1276

JAERI

JAERI 1276

Efficient Computer Program EPAS-J1 for
Calculating Stress Intensity Factors of
Three-Dimensional Surface Cracks

March 1982

H & K + 1 W %

Japan Atomic Energy Research Institute



BAR T OM R RRRAEREAS

2Rk % % (EE)
% 2

W siR (RTFILER) B Xt ()
ZE DiE (RET¥H) Hh Ef (BEamRs)
AR B (#HhERFE) Hit £8 (KB 7~7BERE)
fR BE (RERZLWHED AT (RArEREE)
EE B (RTFHLESR) RE EE (FRHWRA)
BA  KED (FETFIEAT) HENBE (REWELT)
MIE BRI GRPRLBRAFER) B\ 8 (RFFEED)
Fib 3% CKRFRA) w0 B (WES)
Bt B (FRFETER) R B (#)FRR - KetmREEE)
R —5B (KLRHE) FH OFRH BELIER)
EENEFRE (HRTESR) EHEHRSD (DE%)
My i (RER) ZH k GEEETRAT)

Japan Atomic Energy Research Institute
Board of Editors

Shigeru Mori (Chief Editor)

Hiromichi Adachi Takumi Asaoka Toyojiro Fuketa
Yoshikazu Hamaguchi Muneo Handa Masao Hara
Hiroshi Hashitani Makoto Ishizuka Akihiko Ito
Masanori Kanbara Isamu Kuriyama Hiroshi Mitsui
Ryukichi Nagasaki Hideshiro Nakamoto Takao Numakunai
Jiro Okamoto Hiroshi Sakurai Konomo Sanokawa
Kazuo Sato Eiji Shikata Sanae Tamura
Masatoshi Tanaka Shigeya Tanaka Kaoru Ueno

JAERI v K — } i3, HABRFHH R EREEEZRZOEELETAEMICR
FIL TR EHREETT,

AFoMA LR, BARETFHFRAEAERBEREER (7319-11KBUR H R R
WA BT, BEHLILLIEE W, 4B, ZOBPICHRENRFHLE2ERLY S —
(F319-11 KikIEBBFMILHKEBA H AT HEN) CHECLAERFMZEI4-T
BNET,

JAERI reports are reviewed by the Board of Editors and issued irregularly.

Inquiries about availability of the reports should be addressed to Information Section,
Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura,
Naka-gun, Ibaraki-ken 319-11, Japan.

©Japan Atomic Energy Research Institute, 1982

WEXRRITT HARFOHEMN
2} B wiE s & RW




JAERI 1276 i

Efficient Computer Program EPAS-]J1 for Calculating Stress
Intensity Factors of Three-dimensional Surface Cracks
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Division of Reactor Safety, Tokai Research Establishment
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken
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Abstract

A finite element computer program EPAS-J1 was developed to calculate the stress
intensity factors of three-dimensional cracks. In the program, the stress intensity factor is
determined by the virtual crack extension method together with the distorted elements
allocated along the crack front. This program also includes the connection elements based on
the Lagrange multiplier concept to connect such different kinds of elements as the solid and
shell elements, or the shell and beam elements. For the structure including three-dimensional
surface cracks, the solid elements are employed only at the neighborhood of a surface crack,
while the remainder of the structure is modeled by the shell or beam elements due to the
reason that the crack singularity is very local. Computer storage and computational time can
be highly reduced with the application of the above modeling technique for the calculation of
the stress intensity factors of the three-dimensional surface cracks, because the three-dimen-
sional solid elements are required only around the crack front.

Several numerical analyses were performed by the EPAS-J1 program. At first, the
accuracies of the connection element and the virtual crack extension method were confirmed
using the simple structures. Compared with other techniques of connecting different kinds of
elements such as the tying method or the method using anisotropic plate element, the present
connection element is found to provide better results than the others. It is also found that
the virtual crack extension method provides the accurate stress intensity factor. Furthermore,
the results are also presented for the stress intensity factor analyses of cylinders with longitu-
dinal or circumferential surface cracks using the combination of the various kinds of elements
together with the connection elements.

