1274

JAERI

JAERI 1274

Modular Programming Method
at JAERI

February 1982

H A K + 5 #F % B

Japan Atomic Energy Research Institute

H AR J it JE i B Fe B Y 3 B L2

ik & % (FlE)
% H

m siR (HF4HTR8) b %d (el
KiE DE (KRETHE) HP IR GERAFF70ED)
A% S (@ AR AT HE (KR b A2 B
Pl B2 (RELEFES) HARTIUER (4% h1% 8 E5)
LE B (R K BEE (FRNIFREA)
WA KEL (BRWTBECAT) RPN (PRER)
M BR] CHOBLRBR T ER) Ba B (B-FEesn)
R A CKIREFZCRT) &0 @i ()
It (FRFEA) S B (BIOIFBESE - KM)
em —% (Kefm) MR (hHEE)
EEP T RE (IR T 2E) Sk (ESERRCET)

P i (M)

Japan Atomic Energy Research Institute
Board of Editors

Shigeru Mori (Chief Editor)

Hiromichi Adachi Takumi Asaoka Toyojiro Fuketa
Yoshikazu Hamaguchi Masao Hara Hiroshi Hashitani
Makoto Ishizuka Akihiko Ito Masanori Kanbara
Isamu Kuriyama Hiroshi Mitsui Ryukichi Nagasaki
Hideshiro Nakamoto Takao Numakunai Jiro Okamoto
Hiroshi Sakurai Konomo Sanokawa Kazuo Sato

Eiji Shikata Sanae Tamura Masatoshi Tanaka
Shigeya Tanaka Kaoru Ueno

JAERL UK — M3, BAE T 50 D R RRE R L2 O BB 2R TREIZ A
FIL T 2 MG ETT,

ATORGHR-IE, OARBEF S FFGCATH A SRR (T319- 113555 I 35 5 45
WA HT, BRLILEE G, 48, ZOEMMEBEART HLELER €L & —
(T319-11 SKu R BESTRL RGBT B AT DR RATN) CHBICE 2 EBRA S 524 -T
BNET,

JAERI reports are reviewed by the Board of Editors and issued irregularly.

Inquiries about availability of the reports should be addressed to Information Section,
Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura,
Naka-gun, Ibaraki-ken 319-11, Japan.

©Japan Atomic Energy Research Institute, 1982
it TR AT 0 AJE - J §F % i
Ep Il WiT s & kW

JAERI 1274 Errata

Page Line Printed To be corrected
ii footnote . NEEZE, &H & WNERRE, FHEE &H &
7 1869 1969
Fig. 2.1 CPU time in year | CPU time in year (hours)
" 12 experiences experience
9 27 couping coping
11 Fig. 2.4 EXECUTER EXECUTOR
" 23 usuable usable
19 35 notrious notorious
20 Fig. 3.4 M200 2 M200 x 2
22 8 quantative quantitative
23 Table 3.3, line 17 a alternative an alternative
24 Table 3.3, line 4 logcial logical
" " line 11 | implementor for implementor of
" n line 27 execution of execution,

JAERI 1274 i

Modular Programming Method at JAERI

Edited by
Kiyoshi Asai and Satoru Katsuragif

Computing Center, Tokai Research Establishment
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken

Received September 3, 1981
Abstract

In this report the histories, concepts and a method for the construction and maintenance
of nuclear code systems of Japan Atomic Energy Research Institute (JAERI) are presented.
The method is mainly consisted of novel computer features. The development process of
the features and experiences with them which required many man-months and efforts of
scientists and engineers of JAERI and a computer manufacturer are also described.

One of the features is a file handling program named datapool. The program is being
used in code systems which are under development at JAERI.

The others are computer features such as dynamic linking, reentrant coding of Fortran
programs, interactive programming facility, document editor, quick system output viewer
and editor, flexible man-machine interactive Fortran executor, and selective use of time-
sharing or batch oriented computer in an interactive programming environment.

In 1980 JAERI has replaced its two old computer systems by three FACOM M-200
computer systems and they have such features as mentioned above.

Since 1981 most code systems, or even big single codes can be changed to modular code
systems even if the developers or users of the systems will not recognize the fact that they
are using modular code systems.

The purpose of this report is to describe our methodology of modular programming
from aspects of computer features and some of their applications to nuclear codes to get
sympathetic understanding of it from persons of organizations who are concerned with the
effective use of computers, especially, in nuclear research fields.

Keywords: Modular, Code System, Computer, Performance, Nuclear Code, Multics,
Methodology.

t Chairman, Modular Programming Subcommittee of Nuclear Code Committee, JAERI
(members: Takanori Shimooke, Atsuo Kohsaka, Taketoshi Arai, Tatsuoki Takeda, Toshihide Tsunematsu,
Kinji Koyama, Nobuaki Ohnishi, Yoshitaka Naito, Masamichi Chino, and Kiyoshi Asai)

JAERI 1274

BRFICBI3E 2T - 7urlI73I v 70hkE

AAET AR S R e v 5 —
B3 EEA % (R

1981 £9 3 HZH

® g

AHEIAREFHRETICBE 53— F« v 27 o85E, #EBEOER, Z1H, BLUHKC
DVWTHNF. ZOHERTE L THEBOBEEL O - T 5. Zh SBEEDBFR ICIZ AT O
7%, BWE, BLUHER - OHEKEDOEROAFEREL 2D, TORRBEIOVWTHR
NTWE., ZRNODEBIEODEDIRT— 97— NEFENS 7 7 A VEIRWO T 0 75 4T, Th
FEE, BERFCEREDDOI - K vRFLTEREIQATV S, 20Mid, 707 7 L0BHFES,
FMEAN T 0 7 5 L LATRE, 2EFR S0 S5 vy, BRES, v RTF LAHNERR, EITEEH
{E]4E Fortran, 94 ¥ 27) VY7 H B0 Ny FOIBATEROBIRNER LS O EEKEE
ThD. B, EHFCEBINTERIINSHERELERLTVWE0T, BTS2 — FORSR
EOMAELHICERLEL TS, BEOAMI—F2EVa5-3—F - YRTLIKEETSL
EMTE 5,

AL, BERHCBE3E Y27 - 7077 v IO kREBRAAZERL, Thick-T,
B CIT » - HHEIC W, RFEA9Hicsd 2t BROFUFIRACBELDS 5 A4 OEREES
CEEHMELTWAS.

t BARFAREFRTN - FRATAS, RALYPIHLR,
(GPYEH ; TREW, MRIER, FOTRRL WHER RREE, MUBT, ATHER PR
B

JAERI 1274
Contents

1. Introduction i 1
2. A Short History of JAERI’s Approach to Code Systemsc.ovvn-. 3
2.1 Environments on Computing Facilitiesat JAERI 3
2.2 JAERI Code Systems: Old Ones — First Trials 4
2.2.1 DOYC Code SyStem vvvt et et et e e e 4
2.2.2 JCOMPACT Code Systemouuuinneaeeeea e, 5
2.2.3 JFRIC Code SYStemt e e 6
2.2.4 Interactive Fortran Processoro ue ... 9
3. OurPresent Method forCode Systemsttt 13
3.1 Background to Support Code Systemst .. 13
3.2 ReflectionsonQurFirst Trialst . 14
3.3 Development of Computer Features for Code System 15
3.3.1 Desirable Characteristics of Code Systemouuiruneneun... 16
3.3.2 Schedule 17
3.4 Accomplishments by Our Developmentcc..... 22
3.4.1 Advantages of Our Method over ConventionalOnes 22
3.4.2 Obtained Findingsot 27
4. Applications 29
4.1 Application of the Datapool to Data Storage of SRAC Code System. 29
4.1.1 Introduction 29
4.1.2 DataFilesused in SRAC it 30
4.1.3 Hierarchical Structure of DataFileso ... 30
4.1.4 Conversion of Programand Datauuuunnnon.. 32
4.15 Conclusion FE 33

4.2 Development of SPLPACK Data Plotting System
for Transient Analysis Codes and Transient Experiments 34
4.2.1 Introductionttt 34
4.2.2 Outline of SPLPACK Systemttt e, 34
4.2.3 Standard Formatof DataBaseuviuienunin... 35
4.2.4 SPLEDIT, a Program for Data Management 36
4.2.5 SPLPLOT, a Program for Drawing Graphsoouuuuron.... 38
4.2.6 Present Status of SPLPACK Applicationcccououni... 39
4.2.7 Scope of Future Developmentccueuun.o... 40
428 Conclusion it 42
6. Concluding Remarks i, 43
Acknowledgements 44
References e 45

i

JAERI 1274
B8 x

1. & Uy_)‘c .. 1
2. ﬁmlCiiﬁ'%:’—F“‘/z'f‘A/J\E .. 3
2.1 ’EB{@ETEFE%&C‘:&&E .. 3
2.2 BEHFCBII AT —F e SRFLEVEDIRFT --oorererrrrrereromn o 4
2.2.1 DOYC T — F o S/ R T Lu vererereemmmntiiae et e et 4
2.2.2 JCOMPACGT T3 — F @ S/ Z T La ceeeerentemmattitiiiiit e e e 5
2.2.3 JFRIC T — R o &/ R G A cerrremmeaen e 6
2.2.4 DERI T 4 — P TV ¢« TOAz oy F o 9
3. 3—F°/Z7—‘A®f:b®ﬁ/?®7iif .. 13
3.1 T—F o VAT LAFTZAERLER o 13
3.2 %l@wﬁﬁlci{f—g—%ﬁ% .. 14
3.3 23— F « YRFLDODFEBEBBEDBIR o 15
3.3.1 A—-—F e« vZAFADEZE beﬁg& ... 16
B.3.2 R A Y m m Il ettt e 17
3.4 Eﬁ%@ﬁ% ... D R 22
F.4.1 Tk DFFEEDFEL cvvveererermrmmmrtrt et e e 29
3.4'2 ?%%nf:mﬁ .. 27
4. Eﬁ}@] ... 29
4.1 SRAC I —F e VRFLDTFT—H ¢« AP —=UE LTDFT —F T —IU coovreeeiiiiii, 29
B.1. T L 0D ree e e 29
4.1.2 SRAC THHEFIEILD T —F o T 7 A Il crererre ittt 30
4.1.3 FT—45 « 77 ANWDRERBRELEE - 30
8.1.8 T O 5 BET — FDIHR ooorererem e 32
BA5 EE ER ceeeeeeeeeeeemeees et 33

4.2 BERZEBBIVBTII - FOLDOT—5 «Foy b« Y2574
SPLPACK DBIFE ----rreerrrrmmreme s 34
4.2.1 iz Ubll ... et et e e e et e e aa e an et e e aean e e raaeaaea. 34
4.2.2 SPLPACK yxi—A@mg .. 34
4.2.3 F— 5 « N—ZDEEAET 4 — 7y b crrereere 35
4.2.4 SPLEDIT _?‘_gggg)'fg 7255 2V AN TR P PP PP TP RPP PR e saassasieaatiansraitnstenarnansasens 36
4.2.5 SPLPLOT —fEIIM 7' 0 7 5 Lu +vererereessoesoseiteie et 38
4.2.6 SPLPACK i@fﬂ@ﬁ.‘k ... 39
4.2.7 SEROBIZEEP ooooeeremeeommoomomeenininens e, 10
B.2.8 FEEE e 49
B. D UT e e 43
Eﬂ §¥ ... 44
BRAETTHR v veverere e e 45

H ﬁ 7_‘\‘——770'—111"‘/X7—’L@ﬂ§ .. 47

JAERI 1274 1

1. Introduction

In this report we will give a brief description on the histories, concepts and a method
for the construction and maintenance of nuclear code systems of Japan Atomic Energy
Research Institute (JAERI). The development process of the method and experiences with
it in the actual applications which required many man-months and efforts of scientists and
engineers of JAERI and a computer manufacturer are also described.

In the decade of 1960s, the matured research fields in reactor physics and increasing
demand for design calculations on nuclear reactors induced scientists and engineers to an
attempt to automate the calculations using computers.

Around midst of the decade the attempt began to have a shape in code systems. A
computation system is called a code system when it has a unified, orderly set of computer
programs and data libraries. If the code system is designed so as to be able to change easily
its component, i.e., a program or a library, the system and the component are called a modular
code system and a module, respectively.

The first of the code system in the nuclear research and application fields would be the
NOVA code system of Knolls Atomic Power Laboratory (KAPL). This system was imple-
mented on a second generation computer and was used for the design of naval reactors).
Later adopting operational experiences, the system seemed to have grown up as a general
purpose framework DATATRAN for modular code systems?.

In the subsequent years similar code systems were developed at Argonne National
Laboratory (ANL, 1967) and Savannah River Laboratory (SRL, 1968) using the third
generation computer.

The code system made at ANL is called ARC (Argonne Reactor Computation system)3*)
and it allows to transfer data between modules using files and/or main storage. The data
must be in prefixed forms and, because of this constraint, every existing (sub) program will
be forced to be rewritten before it is used as a module in the system.

The code system of SRL is called JOSHUA®»® and its all modules except a few were
made anew so that the system reflected the state-of-the-art of physical and computational
methods of the time. Data transfer between modules are done by using files. The input/
output operations from/to files are executed by pseudo-Fortran statements unique to the
system. It was able to unify the input/output operations, because almost all modules were
made anew when the system was constructed. This standardized data format made it easy
to provide the system with general purpose utilities for data such as editor, graphics, etc. and
as the results the system became very useful for its users. The standardization of data format,
however, seems to become an obstacle for casual users of the system, because they must
change their computer programs to obey the standardization.

In Japan, during the same period, a similar attempt was done at Hitachi Works, Ltd. using
its second generation computer HITAC50207.

At JAERI, in 1971, we organized a subcommittee for modular code system in Japan
Nuclear Code Committee to develop a modular code system for analysis and design calculation
of nuclear reactors. The Japan Nuclear Code Committee is a council committee to the Director
of Tokai Establishment, JAERI. Using an IBM370 computer, the subcommittee had designed
a framework of modular code system and developed several routines to control modules.

During the same period some code systems in nuclear research fields were planned and

2 Modular Programming Method at JAERI JAERI 1274

constructed at JAERI.

Introductory papers of these systems were submitted to the conference in modular code
systems held on December 1970 at the Computer Program Library, Ispra, Italy®). Brief des-
criptions of these code systems will be given later in Chapter 2, Section 2.2.

After construction a prototype code system, the subcommittee resolved itself in 1975
and established a new subcommittee for unification of nuclear codes. The purpose of the
new one was to set up practical methods for code unification by 1980. Noticing a fact that
it takes many man-months to construct and maintain a code system, the subcommittee had
decided to pursue computer features which would replace the man-months. Activities and
results of this subcommittee will be sketched in Chapter 3, Section 3.3.

As the results, we have obtained novel computer features which have provided us with
a present method for modular code systems. In Chapter 3, Section 3.4,a comparison between
our present method and the conventional ones is given. Our present method has been applied
to several code systems of JAERI. Since recently our method became available, several
scientists of JAERI were requested by the subcommittee to use it for constructions of their
code systems. In Chapter 4, two of them are described briefly to show how the method has
been applied. The Section 4.1 and 4.2 are written by K. Tuchihashi and K. Muramatsu of
JAERI, respectively. Both of them applied our method to their code systems accepting the
subcommittee’s request. In Chapter 5, the concluding remarks are given with some findings
obtained by the use of the method. In the Appendix a brief description of the structure and
characteristics of our datapool is given. This is due to the reason that a datapool constitutes
a basis of any modular code system and the modularity of the code system depends on the
structure and characteristics of the datapool which is being used by the code system. This
datapool was designed by K. Asai, M. Tomiyama of JAERI, M. Yoshimori of IBM, Japan Ltd.,
Y. Takigawa of Fujitsu, Ltd. et al. After discussions in meetings of the subcommittee, it was
approved by the members of the subcommittee and constructed by M. Tomiyama et al.

The other parts of the report are written and compiled by K. Asai and S. Katsuragi who
are the member and the chairman of the subcommittee, respectively.

JAERI 1274 3

2. A Short History of JAERI’'s Approach to
Code Systems

2.1 Environments of Computing Facilities

(1) The period from 1956 to 1963 may be called a dawn of computational era at
JAERI. During this period we at first had an IBM602A relay type calculator and then an
IBM650 electric computer of a drum storage with 2000 words capacity.

During the next period from 1964 to 1869, JAERI introduced an IBM7044 electronic
computer with 32768 words core storage. This computer might be called as a member of the
class of second generation computer. The IBM7044 had no multiprogramming feature. In
the period our computer was used with one shift operation mainly because of budgetary
reason. Although the number of jobs increased every year and at the end of the period we
were forced to wait one week even for a job which required only an elapsed time of three
minutes. Only magnetic tapes and cards were used for computer files. The idea of the
modular code system did not come to our mind at all.

In 1970 the IBM7044 was replaced by a Japan-made computer FACOM230-60, which
was called as F60 shortly. The F60, having one central processing unit, 128K (1K = 1024)
words core storage, was used with two shift operation. In the first shift operation in day time
the F60 was operated by operators and in the second shift it was operated by volunteer
users who wanted to use the computer for their own jobs.

The F60 had the multiprogramming feature and the operating system was similar to
that of the IBM360 computer. The F60 with 8 base registers, 256K directly addressable
words, a third generation operating system Monitor V, might be called the second and a
half generation computer. _

At JAERI, in this era, most computer programs (codes) were developed and used by
individual researchers and engineers. Every individual made codes for his own use. Even the
codes introduced from foreign countries were used in this way.

(2) In 1971 JAERI’s F60 computer system was enhanced to two systems of F60’s.
Each of the systems equipped with two central processing units and 256K words storage.
At the same time numbers and amount of disk units increased. The operation of the computer
systems had been carried out by the computer manufacturer based on a contzact, at first
with two shifts, and a few years later, with three shifts.

The increase of computing power, storage capacity and amount of disk file space have
encouraged the scientists and engineers of JAERI with the possibility of construction of
modular code system. The computing power of every computer systems installed at JAERI
is shown in Fig. 2.1.

The experienced persons of JAERI were naturally stimulated by various domestic and
foreign projects of the construction of modular code systems. Reflecting these circumstances,
modular code systems at JAERI met the stage of materialization in this period.

