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A computer code system named BWR-ACE has been developed for analysing the physical
phenomena in a boiling water reactor (BWR). The BWR-ACE consists of three sub-systems,
CROSS-ACE, STEADY-ACE and BURN-ACE. The sub-system STEADY-ACE which analyses
the phenomena in a BWR under steady state consists of two programs, DIFFUSION-ACE and
HYDRO-ACE. The program DIFFUSION-ACE described in this report is a routine to calculate
the neutron flux distribution.

For calculating the neutron flux distribution in a reactor with a conventional fine-mesh dif-
ference approximation method, many mesh points and a long computer time are required. A
new approximation method named “leakage iterative method” has been developed in order to
obtain efficiently the neutron flux distribution in a light water moderated reactor by the difference
approximation method. This method is embodied in the DIFFUSION-ACE program for the
FACOM 230-75 and CDC-6600 computers. This report describes details of the method used in
DIFFUSION-ACE and instructions to the user about input data requirements.

Keywords : Neutron Diffusion Code, Three-Dimensional Calculation, BWR, Leakage Iterative

Method, Neutron Flux Distribution, Instruction Manual.
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1. Introduction

Various methods have been proposed for solving a three-dimensional neutron diffusion equa-
tion. The most straightforward and reliable method is based on the fine-mesh difference approxi-
mation combined with the iterative solution technique. The method, however, is not always
practical aor design calculations of large nuclear power reactors because the required computation
time and memory are enormous. Many other approximation methods have been developed to
reduce the computation time, which include the flux synthesis method and the coarse-mesh finite-
difference approximation method. The most famous synthesis method uses either variational flux
synthesis or multichannel flux synthesis?. The solution by the flux synthesis method is obtained
in a form different from that by the fine-mesh difference approximation, so it is not easy to com-
pare the calculational results and to make the error analysis®. In addition, the condition of
convergence of the multichannel flux synthesis method is not clear. The disadvantage of the
coarse-mesh finite difference approximation is that the discretization error in the calculation of
neutron leakage from a subregion is generally large because the mesh widths are larger than the
diffusion length.

To eliminate the drawbacks of these methods, a “leakage iterative method” is proposed in
this paper. This method is embodied in the DIFFUSION-ACE program in the computer code
system BWR-ACE designed for analysing the physical phenomena in a boiling water reactor
(BWR) on the FACOM 230-75 and CDC-6600 computers. The BWR-ACE consists of three
sub-systems, CROSS-ACE, STEADY-ACE and BURN-ACE. The sub-system STEADY-ACE
which analyses the phenomena in a BWR under steady state, consists of two programs DIFFU-
SION-ACE and HYDRO-ACE. The program DIFFUSION-ACE calculates the thermal power
distribution and the program HYDRO-ACE deals with the thermal hydraulics in a BWR. In
this sub-system STEADY-ACE, the two programs DIFFUSION-ACE and HYDRO-ACE are used
iteratively until the thermal power distribution and the coolant void distribution become consistent
with each-other.

This report presents details of the method used in DIFFUSION-ACE program for solving
speedily three-dimensional neutron diffusion equation and instructions to user about input data
requirements.
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2. Theory

2.1 Outline of leakage iterative method

The reactor is divided into several layers along the z axis and into several rectangular
channels perpendicular to the xy plane as shown in Fig. 1. A parallelepiped formed by a channel
and a layer is called a block in which the materials are homogenized. To start the iterative
procedure for solving the diffusion equation, the neutron source and the radial leakage coefficients
are arbitrarily assumed initially as shown in Fig. 2. A one-dimensional neutron flux calculation
is performed for each channel with the radial leakage coefficient. A two-dimensional neutron
flux calculation is then made for each layer with the axial leakage determined from the one-
dimensional calculation. The one- and two-dimensional leakage will be iterated until the con-
sistency is attained between the two. At each step of the iteration the neutron source distribu-
tion and the eigenvalue are recalculated. For obtaining the balance of the neutron population
within a block, it is important to evaluate the neutron leakage from the block as precisely as
possible. For this purpose, a block is subdivided into fine meshes, and the fine-mesh difference
approximation method is applied to solve the one- and two-dimensional neutron diffusion equations
for each channel and layer, respectively.

Assume initial sources (6)
and radial leakage coefficients (L.,)

4__; i
e L '
- } : i 1-D Channel calculations (%) ]
~ t
| | !
. = | Axial leakage coefficients computed
-, A ﬁ; from channel calculation (Lp)
-~ el R
/’l L’:____ v ;1 l
A P : T 2-D Layer calculation (¥,,) J
N A ! J l
]
(SO L~ : Radial leakage coefficients computed
A 1 I from layer calculation (Lyy
R L~ 1 |
i | L
ma i P
A ive _
"_A""—"{é' not .szz dz ./4‘:'/;?” dzdy <
Channel Core satisfied / - &
. ;/A‘X Ay i oy
AL
sahihed
> = - = Source distribution computed from
A;"—747’--— -;/’—/Z,"'- 1-D and 2-D fluxes (6)
A e e h I
! r 4z A A 7
“ 8*— g™
T '}’/l ol ! = ] 2 <&
! : 4z satisfied 6
l—4 ™ l satil fied
Block Layer STOP
Fig. 1 Configulation of channels, layers and blocks. Fig. 2 Schematic diagram of the leakage

iterative method.
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The present method has the following characteristics :

1) A fine-mesh difference approximation technique is applied only to the channels and layers.
Therefore it is not necessary to calculate the neutron fluxes at all fine-mesh points in the core
and thus the computer time is reduced. If the block is a 12cm cube and the mesh width is 2
cm, the number of fine-mesh points is 6 X 6x6=216. In the present method, however, the number
of mesh points is 6+(6x6)=42, that is about one-fifth of the former. The terms connecting
the channel and layer calculations are only the neutron leakage and the neutron source, which
reduce the computer memory required.

2) Since the neutron leakage from a block is calculated by a fine-mesh difference approxi-
mation, the discretization error is minimized.

3) When only one fine-mesh point is located in each block, this method becomes the same
as a fine-mesh difference approximation. In this case, the iterative scheme corresponds to one of
the variants of the Peaceman-Rachford iterative method. Therefore, it is possible to establish the
condition under which the consistency is achieved between the axial and radial leakages in the
same manner as ADI (alternating direction implicit iterative method due to Peaceman and
Rachford), and it is easy to compare the results with those obtained from conventional fine-mesh
difference approximation methods. The computer code can be used for calculating both the col-
lapsed flux and the fine-mesh flux.

2.2 Fundamental equation

The iterative process to recalculate the source distribution with the previously obtained
neutron flux is the same as that utilized in the conventional power-iteration method. This itera-
tive process is called as the outer iteration or source iteration, and the convergence condition has
been shown by many workers.

The problem with which we are concerned here is how to calculate the neutron flux distri-
bution for a fixed neutron source distribution. This process is called as the inner iteration. The
important points to be noted concerning the convergence of the inner iteration are:

1) the equation is for a volume-integrated flux

2) the calculation is repeated along the channels and layers alternately

3) the axial and radial leakages are contained in the diagonal elements of the operator

matrix, so that the elements are recalculated at each iteration step.

The foundamental equation to be solved is

VDV $—Srp+-6=0 , (1)
where ¢ is the neutron flux and 6 the neutron source at a fine-mesh point, and D and 2'r are
the diffusion coefficient and the macroscopic total cross section, respectively, for a homogenized
block.

Integrating Eq. (1) over a block results in

Dghsdyd:c dyshg—zz%dz+ DSAzszMSM(a%+%)¢dxdy

—Z’TSAISAUSAzngxdydz-}—SAISMS 0dzdydz=0 , (2)

4z
where 4z, 4y, and 4z are the widths of the homogenized block. Using the following notations :

Shslydxdygd Dgz?fdz

—'le ,

SM deslqudxdydz
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{44, §, Dl mpazay
SJISAySdz¢dxdydz

gb.ESAdequdxdy . t/),,ESAqudz ,

_lxyE

G,ESMSMdedy , QXYESMGdz , (3)
Equation (2) is rewritten as
0%,
S D—dz—-S (Z’T+l,y)qb,dz+s 6,dz=0 , (4)
4z 0z2 4z 4z

SA,S,,D(%Jf 5%)¢xydxd1/—SAISAV(ZT+I=)¢xyddeI+Shgh9,ydxdy=0 . (5)

where ¢, and ¢,, are obtained respectively by solving the following one- and two-dimensional
fine-mesh neutron diffusion equations :

0%¢,
Da > —(Z1+1ly)¢.+6,=0 , (6)
1z
02 0
D(a_x—z“"rwz)d’xy—(2T+lz)¢xy+9xy=0 . (7)

One-dimensional fine-mesh neutron flux distribution calculations are performed along the
channels, and two-dimensional calculations are made in the layers. The axial and radial leakages
from each block, /, and /,,, are obtained as follows:

Sdz(ll' dz
_z,y:S"S‘”D(%+%) brdedy : (8)
=

The neutron flux distribution in the core is determined by solving Egs. (6) and (7) alternately.
The neutron flux convergence criterion is given by

Sdz¢' dz _Sn de ddzdy

Sdz‘l)‘ dz

If the neutron flux distribution satisfies the above condition, the leakage coeffieients also satisfy
the following condition, as is readily seen from Eqs (4), (5) and (8):

leynew __lxyoldl

[, 6otz ([, 6de{, |, dodzdy < {} 6wdzay N o
S h&yd’xydxdy Shdi.dz degdygbxydxdy '

The suffix new indicates the result of this iteration step and old the result of the preceding
iteration step.

<E. (9)

After the neutron flux convergence criterion is satisfied, the neutron sources, 6,, and 6,, are
recalculated by using the converged neutron fluxes ¢, and ¢,;,. The source iteration process is
repeated until the source distribution is coverged.
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2.3 Convergence condition of the method

We discuss here the conditions under which the iterative scheme of the leakage iterative
method converges, by expressing Eqs. (4) and (5) in finite difference forms. The set of one-
dimensional equations along channels is written as

A, ¢, =6, , 11)
where , is the neutron source vector. The operator matrix A, for fine-mesh points is subdivided
into

A, =(D;—B.)+ %+ Ly , 12)
where the matrices (D,—B,) and X, are the diffusion and removal operator matrices, respectively.
The matrix D, is diagonal and (D,—B,)+2, is tridiagonal which has the following characteris-
tics; (a) irreducible, (b) symmetric, (c) diagonally dominant, and (d) positive definite. The radial
leakage coefficient matrix L,, is a diagonal matrix, whose elements consist of L.

The set of two-dimensional equations in the layers can similarly be expressed as follows :

Axy ;p.xy = éxy ) (13)
where

Axy=(ny_Bxy)+ny+Zz . (14)

In Eq. (14), the matrix (Dyy—Byy)+25, has the same characteristics as (D,—B,)+75,, and Z,
denotes the axial leakage coefficient matrix.

To express the dimension of these matrices, the following notations are used :

Nea=number of channels

Ni=number of one-dimensional fine-mesh points per channel

Ni.=total number of one-dimensional fine-mesh points in the core, which is equal to Ni,-
N,

Niy;=number of layers

Niy=number of two-dimensional fine-mesh points per layer

Nigye=total number of two-dimensional fine-mesh points in the core, which is equal to Ni, -+

Nigy
Ny=number of blocks which is equal to Nu+Ni,y.