Keywords: Finite Element Computer Program, Stress Intensity Factor, Three-dimensional
Surface Crack, Virtual Crack Extension Method, Connection Element, Lagrange
Multiplier, EPAS-J1 Program.
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1. Introduction

The fracture mechanics analysis of the surface cracks existing in pressure vessels and
piping is important in assessing the structural integrity of nuclear power plants. Such an
analysis, however, requires considerable computer storage and computational time, because the
three-dimensional analysis must be carried out to obtain the local stress and strain distributions
near the surface crack. The substructure method has been used to deal with the finite element
structural analysis of a large scale three-dimensional structure. Reynen!), Broekhoven?), Hall et
al.®, and Bergan and Aamodt® used this method to obtain the stress intensity factors of the
three-dimensional cracks. It is doubtful, however, whether the substructure method is more
economical in computational cost than any other methods or not, because it requires the
inverse of the stiffness matrix of each substructure to eliminate the degrees-of-freedom in the
substructure. Yagawa et al5) developed the finite element computer program EPAS (=
Elastic-Plastic Analysis System) for economical and efficient calculation of the local
three-dimensional elastic-plastic behavior. This program has the connection elements based on
the Lagrange multiplier concept to combine such different types of elements as the solid and
shell elements or the shell and beam elements. Afterwards, the EPAS program was so modified
as to be used to analyze the stress intensity factors of the three-dimensional cracks. This
modified program is named EPAS-I1 (= Elastic-Plastic Analysis System, JAERI version 1).
Various methods have been proposed to obtain the stress intensity factor by the finite element
method as shown in ref. (6). The EPAS-J1 program uses the virtual crack extension method”’®
to obtain the stress intensity factor, because this method can be easily incorporated into the
existing finite element program and provides comparatively accurate stress intensity factor. In
this code, the distorted elements®)!®')) are allocated along the crack front to represent the
stress singularity near the crack front. For the structure including three-dimensional surface
cracks, the solid elements are employed only at the neighborhood of the surface crack, while
the remainder of the structure is modeled by the shell or beam elements due to the reason that
the crack singularity is very local. Thus, computer storage and computational time could be
reduced considerably with the application of the above modeling for calculation of the stress
intensity factors of the three-dimensional cracks, because the three-dimensional solid elements
are required only near the crack front.

In the report, Chapter 2 describes the theoretical background of the connection elements
and the virtual crack extension method. Several numerical examples are presented in Chapter
3. In this chapter, the accuracies of the connection element and the virtual crack extension
method are confirmed. The stress intensity factor analyses using connection elements are also
included in this chapter. The conclusions are described in Chapter 4.
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2. Theoretical Background of the EPAS-J1 Program

2.1 Derivation of Finite Element Equilibrium Equation

2.1.1 Basic Equations and their Variational Form

Consider a general three-dimensional problem in solid mechanics. With respect to a
system of orthogonal Cartesian coordinate X, 1= 1, 2, 3, the governing equations of the
problem can be written in the incremental form in the small displacement theory as follows:

Aoi].].+AFi =0 (in V) (2.1.1)
1 .
Ael.]. =5 (Aui’j + Au].’l.) (in V) (2.1.2)
_ ep ep :
Bo, = EL, Aey + G AT (in V) (2.1.3)
Aul. = Ay, (onsS,) 2.1.4)
and
AT = AT, (onS,) (2.1.5)
with
AT = Aol.].n]. (on S) (2.1.6)
where Oij> €5> Uy and P; are stresses, strains, displacements and body forces, respectively. A

denotes an increment and (7) implies prescribed quantities. V is the volume occupied by the
body. S, and S are the surface S of the body V in which the displacement and traction are
prescribed, respectively. n; is the unit normal vector outwards on S. The plastic strain ef.;. and
thermal strain e:.’]. are included in the stress-strain relation, eq. (2.1.3), where T denotes
temperature and Aef]?’ is defined by the sum of the incremental elastic strain Aeffj and the
incremental plastic strain Aeg. as
Ae;.p = Ae;. + Ae{.’i 2.1.7)

For the thermal elastic-plastic problem, the incremental strain Aei]. can be decomposed as fol-
lows:

= r 0 — ep [}
Ael.]. Ael."]. + Aei]. + Aei]. Aei]. + Aei;‘ (2.1.8)
E;.’,’CQ and G;.p in eq. (2.1.3) are given as follows:
e of of re
Eiimn 00, , aoop Eopkﬂ
EeP = Ez?'ksz _ (2.1.9)
ke A of _of , _df pe _f
- mnop 3¢
aelr)nn aomn aGmn op
e of ((Of BBunop e . Bf
SE® ik Jo \ B0 T op T
Gep = ijk® E;Q - (2110)
ij 3T _ of of N of e of
ae"’nn aomn d mnop aoop
in which E¢,, _and f denote the elastic modulus tensor and the yield function, respectively. The

ijk®
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Fig. 2.1.1 Continuum divided into two parts.