4 Modular Programming Method at JAERI JAERI 1274

X
/
Note: (A,B) = (CPU Performance, Tota!l Performance) /
| ! /!
IBM 7044 | FACOM | FACOM230-60 | FAcOM230-75 | | FACOM M-200
1 CPU 230-60| 4 CPU, 2 Systems | 4 CPU, 2 Systems / 4 CPU, 3 Systems [30* 10000
(0.25, 0.25) { cpu | (1, 4) (6, 24) i« (18,72)
(1 b
20,0007 Number II 40
J ,of
18,000 . Processed)(’
16,000 | Jobs \//
2 14,0004 ,X“X 30 3
’ ko)
< 12,0001 ' £
-4 A
£ 10,000 o0 2
p=] -
& 8,000 ,)(2
7’ ! @
S 6,000 o g
3 Lo &
4,000
2,000 : ,aX“‘,(‘
. x__.x---X-—-)@--T’
T T T T T T ™ =T T T Y T T L T T T T
1964 ‘70 ‘75 80

Fig. 2.1 Transition of Computing Power at JAERI

2.2 JAERI Code Systems: Old Ones — First Trials

In the beginning of the last decade several code systems had appeared in the fields of
nuclear research and engineering'”®). Among them there were famous code systems such
as JOSHUA, ARC, etc. Trials and successes of the code systems accomplished by preceding
organizations were great spurs to us.

As mentioned in Chapter 1, in 1971 the Japan Nuclear Code Committee decided to
establish a new subcommittee to develop a methodology to promote systematic constructions
of modular code systems.

Around 1971 three code systems had been developed at JAERI. The names of these
code systems were DOYC, JCOMPACT, and JFRIC. The code systems were all different in
methods adopted for realization of their purposes. In the following section we will give brief
descriptions of these code systems because the experiences with the systems has led us to our
current attitude toward code systems.

2.2.1 DOYC Code System

DOYC was a code system designed and made by H. Kuroi, K. Koyama et al. for analysis
of fast reactor physics. The word DOYC is an abbreviation of a phrase “Do it On Your
Choice”® . It was at first implemented on the FACOM230-60 computer. It uses the con-
ventional overlay technique for amalgamation of modules. So that most modules of this
system are subroutine-type subprograms. Therefore the construction of the system does not
require any additional extension of the computer feature. It is a modular code system in the
sense that it has a datapool common to modules and that its modules are replaceable by
other modules of similar functions. The datapool of DOYC is dependent on a direct access
technique. Data are stored and retrieved by a non-hierarchical name. By referencing the
inner table the datapool routine converts the name to an address pointer of records of a disk

JAERI 1274 2. A Short History of JAERI’s Approach to Code Systems 5

file. It is a very time consuming and error-inducing task to add or delete a subroutine or a
program to or from a complex overlay code system which is implemented on a second
generation computer. To elude this difficulty, DOYC has many built-in dummy subroutines
and when a new subroutine is required, its name is selected from one of the pre-determined
dummy subroutine names. Thus the user has no need to reconstruct the overlay structure
of the system.

Most modules are stored in a disk or tape in relocatable binary form and linked together
by the linkage editor before execution. When both module names on the system input file
and the user’s module library file are the same, the module on the system input file is used.
Thus user is able to make a slight modification of the system by using his own subprograms.

The DOYC code system is especially used for analysis of experimental results of the
Fast Critical Assembly installed at JAERI.

The designers and users of DOYC have pointed out following merits and demerits on
the system:

1) Ease of Use

Input/output data handling and manipulation of job control language which had been
normally necessary for linking independent programs were removed and the description of
input data is made simple.

2) Saving and/or Waste of Computation Time

Using the DOYC system waste time of computation is saved, since the simplified input

specification reduced most of errors due to incorrect specifications. However, it sometimes
occurred for DOYC users to carry out meaningless and erroneous calculations, because the

system has no functions to accept an interrupt by users and display the input informations
before the calculations.

2.2.2 JCOMPACT Code System

During the period from 1971 to 1972 the code system JCOMPACT was developed by
a JAERI scientist T. Nishida and an engineer M. Tomiyama, assisted by system engineers
of a computer manufacturer'® . It was a modular code system in the sense that it was equipped
with a datapool common to all modules, a path driver, a checker which had ability to select
and drive modules in a module library according to user’s specification, and an interruption
handler in the execution time of the system.

The designer of this code system had placed much emphasis on the modular use of each
module included in the system. As the result, most efforts were devoted for construction
of the datapool, path checker, and rewriting of input/output statements of each module.
A module was essentially a subprogram or a set or subprograms stored in relocatable binary
form. Users of this code system was able to specify a path and modules in a form

PATH = (P, (N;;, N3, N3),..... s Pm (Nm1, Nm2, Nm3)),
where P; was a module name, N;;, N;; and N;; were option numbers for card input, datapool
input and datapool output of module i, respectively.

The path checker checked whether the specified path was already registered in the code
system. If the path was already registered the control was transferred to a module represent-
ing the path and the Fortran main program in executable binary form began to execute other
modules along with the path. If the checker found that the path was not in the registered
path table, it checked the logical validity of the specification and when it was correct, the
control was transferred to a job step of library editor. The library editor created a Fortran
source program in which the specified module names appeared in Fortran CALL statements.

In the subsequent two job steps, the created Fortran main program was compiled and

6 Modular Programming Method at JAERI JAERI 1274

link-edited. If no error was found by this time, the system proceeded to the next job step
and in that job step, the new module containing the specified path began to execute the other
modules.

Data in the datapool were identified by a triplet (i, j, k) and accessed by the system’s
data handler using the triplet as an identifier. A file allocated on a disk was used for the
datapool. The data handler stored and retrieved the data in the datapool by a random access
technique. The identifier served as a key to the data.

This system used three types of data structure for transferring data between a module
and the datapool.

The type-1 data were fundamental ones for the system and stored in COMMON areas
of a module when the module was loaded in the main storage. The calling sequence to read
the data into COMMON areas was automatically generated and executed by the system.
It was a rather difficult task to re-adjust the type-1 data of the system in case of addition
or deletion of modules.

The type-2 data were input, output and/or temporary work data of a module and the
module was responsible for storing and retrieving the data into or from the datapool.

The type-3 data were same as the type-2’s in their use except that they were accessed
in blocks. For a second generation computer, it was not able to store in main storage a large
amount of data corresponding to a physical variable, say sigma (i, j, k), where i, j, or k’s
value ranged from unity to one hundred. In this case a technique is often used to divide the
area for data into two parts, one is in main storage as an working space, and the other is
in the file as the entire data space. The type-3 data was provided for this purpose. The space
for sigma (100, 100, 100) was reserved in the datapool and if sigma (100, 50, 10) was de-
clared in a module, the space for sigma in the datapool was segmented in 1 x 2 x 10 blocks.
One block was the unit to read or write the data.

One of the most desirable features of a code system will be an interruption handler.
By this function the user of the code system can display intermediate results or can change
a part of the path. The code system JCOMPACT realized this function by combining the code
system routines such as data handler, path checker, etc. with computer system’s monitor
commands WTO (write to operator) and WTOR (write to operator with reply). WTO command
in a module writes a specified message to an operator console. WTOR command does the
same function as WTO and accepts an input from the operator. Thus the WTOR command
can display a part of computational results and accept new input from the operator console.
The reader will probably recognize at once that the commands and an operator console are
not a sufficient tool for input/output operation for the user of code system.

This was also true to the JCOMPACT, but the reader should note that the code system
was constructed tentatively to seek for every possibility of modular code system. Even at
this moment we have no easy way to implement a flexible interruption handler. We will
see later in Chapter 3 a computer software which will serve as an interruption handler better
than WTOR.

This system was built tentatively to see the problems on construction of code systems.
It is not used now but it offered useful findings of difficulties and necessary computer features
on construction of code systems.

2.2.3 JFRIC Code System

JFRIC code system was designed and made by S. Katsuragi and an engineer of IBM
Japan M. Yoshimori to integrate many stand-alone codes and data for fast reactor physics.
Its ultimate purpose was to construct a fast reactor integrated computation system to serve

JAERI 1274 2. A Short History of JAERI’s Approach to Code Systems 7

as a substitute for something like a handbook of reactor physics!!). In other words, if JFRIC
system could be successfully developed, it would be composed of files of various kinds of data
and libraries of computation schemes executing calculations with these data. Any user of
this system would use and combine any codes and data to perform a series of calculations
meeting his requirements.

The designer of the system observed that the essential drawback of existing codes, to
be applied for such a flexible system, was an extreme inter-relationship between data and
computation schemes or a complete dependence of data on computation schemes. If data
were always stored into standard data storage instead of arbitrary, selfish storaging, the in-
dependence of data from computation schemes could be kept and the construction of the
integrated computation system would be easy. The complex inter-relationship between data
and computation schemes also seemed as a major obstacle for linking a computer code to
any code system or for replacement of any code with other code.

By this observation an effort was put on the development of a methodology to separate
data from computation schemes and to control data by a general common program. To
combine a proper set of data with any codes, JFRIC uses a certain kinds of modular binding
among them. The scheme of JFRIC code system is shown as Fig. 2.2.

The system is consisted of three major functional modules, i.e., a path driver, control
modules and calculation modules.

The path driver plays a main role of the system. It determines the path and combines
control modules, which calls a calculation module to execute a part of the whole physical
problem, and performs data management. That is, it defines the size of required main storage,
allocates the main storage, retrieves and sets scalar and array variables for the calculation
module into allocated storage prior to the calculation, and files specific data into storage
devices attaching appropriate indices after calculation. Termination of whole calculation or
restart of calculation is also controled by the path driver. The control variables to data manage-
ment in the path driver are supplied by control modules.

Usually one control module is provided for one calculation module and it is actually

Path Driver l L

COMMON Area ~~" | Storage Allocation }—

Data Receiver
Data Transmitter

i
Computation Module -
1
in
~
~
~
~
N J
N
Main Storage)
of Computer Binary Module

Data Bank Li brqry

Fig. 2.2 Structure of JFRIC Code System

8 Modular Programming Method at JAERI JAERI 1274

an interface between the path driver as data handler and the calculation module performing
only physics calculations, on the one hand, and it performs the function to link the calculation
module in relocatable form on the other hand; that is, it defines absolute main storage location
of variables and entry points of various subroutines in the path driver, which are called by
the calculation module to be executed. The control module loads the calculation module
and executes calculation.

The calculation modules are modified from usual program so that all /O statements
except those to external output devices are removed, and almost all declaration statements
are also removed. All the sequential or BCD input data necessary to the whole calculation
are collected altogether and read by path driver just after the start. The input data are filed
according to appropriate indices so as to be used properly by the calculation modules. The
data handling mentioned above is indispensable to assure flexibility for selecting any calcula-
tion of data stored into the main storage.

The name of calculation module included in the system is listed in the two dimensional
table. The calculation path or the order of calculation module is specified by an input of
two dimensional table, an element of which is processed by the path driver to find the next
calculation module.

The fundamental structure was tested by sample paths and sample calculation modules
and proved workable. The framework can be used in the IBM360 or 370 type computers.

As for the merits and demerits of the framework, the designer has pointed out the
followings.

1) Flexible Path Formation

The user can define, in advance, the path along with his requirement unless it is pro-
hibited by physics. The next calculation module can be selected according to the result of
calculation.

2) Saving of Main Storage

The saving of main storage becomes possible by linking of calculation modules at the
execution time and by the separate handling of all the data from calculation modules.

3) Difficulty of Separating Variables from Calculation Scheme

Since all the data should be handled by the path driver separately from the calculation
schemes, it is necessary to convert usual codes into modules and data acceptable to the system.
Every code is designed based on a different design philosophy and a different data treatment
from each other. Hence, converting data set in each code into a form acceptable to the system
seems to be a very troublesome task. If data handled by the path driver is restricted to input

Table 2.1 Our Efforts for Old Code Systems

Invested Man-Month

Code Application Area Participated on &
System Staffs Development Rt.evmon
v Maintenance
DOYC Experimental analysis for Scientists 3 90 144
Fast Critical Assembly Programmers 4
JCOMPACT Framework for code sys- Scientist 1 36 -
tem and diffusion, burnup Programmers 3
calculation for light water
reactor
JFRIC Framework for code sys- Scientist 1 15 —
tem for fast breeder Programmer 1

reactor calculation

JAERI 1274 2. A Short History of JAERI’s Approach to Code Systems 9

data, library data, and data of large amount, this difficulty will be reduced to a large extent.
The improvement of the system framework, however, was not performed, because the then
computer FACOM230-75 was not suited to such trial.

Our efforts for these code systems in terms of invested manpower are summarized in
Table 2.1.

2.2.4 Interactive Fortran Processor

In this section several sentences which explain a finding about an experimental time-
sharing system and the necessity of computer utility are cited from the excellent review
paper by F.J. Corbato and V.A. Vyssotsky'?). The cited sentences are enclosed by quotation
marks. Our approach to TSS-Fortran would be best explained by the philosophy of the famous
Multics project. Multics (Multiplexed Information and Computing Service) is a comprehensive,
general purpose programming system which has been developed by Massachusetts Institute
of Technology, General Electric Company and Bell Telephone Laboratories, Inc. as a joint
research project. The design philosophy of “Multics was to create a computing system which
was capable of meeting almost all of the present and near-future requirements of a large
computer utility.”” At the time when the system was designed, around 1965, most computers
were used only for batch processing and the timesharing use of them was in a stage of develop-
ment. The most eminent characteristic of the Multics system was to allow many users flexible
man-machine interactions. For the purpose the system was provided with many novel features
in its hardware and software. It is, however, not our aim to go into details about the system
and later in Chapter 3 we will describe very briefly on some of features which were relevant
to our TSS-Fortran.

For JAERI people the interactive use of computer means the timesharing use of large
scale computers. It was said that “the impetus for timesharing first arose from professional
programmers because of their frustration in debugging programs at batch processing installa-
tions.” During the period of 19661969, this was very true for scientists, engineers and pro-
fessional programmers of JAERI because they had to wait, couping with each other for limited
computer resources, one week to get their jobs of three minutes’ elapsed time processed by
the computer.

People joined in the Project MAC'®, a foregoing project of the Multics, found a new
evolution in the interactive use of computer.

“The Multics system was expected to run continuously 7 days a week, 24 hours a day
in a way similar to telephone or power systems.” This requirement came from over two
year experience of a preceding experimental timesharing system named Project MAC. “The
experience suggested that continuous operation in a utility-like manner, such as a telephone
or power system with flexible remote access, encourages users to view a system as a thinking
tool in their daily intellectual work.” This was a very new finding in that time.

If a timesharing system leads users to view the system as a thinking tool, what type of
man-machine interaction is most suitable for the purpose? The question is the starting point
of our TSS-Fortran processor. To answer the question we firstly characterized actions of
human being and computer, secondly devised desirable functions of the processor to com-
plement the human characteristics with corresponding software names for the functions,
and thirdly listed necessary computer features to support the functions as shown in Fig. 2.3.

In a word, we thought that a computer system should be subject to motions of human
beings and a language processor should be developed to support this idea if the system would
play a role of thinking tool.

10 Modular Programming Method at JAERI JAERI 1274

Actions Desirable functions Softwares
— Unpatternized —— Conversational, ——— Command processor for
incremental, controller, executor,
interpretive use syntax checker, editor,
linker, file handler
— Human —
being - Associative Arbitrary interruption — Statement-wise
on and recovery from interruption
computing process handler
— Slow . L .
Control by siow motion—~ Symbolic intermediate
of arbitrary part of code execution handler
computing process
— Forgetful 1)
Actions—| Playing back the ———= Command processor
L Erratic execution for flexible
execution control
N U _J
- T 1
Necessary computer features
— Patternized
.Reentrant
— Deterministic .Dynamic link
— Computer-

- Fast -Virtual storage

.Linkage control of subprograms
in execution time

-Flexible data storage for users
-Multiple computers for separation

of program development and run |

|

|

|

-Interactive program handler |

I

Memory retentive }
I

L. Precise

Fig. 2.3 Human Action, Corresponding Computer Use, Softwares, Computer Features

Since most computer programs in the nuclear research fields are written in Fortran,
we decided to develop a timesharing Fortran, plus a command processor which included all
of the functions described in Fig. 2.3.

The decision was not absurd because in 1972 Japan-made computers which enabled
to realize our TSS-Fortran had appeared in the market. They, HITAC 8700 and 8800, had
versatile features such as tightly coupled multiple central processing units up to four in total,
virtual storage, optional machine interruption for subroutine calling, ring level protection
mechanism in hardware, and multi-virtual storage, reentrant programming, dynamic linking
of programs, subprograms including Fortran COMMON areas, one job control language for
batch and timesharing processing, tree-structured, hierarchical naming of files in software.
It was evident that these computer systems were under the influence of the Multics concepts.

We anticipated that this type of computers would prevail in the future.

Therefore we determined to construct our interactive Fortran, plus a command processor
on the basis of these new features, although it was not clear at the time that we could procure
computers with such features.

We thought that a large scale timesharing system should be used not as a game playing
toy or a text editing machine, but as a one from which the user could obtain full computing
resources as if he was the only user of the system. This idea was a very new one and it took
a long time to be accepted in our environment.

In 1972, we fixed the specifications of our processor and began to construct one of its
parts. The skelton of the processor was roughly shown in Fig. 2.4.

JAERI 1274 2. A Short History of JAERY's Approach to Code Systems 11

r—_—_—__—_——____— _______ 1
Terminals Functions in the dashed line
r_{\l indicates the planned TSS-Fortran,

—— indicates control flow.

TSS-Fortran

|
|
|
|
Controller I =—=> indicotes data movement.
I l
f ¥ 1) |
I
TSS-Fortran]| TSS-Fortran TSS-Fortran TSS-Fortran |
Editor ™| SCAN EXECUTER LINKER |
]I T |
t | [} |
Pseudo i Standord
i naar
| Work Areo Work Area ?;?:ry Discompiter * | i-?r';g:;d Linkage
Area I Editor
| I
|
Work Data
0 PBF Converted Load
F File ** Area Sousee | Modute Iﬁ%%dle

—_——]

'—* It builds up o Fortran source progrom
froma compiled, intermediate text.

| ** Pseudo Binary Form

| intermediate text.

Source
File

Fig. 2.4 Skeleton of Our TSS-Fortran

For better understanding of our processor, the reader is suggested to imagine the video
recording and display system in mind. The expected functions of our processor were forward
and backward search of point where the user wished to see the system status, slow and fast
execution speeds, address stops and statement by statement execution, splitting the display
screen into slow and fast parts, or current, past or future status parts, arbitrary interruption
of current status for editing, compiling of source programs or replacing linked modules.

