
466 497 498 467
467 498 499 468
468 499 500 469
469 500 501 470
470 501 502 471
471 502 503 472
472 503 504 473
473 504 505 474
414 505 506 475
475 506 507 476
476 507 508 477
417 508 509 478
478 509 510 419
479 510 511 480
480 511 512 431
481 »12 513 4872
482 513 5i4 483
483 514 515% 434
484 51% 516 485
485 516 517 486
486 517 5.8 487
487 518 519 488
488 519 520 489
489 520 521 490
490 521 522 491
491 522 523 492
492 523 524 493
493 524 525 494
494 525 526 495
495 526 527 496
496 521 528 523
497 529 530 498

498 530 531 499
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499
500
501
502
563
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
5¢8
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
H48
549
550
551
552
553
554
555
556
557
558
5959
560
562
263
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
519
280
581
582
583
584
585
586

532
533
534
535
536
337
538
539
540
541
542
543
544
545
546
547
5438
549
550
551
552
553
554
555
556
957
558
559
560
561
563
564
565
566
567
568
569
570
571
572
573
574

275

576
377
78
279
580
581
582
583
284
585
586
587

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
561
530
531
532
533
534
535
536
537
538
539
540
541
5472
543
S44
545
546
547
548
549
550
551
592
553
554



78

A Computer Program for Solving Three-Dimensional Neutron Diffusion Equation
by the Finite Element Method

JAERI 1256

.Oll*oﬂlo]-OUOO*'llOZI"C*lll030lv.*'..'4!"'*""5'000*""GC'CQ*COQITUDQD*IOOIB

4x

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

10.
20.
25,
30,
35,
35,
40,
45,
45.
50,
50,
55,

587
588
569
590
591
592
993
594
596
597
594
5%9
600
601
602
603
604
60>
606
607
608
609
610U
611
612
613
6l4
615
616
617
618
619
620
621
622
623
024
625
626
6217
628
629

O
15,
20,
25,
30.
35,
40,
404
45,
45
50,
55,
55,

588
589
590
591
592
593
594
595
597
598
599
600
601
602
603
604
60>
606
607
608
609
610
611
612
613
614
615
616
617
618
619
€20
621
622
623
624
625
626
627
628
629
630
Se
15,
20'
25.
30,
35,
4G,
40,
45,
50.
50,
55,
55,

555
556
557
558
5959
560
561
595
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

‘586

587
588
589
590
591
592

10,
15,
25,
30,
30,
35,
40,
45,
45,
50.
50,
55
55,

10,
20,
25.
30,
35,
35.
40.
45,
45,
50,
50,
55,
55,
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55,
60,
60,
65,
65,
16,
70,
70,
75,
75,
80,
80,
80,
85,
85,
85,
90,
90,
90,
95,
95,
95,
95,
100,
100,
100,
105,
105,
105,
105,
110,
110,
110,
110,
115,
115,
115,
115.
120,
120,
120,
120,
125,
125,
125,
125,
130,
130,
130,
130,
130,
135,
135.
135.
135,

60,
€0,
60,
65,
69,
70,
104
T5
15,
15,
60,
80,
80,
85,
85,
85,

60,
60,
65,
65,
65,
7C,
10,
75,
15,
15,
80,
&0,
80,
85,
85,
65,
90.
90,
90,
95,
95,
95,
100,
100,
100,
100,
105,
105,
105.
110,
110.
110,
110,
1ib5,
115,
115,
115,
120,
120.
120,
120(
125,
125,
125,
125,
125,
130,
130.
130,
130,
135,
135.
135,
135,
135,

60,
60,
65,
65,
65,
70,
10,
15,
75.
15,
80,
80,
80,
85,
85,
85,
90,
90,
90,
95,
95,
95,
100,
100,
100,
100,
105,
lUbl
105,
110,
110,
110,
110,
115,
115,
115,
115,
120,
120'
120,
120,
129,
125,
125,
125,
125,
130,
130,
130,
130,
135,
135,
135,
135,
135,

60,
60,
65,
65,
79
70,
70,
15,
75
75,
80,
80,
85,
8635,
85,
90,
90,
90,
90,
95,
95,
95,
100,
100,
100.
105,
105,
105,
105,
110,
110,
110,
110,
115,
115,
115,
115,
120,
120,
120,
120,
125,
125,
125,
125,
130,
130,
130,
130,
130,
135,
135,
135,
135,
135,

60,
60,
65,
65,
70.
70.
70,
75,
75,
50,
60,
80,
85,
85,
&5,
90.
90.
90,
95.
95.
95,
95,
100,
100.
100,
105,
105.
105,
105,
110.
110,
110,
110.
115,
115,
115.
115.
120,
120,
120,
120,
125,
125,
125.
125,
130,
130,
130,
130,
130,
135,
135.
135,
135.
140.
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140,
140,
140,
140,
140,
145,
145,
145,
145,
145,
150,
1590,
150,
150,
150.
155,
155,
155,
155,
155,
155,
160,
160,
160,
160,
160,
165,
165,
165,
165,
165,
165,
170,
170,
170,
170.
170,
170,

10,

5
10,
10,

3
35,
23
10,
40,
20,
50.
25,
55
25,
55.
20,
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140,
140,
140,
140,
140,
145,
145,
145,
145.
145,
150,
150,
150.
150,
1504
155,
155,
155,
155,
155,
160,
160,
160,
160,
160,
160,
165,
165,
165,
165,
165,
165,
170,
170.
170,
170.
170.