derivation of eqs. (2.1.9) and (2.1.10) is referred to Appendix A. In the report, the usual
summation convention for repeated indices is used with a comma followed by i indicating the
differentiation with respect to x i

Next, let us consider the domain shown in Fig. 2.1.1, where the body V is tentatively
split into two parts V@) and ¥® which are assumed to be contiguous on SU?)_ In this case,
egs. (2.1.1)—(2.1.5) should be established in both bodys V! and ¥ as follows:

Ao{) + AP =0 (in V@) (2.1.11)
A =2 (au + Auf®) (in V@) (2.1.12)
Aol = (B ) (AP + (GH®AT®  (in V) (2.1.13)
Au® = Az (on S) (2.1.14)
AT = AT (on $©) (2.1.15)

Here, ( )® denotes the variable belonging to the fictitious region «, @ = 1 and 2. The
continuity of the two parts of the body V") and V® is assured by the following equations:

AuV = Au® (on §U1¥) (2.1.16)
AT W+ AT® = 0 (on $U?) (2.1.17)

The modified principle of virtual work which provides eqgs. (2.1.11), (2.1.15)—(2.1.17) as the
Euler equations is given as follows: (1%

2

(@) (a) - > (@) @
2 [JV(“)Aaij B(Aeif )avy J.V(a)APi B(Au,’ yav

a=1
- 7T (a) (@) - 1) (2)
s(a)ATi 8 (Au, )dS] IS(IZ)G[AAi(Aui( - Au, )]dS
[+ 4

=0 (2.1.18)
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where § denotes the virtual variation. AX,; in the above equation are the Lagrange multipliers
and physically equivalent to the traction forces on s AT;,. The continuity condition of the
displacement on SU?) i.e. eq. (2.1.16), is taken into account in the last term of the left hand
side of eq. (2.1.18).

2.1.2 Finite Element Formulation

The use of different kinds of elements may be effective in the analysis of the local
behavior of a complex structure. In this case, the continuity condition of displacement is often
violated at the boundary of different kinds of elements. Thus, the modified principle of virtual
work given in eq. (2.1.18) is used to formulate the finite element equilibrium equation.

The displacements in V® o =1 and 2, and on S(?) can be written in terms of nodal
displacements Ag ].("‘), o =1 and 2, as follows:

A = ¢ aq, (in V) (2.1.19)
My = Y Aq® (on §¢12) (2.1.20)

in which ¢f/°‘), o = 1 and 2, are the interpolation functions in the body V), while \b("‘) a=1
and 2, are the interpolation function of the connection elements between the body V‘l) and

V). The Lagrange multipliers AN, are also interpolated as follows:
AN, = QijAr]. (2.1.21)

where Qi}. and Arj represent the interpolation functions defined on SU2 and the generalized
coordinates, respectively. Using egs. (2.1.12), (2.1.13) and (2.1.19), the strain-displacement
and stress-strain relations are written in the following form:

Ae@ = Bf;’;g Aq, @ (in V) (2.1.22)
_ o (o) ] o
acfp = (EgR)® (B, Ady - (4 ) + GAT®
(in V) (2.1.23)
in which
B@ = ( (@ (a) ) (2.1.24)
ifk ¢zk J Jk i

Introducing egs. (2.1.19)—(2.1.23) into eq. (2.1.18) leads to the following equations:

2 -
0‘2;15 (Aqi(ﬁt)) (Kg_l)Aqi(a) + Ki(]fx)A,}(a) - A};;(ot))

fja(Ar)K(")Aq}“) =0 (2.1.25)

where
K = f o EL OB By dV (2.1.26)
K = mgn(a)jm)w(“m .dS (2.1.27)

1

(@) = @) Ap @) (@) A7)
AF! j @ O AP ®ay + L(g)%. AT(MdS

ep () 6 \(
# [ ) @By, (Bcf )@ av

( (@)
B .[V(a) Bx(;xk) G QAT dV (2.1.28)
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The functions sign (), @ =1 and 2, in eq. (2.1.27) are defined as follows:

sign (1) = -1
sign (2) = 1 (2.1.29)
Since 8(Aq§°‘)), o =1 and 2, and cS(Ari) are arbitrary, the following equilibrium equation is
obtained from eq. (2.1.25):

KW o RWY (A AF®
K® g® AgPDr = { AF® (2.1.30)
sym. 0 Ar 0

K™ and K® in the above equation represent the stiffness matrices relevant to the connection
elements connecting different kinds of elements. The detailed forms of these matrices are given
in the next section.