Now we introduce a summation matrix, S, and an expansion matrix, R. By operating the
summation matrix, quantities such as the flux and the leakage coeflicient are integrated over a
block. By operating the expansion matrix, on the other hand, the block leakage coefficient matrix,
(Nb, Nu), becomes (N, Ni) or (Nixgt, Nixy:). The matrices S and R satisfy the following
relations :

S.R,=1, Sy Ryxy=1 , (15)
where I is a unit matrix.

To make it easy to understand the relations between matrices and vectors, the mesh speci-
fication and the matrix form are shown in Figs. 3 and 4. Some examples of the summation
matrices and the expansion matrices are shown in Figs. 5 and 6, respectively. As shown in these

examples, the neutron flux integrated over a block is expresses as S,—gb, or Sxy_tﬁxy, and the value
of S,;/;, is equal to that of Sxyg_b’xy. The axial and radial leakages from a block are expressed as
S.(Dy—B.)d, Sey(Dsy—Be)dx,, respectively.

Equations (4), (5), and (8) can be rewritten in matrix forms as

Sz(Dz“Bz)(g-b’z'*‘Sz(Zz’*"ny)gZz=Széz s (16)
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Sxy(ny_Bxy)_‘/;xy’*‘sxy(zw'*‘flﬂaxy=SXY—éxy s (17)
Lle$:=Sz(D:—Bz)ZI >
nySXyaxy=S"y(ny_Bxy)‘7;xy . (18)
n th Channel
Layer 5|4z ._I-)i; ) —g;“" ¥, ,,..]:5
. _'}_-_JIT___
Layer 4 " ] 7.
¢10
[ _ 4
Layer 3 ________9_’{____ Ve rre
¢7
¢
Layer 2| _ 4 2%
¢4
¢
Layer 1 ¢ 7.,
¢l
h,Ax m th Layer
4’! h-” SI} SV' ‘sﬁa'll‘sb_, ¢’s ¢:‘ m‘x.w ;Fm Q’m

vl |ele
vl e |oele
st e
A GG

——4 - —d——{t—q—~ Fon L ¥

sig|viv|viv

yz.w Fzys y.:” w.- Layer

xy

Nch=91 Nlay=5, N,z=3 X5=15, N/;;y=4xg=36
N2e=N;2X Nen=135, Nyzst="N ;29X Niay=180

Fig. 3 Schematic representation of the collapsed pluxes.

The dimensions of the summation matrices S, and Sy, are (N, Ni.) and (N, Niy), respectively,
and the dimensions of the fine leakage matrices f,xy and L, are (Ntt, Nia) and (Nixyr, Nixgt),
respectively. The block leakage matrices Ly, and L, are (Ns, N) matrices. The matrix L., is
expressed by L,,; as

L.,=R,L,S. (19)
and, similarly,

L,=R,L.S. , (20)
where the expansion matrices, R, and R,;, are (N, Ni) and (N, Nb), respectively. The
matrices L, and L., belong to the fine-mesh points, while L, and L., belong to the blocks and
operate on the integrated flux over a block. Using these expressions, the iteration scheme is
written as

(Dy—B)gs™+ Z:™ + YR, Ley™ 1 S, ¢,™
=(y—=1)R,Sey(Dyy— Bay)duy™ 1 +6, , (1)

—

(DXY_BXY)¢IYM+1 + 2*!$X3m+l + VIRXYLZ"‘ SXY_(Z’XY’”+1
=(y' —=1)Ryy So(D,— B.)g™ + 6y, . (22)
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Expansion matrix R
Summation matrices S; and S,y
N — N N
_/"—-. kl“s\\\ -~ ﬁ \
- ~ ay
8z Tz 0 ay
Sz 0 Tz ro=
Sz R.= Ta Nea =
\\ N M-y S
N 0 N
0 \\ \\ a
AN TaNb g
\
s
~ = ~ -
Nyan
T
Sxy
$2rz;=Sum a;; =1, S:R=1
Sxy 0 21 zj i=1, N bj 0 sz
Sor
™ Nuy* N,
0 \\ (ARALY
\\\
N v Tz \ Sz 03
. Sy J = \ / £

5:=(1,1,1) ; s5=(1,1,1,1)

[pede= [ [ podsdy=[ [ [ $dzdyds
i "

3.7 cn
Szyz

Fig. 5 Schematic representation of the summation matrices.

=35¥ m

=S¥z

v, —<”

r. /

Za

ANEE

N

“%‘%%‘%'%Enﬁﬁf;
by

Fig. 6 Schematic representation of the expanion matrix.

In the above expressions, 7 and m+1 stand for the iteration steps, and v and 7 are accele-
ration parameters. Using the relations of Egs. (19) and (20), the vectors of Egs. (11) and (13)

are expressed as follows:
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(D2=Bu)g+ Zafhut RuSey(Dsy— By )y =6

(Dxy—Buy)fixy + Zay Gy + Ruy Si( D, — B, =6, .
Subtracting Eq. (21) from (23), we get

[(D,—B.)+2.1{¢— ")+ RuSuy(Dsy— Bay) @y — ™)

=Y[R, L™ 18,$,™ — R, Sxy(Dey— Buy)hey™ 1]

=yR, Ly [ 8™ — Sxy ey 1]

=YR; Ly 18u(¢:™ — ) + YR, L™ Sey(Giey— ™) .

Defining the error vector as

-

-—E)zngb’z_azm ’ Exym_lzzxy—¢xym_l s
Eq. (25) is expressed as
[(Dz ’—Bz) +Ez+'sz nym~1 SzJEzm
= [rsz nym_ 1 Sxy - Rz Sxy(ny _-Bxy)]Exym_1 .
In the same way, from Eqs. (22) and (24),
[(ny —'Bxy) + ny + ’Y’ny Lzm ‘S')(}']Exym+ 1
=[7'RyeyL,"S:— Ryy Si(D,— B,)1E,™ .
Equations (27) and (28) give
By 1 =[(Dyy—Buy) + Sy +7' Ruy L™ Sy 1!
X[V RyyL,™S.— Ryy S.(D.—B,)]
X [(Dz"—Bz) +2z+7Rznym_lSz]_l

X [’YRznym_ley—Rszy(ny_BxY)]Exym—l .
The matrices H; and H, are now defined as

HlE(Dz—'Bz)'I"%Ez

HZE(DXY—BWH%S” .
Using Egs. (30) and (15), Eq. (29) can be rewritten as

) -1
E, =[(Hz+%z‘xy> +v' Ry, L,m Sx}’]

><R,,S,[(Hl—%2,)—7'12,14'"5,]
1 -1
X [(H1 “?Ez) +’YRznym_1Sz+Zz:| RZSXV
[H 1 by R m—1 L om-1
X 2+_2" xy ]~ xnyy SXY—EXY]EXY .
The four diagonal matrices, F, a, G and B, are defined as
F+a=v'R,L,"S, ,
F—aE'YRz nym_ISz—i_Ez E
G+ﬂE7leyLzmey ’

G —ﬁE'Ynynym_l Sxy + ny .
These are rewritten in the from :

F:%EV’R,L,'"SZ+"/Rzny""ISz+SzJ ’

CI:%['Y,RszmSz—'YRznym_ISZ_Z”J ’

JAERI 1262

(23)
(24)

(25)

(26)

(@7)

(@8)

(29)

(30)

@)

(32)
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1

G= 5[')"ny L. Sxy+7Ray Liy™ ' Siy+ 357
p= % [%' Ruy L™ Ssy—¥RuyLuy™ 1Sy — 5,1 . (33)

Two matrices H, and H, are further defined as

ﬁIEHl—%E,—a N

.FIZEHZ-F%EW‘HS . (34)
The error vector is thus given as

E, m*1=TE,m1 , (35)
where

T=(H,+G) ' Ry S:(H, — F)(H,+ F)~'R, S,y (H,~G) . (36)

A matrix T defined as

T=(H,+G)T(H,+G)!
is similar to 7" and has the same eigenvalues as 7. Using the relation of Eq. (36), we have

T=RuyS(H,~F)(H,+F)"' R,Sy(H,—G)(H,+G)* . (37)

It is well known that the spectral radius of T, po(7T), is the same as that of 7" The value

is generally smaller than the matrix norm:

o(T)=o(T)<|| Tl <[ Ruy .|

X|(H\—F)(H+F)|

X[ ReSes|l « (He—G)(Ha+G)]l. (38)
From the characteristics of summation and expansion matrices, the values of [|R,,S;| and || R, Syl

can be chosen to satisfy the following relations :
”RXYXZHSIV-‘[aX[Nz(z)/NxY(Z)]

and :
| Re Syl Sh/{ax[ny(i)/Nz(i)] , (39)

where N.,(7), Ny (i) are the numbers of mesh points in the i-th block along the z axis and the
zy plane, respectively. A proof of Eq. (39) is given in the following.
From the definition of a matrix norm:
IRy S.)|= Sup [[RyS.z] (40)
lzl=1
the relation between vectors and matrices is expressed as

y=RyS.Z . (41)
The above relation is expressed pictorially as

N, 4

Ry e— 8, <] (42)

N

Ny (i)

Nz(i)
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and in another form as

all[x11+x12+ .................. +x1N'(1)]
alz|;$11+$12+ .................. +xu\('(1)]
AN O[T+ Tigt +ooeeeeeeees +z1v,m]
aml;xm L 770 SEEETTPEYPIT PR PRTPI + sz‘(z)] ¢
AN, Ny N LT Ny + N oo +ZNN(N)]
=RyS.Z . (43)

From Eq. (43), the Euclidean norm of the vector is obtained directly :
||R,,s,}||:_slllx}v1 [an?+ai?+ - +aiNy 0]
t=1, 1Ny

X[xan+Zizt-ee- +zing 1 . (44)
From the definition of a;;, as shown Fig. 6,
ain+aiz+-- +ain,m=1 . (45)
If we consider the case of equal distribution, that is, @;j=a.:, the following relations are satisfied :
aij= 1 N, xy @) (46)
ai?+ai?+ -+ aiNy @i =1/Ny(@) . (47)

In this case, Eq. (40) becomes
| Rsy Sull= Sup || Rey S, ]

1z1=1
= Sup {Sum ——[zatzipt- +xm,(i)]2}

31-1 U=1 8o Na (@)
< Sup {Sum N, (i) Lxi?+xi?+ - + ZiN, () ]]

f31=1 =1 NNy (2)
< Sup {Max[N( )] Sum [z +zi? 4+ +$iN.(:')z]}

-1l Vs(@d =Lm,

N.(@)
<M
o [ xy(l)]

In the case of equal values of (N./N,,) in every block in the core, the following relations

is satisfied :
nnySz” * HRszy“<1 . (48)

Since matrices F' and G are diagonal and nonzero, matrices F-1H, and G~'H, are Hermitian and
expressed as

FH,=[7'R, L Ss-+yR, Lay" S, + 5]
x[(D,—B,)+-2—(Z’.—'Y'R,L."'S.+'7Rzlxy'”“‘ .)J] ,

G_lﬁZE['YnyLzmey+’Ynynym_l xy]_l
X[ (Day=Buy)+ (Bry—Ruy L™ Sy -+7 Ry LS| (49)

Assuming F-'H, and G-'H, to be positive definite, the following relations are satisfied :

(F- H,—INF-*H,+I)!|= Max |2 l<1
1<j<n ,-l—l

(G B~ DG Hy )= M |<1 (50)
<:<n D.+1

where A; and v; are the (positive) eigenvalues of the matrices F-'H, and G-H,, respectively?.