OUs

(VN
10,
15,
15,
10,

O
30,
15,
45
25

(VI
30.

O,
30,
60,
25,

140,
140,
140
140,
140,
145,
145,
145,
145,
145,
150,
150.
150,
150.
155,
155,
155,
155,
155,
160,
160,
160,
160,
160.
160.
165,
165,
165,
165.
165,
170,
170,
170.
170,
170,
170,

0'
54
15,
20
20,
15,
5
35.
20,
(VN
30
54
35,
5e
35,
0.
30.

140,
140,
140,
140,
140,
145,
145,
145,
145,
145,
150,
150,
150,
150,
150,
155,
155,
155,
155,
155,
160,
160,
160,
160,
160,
160,
165,
169,
162,
165.
165,
170,
170,
170,
170,
170.
170,

5.
10,
20,
25,
25,
20l
lol
40,
25,

2.
3%,
10'
40,
10,
40,

5,
35,
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140,
140,
140,
140,
145,
145,
145,
145,
145,
150,
150,
15C,
150,
15C.
150,
155,
155,
155,
155,
155.
160,
160,
160,
160,
160,
165,
165,
165,
165,
165,
165,
170,
170,
170|
1704
170,
170,

O
15,

O,

[V
30
25,
15

O
30,
10,
404
15,
45,
15,
45,
10,
40

140.
140,
140,
140,
145,
145,
145,
145,
145,
150,
150,
150,
150,
150.
155,
155,
155,
155.
155.
155,
160,
160,
160,
160,
160,
165,
165.
165,
165,
165.
165,
170,
170.
170,
170.
170,
170,

54
o,
Se
5'
0.
30.
20.
5
35,
15,
45,
20,
50.
20.
50‘
15,
45,
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50, 55, 60, 65, 0, 5,
10, 15, 20. 25, 30, 35,
QO. 450 50; 55’ 60. 65.
70, O S5e 10, 15, 20,
25, 30, 35. 40, 45, 50,
55, 60, 65, 70, 75 0,
S 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60,
65, 70, 75, 80, O, S5
10, 15, 20, 22, 30, 35.
40, 45, 504 55, 60, 65,
70, 75, 80, 85, 0, 5
10, 15, 20, 25, 30, 35,
40, 45, 50, 55. 60, 65,
70, 75, 80, 85, 90 0.
Se 10. 15. 20, 25, 30,
35, 40, 45, 50, 55, 60,
65. 70. 75, 80. 85. 90,
95. 0. 5 10, 15, 20.
25, 30. 35. 4C, 45, 50,
55, 60, 65, 70. 75, 80,
85, 90. 95, 100, (O 5
10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65,
70, 15 80, 85, 90, 95.
100. l\)b! 0' §. 10. 15.
20, 254 30, 35, 40, 45,
50, 55, 60, 62, 70 75,
80, 85, 90, 95, 100, 105,
1100 ol 5! loo 151 20.
25, 30, 35, 40, 45, 50.
55, 60, 65, 70, 75, 80,
85, 90, 95, 100, 105, 110,
115, Qs 5e 10, 15, 20,
25, 30, 35, 40, 45, 50.
55, 60, 5. 70. 15, 809
85, 90 95 169, 105, 110,
115| 1200 Ol bl lol lbg
20, 25, 30 35, 40 45,
50, 55, 60, 62, 10, 75,
80, 85, 9C., 95, 100, 105,
110, 115, 120, 125, O 5.
10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65,
70. ‘ 750 800 850 90' 95!
100, 105, 110, 115, 120, 125,
130, O 5 10, 15, 20,
25, 30. 35, 40, 45, 50,
55, 60, 65, 70, 75, 80,
85, 90 95, 100, 105, 110,
1150 1200 1250 130. 135. O.
S5e 10. 15, 20, 25, 30.
35- “Ol 45. 50. 55- 60.
65, 70, 75, 80, 85, 90,