In the EPAS-J1 program, the equilibrium equation (2.1.30) is solved using the wave front
method.

2.2 Connection Element

The EPAS-J1 program has various kinds of elements which are briefly described in
Appendix B. More detailed description of most of the elements included in the EPAS-J1
program is given in the standard text books on the finite element method such as ref. (13).
Therefore, only the formulation of the connection elements is shown in this report. The
notations used in this section are the same as those in the previous section.

2.2,1 Connection Element between Flat Shell Element and Beam Element
— BOUND3
The connection element (BOUND3), which is conceptually a triangular shape as shown in
Fig. 2.2.1, connects the three-dimensional beam element (BEAM3D) to the 4-node flat shell
element (FSHEL4). Provided that the three-dimensional beam and shell elements, respectively,
correspond to a = 1 and 2, and S e(”) represents the area occupied by one of the connection
elements, {Au®} and {A¢®}, =1 and 2, in eq. (2.1.20) can be written as follows:

1 (AU ,AU2,AUs)

- xz
SHELL
3 (AU ,AU2,40Us ,A8, ,082,A83)
-
X5 BEAM
X CONNECTION ELEM.
2 - (Axy ,---=Arg)

X, 2 (AU ,AU, »AU3)
SHELL
. BEAM X; (AU, 48;)

—
X3 X3 1 g

Xy

Fig. 2.2.1 Conception of connection element between flat shell and beam elements —
BOUND3.
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(VY = {Au®} = A {uy, uy, uy, 0y, 0,05} (on Se(m) 2.2.1
(aq") = A{ud, u}, ud, 03, 03,03} (ns,?)  (2.2.20)
{Ag®) = Alut, ud, ud, u}, uj, w3} (on 5,1 (2.2.2b)

in which u and 6 represent the translational and rotational components of displacement,
respectively, and the superscripts and the subscripts on u and 0 denote the nodal numbers and
the coordinate, respectively. Considering for example the connection between a beam and a
cylindrical shell as shown in Fig. 2.2.1, the interporation functions [Y@],«=1 and 2, can be
written as follows:

1 o 0 0 0 0 )
0 1 0 O 0O O
0 O 1 0O 0 O
My = (12)
(¥] 0 0-lrg 1 0 O (on 8,17 (2.2.3a)
0 0 0 0 1 0
Lo 0 0 0 0 1 |
(G, 0 0 §, 0 0 |
0 ¢ 0 0 ¥, O
0 0 ¢, 0 0
@7 = W ) 12
0 0 1/2 0 0 -1/2
(0 -1/ 0 0 -1/2 0
in which
- X 7 X1 _ 2 1
wl 1 - Q" ¢/2 _—Q’ L = !x - xl |
re = Axd =81, xF==-(xl 4 x2) (2.2.4)
In eq. (2.2.4), | | denotes the distance between two points. Assuming that the Langrange

multipliers are constant in the connection element, {AN}, {Ar} and [§2] are given,
respectively, as follows:

(AN} = AN Ny ) (2.2.5a)
{Ar) = A{r, 1y .. .. Y (2.2.5b)
{Q} =111 (2.2.6)

where [I] in eq. (2.2.6) is a 6 x 6 unit matrix. Introducing eqgs. (2.2.32),(2.2.3b) and (2.2.6)
into eq. (2.1.27) leads to the following equations:

» 4

(K], = - | 4 WOV (9218 = ‘j [yO1dz 2.2.7)