If matrices F-1H, and G-1H, are positive definite, and summation and expansion matrices



JAERI 1262 2. Theory 11

are chosen to satisfy the condition (48), the spectral radius of the iteration matrix is less than
unity :

o(T)<1 . (51)
This means that the error vectors E,, and E, converge to zero. If the proper values of ¥ and
o' are chosen, the matrices F-'H, and G-'H, become positive because the matrices (D,—B,)+
%Z’. and (D,:,,—Bxy)+%27,(y are diagonally dominant.

When only one fine space mesh point is located in each block, this iterative scheme cor-
responds to a variant of the Peaceman-Rachford iterative method®. In many cases, the accelera-
tion parameters, ¥ and 7/, can be chosen to be unity, satisfying the above convergence conditions
in the iterative scheme.

2.4 Initial guess of neutron source

In general, it is possible to reduce computation time by using a good guess of neutron source.
The DIFFUSION-ACE has two options to obtain initial source guess. One is given from cards.
The other is prepared in the computer code. In this case, radial leakage guess L,; is required
from the following theorem.

The fundamental diffusion equation (1) is integrated over 4x along z-coordinate, 4y along
y-coordinate and —oo to +oo along z-coordinate :

Slzsdvdxdysc—o D(%+a—:)¢dz+slxsdydxdyg_m 0z 2¢dz

—S S dxdys 2T¢dz+S S dxdysw Sdz=0 (52)
4z 4y 4y —o0
The following relation is assumed to be satisfied :
S_m azzdz : (53)
Following notations are now introduced :
@ES_mgbdz ,
éssm Sdz ,
__Shsdydxdyg D(ﬁ+—)¢d
D= o % 7 g2 - s (54)
SAJ;SA;/ z yS—oo(a_.xé >¢ z
{ S dxdyg Srpdz
s _ 4z
2=

S S dxdys ddz
4z J4,
Equations (53) and (54) are substituted into Eq. (52):

— 82 aZ — _ _ _

DSMSM(@‘*‘@dedy—ZTSAIdeqbdxdy—I—Shdededy-—O . (55)
Hence,

p— 2

D(aaz )4’ —3:¢+6=0. (56)

In Eq. (56), for given D and Z'r, the integrated flux ¢ and source 8 are obtained by an iterative
method. The © in an energy group g is given as follows:
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6.=(" Sgdz="§ng(@)8'&3'+?}@8—‘ (57)
where
S S dxdysw WS eedz
4xJdy — 00

IES =
v [ deas|” pas

I

. _SAS dxdyS W5 gedz
T desdydxdys $edz

The initial source guess is obtained in the following manner. The one-dimensional neutron

diffusion equation is solved using Eq. (6), and then ¢, and ©, are obtained. In this calculation,
guess values of radial leakage /,, are required. Using the above ¢, and @,, integrated diffusion
parameters are obtained as follows:

D_des‘fydxdysoij(é’a—z_+—a—f—>¢dz So_oooDlxy(bzdz
= desdydxdysojw(aa—; )¢dz S_wl"’(l"dz
[z
T e 8
_ S v, dz
P = ,
S_wqb,dz
Sr:S_jZ,(ﬁzdz
S_“dlzdz
The 6, is normalized as
o= o ShSMdedy (59)
" ea 7 af | sazay’
SAISAySAzdedydz

S 6.dz
0,4= = .
S O.dz S_mszhSMdedydz

Equations (56) and (57) are now solved with Eq. (68). If the initial guess values of [,, are
correct, the eigenvalue 4 obtained is the same as that from the three-dimensional calculation.
Using the results obtained by Eq. (56), the neutron source is normalized as follows :

S_dez

|
@l

QXYNE o0 =

Sfms_médxdy So_owgo_ow Soijdxdydz ,

desdyédxdy ) Sojwdzshsdydedy

S"_"J:@dxdy_S:S:S:dedydz '

(60)
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From Eqs. (59) and (60), initial source quess values for one- and two-dimensional calculations are
expressed as follows:

S S Sdzxdy _
6, 8uess = — ol:-t d:i =@zN'9xyA R (61)
_ws_ms_dexdydz
S Sdz
CRE = =6,4.6,,~¥ (62)

S°° S:S” Sdzdydz

—oo —

If the initial guess of /; used in Eq. (6) is correct, the neutron source ©,8'¢** and 6, 8uess
will be in agreement with the solution of three-dimensional diffusion equation, so that the more
correct the initial guess of /,, yields the better initial source guess and hence the computation
time becomes shorter.

2.5 Calculation of neutron flux in reflector

For the analyses of a light water reactor by solving the neutron diffusion equation, a large
number of mesh points are required because of the thermal neutron flux having a peak in the
reflector. In some cases of three-dimensional calculations, more than half of mesh points are
located in the reflector and therefore very large computer core memory and computer time are
required. To diminish the mesh points in the reflector, the neutron flux in the core is calculated
by the finite difference method while in the reflector it is calculated analytically. The flux dis-
tributions in the core and in the reflector are combined with boundary conditions to be satisfied.

First of all, this technique is explained on three-energy-group and one-dimensional neutron
diffusion equations which are expressed as follows:

2

dilz¢R1—K12¢R1=0 , for first group,
2

dilz¢R2—Kzz¢R2+21¢Rz=O , for 2nd group, (63)
2

‘ddl—2¢R2—K32¢R3+Xz¢R3=0 , for 3rd group,

where K2=(Z '+ 2 r""?+ Dg! Bg!)/Dg! ,
K?=(Z*+2x?%+ Dr? Bg?)/Dg? ,
K2=(2,r3+ Dx*Br®) Dg? ,
ZIZZ'IRI—’Z/DRZ s
zzzerZ%S/DR!! R
and Bge¢ is the square of buckling at g-th energy-group in the reflector. At the above expression,
the suffix R means reflector.
Equation (63) is solved under the following boundary conditions :
for =0, ¢r'=¢s!, Pr®=9¢8% Pr*=¢s? and for [—co, gr'=¢r?=¢r*=0,
where ¢r is a neutron flux in reflector and ¢g is a boundary neutron flux in core.
The solutions of Eq. (63) are
frl=Ae—Ki |
pr?=DBe K+ CeKif | (64)
¢r¥=De~%4+ Ee~Kid |- Fe—Ki
where coefficients A, B, C, D, E and F are obtained by the boundary conditions as follows:
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A=¢y' ,
B=¢132—*—-KZZ’EKIZ%l ,
C =‘K“2“2£_1T13¢Bl ,

_ 11 /21 22 ¢ 1
Ke—Kz' " ' (KE—KA(K2—K?)' "
22 2 1122 1
Ki-K”  Rr—Kp)(Kr—Kn™
2122 ¢Bl
(K2—K)(K2—K?)

With the continuity condition of the neutron current at /=0, the analytical equations in the

D=¢s )

¢p*+

E=

F=

reflector are combined with the finite difference equations in the core:

g PiE—Pm®_ (d¢ng)
Dlg——Arl/Z =Dge dl )10 . (66)

For the first energy-group, the boundary flux is obtained as

1
DRl(%S—ZB—)I—oz ~ D' Kadui'

eSS 2D,
! D11K1A7'1+2D11

For the 2nd energy-group, the boundary flux is

dil=apd’ . (67)

D) —Di(-KuB-KiC)

Aﬁ 121 Kg —21 Kl

2 1
y 2=¢1 +2D12 Kz2—K,? Pm :¢12+ﬂ3¢ml )
B 1+KzAT1 Dg? 7B ’
2D,?
where
ﬂ ZATL(/lez—‘ZxKl)
T 2DK2-Kp)
_ Kz AT1 DRZ
vp=1 +—-—2 Dy .
For the 3rd energy-group, the boundary flux is given by
DRS(%%)I_O=DR3 (—K.D—K,E—K.F) ,
_¢13+ TB¢B12+EB¢31
S= R 69
$m1 . (69)
where
e ZDRMr‘MMz | Ks(K2—Ki?) + KoKy 2 — K% + K (K2 — K57)
"T 2Dy (K —K2)(Ky*—K?) (K2 —K?) ’
_ K3 Arl .l)R3
w=lt =D

In core calculation, a finite difference method is applied. The finite difference equation of
one-dimensional neutron diffusion at the initial mesh point is expressed as follows :
Dlg% — 515(¢23 —$8)+DeBepedr,+ 21 Ededr, —d84r,=0 , (70)
1
where
Bg=the square of a perpendicular buckling in the core,

ZTngzzang'i-ErnB ,
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dns =ngn + Zrng_l ¢"g—1 ’
ye=fission neutron energy spectrum,

S, =normalized neutron source,

~ 2

D=2 —
(4r)a-y +(Ar)n
Dn—l Dn

= 2

De=——% .
(Ar)s | (A7)
Dn Dn+1

The finite difference equation for all mesh points except for the initial and end points is
expressed as follows:

Dng(¢"g _¢n—18) + 5ng(¢ng - ¢n—18) + Dnchg¢ng Arn'*'ZTng ¢ng Arng __dng Ar,. =0 . (71)

The neutron flux ¢.¢ can thus be obtained by using the recursion formula:

g _¢n+lg + ﬂng
pro=frst Bt (72)

The coeflicients a, and B, are obtained by the following recursion formula:

1.8

an—lg

at=k,8—

I

73
L (73)

an—lg

,Bng: ‘Bn—lg+mng N
where

k,.8=_=51—(15f+5,,8+2n341r,,+D,,EBcEAr,,) .

1.8 Ee"g ,
D,
m,.8=d"5 Ar,

D,

The initial values of a,® and B.% e.g. a:® and .5 are obtained by substituting Eqs. (67)~
(69) to Eq. (70). For the first energy-group, the following equation is obtained by substituting
Eq. (67) to Eq. (70).

Dllﬂﬁﬂ—ﬁll@zl—¢1’)+Dlchl¢11Ar1+2T11¢11471—d1147‘1=0 .
1

Hence,
1 =¢21 + 1311
¢ Tal

Zg_Dll(]- —aB) +511+ (2T11+D113¢;1)A7'1
at =" (74)

1
1

O

d11
121
/91 _EllArl .

For second energy-group, by substituting Eq. (68) to (70), we get

Bt — $2>+Brdpi’

Dlz——Ar/g_B——' —512(¢22—¢12)+Dlch2¢1ZA7‘1+2T12¢12A7‘1—d12417‘1 =0,
1
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2D,?Bs

g+ (i dr 42D B g B

2/dry« Dy (1—“) 5 (Dlchz‘*'Z’le)Arl .

B

¢12_

2
1

ol

Hence, a,2 and $,% are obtained as

- D{1=2 )+ Do+ (D B+ Sx)
a2="1 ,
1 D1 )
(7
it dri+ - Do gy
Bii= 2
Dy
For the third energy-group, by substituting Eq. (69) to (70), we have
¢13 _ ¢13 + TB ¢Bz + EB¢B1
D13 Arl/gB —513((1522—¢13)+D133c3¢13df1+2'1-13¢134r1—d13Ar=0 ,
B2+ [dﬁdr; +2D1 (T:B¢B2+EB¢BZ)}/D 3
¢13 — Arl ¢B
2 pa (17)+D13+(DIBB s Sni%)dry
71
Dy
Hence,
A—Dl <1 ——) + D13 + (Dlcha +2’1‘13)Ar1
a13 1 ¢ )
Dy?
76)
ddry +2D13(TB¢BZ+EB¢81) (
ﬂ 3_ Ar1 ¢B
1 D13

The end values of a,® and 8,8, e.g. ay® and Bx®, are obtained in almost the same manner
as the initial values, as follow :
Ds(pns—gu-18) —~ Das P20 —/quN + D8 BSn® dr -+ Soad s dry—dn® dry=0

2Dy#
drn

PBNE= gzv (DNg +

+DneBEAry+ ZTNBAVN)SéNg .