95, 100, 105, 110, 115, 120.
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125, 130, 135, 140, O S
10, 15, 20, 25, 30, 35,
“0. a>' 50' 55. 600 650
70, 75 80, 85, 90, 95,
100, 105, 110, 115, 120, 125,
130, 135, 140, 145, 0. 5,
10. 15! 20- 25. 301 35.
40, 45, 50. 5. 60, 65,
70, 75, 60, 85, 90. 95,
100, 105, 110. 115, 120, 125,
130. ljbl 140. l“:. 150. 0-
Sy 10, 15, 20, 25, 30,
350 40, 450 500 550 60.
65. 70! 75' 80- 85' 90.
95, 100, 105, 110, 115, 120,
125. 130, 135, 140, 145, 150.
155, 0. 5. 1o, 15, 20,
25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75, 60,
82, 90, 95. 100, 105, 110,
115, 120, 125, 130, 135, 140.
145, 156. 155, 160, G 5.
10, 15, 20, 25, 30, 35.
40, 45, 50, 55, 6GC, €5,
70, 5. 80, 85, 90, 95,
100, 105, 110, 115, 120, 125.
130, 135, 140, 145, 15C., 155,
160| 1050 O. bt lo. 15-
20, 25, 30, 35, 40, 45,
50. 55! 60. ﬁb. 70. 75.
805 abl 901 95. 1001 105-
110, 115, 120, 125, 130, 135,
140, 145, 150, 155, 160, 1e5,
176, T
B¥ 2 26 8 2
9% 2,0 +01 2.6 *02 8.0 +01 2.0 +01 T
10¥%
3R 518R 2 6R 2 3 6R 2 2R 3
6R 2 3R 3 bR 2 4R 350R 2 2R 5
12R 2 5 2R 512R 2 2R 2 2R 5
12R 2 3k 5 2R 512R 2 4R 514R 2
5K 114K 2 6K 114R 2 TR 114R 2
8R 1 6K 212R 1 5R 4 6R 212R 1
6R 4 bR 212K 1 7R 4 bR 212R 1
8R 410R 117R 410R 118R 410R 1
19R 410R 120R 4 F 4 1
11%
4 4 4 4 4
1 2 2 4 3
1 4 3 4 3
4 4 5 4 5 7T
12#
0,00 1.5 0.00 0.01 0.02 F1
0,056 0.4 0.135 0,08 0.0

0,00 1.5 00 0,01 0.02 F2
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0,056
0,00
0,056
0,00
0,00
0.00
0,00
T
13%
15¥% 331
17% F
i8¥% F
19%

¥JEND

04135
0,00
0.135
0400
0,00
0,00
0.00

Ua0

0,085
()'01
0.13
0,00
0,01
0.0
0.055

0.0
0.02
0.0
0.04
0.0
0.04
G0

F2+CR
REFL
REFL+CK
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A-3 Input cards sct up for a restart case of the IAEA problem

cooo*'loclnn.-*....z.na.*....3....*onov“-n'v*ov'0500"*00v|600-|*"017'!"*""8

¥NO B333.

¥GJOB S552113047,15E4431,11FEMBABEL
¥HFORT
C PROGRAM FEM=BABEL

COMMON 1A€140000)

CALL CHGFLO(MsN)

C %+ FACOM »
TAC1)=140000
C
CALL DTLIST
CALL MAIN1
SToP
END

SUBROUTINE ACCEL(P13)
DIMENSION P(1)+5(1)
COMMON A(L)

EQUIVALENCE (AC142) «NPALLY,(AC128) yRAMDA) + (AC253) +SORF)

T=0.0

DO 1 I=1+NPALL

PCI)=P(1)+1,50%(SC1)=PCI))
1 T=T+P(])

DO 2 I=1+NPALL
2 PCD=PCIX/T

RETURN

END

¥HLIEDRUN RFNAME=J1223,BABELAs EDIT=YES+UPDT=YES+S|ZE=3

$TPDISK
¥TPDISK
¥TPD1SK
¥TPDISK
¥TPD]SK
¥TPDISK
¥TPDISK
¥TPDISK
¥TAPE

¥TPDISK
¥TPDISK
¥DATA

1¥

FOl+DISP=DELETERSIZE=900+BS1ZE=6300
FO2+DISP=DELETEsRSIZE=900+BSIZE=6300
FO3,DISP=DELETE+RSIZE=900,BS12E=6300
FO4 DISP=DELETE+RSIZE=900+B8S12E=6300
FOBWDISP=DELETEsRS]ZE=900,BSI2E=6300
FO9+D|SP=DELETEWRSIZE=9004BSIZE=6300
F10+DISP=DELETE+RSIZE=900.BS12E=6300
Fl1.D]SP=DELETE'RSIZE=900.BSI1ZE=6300

F12401223,8333NEW+010215

F13+D1SP=DELETE'RSIZE=900«BSIZE=6300
Fl4,D1SP=DELETE+RSIZE=900.,B512E=6300

2

5 4 5

6 100 36

4 3R 1 6R 0

1 2 o T
2* 1.0 "04 100 -03

¥JEND

8, 3.,265+10 T

3D-1AEA(MODIFIED) FOR COMPARISON WITH CITATIONs DX=5CM D2=10CM RESTART
1

/
Ce4/CORE 256
We1/PAGE 80
P«.0/PCH 0
T+ T/TIME 60M

WLRG/

/JOB=CARD

BABELA

39 595 1 =05

0 06 =11

1 4 12=17

0 0 18=30
31-33

3800, 55:0 1 = 5