K], = @)1[Q]ds = SQ @1 ax (2.2.8)
e—ng)[\P 1l —o[d/ o

Assemblage of the matrices given in egs. (2.2.7) and (2.2.8) for all connection elements yields
the connection matrices of complete structure [K®], « =1 and 2.
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2.2.2 Connection Element between Solid Element and Flat Shell Element
— BOUNDS
The connection element (BOUNDS), which is conceptually a triangular prism as shown in
Fig. 2.2.2, connects the 4-node flat shell element (FSHEL4) to the 16-node element
(SOLID16). Provided that the flat shell and solid elements, respectively, correspond to a = 1
and 2, and Se(lz) represents the area occupied by one of the connection elements, {Au‘®} and
{Ag¢™Y}, o= 1 and 2, in eq. (2.1.20) can be written as follows:

(2D} = (AP} = Aluy, uy, us, 0,,0,,0,) (2.2.9)
{AqM)} = A{ul, 4], W, 07,603, 0%, ub, ul, ul, 0%, 6%, 08 ) (2.2.10a)
{AqP) = Aal{ul, ud, ul, u}, ud, 43, .. ... cul ug ug ) (2.2.10b)

The displacements in the connection element are assumed to vary linearly along the side
connected with the flat shell element. Then, the interpolation function YW is given as
follows:

{auD} = M1 {agM) (on §,4%) (2.2.11)

(W1 = [¢F [1] 9% [1]] (2.2.12)
in which [/] is a 6 x 6 unit matrix, and ¢§ and ¢3 are given as

ot =5 a-pt =La+p (2.2.13)

On the other hand, the translations in the plane of connection element connected with the
solid element are represented using the shape function of the 6-node isoparametric element as

follows:
6 .
A= X by G=1,2,3) (on 8,1) (2.2.14)
n
6 5 4
¢

1 2 3
LOCAL COORD .

4 (AU, AU2,AU3)

,I SOLID

8 (AUy,AUz ,AU3, 08, A8 , AB3)

(Bxy,-—----, Arg)
T(AU,, AUz,AUS ,Ae‘ ’Aaz,Aas’

/

Z8
X1 I (aU,, AU, ,AU;)

Fig. 2.2.2 Conception of connection element between solid and flat shell elements —
BOUNDS.
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Using the above equation, the rotations can be written as follows:

dAu; _ & 34
- = A
4% 0x i=1 ax2

dAuU, 6 3¢ . 2.2.15
A8, o zl e At (2.2.15)

dlu, aAul) 1 ¢ (aq‘si ;0 i)
= — - — = = _._._A

Ay == ( ox, 3%, )~ 7 L 3y, A2~ g A

As shown in the above equations, out-of-plane rotations cannot be exactly expressed by the
connection element. Since (8’. are the functions of £ and 7, the derivatives of ¢3i with respect to
the global coordinates are given as follows:

39, 09;
0x, o¢
= [J]1! (2.2.16)
3¢; ¢,
0X 5 on
1 12
[J17t = , Q217
Jn  In

in which [J] ™' is an inverse matrix of the Jacobian matrix. Substituting eq. (2.2.16) into eq.
(2.2.15) yields:

6 3%, 09;
=2 ( Ja of + Ja on )Au:.,

i=1

-~

6 5 3o. ,
-=-2 (Ju "; + T a;z')Aug (2.2.18)
_ 1 3(13 3¢, i , 3¢; a9, ) }
ba=7 2 {( T )A (J" ok TP ity
From eqs. (2.2.14) and (2.2.18), the interpolation function [\}/(2)] is given as follows:
(au®} = [yP] {A¢?} (2.2.19)
~ q;l 0 O i ..... : é6 0 O ~
. I .

0 ¢1 i ..... : 0 ¢6

0 0 S TN 0 0 5
[y®1 = T ! ¢ (2.2.20)

0 0 o | i 0 0 Qg

| I
O 0 _ﬁl : ..... ; 0 0 _66
I I
o By b | % Bs
2 0 | l2 2 0 ]
in which
' aé r aq‘b

o = le—a?"'*‘ J22";#
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' a(ﬁl ' a(ﬁl

Bi=Ju 28 t ey
Furthermore, using the nodal values AN] and AN} which have six degrees-of-freedom,
respectively, the Langrange multipliers A\, are interpolated as:

AN =, AN] + g, AN (2.2.21)
If the Lagrange multipliers are assumed to be constant on the line between the nodes 7 and 8,
the interpolation functions can be written as:

Uy =0, =1/2 (2.2.22)

On the other hand, when the Lagrange multipliers are assumed to vary lineary between the
nodes 7 and 8, , and ¥, become as follows:

N .o

D=5 -8), da = (14 5) (2.2.23)
If {AN} and {Ar} are defined as

{AN} = {AN, AN, . ..., A0}

{ar} = {AN],. ..., AND, A0E, ..., AnE)
[€2] in eq. (2.1.22) can be written as

Jll No : ‘L'Z ~
~. 0 ! >~_ 0
(@] = 0 e i 0 T~ (2.2.24)
\J/l : \J/2

Substituting eqs. (2.2.12), (2.2.20) and (2.2.24) into eq. (2.1.27) and performing numerical
integration lead to the connection matrices.