Hence,
In®

:KNg_ ’
an-.8

BnE=

g g
P .BN 1B+ myt , 77

¢N lg: Ng"'ﬂl\l—lg
- ay-1#
PBNE=aNEPNE—BNE .
At the end mesh point in core (/*=0), the neutron current must satisfy the continuity con-
dition :

8¢BN“ —PN%__ dpre
~ D dryfz DR (dl* )v ' )

Therefore, for the 1st energy-group, we get from Egs. (64) and (65),

—Du(%)  =Di'Kigant . (79)
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Using the Eqs. (79), (78) and (77) given above, the following initial value of Eq. (77) is obtained :
2Dy '
ArN

TR (an' ~1)+ Dt Kaa!

v+ D! KBy

$n'= , (80)

For the 2nd energy-group, in same manner as for the 1st group,

—Dy 2fon" —On"_ —Dx (d¢R> —Dszz(¢BN2——I21 ¢BN1)

Araf2 dl* K7—K;?
A
2
+Dr?*Ky————— K7—Kg ¢
Hence
QN—ZIQNZ‘FDRZKZ(/SNLI- ¢BN) Dg? Kl______¢B 1
b= Ary K,2— K,2—K,? (81)
%(aw—l)wnmayz
For the 3rd energy-group,
2PN —oN° (d¢3>
—Dn dry/2 Dx dl* [« —o
=Dr3K;D+ K, E+ K, F)
2 2
=DR‘*K3§15BN3—D*——*"—ngf3 K2)2 PN’
DR3K3 1Az {K5(K2—K,2) — Ky (K32 — K2 )+K1( K,?)} .
(K2 — K ?))(K2—K?)(K3?— K7?) )
Hence,
Z—ZDTA— N+ Dr®Kyn2 &8
¢N3 2DN Y (82)

———(ax®*—1)+ Dr*Ksan®
dry

DR(Ka“Kz)22¢ 2
Kg—Kz

_De? Ky (Ks(Ky* = Ki)— Kol K — K + Ky(Ks =Kl
(Ks2—K2)(K?— K9 (K5 —K7?) N

Next we explain the method to calculate the two-dimensional neutron flux at the core boundary

fp=

in a XY plane. The two-dimensional neutron diffusion equation is expressed as follows :
— D8(r)V2¢8(r)+ 218(r) e8(r) = XBS(r) + 25 Ur) et (83)
where

S<r>=%sgm»2fs(r>¢z(r) :

2r8(r)=28(r)+ 2:8(r) + Lz5(r) .

A two-dimensional region is divided into K intervals along X axis and L intervals along Y
axis. Any node in the region is identified by (&, /). The widths of left, right, front and back
sides are expressed by the notations L, R, T and B, respectively. Each phase around the point
(k, 1) is identified by 1, 2, 3 or 4 as shown in Fig. 7. The node point P(%,[) is expressed by
Cartesian co-ordinate (&, &) and the diffusion equation (83) is integrated over the following small
intervals :
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(k, [+1)

- -
A 10O |
L R
: i ! ‘
k=1, | kD) (k+1, 1)
e

(5, 1-1)

Fig. 7 Mesh interval in two-dimensional calculation.

The material in each phase belonged to a node point P(k,7) may be different from each other
and the nuclear constants in each phase are expressed as 2i(P) (i=1,2, 3, 4).
The neutron flux and neutron current at the boundary plane containing the node point

P(k, 1) must be continuous :

be-(P)=e+(P) ,

$o-(P)=c+(P) ,

Je-(P)=Je4(P)

Jee(P)=d:(P) .
By integrating Eq. (83) and using the above relations, and the first term on the left side of Eq.
(83) becomes as follows:

~({ pr2gas=—{Drgas
-6
-(76)
"[%(%)_'_ )1 (Br-1,0—Pr,1)

{22

The second term on the left side and the right side of Eq. (83) give

+
N]t:c

1D ND =D

h

)‘ (Prs1,0—Pr,1)

— ———

+

), (Dk,141—Pi,1)

vl v

SSZT¢d5={ST1 . TR+2T2LT+ST3LB+ZT4 }¢k,z ,
SSde—f1—+f2£I+f3LB+f4_4_ H

where Fa=XBSk, 1,0+ 208 1 Pr, 1570 .

Using the above results, Eq. (83) is expressed as a following five points difference equation :
—(@r, 1 Prr1,1+Bu,1 Py 1-1+ Cty 1 Prm1, 0+ Ay 1 Pry141) + Pyt Pyt =f a1 (84)

where
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- {D1T+D,,B} R,

b, {D3L+D4R]/B ,

Chy= {D3T+DaB}/L ,

= ng#l@]/ T, (85)
Pru=ap,1+be,i+cri+dr i+ v,

Fi= f12R fzz }z_l_{fazL _ﬁZR]z ,

Now, we consider the expression of the neutron flux at the left side boundary between the
reflector and the core.
For the first energy-group, by using the boundary neutron flux ¢y, the neutron current from
the core, J.! is given by
D T . Dt
o—e — +_._.,_.
L 2 (¢1,l ¢0v ) L ¢13 ¢0’

=(D21T+DSIB)¢1>I _¢0,l
2 L
From Egs. (64) and (65), the neutron current from the reflector, Jg!, is expressed as follows:
dg! ) (T—i—B) (T+B)
1 1
Je! ( —De ol /i=0\ 2 KiDrl¢s
The continuity conditions of the neutron current (J.!=Jr!) and the neutron flux (¢s'=¢c!) must

be satisfied :

Ji=

(86)

DT+ D;'Béy, it —

1
! L¢°” =K1DR*¢0,,1<TJZFB) . 87)
Hence, @o,it=uV @',
where
u = 1
1+ Dr{(T+B)
(D*T+ Ds'B)
Equation (84) at the left boundary of the core is expressed as follows:
— (@, 192,10+ b1,101,1-1+ 1,101, 141) + (Prye— 0D o1, )b1,0=f1,1 (89)

As shown above, in our computer program the element Py,; of the coefficient matrix of the
normal five mesh point difference Equation (84) is corrected to (Pi,;—u®«cy,;) and then ¢y,; of
Eq. (85) is set to be zero.

For the second energy-group by using Egs. (64) and (65), the neutron current from the
reflector is expressed as follows:

o) T+B { ( B ) A 1}
— 2 PO S
Dr (al B DK~ 5 it |+ DKo g gt
T+B
X 2 .

Therefore,

D22T+DazB¢1,12—¢o,:2_DR2(T+B){ A )
2 L == 2 K2¢0,l K +K ¢0 l

Hence,



20 A Three-Dimensional Neutron Diffusion Calculation Code: DIFFUSION-ACE JAERI 1262

2
1 LDg¥T+B) K1+ oo

2
P —]_+M_KZL¢I’IZ+DR2(T+B)KIL+(D2T+D zB)¢01
D22T+D3ZB

=u@ ¢, P+ V@i, (90)

where

1
Dp3(T+B)
D22T+DSZBK2L

u®=

1+

LDr¥T+B
V(g)_ R ( )K1+K2

" Dp¥T+B)K,L+(D2T+Dy?B) *
In the above equation, the boundary flux at the first energy-group ¢o,:! has been obtained by
Eq. (87). In our programing, the term —u®. c¢y,;, is added to the element Py,; of the coef-
ficient matrix, V®¢,,;. ¢,; is added to fi,; and then ¢,,; is set to be zero.
For the third energy-group, from Egs. (64) and (65), the neutron current from the reflector
is expressed as follows:

_ DRZ(%)I-(T;—B>=(T;B) Dex (KiD+KE+K.F)

T+B

3
DR XI:K3¢0, K3+K2¢0'
+ g, 1 2 (Ro(Be? =K = Kz(Ka K12>+K1(K32—K22)l]
’ (Ko?— K2)(Ks?— K ?)(Ko*— K ?) -
By using the continuity condition of the neutron current, the neutron flux at the boundary ¢,:?

is obtained as follows:

(D2*T+ Ds*B)(¢1,1°—o,1°) _ (T +B)Dpg®
2 - 2 [K3¢°’ K3+Kz¢°’
2 142 {KG(KR2— K %) — KG(K? — Ki?) + Ki(K2 — KRP)) é 11]
(K — KK — K\ (K —K,?) T

Hence,

G0,13=uDP, P+ VP, B+ WS 1, 91)
where

ud=—7 3(T1 )

DRI+ 5)
W DT DBkl -
LDg¥T+B
— % )K2+K3

De¥(T+B)K;L+(D2*T+D4*B) ’
4122 {K(K?— Ki?) — Kp(K3? — K% + K (K3 — K)}
LDg¥(T+B=2=2
o (K= K) (K= K?) (K= Ky?)
De¥(T+B)K;L+(D*T+ D+*B)

Hence, Eq. (84) is expressed as
—(@1,102,8+b1,101,1-13+d1, 11,1413 + (P11 —u® ey, 1), 2
= 1,1+ V®ci, 1+ W®¢y 1,1t . (92)
In our programing, the term —u®@.c;; is added to the element Py,; of the coefficient matrix,
(V®ey, 10,2+ W®cy,1¢0,:") is added to fi,; and then ci,; is set to be zero.
On the other sides of the boundary, the coefficient matrix is obtained in exactly the same
manner.
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3. Test Calculations

Numerical calculations were made with the DIFFUSION-ACE code for the reactor core
shown in Fig. 8. The section of a block is 12X 12cm, which is slightly smaller than that of a
usual fuel bundle for boiling water reactors. The core is divided into two material regions.
Region I contains a strong absorber and Region II does not.

The four kind of mesh intervals, 4dz(=4y=42)=12, 6, 4 and 2cm were adopted. The total
number of neutron energy-groups was three. For comparison, the computer code ADC® which
adopts the standard fine-mesh difference approximation method was also used for these calculations.

The results of calculations follow :

1) Tase 1 shows the neutron leakage from each block. The neutron leakage is distributed three-
dimensionally.

2) The eigenvalues obtained for various mesh widths are summarized in TasLe 2. If the exact
eigenvalues is assumed to be 1.1255, the results by the present code is 0.15% larger than the
exact value. However the difference is so small that the results are considered to be in a good
agreement with that obtained by the ADC code.

3) In Fig. 9, the thermal neutron flux distributions along the Z axis at channel 1 is compared
with that calculated by the ADC code. The results by DIFFUSION-ACE show channel-integrated
fluxes and hence the solid line should represent the average of the point fluxes by ADC. The
point O, A and X in Fig. 9 describe the neutron fluxes at the upper right corner, the lower left
corner and the lower right corner of channel 1, respectively, as shown in the diagram in the
figure. The both results are shown to be in a good agreement.