The reason why the computer features listed in Fig. 2.3 are needed to realize these
functions requires rather lengthy technical explanations and is not given here because it is
not the main theme of this report. However we will later, in Chapter 3, present our new
method for modular programming and where the reader can infer the necessity of the features.
Two software engineers of JAERI Computing Center engaged in the development, one was
as a full time and another a part time worker.

In 1975, two FACOM?230-60 computer systems were replaced by two FACOM230-75’s.
The HITAC8700/8800 were powerful candidates, but we could not afford them because
of their high prices. In this period the manufacturer of FACOM230-75 computer had decided
to equip it with reentrant and dynamic link features for its newly coming third generation
computer. By the decision there remained a possibility that a user of the computer manu-
facturer can construct such interactive processor as described here on the future machine.
After the replacement we continued the development of our TSS-Fortran intermittently
for one year, but as the FACOM230-75 computer had none of features described above,
we felt it very difficult to realize the functions initially specified for our TSS-Fortran. Thus
we abandoned to continue our effort to develop the processor. By this time a component
of the processor was developed and became usuable. It was a Fortran syntax checker named
SCAN and was written in a system writing language GPL!®. Later this syntax checker was
rewritten in Fortran and applied to some other needs'S’. A preprocessor for datapool soft-

12 Modular Programming Method at JAERI JAERI 1274

ware described in the appendix of this report and in a report!®) are examples of the appli-
cations.

After five years since then we replaced the two FACOM230-75 systems by three loosely
coupled FACOM M-200 computer systems.

Using our concepts the computer manufacturer has developed a new conversational
Fortran, plus command processor for the M-200 computer!”. Its external specifications
closely resemble with our abandoned one’s. It is able to operate on a display terminal with
high, medium, slow, or statement by statement execution speed, splitting the display screen
for statements, data and commands.

The computer manufacturer has also presented independently of our idea of TSS-
Fortran a software for subsystem control which allows the user to transfer control from a
Fortran program activated in a timesharing environment to editor or other subsystems and
then returning control to the Fortran program'®).

(Kiyoshi ASAI, Computing Center and Satoru KATSURAGI, Div. of Reactor Safety)

JAERI 1274

13

3. Our Present Method for Code Systems

3.1 Background to Support Code Systems

The concept of modular code system at JAERI was and has been different from those
of other research organizations in the sense that it has been deemed as an integrated unifica-
tion of codes and data libraries on physical problems, computer softwares and hardwares
to help users who want to use them. The backgrounds which support a big code system will

be listed in items as in Fig. 3.1.

At first members of the Modular Code Subcommittee were unconscious of the fact
that the every item referred to in Fig. 3.1, especially of a fact that the “Extensive effort
for development and maintenance”, is essential to construct and maintain a comprehensive
modular code system. Or it might be said that we neglected consciously the items on con-

— Extensive effort
for development
and moaintenance

Code system-— Social needs

— Maturity of
subjected
research fields
in computational
methods

L Development aids —

Development effort —— Groups for develop-

ment, budget,
cooperative works
by researchers and
engineers of relat-
ional fields

Maintenance effort —— Same as the above

Demands

involvement in
computer use

(Software)

L— Computer features —

(Hardware)

— Demands from researchers

_— Social demands

——— A large number of

researchers

— Various data libraries

L— Versatile computa-
tional methods

— Computer features —— Datapool

— Dynamic link

— Interactive programm-
ing faciiity

— Document editor

— Interactive, speed
controllable Fortran

— System output editor

_— Reentrant for user
Fortran program

— Mass storage system

— Virtual storage

— High transmission
rate TSS-terminal

Fig. 3.1 Background for Code Systems

14 Modular Programming Method at JAERI JAERI 1274

struction and maintenance of a code system by reasons that the items should be taken into
account after the construction of a modular code system, or it was too early to consider
all aspects of modular code system. This attitude should not be blamable in that time because
we were, even a computer manufacturer biggest in the world, optimistic in our productivity
on computer programs2%). As time went on, however, it gradually became clear for us that
the existence and survival of a code system depend on the realization of every item listed in
Fig. 3.1. This is a conclusion that we have reached by looking on successes and failures of
preceding several projects for modular code systems in the world including Japan. This is the
reason why modular code systems in organizations of fundamental researches cannot survive
continually. OQur JAERI is not an exception. Thus we must investigate in more detail the
works normally needed to construct and maintain a code system to replace the works by
computer features. We think the computer features and software tools described in Section
2.2.4 are the solutions to this problem and in this chapter we will explain them by comparing
our present method with the old, conventional ones.

3.2 Reflections on Our First Trials

In Section 2.2 we have sketched out our first trials on modular code systems. Reflections
on these trials were the starting point of our second trial. Our experiences in the first trials
taught us that we need a big amount of man-months to develop and maintain a so called
modular code system. We were forced to recognize the fact that we need to have permanent
groups continually, if we wish to make survive a big modular code system. At JAERI it is
our custom to promote any software project with a very limited number of staffs. Hence we

Modular Code System

{ 1
It has a big set of It has o big set
programs. ‘— of data Iibrgries
very frequent interoctive programming quick access to Standardization shared use of
modifications mony facility allows users to necessary data of data format files
in development | moke smooth transitions
period oops among subsystems in
l these loops
conversion of Dynamic link feature random access 10 specially designed
existing progroms <:] including COMMON indexed data data monipulotion
to modules in ¢ variables promotes language
code system the conversion with
minimum efforts 1
compilation of <3 Reentrant feature a big amount of specially designed <j Datapool system which requires
the programs saves compilation [> main storage in datapool common to only rewriting o part of
time and moin storage execution time all modules input/output statements of
space minimum user’s programs to moke them
\ . . modules in the code system
extensive rewriting will be most desirable for
link ond edit the Dynamic link saves [—1'> degradation of of program(module)’s our purpose. Thus the datapool
total code system <:3 time and moin storage job priority input/ output connects each module very
‘ space functions loosely to the code system
o big amount of
test run <J Separation of run machine stow turnaround manfmon&us 'f:,
from TSS mochine helps time of jobs development and
\ system’s quick response maintenonce of
the code system
execution control Interactive progrommming increase of user’s
of the code system @ facility and execution waiting time
speed controlloble
Fortran help users to l
control the execution
of code system Legend:
output check <] System output editor and a very long X — Y : X induces, results in, or necessitates Y.

display functions of development U ==V : Computer feature U helps or reduces V
datapool help users to perio
edit and check the output

Fig. 3.2 Relationship between Required Tasks and Computer Features

JAERI 1274 3. Our Present Method for Code Systems 15

cannot invest much manpower for a software project. This custom is an obstacle to the
construction of big code systems. The experiences in first trials, however, suggested us that
we might construct and maintain a big modular code system without spending much
manpower, if we could make use of advanced computer features. In Fig. 3.2 are shown the
relations between tasks required for construction of a modular code system and the advanced
computer features estimated by a rough analysis based on our experiences. In the period of
the first trials we had none of the features. The analysis had led us to the development of
computer features for code systems described in the following Section 3.3.

3.3 Development of Computer Features for Code System

In 1975 the Modular Code Subcommittee was reorganized as Modular Programming
Subcommittee. It was expected to engage in following two activities:

(1) to assist scientists and engineers who have needs to construct code systems,

(2) to develop software tools which support the modular programming methods and
to promote easy implementation of modular code systems at JAERI.

As for the results of activity stated in the item (1), we will see some examples later,
in the Chapter 4. Before determining types of software tools stated in the item (2), it was
necessary for the subcommittee to select what structure of code system would be suitable
for scientists and engineers of JAERI. After discussions in its meetings, we shaped a concept
of ideal modular code system. There might be several types of structure for code systems.
We have characterized the merits and requirements of our code systems as described in the
following Table 3.1.

Table 3.1 Merits and Requirements on Code System

Merits Requirements

1. Simple use 1.1 Reduction of user works 1.1.1 Output data of a program

consumed in editing of input
data preparation, output
tabulation and graphical

should be accepted automati-
cally or semi-automatically by
other programs which use the

presentation. data.
1.2 Both batch and interactive 1.2.1 Provision for file manipulation,
accesses to codes or data files. including display and tabula-
tion of input/output data by
timesharing terminals should
be offered to users.
2. Compatibility with other 2.1 Independence of a program 2.1.1 A program or a module and its

computers

or a module from a code
system or a computer which
supports the program.

2.2 Separation of data from a

program.

2.2.1

data of a code system should
be dependent only on input/

’ output methods of the code

system. The structure of a code
system may be dependent on a
computer.

Data of common use should be
independent of a program and
must be subject to easy opera-
tions such as display, tabula-
tion, and graphical output.
This means that some files of
the code system must be struc-
tured to contain data which
have catalogued names.

16 Modular Programming Method at JAERI JAERI 1274

3.3.1 Desirable Characteristics of Code System

In addition to the requirements stated in Table 3.1, desirable characteristics of code
system are as follows:

i) Open ended system — Users must be free to add a new program (module) to or
delete an existing program (module) from the code system.

ii) Labour and cost saving system — Simple labour which a computer can do must
be computerized. Already existing programs should be fully utilized in the code system with
minimum modifications.

iii) Easily maintenable and changeable system — A modification or change of a program
must be done only in the scope of the program itself and should not give a considerable
influence on the code system.

iv) Easily usable system — The paths of computation should be controlled by a simple,
plain language.

According to the desirable characteristics of the code system it was decided that the
system and its modules should not be combined tightly with each other so as not to be in-
fluenced by a simple modification, addition or deletion of modules on the system. Considering
these requirements we determined to promote developments of following softwares.

a) Construction of Datapool

Construction of a JOSHUA database-like subsystem was planned. The subsystem would
create and support hierarchical tree structured files. The users of the code system would be
recommended to use the files to transfer, accept, retrieve, and display data of modules. This
datapool was not the same one as described in Section 2.2.1 and 2.2.2, but it was a general
purpose utility subsystem.

b) Provision of Dynamic Link Feature

Every module in the module library should be loaded into the main storage of the
computer and should be linked to the caller module dynamically when it is called at the
execution. These are because that the amount of modules of a code system will become giant,
and that it is very difficult to provide a storage space for total modules at one time. In the
conventional methods this difficulty is avoided by overlay features or by a very restricted
type of dynamic linking. In the restricted type of use the user is forced to change his source
programs to a considerable degree. However we thought that the user who wished to use
the feature should not be imposed on a tedious and time consuming translation work to
change his program to fit into the scheme of the feature. The user’s program should be used
without any modificatidns. Later the reader will see that this is accomplished on our computer
systems.

¢) Construction of Precompiler

The user who wishes to use his program in the code system with the datapool should
not be imposed on a time consuming and error inducing work to tailor the input/output
procedures of his program to fit it into the frame of the datapool system. It was decided to
construct a precompiler which translates a source program with datapool input/output state-
ments into a normal Fortran program.

d) Construction of System Output Editor

A code system will produce a considerable amount of system output, ie., output
produced by Fortran statements WRITE (6, n) I/O-list. The output file for this statement is
not under the control of the datapool subsystem and there was a need to construct a system
output editor specially designed to retrieve, display, edit and print the selected output.

The output editor was designed to be operated using a timesharing terminal. As for the
terminal device, the Tektronix T-4014 was selected because of a capability to display a full

JAERI 1274 3. Our Present Method for Code Systems 17

page space same as the usual line printer and high transmission rate of 9600 bits per second.

e) Construction of Simple Path Controller

It was decided to construct a simple path controller. As the language for the path control
we chose the Fortran language because of its common use and compatibility. The controller
was determined to be an interactive one. This was because firstly it was desirable for the user
to control the paths easily and secondly it was deemed necessary to control the execution
by watching the computational results of some modules. As the controller it was planned
to use our timesharing processor which was previously mentioned in Section 2.2.4 and was
being developed at that time.

3.3.2 Schedule

In 1975 the subcommittee planned to accomplish the framework of its code system in
five years, and set the schedule. Some of items described in the previous section have been
accomplished and are currently used, some of other items had been accomplished, used for
a few years and then became obsolete or were replaced by more powerful alternatives, and
remainder were abandoned as not attainable.

We will describe briefly about the results of them.

1) First Year

a) Precompiler

A precompiler to process the CJ-statements, i.e., statements for the datapool I/O
operations was implemented. It was a modified version of Fortran syntax checker already
developed for the TSS-Fortran processor which was described briefly in Section 2.2.4. At
first the precompiler was written in a system writing language GPL'" | a modified version
of the famous PL3602". Now the precompiler has been completely rewirtten in Fortran.

b) System Output Editor

A system output editor was designed to assist users of code system to retrieve, display
and edit the normal system output. It was called as SYSOUT and intended to use the
Tektronix T-4014 storage tube type terminal in timesharing environment. The device has
capacity to display 132 characters in a line, 64 lines in the screen. Its maximum data trans-
mission rate is 9600 bits per seconds.

The system output editor gave sequential page numbers to the output in the system
output file. The user used the number as an access key to the output. The page number was
displayed in the lowest line in the screen with normal output over the page number. Backing
or forwarding was done by —n or +n command. Extracting, merging, printing or transferring
pages was executed by a simple command. Following specifications proposed by us, the
computer manufacturer made the processor.

It was used for some years by several users, but the circle of users did not expand so
much. It was because that we could not provide users with enough disk storage to store their
output, congestion of timesharing use and 2400 bits per second transmission rate made the
speed of display slow, limited number of terminals restricted users to use freely, and average
amount of output was not small, and so on.

A few years later, the computer manufacturer delivered a new system output editor.
It was a refresh type terminal directly connected to a multiplexer channel of host computer.
It can display a page in one second??).

¢) Pseudo Dynamic Link Feature

As was mentioned in Section 2.2.4, the FACOM230-75 computer could not afford
the so called dynamic link feature. This was mainly because of its hardware architecture.
Accepting our request for availability of dynamic link feature, software engineers of the

18 Modular Programming Method at JAERI JAERI 1274

]
N —

e

’L’l_l Segment Table I : | | |
Fortran | ’
Library Subroutines |
Main program //l I

\Efl 3

Module | 2 |

N J N -
\%

Main Storage
of Computer

Module
Library

Fig. 3.3 Pseudo Dynamic Linking for FACOM230-75 Computer

computer manufacturer squeezed out a tricky technique to facilitate a very simple dynamic
linking. The method is illustrated in Fig. 3.3.

The method was simple extension of overlay structure. A module was an executable
binary form subroutine or a set of subroutines and the subroutines had no external calls
except the Fortran library subroutines. The module was link-edited by a linkage editor
specially designed for this purpose. Each module was assigned a same address, as is shown in
Fig. 3.3. By this reason the main program, or a path driver in the sense of code system, could
call only one module at a time.

If a module called a Fortran library subroutine, the control was transferred to the corres-
ponding location. In the location the exact address of the library subroutine had been
registered by the linkage editor. The transfer of the control is shown by arrows in the Fig. 3.3.

The reader will find nothing new ideas in this method. The point was that the procedures
to make and execute medules were automated by the computer manufacturer’s standard
software. Actually it was able to use the method by a mere specification in the job control
card.

The software was delivered in due date but we had a very few chances to use it. It had
a restriction that the user could call only a module at one time and could call no other module
from a called module. On the contrary to our anticipation, this was a severe constraints on our
applications.

2) Second Year

a) Datapool

In the second year a first version of the datapool was constructed and became available.
The first version had not had a command processor for timesharing use. In addition to it,
in the first version all directories of nodes of a hierarchical, tree-structured file had been
resident in main storage. This forced the user of the datapool to consume a big amount of
main storage, to endure a low job priority because of its storage requirement. The defect

JAERI 1274 3. Our Present Method for Code Systems 19

was corrected in the fourth version.

3) Third Year

a) Command Processor of Datapool for Timesharing Use

In the third year a command processor of datapool in a timesharing environment was
developed. The functions of the processor are

i) to display attributes of data,

ii) to display data literally or graphically,

ili) to add or delete data,

iv) to compare data in the datapool files.

b) Document Editor

In constructing a framework of code system it was felt necessary to provide developers
and users with a some sort of document editor. It was planned to make an editor which had
capability of the famous ROFF, plus newly devised functions for screen formatting, file
handling, etc. for documents written in English?® . Its character editing functions were based
on a concept of the so called full screen option presented by the computer manufacturer
and other’s were based on miscellaneous ideas collected in our institute. Our timesharing
terminal devices at that time had no full screen option and we were afraid that the incon-
venience in use would result from the concept and lack of the functions on devices.

After the construction of the editor and in initial test phase, this anxiety became actual,
and we were forced to revise the editor. In some part this was done in next year.

4) Forth Year

At first, before the first year, it had been planned to construct a path control processor
which was to accept a command like language in batch and timesharing environments. We had
a plan to use our TSS-Fortran for this, but as was mentioned in Section 2.2.4, the development
of TSS-Fortran was abandoned. We chose the standard Fortran language as its alternative.

a) Revision of Datapool

In this year some users began to use the datapool software. They found several errors
and inconveniences in it. The fatal one was the memory usage of the datapool. The datapool
was designed to use a rather big amount of main storage. The designer of the datapool
neglected the problem because he implicitly expected a computer with virtual storage and
dynamic link feature. These features are essential not only for code systems but also for big
utility programs such as the datapool to use them with small size of real storage. Unfortunately
the computer on which the datapool was implemented had no such features. This defect of
the datapool was amended by separating subroutines and some extensions were added soon
but the happening and initial bugs made the datapool notrious for a time. The current
datapool is a revised version'®) of this and it is recognized as useful.

b) Revision of Document Editor

In a tentative use of the document editor, there had been found many clumsy and in-
convenient specifications and functions. They were modified in this year. The editor was
written in a system writing language named SPL, developed by the computer manufacturer.
At first the language compiler and hence the editor itself seemed easy to be implemented
on our new computers. After an investigation, however, it was found unsuitable to rewrite
the processor of the editor on new computers, and its maintenance was abandoned.

Two years later the computer manufacturer has made a new document editor picking
up some functions of the abandoned one and adding new functions such as graphical repre-
sentations of mathematical formulas, greek letters, etc.?%).