2.2.3 Connection Element between Solid Element and Flat Shell Element
— BOUND10
The connection element BOUND10 shown in Fig. 2.2.3 is used to connect the 4-node flat
shell element to the 20-node solid element. The interpolation functions of the connection
element and the Lagrange multipliers can be obtained in the same manner as BOUNDS
element. Therefore, the detailed description of the connection element is omitted here.

2.3 Virtual Crack Extension Method Used to Determine Stress Intensity Factor

2.3.1 General Remarks

The virtual crack extension method”®) js one of the methods used to determine the stress
intensity factor. It is based on the energy method in which the energy release rate is calculated
from the difference of the total potential energies of the two cracked structures whose crack
lengths are slightly different. In the conventional energy method!®) | analyses are required
twice to obtain the energy release rate, whereas in the virtual crack extension method analysis
is required only one to obtain the energy release rate. It can be easily incorporated into an
existing finite element program and provides comparatively accurate results. Therefore,
EPAS-J1 program employs the virtual crack extension method to obtain the stress intensity
factors. A detailed explanation of the method is presented in this section.
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10 (AU,, AUz, AUs, A8, £6,, £65)
o o Je
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"""" AXG)

x3 D atipipne. O
[ Xq 9 (AU, ,AUp,AU5 ,48,,A8,,A83)
Xy 1 X3

(AU, AU ,AU3)

Fig. 2.2.3 Conception of connection element between solid and flat shell elements —
BOUNDI10.

The total potential energy can be written as follows, considering the effect of the thermal

strain:
=L W) K1 () - () (2} - ) (P 2.3.1)

where [K] is the stiffness matrix, {u} is the nodal displacement vector, and { P } and { P? } are
the nodal force vectors due to the external load and the thermal strain, respectively.
Considering the small crack extension, the variation of the total potential energy due to the
increase of crack surface A can be represented as follows:

?)jl { }([K]{u}-{P}—{P"})+2{u}[ ]{u}
o {2 (2]

Lo [ - w0 (24 22)

If no thermal strain, no body force and no crack surface force are assumed, eq. (2.3.2) can be
simplified as follows:

AL ¥ [ (2.3.3)

The stress intensity factor K is related to the energy release rate G as follows:

a” —_ﬂ 2 2 1 2 X
A (Kj + Ky ) + E K[” : Plane Strain

G

=71?_ (K2 + K2, + K%) : Plane Stress (2.3.9)
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where E and v are, respectively, the modulus of elasticity and Poission’s ratio, and K K ;7 and
K,;; denote the stress intensity factors corresponding to mode I, II and III, respectively. The
stress intensity factor for the single mode can be obtained from eq. (2.3.4), if the value of
om/0A is known,

In the remainder of this section, the virtual crack extension methods are shown for the
two- and three-dimensional crack problems.

2.3.2 Two-dimensional Crack Problem”’

Now consider the virtual crack extension of the two-dimensional crack shown in Fig.
2.3.1(a). In the figure I'; is fixed and the x-coordinates of all nodes on and within an interior
contour I', which surrounds the crack tip are incremented by the amount of A{. The stiffness
matrices of the elements inside an interior contour I'y and outside an exterior contour I,
remain unchanged during the virtual extension of the crack. Then, the first term of eq. (2.3.2)
becomes

T [T = )’ [ ] () 233)

where [K ;1 and {u.}, i = 1~n, are the stiffness materices of the elements surrounded between
two contours 'y and I';, the number of which is n, and the nodal displacement vectors
corresponding to the stiffness matrices [IE'I.]. Assuming the thickness to be ¢, the derivative of
the stiffness matrix in eq. (2.3.5) can be written as follows:

af{i 1 . .
[BA ] =ag 7 (K, ae - KDY (2.3.6)
The second and third terms of eq. (2.3.2) can be also written as follows:
oP°? i
{u) ({ } { }) = 2 {u} '—({P}+{P"} ) (2.3.7)
04 o1
r
i r'

er

AL Al

2+ AL £+ 44

(a) (b)