4) In TaBLE 3 is shown the convergence history of the iteration scheme of DIFFUSION-ACE.
Both the inner iteration and the combination of the inner and the outer iteration result in the

convergence of the eigenvalue.

$=0
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() Reflector
BL5
$=0
_____________ ¥
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Fig. 8 Configuration for the check calculation.
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TABLE 1 Neutron leakage distribution calculated by the DIFFUSION-ACE code at mesh width dz=4y=4z=2¢cm
Channel No. 1
Block No. L.-1G* L.-2G Lx-3G L.y-1G* L.y-2G L,y-3G
1 0.83996 E-02 | 0.18677E-02 |—0.53751E-02 0. 38970 E-02 0. 17654 E-02 0.72240E-03
2 0. 36950 E -02 0. 16729 E-02 0.67087E-03 0. 37650 E-02 0.17073E-02 0.69995E -03
3 0. 38938 E-02 0.27806 E-02 0.15437E-02 0.28502E-02 0.11370E-02 0.39228 E-03
4 —0.51401E-03 |-0.20132E-02 |—0.18460E-02 0.50583E-03 [—0.31031E-02 |—0.29831E-02
5 0.46154E-02 [—0.11543E-03 |—0.68900E-02 |—0.13801E-02 |[—0.43332E-02 |—0.36464E-02
Channel No. 2
Block No. L.-1G L.-2G L.-3G L.-1G L-2G L.-3G
1 0.82919E-02 0.18228E-02 |—0.53%05E-02 0.39830E-02 0.18055E-02 0.76513E-03
2 0.35177E-02 0. 16083 E-02 0.65513E-03 0.39317E-02 0.17846 E-02 0.72068 E-03
3 0.31582E-02 0.15211 E-02 0.67025E-03 0.41500E-02 0.38379E-02 0.82681 E-03
4 0.12998E-02 0.45610E-03 0.10264E -03 0.49640E-02 0.38379E-02 0.22115E-02
5 0.53817E-02 0.53846E-03 |—0.58008E-02 0.53652E-02 0.40200E-02 0.22991 E-02
Channel No. 4
Block No. L.-1G L.-2G L.-3G Lxy-1G L:-2G L.y~3G
1 0.82184 E-02 0.17770E-02 |—0.48650E-02 0.96783E-02 0.18904 E-02 [—0.55048 E -02
2 0.32815E-02 0.14869E-02 0.62615E-03 0.98003E-02 0.19745E-02 |—0.60292E-02
3 0. 27706 E-02 0.12540E-02 0. 50996 E-03 0.10364 E-01 0.22170E-02 |—0.59758 E-02
4 0.21418E-02 0.97196 E-03 0.42223E-03 0.11055E-01 0.24923E-02 |—0.59518 E-02
5 0.61811E-02 0.89731E-03 |—0.50590 E-02 0.11767E-01 0.27714E-02 |—0.53591 E-02

TABLE 2 Eigenvalues calculated by the
DIFFUSION-ACE and ADC

code
Mesh width Eigenvalue
(em) | DIFFUSION-ACE | ADC
2 1.1272
4 1.1285 1.1255
6 1.1302 11272
1 12 1.1313 1. 1430

Thermal flux

* L.-1G=neutron leakage coefficients in the energy group 1 from each block along the z axis.
b Read as 0.83996x10-2
¢ Lyy-1G=neutron leakage coefficients in the energy group 1 from each block in the zy layer.

A L
X x
20+
A
el
15 ¢
°
x
10+ o
Calculated ché6
Smooth curve by DIF-ACE
5 e A X by ADC ch2 | ch3 | cns5
chl ch2 | ch4
1 i i 1 L 1 1 L L L L 1 1
T T l T T v l T T 1 l L T I ¥ i 1
3 9 15 21 27 33 39 45 51 57

Distance in centimeter from bottom of the core
Fig. 9 Comparison of the vertical thermal-neutron flux traverses
calculated by the DIFFUSION-ACE and ADC codes. The
locations of the traverses within the channel are shown in
the diagram.
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TABLE 3 Convergence history of the iteration scheme

The number of inner
The sequence lteration
number of Energy groups Eigenvalue
outer iteration
1st 2nd 3rd
1 9 3 3 1. 09721
2 4 3 2 1.13017
3 3 2 2 1.12849
4 2 - 2 2 1. 12792
6 2 1 1 1. 12740
8 2 1 1 1.12723
10 2 1 1 1. 12719
15 1 1 1 1.12717
20 1 1 1 1.12718
25 1 1 1 1.12718
28 1 1 1 1.12718
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4. Guide to User

In this section we provide the information needed for the user to understand DIFFUSION-
ACE options and to prepare the input.

4,1 Overdll program flow

The program DIFFUSION-ACE is constructed from three main parts, each of which consists
of two subprograms, ONEDIM and TWODIM for calculating one- and two-dimensional neutron
diffusion equations, respectively.

The first part of the program is a routine to generate an initial guess of the neutron source
distribution. To estimate the three-dimensional initial source distribution, a one-dimensional neutron
flux and source calculation is performed at each channel along the Z axis by ONEDIM (1) and
a two-dimensional neutron flux and source calculation is performed by TWODIM (1) in a layer
whose nuclear group constants are obtained by averaging the group constants of all layers along
the Z axis using the results of ONEDIM (1). One- and two-dimensional neutron sources are
superposed to give a three-dimensional source guess.

The second part is a routine to calculate the neutron flux distribution with a fixed neutron
source distribution. This part is constructed from two sub-routines, ONEDIM (2) and TWODIM
(2). In ONEDIM (2), the axial leakage L, and the axial flux ¢, are computed with the radial
leakage L., obtained by TWODIM (2). In TWODIM (2), L,, and ¢, are calculated using L.
The one- and two-dimensional leakages are iterated until the consistency is attained between the
two. This step of calculation is performed for each energy-group and referred to as inner iteration.

The third part is a routine to calculate the neutron source distribution in the core with the
neutron flux obtained in the second part. This routine is referred to as outer iteration or source
iteration, and constructed from two subroutines, ONEDIM (3) and TWODIM (3). The check of
the convergence is performed by comparing the effective multiplication factor in each block.

General flow chart of the program DIFFUSION-ACE, and the flow charts of the subroutines
ONEDIM and TWODIM are show in Figs. 10, 11 and 12, respectively.

4.2 Discretization of spatial variables

Only orthogonal coordinate X-Y-Z is allowable in this program. The reactor is divided
doubly into blocks and meshes. A parallelepiped formed by a channel and a layer is called a
block in which the materials are homogenized. A block is sub-divided into fine meshes, and the
fine-mesh difference approximation method is applied to solve the one- and two-dimensional neutron
diffusion equations for each channel and layer, respectively. It is possible to have mesh-points
in the reflector for solving numerically the diffusion equations.

The first step for discretizing the spatial variables is to divide the X-Y plane of the reactor
into channels as shown in Fig. 13 and each channel is numbered. The channels which are in the
same physical condition are indexed with the same channel number. One-dimensional calculation
is performed on each channel number. The second step is to divide the X-Y plan into meshes
for solving two-dimensional diffusion equations. In this stage, the numbers of meshes are deter-
mined for each channel and for side reflectors. The third step is to divide a channel into blocks
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Fig. 11 Flow of subroutine ONEDIM
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Fig. 15 Z section of a channel. (Example 2)

and sections (or meshes) as shown in Figs. 14 and 15. The case shown in Fig. 14 is that the
neutron fluxes in upper and lower reflectors are calculated analytically and the fine-mesh difference
approximation method is applied only to the core. On the other hand, in the case shown in Fig.
15, the neutron flux in the lower reflector is computed by the finite difference method.

4.3 Description of input data

The input data for DIFFUSION-ACE are read in I3 format for the integer type and E10.0
format for the floating-point type, in the following order :

Card
number

CARD 1

CARD 2
CARD 3

CARD 4

Column

1~3

1~72

4~6
7~9
10~12

13~15
16~18
19~21
22~24
25~27

Variable
name

NPROB

MTITLE
IMAX
JMAX
KMAX
NMAX

ISECT
JSECT
KSECT
NRMIV
NRZ

NCROD
INMMAX
NSKO

Comments

Problem number.

If not positive, calculation is terminated.

Job title card in 18A4 format.

Maximum number of channels along X axis (<10).
Maximum number of channels along Y axis (<10).
Maximum number of blocks along Z axis (<12).
Maximum value of channel number at which one-dimen-
sional calculation is performed (<79).

Number of mesh-points in a channel along X axis.
Number of mesh-points in a channel along Y axis.
Number of sections in a block along Z axis.

Number of meshes in reflector in the X-Y plane.
Number of sections in reflector for one-dimensional cal-
culation (for example, NRZ=0 for Fig. 14, NRZ=4 for
Fig. 15).

Number of control rods (<16).

Number of in-core monitors (<30).

Number of sections which are subdivided into three sub-
sections with widths of 1/3 of the original width.
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Card
number

CARD 4

CARD 5

CARD 6
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Column

10~12

13~15

16~18

19~21
22~24

25~27

1~10
11~20
21~30
31~40
41~50
51~60
(2413)

Variable
name

MNZ

IGS

KKK

NGMAX
IPUNCH

ILXY

DX

DY

DZ
RFWID
CRWID
REFZ

NC({, J)

- Comments

In the case of analytical boundary condition (see CARD

11), number of positions at which the neutron fluxes

printed.

Initialization of neutron source distribution.

=0 Initial guess of L,, is supplied by input cards and
initial source distribution is calculated in the code.

—1 [Initial source distribution is supplied by input cards
(see CARD 26 and 27).

=2 Tnitial source distribution is supplied by disk or tape.

Option to input the diffusion parameters of the core

(see CARD 29).

=1 Diffusion parameters are the same in the full core.

=2 Diffusion parameters are supplied channel-wise.

=3 Diffusion parameters are supplied block-wise.

=4 Blocks are grouped into some types and diffusion
parameters are supplied type-wise.

Number of energy-groups which must be two or three.

Output option.

=0 No punch output.

=1 Neutron source distributions are punched out (see
CARD 25, 26 and 27).

=2 L,, at each block is punched out.

=3 Both neutron source and L,, are punched out.

=—1 Neutron source distributions in channels and in
layers are written in disk or tape.

=—2 L,, at each block is written in disk or tape.

=—3 L,, and neutron source distribution are written
in disk or tape.

Input option of initial guess of Lyy.

=0 Initial guess of L., is prepared by CARD 29.

=1 Initial guess of L., is prepared by CARD 30 and
31. In this case, L,, prepared by CARD 29 is not
used.

=2 Initial guess of L,, is prepared by disk or tape.

One channel width along X axis (cm).

One channel width along Y axis (cm).

One block length along Z axis (cm).

Reflector width in X-Y plane (cm).

Cross-type control rod thickness in X-Y plane (cm).

Reflector thickness along Z axis (cm).

Chnnel number allocated in X-Y plane. Number of in-

put cards (NC(I, J), I=1, IMAX) used in JMAX. The

subscripts I and J correspond to X-COORDINATED I

and Y-COORDINATE ], respectively, as shown in Fig.

13.
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Card

number
CARD 7

CARD 8

CARD 9

CARD 10

CARD 11
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Variable

Column name Comments

(813, 6X, E10.0) Identification of control rod. If NCROD=0, this card
in not required.

1~3 Control rod number.

4~6 Location of a control-rod in X-COORDINATE II (see
Fig. 13).