5) Fifth Year

In the fourth year it had been decided to replace our old computers by new ones. The

20 Modular Programming Method at JAERI JAERI 1274

JAER! Computing Center in 1980:FACOM M200 3 Systems

3 times higher perfomance than FACOM 230-75
LCMP (Loosely Coupled Multi-Processor)

AOF (Automatic Operating Facility) ‘ TSS terminals
) \
Processor for small-size Processor for TSS Processor for large-scale r Total 72
programs nuclear codes @ Graphic Display
Local processor Global Processor Local Processor ‘_.)
M200 2 N M200 M200
o o speed dot SuLLLE) o ve o e Cer)) choracter ospiy
transfer
) Chinese Character
CR DKU MSS Disploy

QL) Sgom o

Projector)

i

System output
Retrieval Projector

@ 10,000 MB

.

i€

;
|
bl 155 ERCe
I
|
) ,
|

ip _ J Remote Batch System x 8
‘ Open Batch Station)
Lp ' B
\ Console _J
(R) NLP
- Utilization of various
inputs and outputs
" Short turn-around time ~ @

- 1/0 operation on self—

service F“’@
Corr::g:)nﬂ:ﬁ:. to various
_) _1 ™

__Job Status Job Inquiry]

Fig. 3.4 Computer Configuration at JAERI in 1980.

new ones were installed and became operational in the fifth year.

The new computers, three FACOM M-200 systems with four central processing units in
total are currently operated by LCMP, i.e., loosely coupled multiprocessor mode as shown in
Fig. 3.4. The configuration was determined from viewpoint of easiness to develop computer
programs and quickness to run large-scale nuclear codes. Each central processing unit has
10 MIPS, i.e., 10 million instructions per second performance. The computer system is com-
patible with IBM370 computers in source program and load module forms.

By the introduction of these systems many long desired softwares such as dynamic
link?®), reentrant?®), system output editor, document editor, interactive programming
facility!'®), execution speed controllable Fortran'”’, and hardware features such as virtual
storage, mass storage system, high speed display terminal became available.

It might be said that the above mentioned softwares are produced from stimuli given
by our concept on code systems. Especially the fact that the dynamic link feature can link
even Fortran COMMON areas dynamically is very important because without this we are
forced to rewrite every program extensively to fit it into a code system.

Before and after the delivery of these features two software tools have been developed
by two contract based visiting staffs from the computer manufacturer. One is a Fortran
source program analyzer ANALYSIS which reads source programs and produces tree struc-
tured caller-called subprograms relations, categorized listings of variables, etc. The other is
a measurement tool DYNALEAT which, reading a source program, inserts CALL statements
into every main and subprogram to call a data logging subroutine?®). The logging subroutine
writes on a datapool file the time and storage use of the caller (sub)program. By an execution

JAERI 1274 3. Our Present Method for Code Systems 21

of the program with a sample input data the accumulated data on storage use is displayed
using timesharing commands of the datapool. The examples are shown in Fig. 3.5. In the
Fig. 3.5, every shaded area indicates main storage which is saved due to the dynamic link
option.

C A WA
20 Not specified

(100 KB)
MEMORY (I00KB)

Dynamic tink option specified

Dyndmic link option specified

ME MORY
(o]

4t [o] " L L . I 'l I
0 40 80 120 160 200 240 280 320
2l ELAPSED TIME (SEC)

L 1

0 . 1 " 1 A 1 L
0 20 40 60 80 100> 20 140 160 180 200
ELAPSED TIME (SEC)

CITATION: Three dimensional diffusion code, 18 oo T T T
ORNL-TM-2496, 3793,

VENTURE: Three dimensional neutronics code,
ORNL-TM-5062, 5065,

-]
T

16 | Not specified
8 ; T ; y T D 4 N\
S
E 7t o 12
< ~ Dynamic link option specified
8 6 Not specified > 10}
- (s
~ o
=
w
=

MEMORY
[N] »

/

s> o

f’ Dynamic link option specified

N

-

N

i L i 1 i A

0 1
0 200 400 600 800 1000 1200 1400 1600

'Y

0 " " i i 1 . "
0 10 20 30 40 50 60 70 80 ELAPSED TIME (SEC)
CPU TIME (SEC) ANISN: One dimensional discrete ordinates transport
MORSE-CG: Monte Carlo radiation transport code, code, ORNL-RSIC-CCC82,
ORNL-4972, 6 '

1 el
@ 12 @
~ é 12
o o N\
o 10 < < 0 Not specified \
— \ Not specified \ >

8 8k
x N z
g 6 Dynamic link option specified f’ 6k
= ar 4 Dynamic link option specified

2 2t

o i 1 1 1 L il 1 o 1 i e i A 1 n A e

0o 2 4 6 g8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20
CPU TIME (SEC) ELAPSED TIME (SEC)
EQUCIR: Free-boundary toroidal MHD equilibrium ALARM-P1: Blowdown analysis code for PWR,
code, JAERI-M 9127. . JAERI-M 8004,

Fig. 3.5 An Example of Storage Saving by Dynamic Link

22 Modular Programming Method at JAERI JAERI 1274

3.4 Accomplishments by Our Development

3.4.1 Advantages of Our Method over Conventional Ones

The softwares listed in Table 3.2 are the accomplishments obtained by our development.
On the basis of the fact that they are available now, we can compare our method for code
systems with the old, conventional ones. .

The comparison of our method with conventional ones is shown in Table 3.3. In the
table we have made comparison with respect to qualitative characteristics of the methods.
The reader, however, will recognize the quantative differences of the methods. In our present
method developers and users of a code system can enjoy reduction and saving of tedious
works and computer resources to a considerable extent when they are performing the develop-
ment and run of a code system. Furthermore we can construct a code system with high
modularity as is shown in Fig. 3.6. In Chapter 4 we will see that this structure is realized in
SPLPLOT?2 system. Thus we may expect that a considerable amount of works consumed
in the item “Extensive effort for development and maintenance” listed in Fig. 3.1 can be
replaced by the item “Development aids.”

Table 3.2 Softwares for Code Systems

Invested Man-Month

Software

JAERI Manufacturer
1. Dynamic Link F75-DYNA¥*!? 2 2
Standard*2 10 59
2. Reentrant Programming Standard*2 1 50
3. Interactive Subsystem Control TSS-Fortran*3 2 -
' IPF*2 — 6
4, Interactive Fortran TSS-Fortran*3 40 -
DOCK*?2 - 180
5. Document Editor K-System*! 10 30
ATF*2 = 70
6. System Output Editor SYSOUT*! 2 12
SORP*2 - 120
7. Data Storage and File Handling DATAPOOL*2 50 —
8. Fortran Source Program Analyzer ANALYSIS*2 5 -
9. Dynamic Link Effect Analyzer DYNALEAT*2 2 -
Total 124 529

Note: *!: Now obsolete,
*2: Current alternative in use,
*3: Abandoned,
Standard: Standard product of manufacturer.
Manufacturer means the computer manufacturer, Fujitsu, Ltd.

3. Our Present Method for Code Systems 23

JAERI 1274

[oodele(

smpowr urerord

Jo Burury
otweui(

"WI)SAS
9poo 9] pue S[NpPoW pIBPUB]S-UOU SIY U3M}aQ dUNNOI
90BJIJUT UE oXBW UBD SISSN SUOIJBWIOJUI 3S9Y) Ag

‘Joodejep
3y} jO AJI[Ioe] [BASLI}AI UOIIBULIOJUT 91} SUISn SUOTJBULIO]
-UT 91} 9AQLIJAI UBD UIS)SAS oY) JO SIasn pue WI)SAS 9pod
oy} Aq paurejurews aIe J[NPOW B JO 013 ‘ISJSUERI} EIRD
Jo spoyjewr ‘sSutueowu [BOISAYd Se Yons SUOIJRULIOJU]

"Wr9)SAS 9p0d dYJ Ul I ISN 0] SJUBM Y UdYM
[npouw pIepue}s-uou sIy jJo I9jsuell ejep Jo poylaur ayj
03 uorjus)ie Aed 1Snuu 1asn Y [, "WIISAS 9pOd B UL parjun
10U aIe SO[NpPOUI Udam}dq BIBp SULLIgJSUBI} JO SPOUISW

‘asodind STy} J0J pasn SaWTJawWos aIe sofiy [oodejep
9y 'SO[fj IO ‘Seale UOWIUIOD UI SI[qBHEA ‘SIdjourered
aurjnoiqns era o7 ‘swrerdord 1o sounnoiqns [eurdrio
oY)} Ul pasn U9aq 9ARY YOIYMm SpPOYIoW Aq SI[NPOW UIIM]
-3Q palIgjsuerl ale BIB(SWIISAS 9pod dY) Ul se[npowr
Se AJurew pasn aIe sourjnoiqns pue sweidold Zursixyg

‘sa[1J [oodelep Ul BJEp SJLIM IO PB3I 0} SjuawW
-9je3s Jndinofindur 10y SI parnbsl uonesyipow A[uQ
‘SUIa)SAs opod ojur werdoid e Io surnoigns e 3y 03
paIinbal a1 SUOIJBOIJIPOW WNWIUI "SWIISAS 9pod UI
sapnpour uo jnd aIle SUOIOLIISAI OIJI0ads ou ‘10ss3001d
agendue] pue woa)sAs Sunjeiodo jo sarnjesy mou Juis()

"W9ISAS 9pOd 93 UT SI[NPOW JO SN JAIIBU
-I9)[B B IO 9[QIX3[J ‘O[IIesIaA spraold o} seinpouwr Aueur
dinba 03 paoIO] dIe SUIIISAS SPOD IBR[NPOW 1Y) IICIIIAY)
pue Sa[npour pIEpue)s-uUOU I3y} JO asn ASed pajiqry
-01d oIe SUI9)SAS SPOO IB[NPOW [BUOIIUIAUOD JO SIIS[)

*SWI)ISAS 2p0d IR[NpOUI UTe)
-urew pue JONIISUOD 03 INOIJJIP AISA ST JI UOSBII STY) 104
‘WIJYSAS 9POO Y3 Ul S[NPOW B S pasn aq O} S }1 uaym
urezgoid e 10 aurinoiqns & jo jIed 3[qRIOPISUOD B SILIMAI
0} pPopasu SI 31 pue ‘waisAs 2poo 3y} o} anbrun poyjowr
paljiun ue AQ S9[NPOW UJIM]aq palIdjsuer} aie ele(

‘suorjedridde 1a730 0)
9[qQB[IBAB 9q O} JOU SB U3]JO OS pafueyd 3Ie WIISAS 9pOd
oy} ur (swreiold IO SaUTINOIQNS) SSNPOW IIOULIIYLINJ

‘uIa3sAs spoo e
Jo juswrdo[aAdp 9Y3) I0J sasuadxs pue sw) Juol e suIns
-UOD 0] SIaSn PadIO) saInjesy Ispnduwrod juasdurosur]

waIsAg apo) Jo
juswdorsaag
[enpein

RERIENEY 8004 |

POYISN InQ 10}
saInjed 19ndwo)

Sura)sAS apo)) Ie[npo I0j poyRW InQ

SW9ISAS 9po)) IR[NPOW IO SPOYISW [BUOIIUSAUO))

walg

sura)sAS apoy) 10J saremijos £°¢ ojqel

JAERI 1274

Modular Programming Method at JAERI

24

SUIQJSAS

Iamdwos paing
-LIISTP JO [OJIUOD
YN ESHI pue spowr

HOLV4 pue SS1 jo
asn snosuBINUITS

apouwr

HO1vd pue SS1 jo
asn snosuejNWIS

"Burssasord DLV E 10 SSI 10 WajsAs
-qns 19yjo 3uisn qof jueld 9y} Jo UOIINOIXS 9} JIEM OS[E
UBD 21 pu® S3[IJ S.Iasn BIA $)[NSaI paje[noed oy} 1dsdoe
UBD IaSHt 9Y} JO UOMNOIXe I9}JV “(sqof jueld 1oy Ajajos
Po3eOIPIp WIAISAS 1oIndwod ') WalsAsqns e 0) dUIl} UOon)
-no9xa Suo] pue Arowsw 3iq jo Jnpow jueld e JruIqns
UBd Iasn 9Y) ‘WI3ISAS OpOO B JO SN QANDBISIUT oY} U]

"ATISea Iayjer
se[npow IOJ Blep }Ipd pue Ae[dSIp Ued ‘S3[npowr jo uor}
-BWIOJUT 9AJII}DI UBD I3SN 9} OF "9pPOW PUBWIWOD SSIL
0] [0IJUOD MO[J JY3 YOURIQ O} SIASN dY} SIIWPE AIBM]JOS
Iayndwrod Ino jo ANqoey Surwweidord sAroBIOIUI SYJ,

'swreadord umo
s Jasn I0 safnpour a8uBydo O] pPadu Oou SI Y} By} OS
‘werdord [0I11U0D MO 9y} Aq po[[EO AJuleW aIB Sa[npowr
Us9M)9Q I3JSUBI) UOIJRULIOJUT }SN[PR O} SAUTINOI ABJIJU]

'UI9)SAS 9pod AU Ul way) 19381391 ued pue swerford [on
-U0D MO[J UMO SIY 9)BUW UBD UIOISAS 9pOD B JO I8N oYL,

.:mﬂﬁomo apowr D1V 10 SS.I ut passaoord
ST 31 “wa)sAs apod ayy jo weiSoid piepuels e 10 weidord
19ST U9))IMm URIJIOJ B ST weidold [013U0d MO[] dY} aourg
‘[0I3U0D J[npoUr I0] pasn ST aen3ue] UBIIIO

‘W3ISAS 9pod B UT S[npour e se paydope
st wer8old 10 supnoiqns Iy} uaym sisjowered surnol
-qns 10 SI[qeLIBA uUOWWOD jsnipe o3 werfoid e 01 10
SUIINOIQNS B 0] pappe ST QUIINOI 99BJIIIUT UB SSWIISWOS
‘Joodejep ®BIA Bjep SULLIdJSUBI) IO} Sjusuralels jndino
/indur jdooxe waisAs 9pod B OJUI WAY) I O} Sweid

-0id 10 saurInoIqns SurISIXe 3JLIMII O} paau ou sey }] o

‘uorjeorjoads afen3uel ay) urea|
03 9WT} SPasU I ‘WI9ISAS 9POJ 93 JO SIASN I0J pUB JOSSID
-01d o3engue| ay) dojaasp 03 sesuadxs pue swIry SpadU
3 ‘Ua)SAS 9poo ' I0J Iojuswsjdwl 9y} IO Q0UQY W9}
-SAS 3pOO B UI S3[NPOW JO MO[J Y} [0IJU0D 0O} 10S§$a001d
s)1 pue adenduey a[duns & do[aasp 01 aUOp ualyo SI 1]

‘uI931SAS 9pod e ul sa[npour se swerdord pue

saurinoIgns SuriSIXs JO Isn 9eUI 0} awr) UO[B SSWNSUOD
‘sosuadxo 81q S$1S00 II ‘sg[npow UsoMm)aq IdJSUBRI} BIEBp
I0j pajdope Ajensn ST poyjewr paxij pue anbrun e sourg
"WIa)sAs apod sY3 Jo aInyonags [edo] oY) £3qo Jsnwr
J[npowr Yoeyg ‘WIISAS apod B Ul S[npowr Wy}l ayew
0] Ud)IIIM3I 3q Isnw swerdord 1o saurinoiqns Jurjsixyg

e}

Sa[Npon
weirdolg jo
[013U0) MO[g

UOTIONIISUOD
S[MpON

pPoyle| InQ 10§
saInjesj 193ndwo)

Sure}sA§ opo)) IB[npoly I0] POyl InQ

Sura)sA§ 9po) IBNPOY IO SPOYISN [EUOTIUSAUO))

wrey|

(3u0D) £°¢ 398l

3. Our Present Method for Code Systems 25

JAERI 1274

‘S9[Npour IO SaYIJ ‘BJEP I10J [BAALI}

[oodeyeq -91 UOIJBWLIOJUT JO AJI[IOB] ® SBY WIdISAS [oodeiep aY[
‘UI9ISAS 9POd 21} Ul 9[qESn BIBP JY]) IYLW 0} SI[If
IToy) ur Bjep Ioy3 Iofre} o3 suerdoid spraold jsnur SIas() JyueqeIep oy yim paddinbs 1ossaoo1d sy pue
"SJUSWIWOD Y} 933[P Y3} ‘pPpe a8enduey ® 3ursn yueqejep sy} Ul ejep IO[fe) UeBD SIIS() ©
Ajrpour ‘Aerdsip ueo Iasn 91, ‘BIBp JO S9nquIlje ﬁmo_.mba *513 ‘UOTJA[op PUE ‘UOLIPPE ‘UOH]
oy} ure[dxa YoIym SJUSWIUIOD 9ARY ABW BIEp [OBRY °BIED -eorjIpow “Ae[dSTp 10J SOTYIIOR) SEY UIaJSAS YUBQEIED OYUL O
JO UOT}a[ep pue UoI)Ippe ‘Ae[dSIp 10§ 10§s3001d PUBUIWOD
[oodeie oY} pu® SPUBUIWIOD JO)3S B SBY WIISAS [oodejep ay], ‘ura)sAs apod ay3 Jo ISeqejEp
Io ‘yueqejep ‘foodejep oY) pa[[ed UJO aIB SI[J ISAYL
) |94 -asodind
s[npouwr weifoid jo [oodejep 9q jou Aewr I0 Aew S3[ij SYJ 'SO[J IO ‘seaie SIY3 I0] PaIJoads WII)SAS 9pOd Y] JO SI[IJ asn ISnuI SIas) J[NpoN
guryuy] orwreuAq uoOwwod ‘sigjowrered auUNINOINS BIA Pallsjsuel) aie eje(*S9[1J I0 s1ojaurered auIInNOIQNS BIA PAalIdjsuel) ale el O BlB(] JO 98}
*90TASP UoIjB[NUILS
B JI SB W)SAS 9pod pue s19)ndwrod ay) asn ued oYy sjns
-31 9y} S pPUEB POYJSW IOIId PUB [elI] AQ WIDISAS 9pOd oY}
03 jndur 9)BUI 0} d[qe ST IASN) SSINJBIJ 3sAY) 0] FuImQ sdajs qof yojeq [BI2A3S SUTIBAIIOR
*SO[IJ UT S}[NSaI PIB[No[ed 3y} 198 ued 9y pue UIdISAS ay) Aq senpowr sainoaxe weirdold [OIJUOS MOJJ B Ajens)) o
SwIa)sAs 191ndwoo ur 1ondwos paads Y3y sy} 01 I} puss ued Iasn ayy ‘qof SBoIE UOUL
nquisip jo e Jurpwiqns pue dpoul pUBWIUIOD Jurrojua A
peInqIustp J) HIQus p pour p SSL 33 sunaitis Aq -UIOO JO YUT] 9} MO[[e JOU S0P POoYIaw SUIqUul] JTWERUAp
[013U0d NI £SHAS I9yndwoo paads YSIY & U0 9IND9XS 03 PIpaau Si J[npour :
. b 9A0qe oY) 9snedoq sweiford pue SauUTINOIQNS JJLIMII 0]
pu® 2A0Qe JY) Se B UM "W9ISAS opod Y]} Jo sa[npows ‘Iardurod ‘1oirpa :
sosuadxo pue aUIT) SWNSUOD O} PIJIOY ale Iojuswrafduur
2In)esj awres 9y L, weidold ayl Aeorureusp s[es werdoid [0I1U0D MO[J YL
urajsAs apoo aYj pue SIas() ‘Ss[J IO SIdjouwrered auUINOI
"WolSAS 9pod B OJUT WIdY) J1) O3 swield -qns elA I9JSUBI] UOIBWIOJUI puUB SI[mpowr jo Iuryurl
-01d IO SaUTINOIQNS JJTIMOI O) PIAU M3] 9q ABW I3y} OTUTBRUAD ‘2T ‘IOUUBW PaIOLIISAl B UT 9INJBAJ JUI[OTWRUAP
pue A[[edSTureuAp payul[oI SSUNNOIQNS JO BIIR UOWIWO)) B 9Sn UBD SIASN ‘poyjaur SUINUI[9A0Qe 3} O] UONIppe U] o
'sqof unl 0} Arowrswi Jo o[npo wrergolg
sinpow wreidoid jo ‘UOIINI3X? 2Y3 Ul pairnbar Afeny junouwre §1q © apraold)snur SI3sn Joej SIY) AF "UOIINDIXI JO uorndaXy
Suryury otweuiqg -0B aI® A9y} uoym A[[BIIWEBUAD paxul] aIe S[npouw [[y 9I0Jaq PaYUI] aIB 0] palIgjal ale UYOIYM SI[npowr [V O pue Suryury
POYId InQ 10§
SUIa)SAS 2po)) IB[NpO I0J POYISN INQ Suwra1sA§ 9po)) Ie[npo 10J SPOYIOW [BUOIIUIAUOD) ua)

ssinjesj 19Indwo)

("uod) g'¢ 3Iqe L

JAERI 1274

Modular Programming Method at JAERI

26

UBIMOg
J[qe[[o1Iu0d
paads uonnoaxyg

1031pa 3ndino
WdlSAS ‘1031p9
juswndo(g ‘s[oo}
sisAfeue weigorg

1oodeie(q

23e103S [eNIIA

wreidoid
195N JO 2Injeay
JuRIUIIY

spowr HOLVH
pue §SL o
asn snosuB}[NUIS

pue joodejeq

‘WI)SAS
9po2 JO asn aAnoeIduUl A[YSiy oY) Surdojdwa ur siesn
93eINOOUA [[IM URIJIO S[qR[[OIIUO0I paads UOTINIIXd I

‘W3S AS
9pod JO asn pue JUIWAO[2AIP I} 9IBIIIIIE [[tm Indino
Jo Bumnps pue Aedsip joinb ‘1011ps juswnoop ‘309j3°
yuil orwreuAp ‘arnjonays weidoid 1oy sjool juswdorsrs(g

SaUO pIepuejs
-uou ore A9y} JI Ayqqisuodssl SIY Ul 9[Npow umo SIy
IO SQINPOUI AS3Y] SN UBD I3SN S [BASLI}SI UOT}BUIIOFUT
I0J BJRD SI [IIM WIISAS 9pOd oY) UI PIIISIFal ST 3] 1893
Iopun S UYOIym J[npouw e ST J[Npow pIepueis-uou ay[

"[BASII}OI UOIJBWIOJUT 10] BIRP YIIM WISAS apod oY)
ur asn 0} Apeal st 3] ‘sdnoid siasn Aq pijea se paziugoo
-1 pue Pa1Sa) St YOTYM S[NpOW B SI [NpoWl pIepue)s ay[,
“WAISAS 9POO INO Ul uoneilsidar jo sadA) om) are aIayJ

‘A[9AT109]]9
pue Apyornb pessacold aIe W9ISAS 9pod JY) UI SAINPID
-0Id 9A110RISIUT Y] ‘DUIydew 98BIOIS [BNIIIA JO IN}IIA Ag

“JUBIIUSI se sweidold ueIjio 1oyl Ajroads
0] 3[qE JIe SIASN WIISAS 193ndWOD INO Ul ISNBIIQ WIS]SAS
3P0 Y] Ut 31npadoid A1949 Jo AdOO sUO 2IBYS UBD SIIS()

‘spour urwruwrerdoxd
SAIJOBISIUT UT BlEp Mou ddonpold pue Ajipowr ued Iasn
9y} suoIjeWIOIUT 359Y) Juis) "so[1] joodejep 01 JUIUIAIE]S
ndino/indur yoes 1oj sjuswwrod pue ‘357 jndino/indur
9Y3 Jo wiroj 3ut1s 19)0vIRYD B ‘18I jndino/indur ur ssyng
-y3e Sutwwresgord oyl viep YIIM 9103S ued [oodeiep YL

SpIy uny pue
juawdoraaa(g

S3[Npo jo
uorerjsiday

POYIN InQ 103
sainjesq 19andwo)

Sua}sAS 9po)) IB[npoy 10} POYISW InQ

SUI9)SAS 9po)) IB[NPOJY I0] SPOYISW [RUOIIUSAUO)

wa)yy

(o)) g'¢ alqe L

JAERI 1274 3. Our Present Method for Code Systems 27

0
0

Registered gegisier:d|
prodng:rsn .Modules ore ata modules
modu linked in

execution time,
if necessary

-Batch ond TSS jobs
are executed in

0
| /
0L

Alternate interactive mode
progrom Alternate
modules data

|

0L
!
/
()

modules
-The process can be

executed entirely
as o batch job

Yes

User's
program No

modules data modules Continue _m

(
L

Display of
results

Check

L—_/

Fig. 3.6 An Ideal Structure of Code System

3.4.2 Obtained Findings

We have now some experiences with the softwares listed in Table 3.2. It will be very
valuable for us and other research organizations to summarize them briefly. Since it is need-
less to say about the merits of the softwares, we make some mention of points which should
be improved further or taken care of for new development.

1) Dynamic link — Load module using this feature requires a half more disk file area.
This is because each compiled program contains a set of tables to keep unresolved external
calls. This is necessary but the fact often surprises novice users of the feature. A BALR i.e.,
branch and link instruction is used for connecting a module dynamically. Once the module
is connected, i.e., linked to the caller, it is not able to separate the linking. Linked modules
begin to remain in the job’s virtual space. However if we wish to remove this defect, the
system overhead, i.e., interruption handling time will increase. The problem needs more
investigation.

2) Reentrant — This saves a storage space by sharing common program (procedure)
parts in the storage with other jobs. Currently we have no common utility or code system
which is accessed by many users at the same time. It is expected that this feature is required
in the near future.

3) Interactive subsystem control (IPF) — This is a very useful tool and will become
more if it is permitted to make dormant the timesharing session for a while without logging
off.

4) Interactive Fortran (DOCK) — The current version is made by modifying a Fortran
77 compiler. Although it requires a big amount of storage, it seems a powerful tool for debug
and control of the execution of a code system. We need, however, more experiences before
to say something about this.

5) Document editor (ATF) — This is an editor for documents written in English with

28 Modular Programming Method at JAERI JAERI 1274

Greek letters, mathematical expressions, etc. The current version is not able to be called by
a user’s program. If it is able to be, it will be very useful.

6) System output editor (SORP) — The terminal devices for this editor are more
used as usual timesharing terminals than as their original use. This is because the demand for
TSS terminals is strong and a user cannot occupy the SORP terminal for a long time. The
merit of printed output would not be overcomed unless we can provide each user with this
type of terminal device.

7) Data handling and filing system (Datapool) — This may be called a general purpose
data storing and retrieving system for Fortran programs. Because of its generality, it is a
rather big software for casual users for small code systems. It also not suitable to use in a code
with heavy and fast sequential I/O demands. It will require improvements especially for its
graphic functions.

8) Fortran source program analyzer (ANALYSIS) — The user is enjoying the versatile
options and neat output of the analyzer.

9) Analyzer for dynamic link effects (DYNALEAT) — This is very useful for analyzing
the effect of the dynamic link feature on storage usage. Its output is stored in a datapool
file, but the graphical output of the datapool is not elaborated for easy looking and should
be changed so as to be seen more clearly.

(Kiyoshi ASAI, Computing Center)

JAERI 1274 29

4. Applications

As is mentioned in Chapter 1, accepting the request of the subcommittee, in the last
one year several code systems have been developed?”?® or being developed?®)3®) using
our present method. Some of them are utilizing almost all of the features listed in Table 3.2,
and others are using a part of them. In this chapter we will show two examples of them.
In Section 4.1, K. Tuchihashi describes the application of our datapool to a code system
SRAC and the experiences with it. In Section 4.2, K. Muramatsu describes the application

of the interactive subsystem control IPF and the dynamic link feature to a code system
SPLPACK.

4.1 Application of Datapool to Data Storage of SRAC Code System

4.1.1 Introduction

The SRAC code system has been developed as a neutronic calculation subsystem of
the JAERI thermal reactor standard code system (Fig. 4.1). A stand-alone version of the
SRAC code system recently succeeded® in interpreting the several experimental critical
masses of TCA (a critical facility of light water power reactor), DCA (a critical facility of
ATR, heavy water moderate light water cooled pressure tube type reactor) and core patterns
for VHTR simulated by SHE (a graphite moderate semi-homogeneous critical facility).

In the SRAC code system PDS (partitioned data set) files of binary mode have been
used for data storage. A PDS file has a simple structure so that a member containing one
dimensional binary array can be accessed by a member name composed of eight characters.
An assembler language subroutine allows read/write from/into PDS files by Fortran programs.
No further utility is required because the utility for partitioned data set files installed in the

ENTRY

READ OPTION CONTROL [PUBLIC é T
READ FILE CONTROL MICRO)'(s ??jm VBT warr
COMPOSE USER LIBRARY, { USER E R SN FLUX
MICRO, o M DIFFUSION
READ GEOMETRY FOR PIJ A
s L CALL MiX-X-SECTION = (MACRO
READ GEOMETRY FOR SN - "
| CALL HoMosp —— = (FLUX
READ GEOMETRY FOR DIFFUSION | CALL CONDENSE /
A I - MACRO
CALL.MACRO FAST THERMAL o ——
CALL CONCAT
MACRO .
CALL.IRA L
i PlJ
TT READ GUESS G SN ‘Q’&'&E FLUX
FF PIJ WRITE@ E DIFFUSION /
X SN FLUX v CALL MIX-X-SECTION
£ T DIFFUSION A > MACRO
0 L CALL CONDENSE
S I CALL MCROSS ——(RESONANCE) U
' / = 'E_ PREPARE MACRO-X-SECTION
| } caLL pEaco =—(FLux) L FOR CITATION
L_}_ CALL MIX-X- SECTION X (MACRO

Fig.4.1 SRAC Flow Diagram

30 Modular Programming Method at JAERI JAERI 1274

present operating system permits the timesharing commands such as ‘allocate’, ‘copy’, ‘list
directory’, ‘delete’, and ‘condense’.

Although the use of the JAERI datapool had been intended since the draft stage of the
SRAC, we had to refrain its application until its performance was verified to be complete
because the merge of two under-developing software, we anticipated, brought more difficulty
in debugging.

Since the function of JAERI datapool has been fixed!®), and the conversion of pre-
processor from FACOM?230-75 to M-200 computer has been finished and also the performance
of SRAC has been proved good, it is the time, we think, to convert the data storage method
of SRAC.

It has been foreseen that the use of PDS files encounters difficulties in controlling the
variety of data by such a simple structure where subdivision of eight character field of a
member name has been used to express a series of physical quantities. Now the hierarchical
data structure by concatenation of node names allowed in the datapool releases us from
elaborating tasks to compress several items into a member name.

In this section the experience gained through the conversion will be discussed.

4.1.2 Data Files Used in SRAC

The information transferred by catalogued disk files falls into four categories;

1) The basic nuclear libraries for general usage

Data are compiled on the finest energy group structure over whole range of temperature
for all possible nuclei. In this category we have three files, a) fast neutron library, b) thermal
neutron library, ¢) resonance neutron library.

2) The secondary nuclear libraries for the particular users

To save the computer time each user can construct his own libraries of the same format
and structure as the basic ones on less fine energy group structure, on certain range of
temperature, for selected nuclei. These files are used throughout a series of calculations.

3) The case dependent information

In a case we can perform a cell and a core calculation. Usually successive several cases
prepare the smeared cross sections of different cells and a core calculation is performed in
the final case. Three files are used to store and transfer the information betwen cases; a)
macroscopic cross section file, b) flux file, c) effective microscopic cross section file.

4.1.3 Hierarchical Structure of Data Files

Our process was initiated by deciding the hierarchy of nodes in each file. The preliminary
work had been done which resulted in the structure of member names of PDS files. For
example, a member ‘MUO8WO002’ in the basic thermal library implies a matrix (by M) of
uranium 238 (by UO08) in the compound Uo2 (by W), not being specialized by the cell
calculation (by 00) for temperature of 350 degree (K) (by 2). We started by exchanging the
symbols appearing in a member name into a self-explanatory character string which described
their physical meanings. To the member in the above example the node name of ‘U-238.
U02. MATRIX. T2’ was supposed. The index of the cell calculation history was not considered
for the simplicity at the initial stage. The subdivision of nodes in the fast neutron library was
taken to clarify the kind of reaction. A node of ‘MATRIX’ which had been packed into a
one dimensional array to avoid too many members in a PDS file was split into several arrays
under the node name of ‘CAPT’, ‘N-N’, ‘ELPO’, etc. (Fig. 4.2).

JAERI 1274 4. Applications

Fast neutron library (basic, user’s)

‘FASTLIB’ 150*(energy structure weight)
NUCLIDE JCONT’ 20 (control of nuclide)

MATRIX’ VCAPT’ 74 (capture X-section)
'FISS’ 74 (fission X-section)
JEFNU’ 74 (fission yield)
.'ESPC’ 74 (fission neutron spectrum)
JTRY 74 (transport X-section)
JWEIGHT' 74 (weights)
'ELAS’ 74 (elastic X-section)
UN-N° 300 (inelastic matrix)
JN2N’ 300 (N2N matrix)
JELPO’ 8000 (PO matrix)
JELPI 8000 (P1 matrix)

JFTAB’ TR’ 1800 (f-table for transport)
JCAPT’ 1800 (f-table for capture)
FISS’ 1800 (f-table for fission)
JELAS’ 1800 (f-table for elastic)
JELAR’ 1800 (f-table for elastic removal)
JWEIGHT’ 1800 (f-table for weights)

.'RESP’ JCONT 50 (control for resonance)
US-WAVE’ 1500 (s-wave parameters)
JP-WAVE’ 1000 (p-wave parameters)
SMOOTH’ ."CAPT’ 5000

JFISS’ 5000
."ELAS’ 5000

* Numbers following node name denote the maximum record size in words

Thermal neutron library (basic, user’s)

‘THERMAL'’ .TEMP 100 (energy structure, weights)

NUCLIDE JCONT’ 30 (material name control)
MATRIX! .TEMP 2600
/FTAB’ .TEMP 1600

Resonance neutron library (basic, user’s)

NUCLIDE JCONT’ .TEMP 50 (control)
CAPT’ .TEMP 20000 (capture X-section)
.'FISS’ .TEMP 20000 (fission X-section)
JELAS’ .TEMP 20000 (elastic X-section)

Macroscopic cross section file

‘CONT” .ERANGE .FINE 220 (energy structrue, weights)
MTNAME .ERANGE .FINE ."00" .L 4000
CASENAME .ERANGE .FINE XREG-NUM ."TR’ 4000

Fig. 4.2 File Structure of SRAC

31

32 Modular Programming Method at JAERI

Flux file

MTNAME .ERANGE
CASENAME .ERANGE
CASENAME .ERANGE
CASENAME .ERANGE

Effective microscopic cross section file

‘CONT’ 50 (energy structure, weights)
NUCLIDE .MTNAME

Physical meanning of node name

JAERI 1274

.FINE .00’ .L 110
SVOoL’
.FINE
.FINE

20 (Volumes of R-regions)
.'00’ .L 2200
XREG-NUM .L 110

XREG-NUM 500 (. BRUNUP-STEP)

‘FASTLIB’ String enclosed by ‘ is-used as a constant

NUCLIDE Alphabetic chemical symbol followed by mass number and specialized by
compound tag as PU239, U-235, U-238W, H-00IH, etc

ERANGE Neutron energy range expressed as ‘FAST’ or 'THERMAL' or ‘ALL’

FINE Energy group structure defined as ‘FINE’ or ‘COARSE’

MITNAME ‘Mixture name specified by user as ‘FUELO1’

L Spherical harmonics indicator; ‘PO’ and ‘P1’ are self-explanatory
‘TR’ denotes PO components after transport correction

CASENAME Alphabetic Case label specified by user

XREG-NUM Two digits as ‘01’,'12’ to specify the cross section smearing region

TEMP Temperature tagas ‘1, ‘2" - - - - - L9 A

BURNUP-STEP Future use for burn-up step tag as ‘B0, ‘B1", - -- - - , ‘B9’

List of catalogﬁed DASD ‘

FAST LIBRARY (PUBLIC)
THERMAL LIBRARY (PUBLIC)

RESONANCE CROSS SECTION (PUBLIC)

FAST LIBRARY (USER) .
THERMAL LIBRARY (USER)

RESONANCE CROSS SECTION (USER) |

MACRO CROSS SECTION (USER)
FLUX (USER)

EFFECTIVE MICRO CROSS SECTION (USER)

Fig.4.2 (Cont.)

s

4.1.4 Conversion of Program and Data

The next work for conversion was to translate the whole read/write statements in the
SRAC for the PDS files into CJ-statements for the preprocessor of datapool. The possible
reduction of core storage requirement due to the subdivision of node was not considered.
Instead of conversion of library generation programs, the ad hoc programs were used to
convert the data from the PDS files into the datapool files.

Now we shall discuss the result of conversion using an example in which a) condense
and selection of data from the basic libraries into the user’s ones, and b) a typical cell calcula-

JAERI 1274 4. Applications 33

tion for a light water lattice were done.