7~9 Location of a control-rod in Y-COORDINATE II (see
Fig. 13).

10~12

13~15 Four channel numbers around a control-rod (the order

16~18 is arbitrary). If there are same numbers, repeat them.

19~21

22~24 Block number which contains the top of a control-rod.

25~30 Blank.

31~40 Height of control-rod from the bottom of the core. (cm)

CARD 7 is repeated NCRD times.
In-core monitor specification (not required if INMMAX

<0).
1~3 In-core monitor number.
4~6 Location of a in-core monitor in X-COORDINATE II.
7~9 Location of a in-core monitor in Y-COORDINATE II.
CARD 8 is repeated INMMAX times.
(2413) NSPNO Subdivided section numbers (not required if NSKO<O0).
(NSPNO (I), I=1, NSKO)
1~10 DLZ Neutron fluxes in reflector by one-dimensional calculation

are printed for MNZ positions with interval DLZ cm
from the boundary to (DLXxMNZ) cm (not required

if MNZ<0).
1~3 KLB Lower boundary condition (Z-coordinate).
4~6 KPT Upper boundary condition (Z-coordinate).
7~9 KL Left boundary condition (X-coordinate).
10~12 KR Right boundary codition (X-coordinate).
13~15 KB Back boundary condition (Y-coordinate).
16~18 KT Front boundary condition (Y-coordinate).
Following four boundary conditions are accepted :

=0 Zero flux.

=1 Zero derivative

=2 Logarithmic derivative;
49 _9 . s input (see CARD 12~17).

dr b4

=3 Analytical ;
Inside of the boundary the finite difference method
is applied and outside of it, the neutron flux is
solved analytically. These two methods are com-
bined with the continuity conditions of neutron

flux and current at the boundary.
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Card

number

CARD 12

CARD 13

CARD 14

CARD 15

CARD 16

CARD 17

CARD 18

CARD 19

CARD 20

CARD 21

CARD 22
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Column

1~10
11~20
21~30
(3E10.0)

(3E10.0)

(3E10.0)

(3E10.0)

(3E10.0)

(3E10.0)

1~3

4~6

7~9

1~10

11~20

21~30

31~40

1~10
11~20

4~6

Variable

name
Cl

Cl (1)
Cl (2)

C1 (3)
c2

GAM1

GAM2

GAM3

GAM4

YK

ITIN 1

IPMAX 1

INITSC

EPSI (1)

EPSI (2)

EPS 2

EPS 1

THETA
A\

IPSMAX

ITMAX

Comments

The value of logarithmic derivative for KLB (used only

if KLB=2).

For first group,

For second group,

For third group.

The value of logarithmic derivative for KPT (used only

if KPT=2).

(C2 (NG), NG=1, NGMAX).

The value of logarithmic derivative for KL (used only

if KL=2).

(GAM1 (NG), NG=1, NGMAX)

The value of logarithmic derivative for KR (used only

if KR=2).

(GAM2 (NG), NG=1, NGMAX)

The value of logarithmic derivative for KB (used only

if KB=2).

(GAM3 (NG), NG=1, NGMAX)

The value of logarithmic derivative for KT (used only

if KT=2).

(GAM4 (NG), NG=1, NGMAX)

Fission spectrum.

(YK (NG), NG=1, NGMAX)

Maximum number of inner iterations for two-dimensional

calculation to obtain initial source guess.

Maximum number of source iterations in the same

routine as above.

Option of acceleration in the same routine as above.

=0 SLOR (Successive Line Over Relaxation) is applied
to X- and Y-coordinate.

=1 SLOR is applied only to X-coordinate.

Eigenvalue covergence criterion of one-dimensional cal-

culation to obtain initial source guess.

Source distribution convergence criterion in the same

routine as above.

Convergence criterion of inner iterations of two-dimen-

sional calculation to obtain initial source guess.

Convergence criterion of source iterations in the same

routine as above.

Acceleration factor for one-dimensional calculation.

Acceleration factor for source iterations is two-dimen-

sional calculation.

Maximum number of source iterations in three-dimen-

sional calculation.

Maximum number of inner iterations in three-dimen-

sional calculation.
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Card
number

CARD 22

CARD 23

CARD 24

CARD 25

CARD 26

CARD 27

CARD 28

CARD 29

Column Vg;i:llge
7~9 ITR 1

10~12 ITR 2

1~10 CRT 2

11~20 EPI (1)

21~30 EPI (2)

31~40 EPI (3)

1~10 WXY
11~29 WZS
21~30 WS

1~3 NAMAX
4~6 IIMAX
7~9 JIMAX
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Comments

Number of inner iterations to exchange the convergence
criteria for three-dimensional calculation.

ITR 1 and ITR 2 have correlation with following EPI
(1) and EPI (2).

Convergence criterion of source iterations in three-dimen-
sional calcualtion.

Initial convergence criterion for inner iterations in the
same routine as above (used for source iteration number<C
ITR1).

Intermediate convergence criterion for inner iterations
in the same routine as above (used for source iteration
number<ITR2).

Final convergence criterion for inner iterations in the
same routine as above.

Acceleration factor for L,,

Acceleration factor for L,

Acceleration factor for source iterations.

Required only if IGS=1.

Number of sections in Z-coordinate

Number of mesh points in X-coordinate

Number of mesh points in Y-coordinate

Initial source guess for one-dimensional calculation (re-
quired only if IGS=1).

(A (N), N=1, MAMAX)

CARD 26 is repeated NMAX times.

Initial source guess for two-dimensional calculation (re-
quired only if IGS=1).

(A (N), N=1, KKKMAX), where KKKMAX=IIMAX %
JIMAX.

CARD 27 is repeated KMAX times.

1~10 D
11~20 STR
21~30 SSA
31~40 SvVU
41~50 ALXY
51~60 AKSF
61~70 ANU

Number of types of blocks with different diffusion para-
meters (required only if KKK=4).

Diffusion parameter

Diffusion coefficient in core, D

Removal cross-section in core, 2;

Absorption cross-section in core, J,

Emission cross-section in core, v3

Initial guess of radial leakage, L.,

Power per fission

Number of emitted neutron per fission, v

CARD 29 is repeated as follows.

KKK=1
KKK=2

KKK =3

NGMAX times.

NMAX groups are required, one of which consists of
NGMAX cards.

KMAX groups are required, one of which consists of
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Card

number

CARD 30

CARD 31

CARD 32

CARD 33

CARD 34

CARD 35

CARD 36
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Variable

Column name Comments

NGMAX cards and they are required NMAX times.
KKK =4 NGMAX cards are repeated by number of fuel types.

Required only if ILXY=1.

1~3 NK "Number of channels for which initial guess of radial
leakage is input.

4~6 KK Number of blocks of the channel.

7~9 NGK Number of energy groups.

Initial guess values of radial leakage (required only if
ILXY=1).
(ALXY (N, K, G), G=1, NGK)

CARD 31 is repeated KK*%NK times.

1~10 DB Diffusion coefficient of lower reflector.
11~20 STRB Removal cross-section of lower reflector.
21~30 SSAB Absorption cross-section of lower reflector.
31~40 BUKB Geometrical buckling of lower reflector.
CARD 32 is repeated NGMAX times.

1~10 DT Diffusion coefficient of upper reflector.
11~20 STRT Removal cross-section of upper reflector.
21~30 SSAT Absorption cross section of upper reflector.
31~40 BUKT Geometrical buckling of upper reflector:
CARD 33 is repeated NGMAX times.

1~10 DR Diffusion coefficient of right side reflector.
11~20 STRR Removal cross-section of right side reflector.
21~30 SSAR Absorption cross section of right side reflector.
31~40 BUKR Geometrical buckling of right side reflector.

CARD 34 is repeated NGMAX times.
If NCROD<0, not required

1~10 GBASE Values of logarithmic derivative at the surface of control-
rod.

11~20 GDD Diffusion coefficient of control-rod.

21~30 GSR Removal cross-section of control-rod.

31~40 GSA Absorption cross-section of control-rod.

41~50 GCR Initial guess value of radial leakage Lcr of control-rod.

CARD 35 is repeated NGMAX times.
If NCROD<0, not required

1~10 WHT Weighting factor to correct the logarithmic derivative
value in a block which contains the top of a control-
rod.
Logarithmic derivative value v is corrected to o/ in the
following manner :

,_ DZ

=—y+5 o WHT
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ng‘ﬁi " Column V:g;}ge Comments
D,
/ Y.,
NS
Top control rod
CARD 37 Blank card.

4.4 Output description

Following data are printed but the items marked with * are the optional output.
1 Input data
2% Eigenvalue of two-dimensional diffusion equation integrated over Z axis for obtaining the
initial source guess.

3 Eigenvalue of three-dimensional diffusion equation.
4 Averaged neutron source, power, neutron flux and neutron leakage in each block.
5 Neutron flux and source distribution along Z axis in each channel.

6*  Neutron flux distribution in the reflector.

7 Two-dimensional neutron flux distribution in each layer.

8*  Thermal neutron flux at the positions of in-core monitors.

Either of the following data is punched out.

1 Neutron source at each mesh point. The punched data are channel-wise neutron sources
for one-dimensional calculation and layer-wise neutron sources for two-dimensional calcula-
tion. The numbers of mesh points along Z axis, X and Y axes are punched on the first
card with the format (3I3). The neutron sources are punched in the format (7E10.3).

2 Radial leakage L,, in each block. The first card contains numbers of channels, blocks and
energy-groups in the format (3I3). The values of L,, are punched in the format (7E10.3).

4.5 Sample problem

The geometry of the sample problem is a quarter core of JPDR-II whose X-Y cross section
is shown in Fig. 13. A channel is divided into four meshes. Left and back side reflectors have
one mesh point at each X and Y coordinate. In the outside of the mesh point, neutron flux is
calculated analytically. A channel is divided into sections along Z axis as shown in Fig. 14 and
the top and bottom boundary conditions are both “analytical”. The blocks from 1 to 8 of the
No. 1, 2 and 3 channels contain heavy absorber.

The input and output data of this problem are shown in Appendix A and B, respectively.
The computation time and core memory required for this computation on the FACOM 230-75
are as follow :

CPU time 346sec,
Core time 884 sec,
Core memory 105K words.
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5. Conclusions

The new “leakage iterative method”, embodied in the DIFFUSION-ACE code for the
FACOM 230-75 and COC-6600 computers, has been shown to make it possible to analyse a
reactor core performance by the finite difference approximation with much less mesh points and
shorter computer time than by the conventional fine mesh finite difference method. The discreti-
zation error is small in comparison with the coarse mesh method in the calculation of neutron
leakage from a subregion.

A good agreement has been obtained between the computed results by the DIFFUSION-ACE
and those by the ADC based on the conventional fine mesh difference approximation method.
It has been confirmed that the iteration scheme imployed in DIFFUSION-ACE converge smoothly.
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Appendix B

APPENDIX B Sample Output

DIFFUSION ACE a#®s THREE DIMENSIONAL DIFFUSION EQUATION CODE

PROBLEM NO. 1

SAMPLE PROBLEM OF DIFFUSION ACE ssa* JPDR-2 (1/4) CORE

#%8 CHECK OF THE VARIABLE DIMENSION #aw

#an YOUR CALCULATIONAL SYSTEM ‘1S PROPER wa#
NO« OF (A) 1S UNDER THE LIMIT BY 15826 woRDS

### YOUR CALCULATIONAL SYSTEM IS PROPER #a#

NOs OF (NA) IS UNDER THE LIMIT BY 4852 woRrDs

#nth CALCULATION SYSTEM #ans

NO+ OF CHANNELS IN X~"DIRECTION aeosss 5
NO+ OF CHANNELS IN Y=DIRECTION eoeeae 5
NOs OF BLOCKS IN €=DIRECTION oseesvnsne 10

NOs OF DIVISIONS IN ONE CHANNEL €X) oo
NO+ OF DIVISIONS IN ONE CHANNEL €YD oo
NGe OF DIVISIONS IN ONE BLOCK ¢2) sewe

NOs OF CHANNELS IN X=Y PLANE ssosenes 1

NO« OF DIVISIONS IN THE REFLECTOR (X=Y) 1
NOs GF DIVISIONS IN THE REFLECTOR (2) [}
NO» OF CONTRCL RUDS sevssssssevessans 0
NOe OF IN~CORE MOMITURS sasesessessss 3
NCs OF SPECIAL BLOCKS DIVIDED THINNER 0
#nek GEOMETRY #usvs
wIDTH OF ONE CHANNEL IN X~DIRECTION 1346600 CM
wIDTH OF ONE CHANNEL IN y=pDIRECTION 1346600 CM
LENGTH OF ONE BLOCK 1IN Z=DIRECTION 14,6700 ¢cM
WIDTH OF THE KEFLECTOR (X=Y) 1,0000 ¢M
THICKNESS OF THE CONTROL RQDS 0.0 cM
LENGTH OF THE REFLECTOR (Z) 0.0 M

CHANNELS POSITION IN X*Y PLANE

LEFT

BACK

AR 06 003U I S R

e I K I J

FORE

# RIGHT
011 -
a7 -
5 4 *
37 »
2 1 -

I U000 T 0030 I

7
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#xu% CONVERGENCE CRITERIA AND RELAXATION FACTORS *###
CONVERGENCE CRITERIA WHEN CALCULAT[NG SQURCE GUESS

CRITER]A ON EIGENVALUE IN 1-DIM. OUTER IT.
CRITER1A ON SOURCE DISTR, IN 1=DIM. OUTER 1T,
CRITERIA IN 2 = DIMENSIONAL INNER IT.
CRITERIA IN 2 = DIMENSIONAL OUTER IT.

MAXe ITERATION TIMES IN 2=DIM. INNER [T

MAXs ITERATION TIMES IN 2«DIM. OUTER IT:
OVER RELAXATION FACTOR OF 1=DIMs OUTER [T,
OVER RELAXATION FACTOR OF 2-DIMs INNER 1T,

0.001000
0.001000
0.001000
0.001000

50

50
0.800000
1.400000

SLOR METHOD IN 2=DIM: INNER 1T+ IS APPLIED 70 ONLY X = Axis
CONVERGENCE CRITERIA WHEN CALCULATING 3=DIMENSIONAL SYNTHESIS

TEMPORARY CRITERIA IN 3-pIM, INNER IT, wHEN OUTER If, TIMES ARE LESS THaN 2 ssene

TEMPORARY CRITERIA IN 3=DIM, INNER 1T. wHEN QUTER IT, TIMES ARE LESS THAN 5 ssees

FINAL CRITERIA IN 3=DIM. INNER ITEKATION
CONYERGENCE CRITERIA IN 3-DIM, OuTER ITERATION
MAX, ITERATION TIMES IN 3=DIM, INNER IT.

MAXs ITERATION TIMES IN 3~DIMs OUTER IT:
RELAXATION FACTOR OF L=XY IN [NNER IT.
RELAXATION FACTOR OF L-Z IN INNER IT.
RELAXATION FACTOR IN 3«pIM. QUTER IT.

MATERIAL MAP

X0 1 2 3 44 5 & 7 8 91011

B e L TR T T PR P A
#12 12 12 12 12 12 12 12 12 12 12%
* HRRR R
#12 12 12 12 12 12 12 12 12%11 11+
* »* *

#12 12 12 12 12 12 12 12 12%11 11%
* FRRFARRARERERRENRRRERRRER
#12 12 12%10 10# 3 9% 8 3% 7 7%
» * » * » *
#12 12 12#10 10* 9 9* 8 8% 7 7T*
» IR RN NN N
#12 12 120 9 9% 6 6% 5 5% 4 Ax
* * * * » *
#12 12 12% 9 9% 6 6% 5 5% 4 4w
* E2IAS I SIS 2Tt ss sy
#12 12 12% 8 8# 5 o% 3 3% 2 2%
13 * L] * » *

#12 12 12 8 8% 5 5% 3 3% 2 2
» AN 360600 P 00063 TN
#12#11 11% 7 Te 4 4% 2 2% 1 1%
* * » » * * *
#12#11 11% 7 7# 4 4% 2 2% 1 1%
P22 22T R T I RSS2 A 222222

o ® =~ &0 W » W N = O<

-
» o

###% CONVERGENCE OF 2=DIMs FOR SOURCE GUESS

SOURCE 1T+  MAX LAMBDA LAMBDA
1 0,12545683E U1 0.11000087F 01

N

0.11633639€ 01  0.11066962E 01

seane

100
60
0.0
0.0
14400000

%

MIN LAMBDA ACCs PARAMETER USED

0.79578717E 00 0.0
0+92989860E 00 _ 0.0

THETA VALUE 0:45172E~01 0.74707€~02~0,88812E=15 0.13177€ 28 0.85527E=71

0,11467046€ 01  0,11110999% 01
C.11372903E 061  0.11137898E 01
THETA VALUE 0-16240E 01 v.80115¢ 00
0.11269634E 01  0,11177787€ o1
0.11216661E 01  0.,11183248E 01
0,11209229€ o1  ©.11134909€ 01
0,11207468E 01  0,11185876E 01
THETA VALUE 0.11234E 01 0.99834E=-01
0411202846E 01  0.11188101E 01
0¢11204943E vl  0.11188336E 01
THETA VALUE 0.1805GE 00 0.,99834E~01
0+11197920E 01  0.11189086E 01
THETA VALUE 0+25690E 01 0+14090E 00
12 0,11203633€ C1  0,11189529€ 01
13 0,11198798E 01  0.,11190171€ 01

ow Nty P

[
-

0,99417982E 00  0,45172138E-01
0,10301718E 01 0.+74707407E=02
0,24780E 00 0:25102E~01 0.83527E=71
0,11030940E 01  0.16239749E 01
0.,11055834E €1 0.80115178E 00
0.11093107€ 01 0.24779518E 00
0.11116506E 01 0.,25102076E=01
0,24780E 00 0.25102E-01 0.85527E=71
0-11146488E 01  0,11234079€ 01
0+11158796E 01  0.99834280E-01

0.24780E 00 0+25102E~01 0.85527€~71

0+11165767E 01  0.18049611E 00
0.24780E 00 0+25102E=-01 V.83527€=T1
0.11178572E 01 0.25656%9607E 01
0.11179874E 01  0.14090025E 00

JAERI 1262

0.010000
04002000
0.001000
0.001000
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##4x' SOURCE ITERATION OF 3=DIMENSIONAL DIFFUSION EQUATION san

1T TIMES MAX LAMBDA LLAMBDA MIN LAMBDA

1 0,38270324€ 02 0.11236220€ 01 0+67559244E 00
2 0.22431177€ 01 0.11072136E 01 0.96035172E 00
3 0414296138E 01 0+11037212¢ o1 0410175050 01
4 0.12605922€ 01 0.11030910€ 01 0.10283361E 01
5 - 0,11900815€E 01 0.,11023777E 01 0410367239 01
6 0.11518746E 01 0:11019269E 01 0+10460768E 01
7 0.11344379E 01 0.11016326E 01 0+10546061E 01
5 0.11262250E 0i 0,11013780E 01 0.10617209€ 01
9 €,11204805E 01 0.,11012571€ 01 0,10684738E 01
10 0.11170189€ 01 04110127426 01 0.10738535E 01
11 0,11131666E 01 0.11012152¢ 01 0.10787875E 02
12 0.11100534E 01 0.11011447¢ 0L 0.10826100E 01
13 0.11079542E 01 0.11011415€ 01 0.10861103E 01
14 0.11065270E 01 0+11011460E 01 0+10889705€ 01
15 0.11055497€ o1 0.11011579E 01 0+10912995¢ o1
16 0.11048194E 0L 0.11011747€ o1 0.10931995€ 01
17 0,11045471E 01 0.11012398€ 01 0,10942926t 01
18 0.11036367E 01 0,1101209%E 01 0+10941447E 01
19 0.11035361E 01 0.11012532¢ 01 0.10967345E 01
20 0.11032527€ 01 0,11012695E C1 0:10975601E 01
21 0.11029775€ o1 0.11012783€ o1 0.10983790E o1
22 0.,11027327E 01 0.11012936€ 01 0+10986362E 01
23 0.11025341E 01 C.11013076€ 01 0.10988689E 01
24 0.11023782€ 01 0,11013215E 01 0.1C990710€E ol
25 0.11022611E 01 0.11013351g 01 0+10992462E 01
26 0.1102170% 01 0.11013488E 01 0+110994060E 01
27 0.11020862E 01 0.11913618€ 01 0:1099%618E 0
28 0,11019977¢ 01 0,11013726€ 01 0.10997172E 01
29 0,1101929:E 01 0.11013822€ 01 0:10998643E 01
30 0.11018772€ 01 0.11013910E 01 0.,10999Y917E 01
3l 0.1101847%E 01 0+11014007€ 0L G+11000963E 01
32 0.1101662vE 01 0.11014108¢ 01 0,11001901E 01
33 0,1101831YE 01 0,11014188E 01 c+11002887¢ o1
34 0,11017533€ 01 0.11614278E 01 0+11003947E o1
35 0.11017958E 01 0.11014331E 01 0.11004696E 01
3a 0.,1101737¢E 01 0.11014388E 01 0.11005538€ 01
37 0.11017590E 01 0.11014450€ 01 0.11006139€ 01
38 0.11019074E 01 0,11014511E 01 0.11006570€ 01
33 0,11017491E 01 0,11014553E 01 0.11007366E 01