In Table 4.1 the computer resources are compared between the usages of the PDS files
and the datapool system for the above example.

We can find no effective reduction of CPU time, large scale reduction in the elapsed
time due to the removal of OPEN and CLOSE processes for each read/write operation in the
PDS file, intolerable increase of I/O access count which nearly reaches the limit of the normal
run, and increase of core storage requirement such as degrades the priority by one rank.
The number of I/O access might be reduced by order of 20—30% by enlarging the logical
record length which is now set to 300 words throughout all files, but this problem derives
mainly from the subdivision of node which increases I/O accesses. This fact shows us that
the design of node should be decided not only on physical clearness but also on the I/O
frequency. The increase of core storage requirement comes from the inevitable addition of the
managing software of the datapool system instead of the simple read/write subroutine for the
PDS file. .

In Table 4.2 the requirements for disk file’s are compared. We find certain increase
of storage in any file which might be diminished by the use of optimized record lengths.

We have not yet discussed about the effective microscopic cross section file which is
intended to transmit the cell averaged few group microscopic cross sections to the other
modules. The utilization of this file has not realized until a plan is materialized to extend
the SRAC to include the cell burn-up calculation where the key (node name) has to include
the information to discriminate the nuclide, the location of nuclide (region number or
mixture, cell), burn-up history and decay chain scheme. Such a complicated labelling will
be accomplished only by the datapool system.

Table 4.1 Computer Resources of PDS Files Table 4.2 Disk File Requirements .

PDS File . Datapool File Name PDS . Datapool

CPU Time 90 sec. 85 sec. Basic fast library 68 Trk 72 Trk
1/O Access 3236 times 19592 times Basic thermal libr. 265 294
, Core Storage 740 KB ‘ 948 KB B.asic resonance libr. 270 350
1 KB = 1024 Bytes Use? test libr. ‘ 21 39
User thermal libr. 70 86
Macro X-section libr. 17 23
Flux 2 B ¥

Micro effective libr. — —

1 Trk = 19 KB

4.1.5 Conclusion : T

The conversion of data storage system from the PDS to the datapool system has been
completed for the present version of the SRAC code system. The improvement in performance
from the view point of computer resources and disk file requirements have not been done
yet but we can except the application of the datapool system in the complicated data arrange-
ments in a ¢ore burn-up calculation under planning. :

(Keiichiro TUCHIHASHI, Div. of Reactor Engineering)

.

3 Modular Programming Method at JAERI JAERI 1274

4.2 Development of the SPLPACK Data Plotting System for Transient Analysis Codes
and Transient Experiments

4.2.1 Introduction

A number of computer codes have been developed in the field of reactor safety analysis
research for the purpose of predicting the behavior of reactor or a component of reactor
during accident conditions. When we use this kind of transient analysis codes, we usually
display the calculated results in two dimensional graphs of time versus variables. Drawing
graphs is, actually, an indispensable process to get quick and clear understanding of the results.
Therefore we can expect that good graphics softwares may improve the efficiency of code
development activities.

SPLPACK?? is a general tool, written mostly in FORTRAN-IV, applicable to plotting
the results of transient analysis codes and/or system transient experiments. Two major benefits
of its utilization are as follows:

1) We can save the cost of plotter program development.

2) We can easily compare results of one code with those of the other codes or with
experimental data.

The latter is very important when we evaluate the performance of a new analysis code
by comparison with the other codes or experiments.

In the SPLPACK system, plotting is performed by a program SPLPLOT, which is
independent of user’s analysis codes. The wide applicability of the SPLPLOT program was
realised by the utilization of data base with a standardized format as the interface between
user’s analysis codes and this plotter program.

The first version of this system, SPLPACK-1, has been incorporated in six computer
codes developed at JAERI for the LWR safety analysis, and has been effectively used in the
development of these codes as described in Section 4.2.6. From the experience of these
applications, following two improvements have appeared to be most desirable.

1) Extension of data processing function of the plotter program

Data processing is required for many purposes. For an example, when we compare
calculated results with experimental data, this comparison requires various kinds of data
transformation, because measured physical quantities are usually not identical to the
calculated variables. Another purpose is the application to a systematic usage of computer
codes. When we use calculated results of one code as input to another, some data processing
may become necessary.

These two kinds of data processing is expected to be effectively performed by a coupled
system of data plotting and data processing functions.

2) Improvement of interactive usage option

For obtaining high quality figures as quickly as possible and for effective usage of data
processing functions, improvement of the interactive usage option of the plotter program is
desirable.

Above two improvements have been successfully realized in the second version of the
system, SPLPACK-2, by the use of new programming techniques, the dynamic link and the
IPF (Interactive Programming Facility), supported by the FACOM M-200 computer system.

The variety of data processing functions which can be implemented in one program is
limited by available core memory size and this limit is relatively serious when the program
is operated on the TSS (timesharing system). This problem has been solved by the use of
the dynamic link function. The interactive usage option was enhanced by the dynamic link
and IPF as in Section 4.2.7.

]
JAERI 1274 4. Applications 35

This chapter describes the features of SPLPACK system and the status of its application
as well as the new programming techniques utilized in the second version.

4.2.2 Outline of the SPLPACK System

SPLPACK system was designed according to the following principles.

1) Plotter program must be independent of user’s analysis codes. Therefore the
calculated results should be transmitted to the plotter program via a data base of a stand-
ardized format.

2) The format of the data base must be sufficiently generalized.

3) Tools must be provided to minimize program modification of the user’s code for
outputting calculated results.

4) The usage of the plotter program must be as easy as possible.

The following sections describe how these principles have been materialized in the
SPLPACK system.

The basic structure of the SPLPACK system is illustrated in Fig. 4.3. In this figure,
data flows are shown by arrows. The calculated results of the user’s code are edited and
stored in a data base of a standardized format called the SPL format. A subroutine package
SPLEDIT is provided for data editing. With the use of this package, the user can easily in-
corporate the SPLPACK system into his code. The program SPLPLOT retrieves data from
the data base by SPLEDIT and draws graphs according to user’s requests.

SPLPLOT is operational on both batch and timesharing systems. The input terminal
for the requests may be a card reader or a keyboard, and the output terminal may be a XY-
plotter, a laser printer, or a conversational graphics terminal such as the Tektronix terminal.

Brief descriptions of the SPL format, the SPLEDIT package, and the SPLPLOT program
are given in Section 4.2.3, 4.2.4 and 4.2.5 respectively.

user's code SPLPLOT

SPLEDIT l data base l SPLEDIT
calculation data of data lottin
™1 editing SPL format retreival [P'O"9

uCL2
unit
conversion

I request < display)

card or CRT, XY-plotter
keyboard laser printer, etc.

Fig. 4.3 Basic Structure of SPLPACK-1 System

4.2.3 Standard Format of Data Base

The structure of the SPL format is shown in Fig. 4.4. The data base is a sequential file
in the binary mode, and has following four parts:

data base label part : data base name and format identifiers

comment part . general description of data in the data base

36 Modular Programming Method at JAERI JAERI 1274

FILE NAME PART Record 7 : Labe! of Each Variable (50)
Record 1: Indicator of File Name Part (2) This Record is repeated NVMAX times.
[VARID| CAPTN] UNTNM [UNID] I0IM [DMNM [JDBL [LAD [LDMY]
MARK (2),A = ‘$STDDATA’ VARID (2), A = variable name for identification

CAPTN (10), A = caption

: File N d Format D ipti 2
Record 2: File Name an rmat Description (25) UNTNM (10), A = physical unit

[FILNM [CFMT] LFMT | DFMT [FNDMY |

UNID (1), A = ID of physical dimension
FILNH (2}, A = file name NDIM (1), 1 = number of subscripts (NDIM<10)
CFMT (1), A = comment format 1D IDIM (10), | = dimension of subscripted variable
LEMT (1), A = variable label format ID DMNM (10), A = name of subscripts
DFMT (1), A = date format ID JDBL (1),1 = data precision 1D
FNDMY (20) = a dummy space (1 =single, 2=double)
LAD (). | = location in the data record
COMMENT PART LDMY (4 = a dummy space
Record 3 : Indicator of Comment Part (2) Record 8: Miscellaneous Information (20)
MARX [NEMAX [NDWRD | NSTP[STPID| INDVAR| LEDMY |
MARK (2), A = "$COMMENT’ NEMAX (1), 1 = total number of vaiues in a data record
Record 4 : Description of File (100) NDWRD (1), 1 = length of a data record in words
WGNM l DAY I TITLE]CMDMY] NSTP (1), t = number of data records in data set
STPID (1), A = name for counting the steps

PRGNM (4), A = name of mother program
DAY (2), A = date of data set genergtion
TITLE (44), A = description of data set
CMDMY (50) = a dummy space

(Default is ‘STEP".)

INDVAR (2), A = ID name of the independent variable
(Defauit is ‘'TIME'.)

LEDMY (14) = a dummy space

VARIABLE LABEL PART
Record 5: Indicator of Variable Label Part (2)

Record 9: indicator of Data Part (2)
[MARK]
MARK (2), A= "$LABEL MARK
) MARK (2), A = ‘$DATA’
Record 6 : General Information (3)

Record 10 : Data of One Step (NDWRD)
USYS [IDBL [NVMAX])))
. If NSTP#0 this record is repeated NST times.
USYS (1), A = unit system ID

=0, iti i s R
IDBL (1),1 = data precision 1D If NSTP=0, it indicates that number of Steps is not

DATA PART

(1 =single, 2= double) known.
NVMAX (1), I= number of variables DATA
DATA (NDWRD), R = values
Note : Nomenciature :
All the records are written using Non-Formatted ‘xxx’ = a character string

WRITE statements. {xxx) = length of an array in words

1, A, and R attached to array names indicate varible type.

| = integer
R = real number
A = character

Fig. 4.4 Structure of SPL Format

variable label part : description of each variable in the data base

data part : numerical data

The numerical data in the data part are the results of calculation or experiment. Since
results of transient analysis codes are usually produced time step by time step, each record
in this part contains the values of the variables per one time step. Type of the variable to be
edited can be an array of up to 3 dimensions of a single or double precision real number.
Integer and complex variables are not allowed.

4.2.4 SPLEDIT, a Subroutine Package for Data Base Management

A subroutine package SPLEDIT was prepared to assist users in editing, storing, and
retrieving data of the SPL format. Figure 4.5 shows how it is used in a transient analysis
code. Figure 4.5 is an example of FORTRAN subroutine that performs the data editing
process of the user’s code (see Fig. 4.3). In Fig. 4.5, variables that will be edited are TIME,
X, DXDT, D2XDT2 in COMMON block/A/. Since all SPLEDIT subroutines have a letter
‘¢’ at the top of their names, they can be easily discriminated from the user’s subroutines.
The functions of the subroutines referred to here are:

— $SETWF specifies FORTRAN Unit number of the data base.

JAERI 1274 4. Applications 37

SUBROUTINE EDIT
COMMON /A/ TIME,DELT,X(2),DXDT(2),D2XDT2(2)
COMMON /$WAREA/ MEMORY,1DUM, IA(5000)
DATA ISTART /0/
IF (ISTART.NE.O) GO TO 10
C DATA SET INITIALIZATION
ISTART =1
MEMORY = 5000
CALL $SETWF (11,IER)
CALL $FILNM ('TESTDATA',8)
CALL $PGMNM ('TEST PROGRAM',12)
CALL $TITST ('CALCULATION FOR TEST OF SPLPACK',31)
CALL $PRCSN (1,1)
CALL $UNSYS ('MKSA','MKSA')
CALL $LBSXO (TIME,'TIME ','TIME'," ',' ',1,1,
- 'TIME',4)
CALL $LBSX1 (X ,'L ','LNGT'," ',' ',1,1,
- 'ELEVATION',9,2,'NODE"')
CALL $LBSX1 (DXDT,'V ','VELC',' ',' ',1,1,
- 'VELOCITY',8,2,'NODE')
CALL $LBSX1 (D2XDT2,'A ','AccL',' ',' ',1,1,
- 'ACCELERATION',12,2,'NODE")
CALL $WLABL(1,IER)
C DATA SET INITIALIZATION END
10 CONTINUE
CALL SWDATA (IER)
RETURN
END

Fig. 45 An Example of Data Editing by SPLEDIT Package

— $FILNM registers file name.
— $PGMNM registers name of the user’s code.
— $TITST registers the calculation title.
— $PRCSN specifies lengths of a word (precision) in the user’s program and in the
data base, respectively.
— $UNSYS specifies the unit systems used by the program and by the data base,
respectively.
— $LBSXO, and $LBSXI1 register variable labels. These routines also register addresses
of the variables. Since a complete label of one variable is registered by one
CALL $LBSX.. statement, it is easy to add or delete-variables to be edited.
— $WLABL edits label information registered on the core memory by subroutines
listed above, and writes them on the data base.
— $WDATA edits calculated results of the registered variables, and writes them on the
data base. _
In the data retrieval process shown in Fig. 4.3, SPLEDIT performs following two types
of data transformations.
1) Rearrangement of data
Since data in the data base are arranged time-step-wise, they must be rearranged before
plotting the history of one variable.
2) Unit conversion
Computer codes have been written in various unit systems. Therefore unit conversion
is an inevitable process when a computer code utilizes data produced by the other codes.
SPLEDIT automatically does unit conversion in data editing and data retrieval according to
the user’s specification. This conversion is performed with the use of the UCL2 subroutine
package written by Abe3®. This subroutine package has, among others, a function of

38 Modular Programming Method at JAERI JAERI 1274

analyzing a character string of the given unit and generating a new character string of the
unit in the required unit system as well as the unit conversion factor.

4.2.5 SPLPLOT, a Program for Drawing Graphs

SPLPLOT draws graphs of data in the SPL-formatted data bases. This program was
designed on the basis of the LFTPLT7 program by Soda®® and the ROSAS3 program by
Sobajima®s), which will appear in Section 4.2.6 again.

The major differences between SPLPLOT and the other two programs are:

1) Applicability of SPLPLOT has been greatly extended by the use of the SPL format
for data storage.

2) The unit conversion function was generalized by the use of the UCL2 package.

For the user’s convenience, SPLPLOT has following functions:

— Unit of the variable can be automatically converted to the requested unit or unit

in the requested unit system.

— Linear and logarithmic scaling can be used.

— Scale range can be automatically adjusted.

— Data from up to 10 data bases can be plotted in one figure.

cclumn B P - S S
card 1 1
card 2
card 3
card U 2
card 5
card 6 L 1
card 7
card 8
card 9 L 2
card 10 1
oL -l
oL -2
8"3
SolLpaln In [/\ A
?,.g’i\f/!f[\”ﬂ(\"\f\/\f\‘
;'Lv ,V VUVUgU\
]

9.0 0.4 0.8 1.2 1.6 2.0 2-4 2.8 3.2 3.5x10"
TINE SEC

Fig.4.6 An Example of Request Card and Plot Result

JAERI 1274 4. Applications 39

— Up to 10 lines can be plotted in one figure.

— Up to 4 scales can be drawn for Y axis. But only one scale is allowed for X axis.

— Values calculated from data in the data base can be plotted.

The last function, the calculation option, often becomes necessary when we compare
results of analysis codes with experimental data. To use this function, the user must write
a subroutine to perform the calculation and link it with the load module of SPLPLOT. Since
modification of the original source program by individual users should be minimized, the
name and arguments of this subroutine are limited to one fixed pattern. Therefore the com-
plexity of the calculation is limited. Section 4.2.7 describes how this limitation has been
removed in the second version.

The user is allowed to specify unit system to be used, figure title, axis captions, unit
of each scale, figure size, etc., but since SPLPLOT is provided with various default options
and the variable label contains information of units and captions, the input cards can be
very simple. Figure 4.6 shows a simple example of input cards together with plot results
for it.

4.2.6 Present Status of the SPLPACK Application

SPLPACK has been applied to following six codes developed at JAERI. All of these
codes were developed for the performance evaluation of the emergency core cooling system
(ECCS) during a loss-of-coolant accident (LOCA) of a LWR. Their names and items that they

analyze are:
ALARM-P13®) : thermohydraulics during a blowdown phase in a PWR,

ALARM-B237) : thermohydraulics during a blowdown phase in a BWR,

HYDY-B13®) : thermohydraulics in a core during a blowdown phase in a BWR,

THYDE-B13? ; thermohydraulics during a small-break LOCA in a BWR,

THYDE-B-REFLOOD?3?; thermohydraulics during a reflooding phase within the core

shroud of a BWR,

SCORCH-B2%); heat-up of a fuel bundle of a BWR.

The program modification of these codes for the incorporation of the SPLEDIT routines
took about 2 man-days for each. Although this was the case of a programmer familiar with
the SPLPACK system, a similar amount of man-days is expected for a person who starts with
reading the manual.

For the performance verification of the above codes, it was desired to compare the
calculated results with those of other codes or experimental data. To perform this comparison
by SPLPLOT, adaptations were made to access the output data of

1) RELAP4 code*") for the LWR LOCA analysis,

2) LOFT experiment®?) of PWR LOCA,

3) ROSA-III experiment*® of BWR LOCA.

The adaptation to RELAP4 was made by providing a tool for conversion of a RELAP
output tape into the SPL format. This program was written easily because the data arrange-
ment in the data base was similar.

The output data of the LOFT and ROSA-III are stored, at JAERI, in the data bases
of a format designed for the LFTPLT7 or ROSAS3 plot programs. Since the data arrangement
in this format was not time-step-wise like the SPL format but variable by variable, subroutines
for reading this format were directly incorporated in SPLPLOT.

Thus SPLPLOT can access seven codes and two LOCA experiments at present, and has
contributed to the experimental verification of the above LOCA/ECCS analysis codes.

40 Modular Programming Method at JAERI JAERI 1274

4.2.7 Scope of Future Development

The second version of the system, SPLPACK-2, is now under programming. This version
will have various useful capabilities which are not provided in the present version. Some of
the major enhancements to be achieved in this version are:

1) Extension of the data processing functions of SPLPLOT,

2) Improvement of an interactive usage option of SPLPLOT,

3) Extension of the data management subroutine package SPLEDIT by adding alter-
native options of data base formats.

The purpose of the first two improvements has been described in the introduction of
this chapter. The third is for the convenience of various users who have different types of
data bases. Improvements (1) and (2) are materialized by the use of new techniques, the
dynamic link and the IPF, supported by the FACOM M-200 computer system. This section
briefly describes the two techniques and how they are utilized in the SPLPLOT-2 program.