OUTER ITERATION END

FLUX AND SOURCE DISTRIBUTION

EIGEN VALUE 1411014553
CHANNEL NOo 1
BLOCK NO« SOURCE FLUX*1G FLUX=2G FLUX~36
1 0.11611E 00 0424020F 01 0.10745€ 0l 0.84763E 00
2 0+22463E 00 0+48869E 01 0+21895E 01 0+16245E 02
3 0+32761E 00 0.71266E 01 0+31932E o1 0s23691E 01
4 0+41537E 00 0.90405E 01 0+40510E 01 0430049E 01
5 0.48684E 00 0+10590€ 02 0+47453E ol 0435201E 01
6 0454493E 00 0.11850E 02 0+53103E 01 0439402E 01
7 0+61293E 00 0:13329€ 02 0459732E 01 0.44317€ 01
8 0.80847E 00 0+17269E 02 0+77643E 01 0.58630E 01
9 0.13731t o1 0.23933E 02 0.11583€ 02 0412066E 02
1p 0.10415€ 01 0+17049E 02 0+82426E 01 0492341€ 01
CHANNEL NOoo 2 ) -
BLOCK NG+ SOURCE FLUX=1G Flux=26 FLUX=3G
1 0.17929E 00 0.34693€ 01 0415715€ o1 0.13222¢ o1
2 0.3465%9E 00 0+70379€ 01 0+31948€ 01 0425347 01
3 0.50512E o 0+10256E 02 0+46%560E 01 0+3693a€ 01
4 0+64032E 00 0+13002E 02 0+59025E 01 0.,46820€ 01
5 0.74825E 00 0415193E 02 0468972E 01 0.,54708€ 01
6 0.82963E 00 0.16847€ 02 0.76481E 01 0460654 01
7 0.89990E 00 0.18297€ 02 0.83051E 01 0.65777€ 01
8 0.10496E 01 0.21176E 02 0.96265€ 01 0.76828E 01
9 0.1a%42€ 01 04253C5€ 02 0.122%2€ 02 0.12780E 02
10 0.10382E 01 0+17003E 02 0:82216€ 01 0492044E 01
CHANNEL NO+ 3
BLOCK NO+ SOURCE FLUX~1G FLUX=26G FLUX=3G
1 0+22744E 00 0-42135E 01 0+19251E 01 0+1687%E 01
2 0+43984E 00 0+85392E 01 04391135E 01 0:32386E 01
3 0.64090E 00 0:12441E 02 0+56992E 01 0.47187€ 01
4 0.81228E 00 0:15768E 02 0.72234E 0L 0459799€ 01
) 0.94816E 00 0+18406E 02 0484314E 0L G.69797€ 01
6 0.10468E ol 0.20322€ 02 0493093€ 01 0.77050€ o1
7 0.11158E o1 0+21688E 02 0499332E 0L 0.82112€ 01
8 0.12213€ o1 0+23629E 02 0410832E 02 0489937E 01
9 0.14786E 01 0+25€693E 02 0.12444E 02 0+12996E 02
10 0.10106€ 01 0416559E 02 0480058E 01 0.89584E o1
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LEAKAGE DISTRIBUTION
NOs 1
1.2-16 L2=26 L2~36 LXy=16 LXY=2G LXY=3G POWER
1 0.27499E=02 0.38290E=03 =0,64895E=02 =0.71404~02 =0.32873€-02 -0.12409E-02 0.11601€ 00
2 0,32894E=C3 0.16127E-03 0,66021E~04 «0s710126=02 ~0.32847E=02  ~0.13940E-02 0,22437€E .00
3 0+30885€E=03 0:150%4E=03 0.61488E=04 =0470850E~02 =0+32826E-02 =-0.13877€-02 0.32721E 00
4 0+27680E=03 0.,13547E~03 0+53883E=04 =0.70650E-02 ~0.32720€=02 =0.13598E~02 0,41504E 00
5 04+20859E~03 0.10038E~03 0.39645E«04  ~0,70018E=02 =0.32337E=02  =0.13519E-02 0.48620E 00
6 ~0.4641TE=05 =0,16512E~05 0¢2309TE=06 =0.67797E=02 =0.31438E=02 ~0.13366E~02 0.54419E 00
7 «0.92807E=03  =0.45251E-03 ~0.17846E-03  -0.%58598E-02  -0.26969E=-02  =0.11497E«02 0.61208E 00
8 =0.25292E~02 =0.20310E=02  <=0.,2737%E=02  =0:34299€=02 =0.14157E-02  =0,46952E-03 0.80743E 00
9 0+48681E~02 0.27483E=02 0+18654Ea02 =0.11632E=02 ~0:53947E=03  =0.24519E=03 0.13727€ 01
15 0.75990€=02 0,28064E=02 ~0¢41234E=02 =0+18071E=03  ~0.81446E-04  «0.20626E~04 0,10414€ 01
NO» 2
L2=16G LZ=26G L2=3G LXY=16 LXY=2G LXY=3G POWER
1 0+28246E~02 0:39696E=03 =0+60277E=02 <-0+38695E=02 =0°*47223E-02 =0+80170E~02 0¢17919E 00
2 0,33071E=03 0.16184E=03 0.70608E~04 =0.33170€=02 =0.47232E=02  ~0.83728E-02 0.34631E 00
3 0.30904E~03 0.150535€=03 0+61193E=08 =0.38032€~02 ~0.47174E~02 =0.83602E-02 0.50469E 00
4 0.28887E=03 0.14118E-03 0.56610E=04 ~0.37971E=02 =0.47123E=02 ~0.83399E~02 0.63972€ 00
5.  0+25029E=-03 0.12174£203 0489518E-04  ~0:3T697E-02  =0.46912E-02  =0.83294E-02 0,74751E 0Q
6 0.13049E=03 0.65059E=04 0.29776E=04 =0.36640E-02 =0.46347E-02 =0.82930E-02 0.82877€E 00
7 =0.30241F=03 =0,14068E-03 ~0,36743E=0% =0.32987€-02  ~0.44090E=02  -0.80936E-02 0.89895E 00
8 =0.13754E=02 =0.12964E=02 =0.18988E=02 =0.18336E~02 =0+34214E-02 ~0.69989E-02 0.10487€ 01
9 0+41500E=¢2 0423854E=02 0¢16848E=02  «0.36182€-03 ~0.22029E-03  =0.l7871E-03 0.14537E 01
10 0+69220E-02 0.21062E=02 =0.41962E~02 0145320E=03 0:21600E=03 0.10323E-03 0.10381E 01
NO+ 3
LZ=16 L2=26 LZ=36 Lxy=16 LXY=26G LXY=3G POWER
1 0+28534E=02 0+42380E=03 =0*5T476E~02 ~0015986E=02 =0°56919E-02 =0:12124E-01 0+22736E 00
4 Q¢33553E-02 0.16378E=03 0¢73522E~04 =0,15610E=02 ~0+57047€-02  =0.12579E~01 0,43958E 00
3 0,30793€~03 0.15008E-03 0,60818E=04 =0.15383E=02 «0:56962E=02 =0.12366E~01 0,64049E 00
4 0+29506E=-03 0+14415E-03 0157972E=04 =~0,15343E=02  «0¢56937E~02 «0.12552e-01 0.81170€ 00"
5 0.26850E=03 0,13072E=03 0:53247E=04 «0415154E=02 «0:56785E=02  «0.12543E-01 0.94741€ 00
6 0+20300E=03 0.10033E~03 0:43502E~04 =0,14628E~02 =0:564T72E=02 ~0.12514E~01 0.10459E 01
7 «=0492359E=G5 0.31684E~05 0422641E=04 =0+13157€=02 =0+55295€=02 =0.12373E-01 0.11148E 01
8  =0,73777€=03 =-0,87787E=03 =0,14221E-02 ~0,34798€-03  ~0.47498E~02  -0.11350E-01 0,12202€ 01
9 0.36283E=02 0.25p81E<02 0,15298E=02 0,25369E~03 0+27402E~04 ~0,12440E~03 0.14780€E 01
10 0404201E=02 0,18842E=02 ~0.42507€=-02 0.94452€~03 0143821€-03 0.19631E=03 0.,10105€ 01
Z= DIRECTICNAL FLU% DISTRIBUTION #ann CHANNEL NO. 1 wees
POSITION SOURCE 16-FLUX 2G-FLUX 3G=FLUX
1 2.445000 0.8652767E~01 041532233E 01 0+6837730E 00 0+6478899E 00
2 74335000 0.1120135€ 00 0,2813148€ 01 0.1079111¢ o1 0+81176T6E 0O
3 12,225000 0,1497923E 00 0:3260744%E_01 0.1460536E 01 0.1083247E o1
4 17.115000 0.1879609E 00 0+4089521E ol 0.1832216E ol 041359341€ 01
5 22,005000 0.2250404€ 00 0.4895888€ 01 0.2193567E 01 0.1627488E 01
€ 26.895000 0.2608786E 00 0,5675348E 01 0.2542841E 0l 0.1886638€ 01
7 31,785000 0:2952905€ 00 0.6423731E 01 0.2378276E 01 042135455€ 01
é 36,675000 0.3281737E 00 0.7138823€ o1 0.3198731E 0! 0.2373210€ o}
9 41,565001 0.3593630E 00 0,7817121E 01 043502704E 01 0.2598702€ 01
1p 46,455001 0.3806651E 00 0,8455427€ 01 0.3788797E 01 042810468E 01
11 51.345001 0,4162057€ 00 0.9054391€ 01 044057228€ 01 0.3009554E 01
12 56.235002 0.4418278E 00 0.9613570€ 01 044306899E 01 0.3194765E 01
13 61,125002 044654258E 00 0,1012473€ 02 04536664 01 043365350 01
14 66.015001 0.4873991E 00 0.,1060246E 02 0.4750734E 01 0.3524172€ 01
15 70.905001 0.5076960E 00 0,1204361€ 02 0,4948395€ 01 0.3670889E 01
16 754795000 0.5263433E 00 0.1144610E 02 0,5129267€ 0l 0.3805801E Gl
17 80.,684999 0.5449239€ 00 0.1184963E 02 045310178€ 01 043940119€ 01
lg 85.574999 0,5635297E 00 G,1225401E 02 0.5491436E 01 0,4074612¢ 01
19 90,464998 0.5821640E 00 041265945E 02 0.5673207€ 01 0.,4209292E 01
26 95,354998 0.,6098032E 00 0.1326044E 02 0,5942577€ 01 0.4409110E 01
21 100,244997 0.6468304E 00 0,1406639E 02 046303869E 01 0+4676759E 01
2z 105.134996 0,6933b834E 00 0.15090%7E 02 0.6763085E 01 0.5012592E 01
23 110,024996 0.7832118E 00 0.1696885E 02 0.7610950€ 01 0.5666292¢ 01
24 114,914995 0.9438286E 00 0.1974917E 02 0.8919006€ ol 0.6910181E 01
25 119,80499% 0+1289547E 01 0.2291611E 02 0+1104286E 02 0,1130272E 02
26 124,694994 0+14243691E 01 0.2464006E 02 0.1194733E 02 0.1252782€ 02
27 129,584995 041405434E 01 0,2424272E 02 0,1175993€, 02 041236629 02
2g 134,47499% 0.1258535€ ol 0.2169221€ o2 0.1951749E 02 0.1107502€ 02
25 139.364994 0+1030¢95E 01 0.175%614E 02 0+8488118E 01 0+9084236E 01
30 144,254993 0.8356960E 00 0.1190968E 02 0.5726236E 01 0.754307%5€ 01
FLUX IN THE LOWER REFLECTOR REGION
POSITION 1G=-FLUX 2G=FLUX 36-FLUX
4,590000 0.3409046E 00 0.1726048E 00 G1128293%9€ 01
9.780000 0.1219894E 00 0+6185176E-01 0:6170612E 00
14, 670000 0.4365271E=01 042213938E-01 0.2500740€ 00
19,560000 0.1562069E=01 0,7922822€-02 0.9490188E=01
24 ,450000 045589713E~02 0.2835138E~02 043496134E~0L
FLUX IN THE UPPER REFLECTOR REGION
POSITION 16=FLUX 26=-FLUX 3G=FLUX
4,890000 0.2676583E 01 0:1508165E 01 0.1138209€ 02
9,780000 0.9579530E 00 0.5448628E 00 0+5447696E 01
14,670000 043428527€ 00 001954279E 00 0+2207331€ o1
19,566060 0.1227075E 00 0:6997873E~01 0.8379294E 00
24,450000  0.4391719€-01 0+2504837E-01  043087815E 00