(1) Dynamic Link

The function of the dynamic link and the needs of it have been described in Subsection
3.3.1 (b). This function has been fully realized in the present FACOM M-200 system as
mentioned in Subsection 3.3.2 (5).

Two options of dynamic link can be selected in the present system.

One is the standard option. This option does not need any modification of the user’s
code. Only the specifications of dynamic link option at the compilation and at the linkage
editing are required of the user.

The other one is linking via an assembler subroutine DLINK. In this method, the part
of core memory occupied by a referred module will be released after execution of the module,
while the referred modules are left on the core memory in the standard option. Therefore
this option is more effective in saving memory size. The second option has another merit.
The name of the subroutine to be referred to can be defined during the execution. This is not
allowed by a conventional FORTRAN. Next example may help readers understanding of
this function.

FORTRAN statements:

NAME = ‘SUBY’

CALL DLINK (NAME, argument 1, argument 2,)

is equivalent to: :

CALL SUBI (argument 1, argument 2,).

By this method, it has become possible to construct a frame of a code system in which
the user can refer his own module (subroutine) without any modification of the original
source program of the caller routine.

(2) IPF "

As mentioned in Subsection 3.3.2 and 3.3.3, IPF is a part of the operating system
of the FACOM M-200 system. By the aid of this system, we can use, during execution of
a program written in FORTRAN, COBOL, or PL/I, various useful service softwares developed
for the conversational usage of TSS. ' : .

A function of IPF used in SPLPLOT-2 is the interruption into a FORTRAN program.
By calling a simple interface subroutine, we can interrupt the execution of a program and
execute various commands defined on the conversational mode of TSS. This function is used
for dynamic allocation of data bases. We can interactively allocate and catalogue a new data
base or access old data base that has not been allocated at the beginning of program execution.

JAERI 1274 4. Applications 41

This is not allowed by the conventional FORTRAN.

(3) Structure of SPLPLOT-2 and Application of the Dynamic Link and IPF to the Pro-

gram

The structure of the SPLPLOT-2 program is illustrated in Fig. 4.7. This program is
operated in an interactive mode. In this program, the subroutines that are kept on the core
memory are only those for command interpretation, for control of dynamic link (DLINK)
and for data base management (SPLEDIT/UCL?2). Subprograms for plotting and data pro-
cessing are kept on auxiliary memory as a load module library.

The commands given by the user is interpreted by a command analyzer routine accord-
ing to the information from a command specification data file. The command analyzer
determines what subroutine should be executed as well as the arguments required by the
subroutine. This information will be passed to DLINK to execute the requested subroutine
for plotting or data processing. The output data of these subroutines are stored in the data
base of the newly defined format of random access type. This format is more suitable for
storing intermediate products of data processing than the format described in Section 4.2.3.

The modules for data processing can be easily added by the user by adding load module
of his subroutine in the library and modifying the command specification data file.

The command specification data file containes the necessary information for each
command, that is, a name of the subroutine to be executed, the attributes of arguments of
the subroutine, and the default values for the arguments. Since this file is written in the
card image, it can be easily revised by the use of text editing facilities of TSS.

The load module library need not be a single data file but may be a set of prioritized
files. Therefore the user can add his library without modifying the original library.

Thus it can be said that the extensibility of SPLPLOT-2 has been greatly improved by
the use of the dynamic link method.

=l data
— COmmand
=== load module

—~—a command specification
core memory

|
} subprogram .\ﬁruph

SPLEDIT | s for user

data base

=1 plott idng
e— an : I/
data pe={ DL INK oy command keyboard | command
ucLz processing analyzer

access
data
storage

rondom |
|
|

command

module

library specification

Fig. 4.7 Structure of SPLPLOT-2 Program

42 Modular Programming Method at JAERI JAERI 1274

4.2.8 Conclusion

SPLPACK is a generally applicable data-plotting tool for transient analysis codes and
transient experiments. This system has been applied for plotting of output data of seven
computer codes and two experiments, and has contributed to experimental verification of
these codes.

The second version of this system, SPLPACK-2, is now under development. By improving
the SPLPLOT program in data processing functions and in an interactive usage, this system
is expected to become more effective not only for plotting but also for data analysis and data
management. ‘

Major conclusions obtained from the development work of this system are as follows:

1) The improvement of the interactive usage option and the data processing functions
have been realized by the use of the dynamic link and the IPF of our computer system.

2) The dynamic link is effectively used for improving the extensibility of the
SPLPLOT-2 program.

3) The wide applicability of the SPLPACK system is realized by a standardization
of the data base format.

4) Unit conversion is an important process of data usage, and the incorporation of
the UCL2 package enhanced the effectiveness of the SPLEDIT data editing subroutines.

(Ken MURAMATSU, Div. of Reactor Safety Evaluation)

JAERI 1274 S

5. Concluding Remarks

Reviewing the examples of applications in Chapter 4, we can point out some merits
and demerits of the method presented in Chapter 3 as follows.

1) In the application of our present datapool to the SRAC code system some merits
are observed;

(i) The datapool defines the file structure clearly and the structure prevents confusion
about the contents in the file,

(ii) Since the file using our datapool keeps the input/output lists of corresponding
Fortran statements, the data in the file may be handled independently of the program,

(iii) A program in a code system may or may not use datapool files, and this encourages
us to construct a code system without hesitation, because we can use existing programs in
the code system with minimum works.

On the other hand, following demerits are also observed;

(i) Refined data, nodes in a hierarchical structure of datapool file increases input/
output operations,

(i) For a random access file such as the datapool file, it is required to set maximum
amount of space before its usage. This leads users to define unused, redundant amount of
file space.

2) In the application of the interactive programming facility and dynamic link feature
to SPLPLOT?2 code system, following merits are observed;

(i) Interactive programming facility promotes to construct an interactive, flexible
code system, because the facility allows users to allocate files, use timesharing commands
in the execution time of the code system,

(ii)) The dynamic link feature helps to save a main storage space in execution time and
this is done with minimum changes of each (sub)program.

On the other hand following demerit is observed;

(i) File space for load modules is bigger than that of ordinary one by factor of one
and a half.

3) In general it is the most important result of our present method that by using
it a (modular) code system is constructed with the minimum amount of man-months.

About twelve years ago when the subcommittee for modular code system started we had
thought that the goal of our activity would be to realize following schemes and functions
for nuclear codes:

(1) standardization of nuclear codes and related data libraries,

(2) dynamic selection and linkage of codes at any arbitrary execution point,

(3) interruption of execution at arbitrary time and display of calculated results,

(4) dynamic modification and re-execution of codes,

(5) graphical and animated display of calculated results.

We have seen that our JAERI users are now provided with computer features which
cover the items (2), (3), and (4). We have shown in this report some examples of their
applications. The user is not forced to use all of these features but is recommended to use
them selectively according to their own needs. In the application of the datapool to the
SRAC code system, we can see the fact that the datapool provides users with the capability
of displaying data interactively, and that it promotes standardization of data libraries. In the

44 Modular Programming Method at JAERI i JAERI 1274

application of the interactive subsystem control IPF and the dynamic link to the SPLPACK
code system, we can see that the features provide users with the dynamic selection and linkage
of codes at execution time, the interruption of execution at arbitrary time, the dynamic
modifications and re-executions of codes. The draft of this report itself was written by the
document editor ATF. However, as described in Section 3.4, these features need some
extensions and improvements and some of the tasks are being done at both JAERI and the
computer manufacturer. As for the item (1), our Establishment has organized a working
committee to standardize data libraries and nuclear codes. The SRAC code system described
in this report is one of the products of activities of the working committee.

Thus it can be said that the subcommittee for modular programming has devoted to
construct a framework of code system while the working committee is making its contents.

The code systems described or cited in the Chapter 4 are not all of the systems in JAERI.
Big code systems have been developed at JAERI without using the features explained in this
report®). Our present method, however, will become common in the near future.

(Kiyoshi ASAI, Computing Center and Satoru KATSURAGI, Div. of Reactor Safety)

Acknowledgements

We, the members of the Modular Programming Subcommittee of Nuclear Code Com-
mittee, Japan Atomic Energy Research Institute wish to express our sincere thanks to follow-
ing managers and engineers of the computer manufacturer, Fujitsu, Ltd. They recognized
the necessity and value of the softwares proposed by us and realized them.

Akira Tabata, General Manager, Software Tomio Suzuki, Scientific Systems Section,
Division, Computer Systems Sci. & Energy Sys. Develop. Dept.

Shigeru Suzuki, Ass. General Manager, Yutaka Yamagishi, same as above.

Develop. Div., Computer Systems Naoyuki Ishikawa, same as above.

Shozo Taguchi, Manager, Language Pro- Kenitsu Naraoka, Nuclear Energy Section,
cessor Development Department Sci. & Energy Sys. Develop. Dept.

Kuniaki Noguchi, Manager, Language Pro- Kazuhisa Kihara, same as above.

cessor Section 2 Yukio Narumi, same as above.

Y oshiyuki Tanakura, same as above. Tsuneyoshi Nishi, same as above.

Toshinori Aso, same as above. Makoto Ikawa, Scientific Systems Section,
Masakazu Kobayashi, same as above. Sci. & Energy Develop. Dept.

Kazuhiko Takahashi, same as above.

Lastly but not leastly we wish to express our thanks to Mr. T. Hirakawa, Chief and other
staffs of Computing Center, JAERI for their continuous support to our works.

JAERI 1274 45

References

Note: Reference (19), an introductory book for Multics concept, is not cited in this report.

D

2)
3)

4)

5)
6)
7)
8)
9
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

21)

22)

Reilly E.D., Jr. and Turner W.H.: ANL-7050, “The Automation of Reactor Design
Calculations at the Knolls Atomic Power Laboratory”, Proc. Conf. on Application of
Computing Methods to Reactor Problems, Argonne, Illinois, May 17—19, pp. 251-263,
(1965).

Kopp H.J.: KAPL-M-7372 (Rev. 1) “DATATRAN 2 User’s Guide”, (Aug. 1977).

Toppel B.J. et al.: ANL-7332, “The Argonne Reactor Computation System ARC”,
(1968).

Just L.C. et al.: “Recent Developments and Capabilities in the ARC System”, Proc.
Conf. on the Effective Use of Computers in the Nuclear Industry, Knoxville, Tennessee,
April 21-23, pp. 337343, (1969).

Honeck H.C., Suich, J.E. et al.: “JOSHUA-A Reactor Physics Computational System”,
ibid., pp. 324-336.

Honeck H.C.: DP-1380, “The JOSHUA System”, (1975).

Watanabe T., Arai K. and Noda T.: “Hitachi Nuclear Codes Control System, NCCS”,
Proc. Conf. on the Effective Use of Computers in the Nuclear Industry, Knoxville,
Tennessee, pp. 313323, (1969).

“Modular Coding Systems for Reactor Calculations™, Newsletter of the ENEA Computer
Programme Library, No. 11, (March 1971).

“The System DOYC-1, ibid., pp. 75-77.

“Modular System JCOMPACT”, ibid., pp. 77—79.

“JAERI Fast Reactor Integrated Computation JFRIC System”, ibid., pp. 79—81.
Corbato F.J. and Vyssotsky, V.A.: “Introduction and Overview of the Multics System”,
Proc. Fall Joint Computer Conference, pp. 185—196, (1965).

Fano R.M.: “The MAC System: The Computer Utility Approach”, IEEE Spectrum,
2, Jan. pp. 56—64, (1965).

Asai K. and Tomiyama, M.: JAERI-M 4762, “GPL-Genken Programming Language”,
(March 1972) [in Japanese].

Tomiyama M., Takigawa Y., Yoshimori M., Ogitsu M. and Asai, K.: JAERI-M 8715,
“Datapool; Its Concept and Facilities”, (Jan. 1980) [in Japanese].

Tomiyama M. and Asai K.: JAERI-M 9719, “SCAN: Structure and Functions of Fortran
Analyzer”, (Aug. 1981) [in Japanese].

“FACOM OS IV/F4 DOCK/FORTRAN 77 Fortran Program Debugger for Display
Terminal”, 64SP3680, Fujitsu, Ltd., (June 1981) [in Japanese].

“FACOM OS 1V/F4 IPF: Interactive Programming Facility — User’s Manual”, 64SP-
3520-1, Fujitsu, Ltd., (July 1980) [in Japanese].

Ikeda K.: “Structure of Computer Utility — An Antomy of Multics”, Shokodo Publ.
Co., Tokyo, (June 1974) [in Japanese]

Brooks Jr., F.P.: “The Mythical Man-Month: Essays on Software Engineering”, Addison-
Wesley, Massachusetts.

Wirth, N.: “A Programming Language for the 360 Computers”, Jour. Assoc. Comp.
Machinery, 15, No. 1, pp. 3774, (1968).

“FACOM TSS SORP: System Output Retrieval Projector — User’s Manual”, 64SP-

46

23)

24)

25)
26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

Modular Programming Method at JAERI JAERI 1274

2120-1, Fujitsu, Ltd., (July 1980) [in Japanese].

Nishi T., Yamagishi Y. and Asai K.: JAERI-M 9615, “K — System: A Text Editor and
Formatter Program™, (Aug. 1981) [in Japanese].

“FACOM OS IV/F4 ATF: Advanced Text Editor and Formatter — User’s Manual”,
70AR-8700-1, Fuyjitsu, Ltd., (May 1981) [in Japanese].

“FACOM OS IV/F4 User’s Manual”, 64SG-1002-1, (July 1981) [in Japanese].

Harada H., Kihara K. and Asai K.: JAERI-M 9650, “Dynamic Link: User’s Manual”,
(Aug. 1981) [in Japanese].

Tuchihashi K.: “Application of Datapool to Data Storage of SRAC Code System”,
Chapter 3 in this report.

Muramatsu K.: “Development of SPLPACK Data Plotting System’, Chapter 3 in this
report.

Naito Y., Tsuruta S., Matsuura T. and Ouchi T.: JAERI-M 9396, “MGCL-Processor:
A Computer Code System for Processing Multigroup Constants Library MGCL”’, (March
1981).

Naito Y. et al.: “Integral Experimental Data Bank System”, to be published as JAERI-M
report [in Japanese]

Akino F.: “Benchmark Tests of SRAC Code System”, B26, Proc. of the Annual Meeting
of Atomic Energy Society of Japan, (1981) [in Japanese].

Muramatsu K. et al.: “User’s manual of SPLPACK”, to be published as JAERI-M report
[in Japanese].

Abe K.: JAERI-M 9592, “Manual on Unit Conversion Program Library UCL2”, (1981)
{in Japanese].

Soda K., Wada Y. and Otsubo N.: JAERI-M 7695, “LFTPLT7 — LOFT Plotter Program”,
(1978) [in Japanese].

Sobajima M., Osaki H. and Murata H.: JAERI-M 8499, “Instrumentation and Data
Processing for ROSA-III Test, (1979) [in Japanese] .

Akimoto M., Araya F., Sasaki S. and Sato K.: JAERI-M 8004, “ALARM-P1: A Computer
Program for Pressurized Water Reactor Blowdown Analysis™, (1978).

Akimoto M.: JAERI-M 6968, “ALARM-B1: A Computer Program for Boiling Water
Reactor Blowdown Analysis”, (1977).

Asahi Y.: JAERI-M 6539, “HYDY-B1 Code: Calculation Model for Core Thermal-
Hydraulics during a Loss-of-Coolant Accident”, (1976).

Muramatsu K.: JAERI-M 8119, “Computer Programs, THYDE-B1 for Analysis of Small
Break LOCA of a BWR and THYDE-B-REFLOOD for Analysis of Reflood Phase”,
(1979) [in Japanese] .

Abe K. and Sato K.: JAERI-M 6678, “SCORCH-B2: A Simulation Code of Reactor Core
Heatup Version 27,(1976) [in Japanese].

Aerojet Nuclear Company: ANCR-NUREG 1335, “RELAP4/MODS5S-A Computer
Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related
Systems-User’s Manual”, (1976).

Reeder D.L.: NUREG/CR-0247, TREE-1208, “LOFT Systems and Test Description
(5.5-ft Nuclear Core 1 LOCEs”, (1978).

Anoda Y., Tasaka K., Suzuki M., Koizumi Y. and Shiba M.: JAERI-M 9243, “ROSA-
III System Description™, (1980).

Asaoka T.: “Present Status and Future Plans for Software Development in JAERI”,
Proc. on Workshop on NEA Data Bank Software, Argonne, Illinois, May 5—6, pp. 85-97,
(1980).

JAERI 1274 47

Appendix ; An Outline of Datapool System®

1. Introduction

In this summary the authors describe a concept and facilities of a program named
datapool.

Generally in scientific computations lengths of data, sequences of input/output opera-
tions from and/or to files depend on the input data and calculation processes of programs.
When we use a data file it is often needed to scrutinize contents of Fortran programs and
their input data which are relevant to the data file. This fact means that most data files have
indivisible relations with programs which produced the data files. At JAERI, as in other
institutions, many big programs with giant data are being used and the researchers have spent
an amount of time to adjust data files and programs to tailor them into their needs.

We will show in the followings that simple extensions of ordinary Fortran input/output
operations can resolve this difficulty. The simple extensions also promote the modularity
and standardization of data files. The datapool system has been developed to support these
extensions.

To meet this purpose, we have defined a characteristic of the datapool file as a hier-
archical, tree structured naming, retention of data and their attributes, and retention of
comments on the data. We also defined that utility programs for the datapool file processing
should have functions of easy retrieval of data and attributes, display, modification, deletion,
maintenance and management.

In addition to the above, we have put a restriction that processors of the datapool system
should be entirely written in Fortran language.

The schematic view of the datapool system is shown in Fig. 1A.

2. Facilities of Datapool

2.1 Preprocessor

We have defined formats of input/output statements of the datapool file and have pro-
vided a preprocessor (block no. 1 Fig. 1A) which expands the input/output statements to
ordinary Fortran statements. By this processor users can use the datapool file with the
minimum efforts of translation of their programs.

The processor reads program source cards and when it finds statements with C and J
characters in column 1 and 2 (henceforth we call the statements as CJ-statements), it expands
the statements to ordinary Fortran statements.

An example of expansion is shown in Fig. 2A. As is shown in the example, the output
statement is expanded to a Fortran direct access statement.

* Tomiyama M., Takigawa Y., Yoshimori M., Ogitsu M. and Asai K.: JAERI-M 8715, “Datapool; Its Concept
and Facilities”, (Jan. 1980).

Modular Programming Method at JAERI JAERI 1274

EXAMPLE
CJ SYNONYM F=X.Y. -Z

block 1) (o COMMR/COMMW(F)COMENT
4000 steps CJ READ/WRJTE (F)A(l,d),

user's Read/write in conversational or batch mode (block 2)
Fortran datapool
program | subroutines keyword
v construction
1000 steps

6000 steps

datapool subroutines

2, 3 dim
dispiay numerical information A
display retrieval)
editing file

management
{block 3) (block 4) {block 5) (block 6) (block 7)
TSS terminal l/\/\/ EDIT

H

commands 6 3 10 16 10
program
steps 2000 steps {500 steps 2000 steps 1500 steps 1500 steps

All programs are written in Fortran.
Steps mean executgble statements.

Fig. 1A Schematic View of Datapool System

SUBROUTINE DPW(A,B,C,D,
DOUBLE PRECISION A,B,C,D
DIMENSION X(100)
CJ WRITE(A.B.C.D.ERR=200) (X(I),I=1,N)
RETURN
200 STOP

END
iy

SUBROUTINE DPW(A,
DOUBLE PRECISION
DIMENSION X(100)

,N)

>CD

ILNGTH=(1*(N-1+1)+0)

CALL QOPEN(4,2,ILNGTH,IUNIT,IRECRD,0,4,1,0,A,1,0,8,1,0,C,1,0,D,1,&
1200)

CALL QWRITE(IRETCD,0,12,'(X(I),I=1,N)',4,510,100,400,N,1,4200)
WRITE(IUNIT,IRECRD, ERR= 200)((1),1 =],N)

CALL QCLOSE(IRETCD)

RETURN
200 STOP
END

Fig. 2A Expansion of CJ-statement

JAERI 1274 Appendix; An Qutline of Datapool System 49

2.2 Input/Output Access Method

The datapool processor accesses to the data by the following method.

(1) Datapool processor stops search of a data name when it encounters a data name
consisting of blank characters, or when it reaches a data name at the end of the hierarchical,
tree structured file. Using this feature users can access every data name of datapool files by
a single input/output statement.

For example, the following statement

CJ WRITE (ABC.....X) (DATA(),I=1,N)

is equivalent to a statement

CJ] WRITE (A.B) (DATA(),1=1,N)
if all variables C, . . . ,X for data names contain only blank characters.

(2) Users can search data names vertically or horizontally along with the tree structure
of a datapool file.

In the following example

CJ POINT (A.B.C, MAXD, ND, DNAME, NRC)

Cl] NEXTV
CJ READ (*, ERR=123) U,V
CJ NEXTH,

the POINT statement points a data name to initialize searching. In this case the data name
is A.B.C. By the NEXTV statement the pointer moves to one more lower level and a first
data name in that level, and the data name of this position is set in the array variable DNAME.
By the READ (* ... statement the user can read the data of this data name. The NEXTH
statement moves the pointer to the right, horizontally, and the data name of that position
is set in the variable DNAME.

2.3 Retention of Input/Output List

Datapool processor stores the output list including attributes of variables appeared
in the list into the datapool file (Fig. 3A). Usually it is stored automatically, but when the
user wants to reduce number of directories in a file, he can omit the operation by specifying
an appropriate value of the priority parameter in the corresponding WRITE statement.

When a new output list is written, no validity check of new and old one is done and
the old list is always replaced by new one.

DATA NAME —=1 CLASS & LENGTH OF CELLS
POINTER TO LEFT Cell for 1/0 list,
POINTER TO RIGHT attributes of data,

and comments.

POINTER TO UPPER

POINTER TO LOWER

P | L
DRA

SUBDT ©
DIMDT
RELDT

PASWD POINTER to NEXT CELL®
L

Fig. 3A Directory Cells for Data and Data Attributes

50 Modular Programming Method at JAERI JAERI 1274

2.4 Comment

Users of the datapool can set comments on data in a batch or timesharing mode. As
is shown in Fig. 3A, cells for comments are linked to the directory of the data. The comments
are extensible or reducible in a unit of 20 words or 80 bytes and the user can edit the
comments using a timesharing terminal. When the user has set the format of comments to
a fixed form, he can construct a simple information retrieval system for the datapool files.

2.5 Information Retrieval

The datapool system has a simple information retrieval facility for data stored in the
datapool files (block no.5, Fig. 1A). The information retrieval facility consists of two
programs, one is a program which makes keyword tables for retrieval and the other is an
interactive program which retrieves informations in a timesharing mode.

The retrieval is induced by a logical expression which is made input from a TSS terminal.
The operands of the expression consist of keywords or numbers representing keywords.
An example is shown in Fig. 4A.
The number representing a keyword in the expression of Fig. 4A is assigned by the program
for keyword table construction (block no. 2, Fig. 1A). This information retrieval system is
for a considerably small set of keywords about up to 2000. The user can define big amount
of data and data names irrelevant to the restriction on number of keywords.

KEY(P)

>PADE*APPROXIMANT +3

ABUE ACRS ACRT ACWF ACWG

LIST(P)

>ACRS

**%\:09,1975,46-50 C:ACRS,ICL1430,343,EBCDIC

T:A SUBROUTINE AND PROCEDURE FOR THE RAPID CALCULATION OF SIMPLE OFF-
DIAGONAL RATIONAL APPROXIMANTS

A:P.R.G.MORRIS,D.E.ROBERTS

K:GENERAL ,RATIONAL ,APPROXIMANT ,CHISHOLM,SIMPLE OFF-DIAGONAL,PRONG,
PERTURBATION SERIES,PADE

AC:PROGRAM ACRS IS A FORTRAN VERSION OF SODS

LIST(P)

>#END

Fig. 4AA Example of Information Retrieval

2.6 Graphical Display of Data

The user can display his data in datapool files on a graphical terminal (block no. 3,
Fig. 1A). Any variables in the Fortran I/O list can be displayed in two dimensional or three
dimensional mode. For display of an array variable, the user can specify starting, ending,
and incremental values. He can also specify more than one y axes, labels and titles.

In case of two dimensional display, up to 2350 points can be specified for x and y axes,
respectively. The Tektronix 4000 series terminals are assumed as output devices. An example
is shown in Fig. 5A.

JAERI 1274 Appendix; An Qutline of Datapool System

>GX FF.’3D’/XX
2CY FF.’3D’sL
>GZ FF.’3D’r22
>G 3D

Fig. 5A Example of Graphical Display

2.7 Numerical Display of Data

51

The user can numerically display data stored in datapool files (block no. 4, Fig. 1A).
As is the case of graphical display, it is possible to specify arbitrary variables in the Fortran
I/O list corresponding to the data. The display operation is executed by interpreting the
corresponding I/O list and attributes of variables which are written with the data. It is
possible to display variables of integer, real, double precisioned real, and imaginary number
of these types. The corresponding I/O list is displayed at the same time. An example is shown

in Fig. 6A.

>XYA= 'XYALL'
>LISTD FF.XYA/XX
*ak 1/0 LIST **

Y2,N, (YY(I),I=1,N),11,12,(XX(J),d=I1,12)

% CONTROL VARIABLES *

% SYMBOLS *

XX

*kk DATA *k%

0.0 0.4000000E-01
0.3200000E+00 0. 3600000E+00
0.6400000E+00 0.6800000E+00
0.9600000E+00 0. 1000000E+01

0.8000000E-01
0.4000000E+00
0.7200000E+00
0.1040000E+01

Fig. 6A Example of Numerical Display

2.8 Input, Display and Modification of Comments.

The user can store data with comments (block no. 6, Fig. 1A). Comments can be written
into datapool files in the time when a user program is executed. The user can also input, dis-

play and modify comments in a conversational mode. An example is shown in Fig. 7A.

52 Modular Programming Method at JAERI JAERI 1274

00010 PROCEDURE TESTPRO

00020 ATTACH F01,J9131.TESTPOOL,LRECL=80/U,MAXRCD=500
00030 ON ERROR STOP 'ERROR STOP'

00040 SYNONYM FILE='J9131'.'TESTPOOL'.'COMMENT'. #NN
00050 NN =0

00060 100 NN = NN + 1

00070 CAREA 80,A(1)

00080 CW FILE

00090 ON (NN.LT.9) GOTO 100

00100 MANUAL 'RETURN TO MANUAL MODE'

00110 END

#.DPSRUN PROC=TESTPRO

>RUN TESTPRO
.START ***TESTPRQ *** PROGRAM
.START TEXT MODE

*

T B T AR R T P S S DU S -
>TESTCOMMENT CREATED. DIMENSIONAL CELL #1
>SEND

.END TEXT MODE

Fig. 7A Example of Comment and Catalogued Procedure

2.9 File Management and Command Procedure

The user can change names of data, delete, move, copy, and compare data.

The datapool system has a simple command processor to enable fixed form operations
easily (block no. 7, Fig. 1A). The commands are shown in Table 1A.

Table 1A TSS commands

Datapool facilities for TSS use

Commands
1. STOP command 17. DELETE command
2. PROCEDURE command 18. RENAME command
3. MANUAL command 19. CHAP command
4. GOTO command 20. ON command (1)
5. END command 21. ON command (2)
6. RUN command 22. ON command (3)
7. ATTACH command 23. COMMAREA command
8. ALLOCATE command 24, DISPLAY command
9. SYNONYM command 25. CEDIT command
10. Assignment statement 26. COMMR command
11. CATLIST command 27. COMMW command
12. LIST command 28. COMMWA command
13. LISTD command 29. COMMD command
14. COMPARE command 30. Graphic initialization command
15. MOVE command 31. Graphic control commands
16. COPY command 32. Graphic parameter setting commands

2.10 Maintenance of Datapool File

The datapool system provides following commands for maintenance of datapool files.

(1) RECOVER Command

In case of a user program abortion when it is writing data into a datapool file, the
datapool file is not closed normally and the control table of the file remains in invalid status.
For this file it is impossible to continue read or write operation. The RECOVER command
remedies the control table of the file and makes the file reusable.

JAERI 1274 Appendix, An Outline of Datapool System 53

(2) CONDENSE Command

When data names are deleted, directories and areas for the table remain in the datapool
file as garbages. The CONDENSE command clears them and make them reusable for the file.

(3) SORT Command

The hierarchical tree structure of a datapool file is made by the order the corresponding
data have been stored. The SORT command reorder them in ascending or descending order.

3. internal Structure of Datapool Processor

3.1 Preprocessor

The preprocessor detects CJ-statements, where C and J are punched in the 1-st and 2-nd
columns, respectively in a user’s Fortran source program, and expands the Cl-statements
for datapool input/output operations to ordinary Fortran statements. The number of para-
meters in a subroutine call of the expanded statement depends on the length of data name.

The preprocessor itself has been coded also in Fortran (block no. 1, Fig. 1A). It has size of
4000 executable statements.

3.2 Datapool File

The datapool file is essentially a Fortran random access file. Hence the user can use
arbitrary number of files in his program. Each datapool file is divided by an appropriate
block size specified by the user and in its top portion it contains informations neccessary
for the datapool file control.

There are two main informations for datapool file control, one is a DPCTL which des-
cribes attributes of the file, and the other is a set of directories which defines attributes of
data. For each datapool file there exists one file control table DPCTL and it consists of 50
words (or 200 bytes). The contents of DPCTL is shown in Table 2A. :

Table 2A DPCTL . .. Datapool Control Table

1. 9 18. 35. POINTER FOR
2. 31 19. 36. SHARABLE USERS
3. 20. 37. HASH TABLE SIZE
a. 21. 38. PTR FOR HASH TABLE
g, [DATASET NAME 22. 39. HASH CLUSTER SIZE
6. 23. RECORD SIZE 40. PTR FOR HASH CLUSTER
7.) 2a. MAX RECORDS 41. MAX CASE NO.
8.) CREATOR'SNAME . 5ED RECORDS 42. CURRENT CASE NO.
9. 26.\ POINTER FOR 43.\ POINTER FOR
10.) creaTion DATE 27.) UNUSED RECORDS 44,) CASE NO. ROOT
. 28. 45
12.) EXPIRATION DATE 29. MAXDIRECTORIES 4.
13. 30. USED DIRECTORIES 47.
14.) PASS WORD 31,) POINTER FOR 48. BYTE OR WORD
15. COMPUTER NAME 32.) DIRECTORY ROOT 4.
16. DD SET DEVICE NAME 33. POINTER FOR 50.
1. 34. UNUSED DIRECTORIES
3.3 Directory

Each directory is a cell of 20 words (or 80 bytes) and contains data name, attributes,
or comments. The user should specify a neccessary number of directories when he creates
the file to store the informations mentioned above.

54 Modular Programming Method at JAERI JAERI 1274

In Fig. 3A, each symbol represents the following meaning.

(1) P means a priority value specified by the user and the value is used to protect the
data from destruction in writing or is used as a prohibition bit for display.

(2) L represents the length, i.e., number of blocks of the data. When a new data is
written destroying the old one, the datapool processor compares the lengths of the new
and old ones. If the old L is smaller than the new, the processor provides continuous blocks
and the new data is written in the blocks. If the L value of the old is larger than the new one,
the new data overrides the old data. In any case the value of L is updated.

(3) DRA is a starting address, i.e., a starting block number of data on a disk file.

(4) SUBDT is a pointer for the first subsidary cell which contains I/O list and/or
comments.

(5) DIMDT is a pointer for one dimensional addressing of data. Each cell pointed by
this or consequent pointer contains a subscript which is used to identify a one dimensionally
subscripted data. By this function the user can make use of random and/or sequential access
methods to a datapool file. An example of subscripted data is shown below.

DO 101I=J,K,M
CJ WRITE (A.B. #1I) I/O list
10 CONTINUE

In the above example, data names A.B and A.B. #I point to different data respectlvely
and any value of I is valid if it is a positive integer.

(6) RELDT is a pointer to a directory which has a relation with the directory con-
taining this RELDT. Since the datapool file has a hierarchical tree structure, it provides no
relation to connect nodes branching separately. RELDT is used to cure this defect.

(7) PASWD is a password for this data name.

3.4 Access to Data Name

It is desirable to make the directories resident in a main memory to get quick access
to data, but in practical use it is often required to provide several ten thousands of directories.
To solve this problem, the datapool processor has LRU (Least Recently Used) table, DT
(Directory) table and DT buffer.

The LRU and DT tables consist of 30 cells respectively and are used by all datapool
files in a user program. Each directory in the DT table has extra five pointers in addition to
a copy of the dlrectory of datapool file in a disk memory. The LRU table and DT table are
shown in Figs. 8A and 9A, respectively. .

The additive five pointers of DT table point to cells in the DT table and by these pointers
the processor retains local structures of the corresponding datapool file.

The DT buffer which is prepared for each datapool file according to a specification by
the user as a preprocessor option contains one block of directory portion of the datapool
file.

The i-th cell of LRU table corresponds to the i-th cell of DT table and these cells are
managed by the LRU method.

The method of management is as follows.

(1) The Maximum reference number 30 is given to a node which is referenced most
recently. Values of reference counters of other nodes are reduced by one. Counters with zero
value remain unchanged.

(2) When a node is referenced which is nonexistent in the LRU table, a node of the
minimum value of reference counter is deleted from the LRU and DT tables if the node is
not updated while it is in the tables, or the corresponding dictionary of the datapool file is

JAERI 1274 Appendix; An Qutline of Datapool System 55

LRU TABLE DT BUFFER DT TABLE
!
L
» DIRECTORY y
POINTERS
\
I | | | |
A
| i | I T — —
e— "] h_/\/
| ’ ! I :

29 30

30 POINTERS

Fig. 8A LRU Table and DT Buffer Fig.9A DT Table

DPLIB

N

1~

Fig. 10A Example of Datapool

renewed if it is updated. In this replacement algorithm, nodes A, C in Fig. 10A have a tend-
ency to remain in the tables, but the nodes A,, A,, ..., B have not. After the discussion
with datapool users, we have adopted this method.

3.5 Access to Variable

In this section we will explain by a simple example an access method when both a data
name and variables are specified.

Let us suppose that the data, with its data name D and I/O list ((A (), B (1,J),I=1, M),
J =1, N), are written in a datapool file.

The command

LISTD D/B,1,M,2
causes a display of contents of the variable B with incremental value of 2 to a TSS terminal.
In this example 1 is starting, M is ending and 2 is incremental value, respectively.

Reading the data corresponding to (A (1), B,), I=1, M), J=1, N) into the work
area and extracting data for ((B (I, J), I =1, M), J = 1, N), the display routine gives the output
to a terminal device. The display routine can treat data of integer, real, double precisioned
real, quadruple precisioned real and imaginary numbers of the same types.

In case of graphical display, the numbers mentioned above are automatically converted

56 Modular Programming Method at JAERI JAERI 1274

to single precisioned real numbers.
The analysis method of the I/O list is similar to that of Fortran compiler, but this is
more complex because an interpretive preprocess is required before display.

3.6 Calculation of Logical Expression for Retrieval

(1) Syntax Check of Logical Expression

Checking an input character string from a TSS terminal, the retrieval routine constructs
a stack SOP for input operators and a table SKW for keywords. The routine then checks the
contents of SOP and SKW according to a syntax in Table 3A to test if the operators and
keywords are in right order. The routine also checks balancing of left and right patentheses
and their order. Each keyword of SKW is checked if it is already registered in the retrieval
system. In Table 3A symbols *, +, <, or> mean logical product, logical sum, left boundary
of input, and right boundary of input, respectively. The symbol X is for a wrong combination
and O for a valid conbination.

(2) Extraction of Logical Expression

The retrieval routine interpretes the expression when no error is found in the above
checks. The expression is executed according to specifications of in Table 4A. The symbol
S, E, or T means a skipping of operation for left side operator, execution of operator, or a
termination of the execution.

Table 3A Syntax Check Table Table 4A Execution Control Table

TBLS (7, 7) TBLP (6, 6)

ight | 1 2 3 4 S5 6 7 right | 1 2 4 5 6
left < + * () > keyword left < + () >
1. < X X X0 X X O 1. < | X s S s X o
2 + X XX 0 X X O 2. + X E S S E E
3. * X X X.0 X X O 3. =* X E E S E E
4, (X X X 0 X X o 4. (X S S S (0] X
5.) X O 0 X 0 0 X 5) X X X X X X
6. > X X X X X X X 6. > X X X X X X
7.keyword | X O O X O O X