Fig. 2.3.1 Virtual crack extension method for two dimensional crack.
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in which {f’i } and {13:.’ }, i = 1~n, denote, respectively, the nodal force vectors of the elements
surrounded between two contours I'y and I'; due to the external force and the thermal strain.
The derivative of the nodal force vectors in eq. (2.3.7) is given as follows:

i) 3 50 = 1 %) p 6
o ((B) + () = 37 AUAY+ (1))
| (2.3.8)

— ¥* ¥
T ALt QLS PO _{P; Yo
in which
{(PFy = {B,} + {P}}
Substituting egs. (2.3.5) and (2.3.7) into eq. (2.3.2), the energy release rate G can be written
as:
1 n t ai{, L t a ) ho
= - — A 1 3 .t — .+ A
G =7 % (u) [ = ] () + 3 () 7B+ (B} (2.3.9)
Then, the stress intensity factors for the single mode can be obtained from eq. (2.3.4). As
shown in Fig. 2.3.1(b), the contour I'y can be taken at the crack tip. In this case, eq. (2.3.9)

can be used to calculate the energy release rate G by regarding n as the number of the
elements, in the nodes of which crack tip is contained.

2.3.3 Three-demensional Crack Problem

The distribution of the stress intensity factor along a crack front is primarily important in
the three-dimensional crack. Here is shown the method for calculating the energy release rate
of the node allocated along the crack front.?)

The variation of the potential energy Am can be written as follows, using the energy
release rate G(s) and the crack extension value Ay(s) normal to the crack front.

§ G () AL(s)ds = - (2.3.10)

front

in which s denotes the coordinate taken on the crack front. A detailed discussion is given
below for the two cases, where the sides of the elements on the crack front have linear and
quardratic variations with s.
(I) Linear Variation

The sides of the elements on the crack front vary linearly with s, when the 16-node solid
elements (SOLID16) are allocated along the crack front. Let us consider an arbitrary side of
the element on the crack front (12) as shown in Fig. 2.3.2(a) in which the x-axis corresponds
to the side 12 and the y-axis is normal to the x-axis at the point 1. Assuming that the length of
the side 12 is b and the coordinates of the points 1 and 2 are, respectively, —1 and 1 by the
generalized coordinate £, the relation between x and £ is given as follows:

x=-;—b(l+.§) 2.3.11)

Then, the virtual extension value on the side Ay can be interpolated linearly by those of the
points 1 and 2, i.e. Ay, and Ay, , as follows:

AJH}
ar2 (2.3.12)
Ny = (1-), N, =—-(1+8)

Ay=l_NlN2_,{

The energy release rate G can be also interpolated as the same manner above.
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2
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| 2 i 3 X
E=1 €= 1 £4-1 =0 &= 1
b b
(a) Linear variation along crack front (b) Quadratic variation along crack front

Fig. 2.3.2 Virtual crack extension method for three diemnsional crack.

G
G =Ny N, | {G‘} (2.3.13)
2

in which G; and G, denote the energy release rates at the points 1 and 2, respectively.

Substituting eqgs. (2.3.12) and (2.3.13) into eq. (2.3.10) yields the following equation.

An —Lc(s) AR(s)ds = —j G(s) Ayds

N? NN, G,
Jas{ )

- Ay, Ay S[
= vy, » G,

. G
= Loy a1 { (23.14)

The matrix [ﬁ'2] is given as follows:

. N? N,N. 1 N? N,N
== [, e [ [ 0%
s LN;N, N3 12 LN,N, N3

I

where the following equation is used.

ds ~ dx =5-at

From eqs. (2.3.14) and (2.3.15), Aw becomes as follows:
am=-24Q6,+ 6)Ay +26,)Av,) (2.3.16)

Finally, the following matrix form equation is obtained from eq. (2.3.16).

13
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Am,
Ay, X 4
= [F,;] { G‘} (2.3.17)
A7T2 G2
Ay,

Assemblage of the above equation for all sides of elements on the crack front yields the
equation for calculating the energy release rate at the nodes on the crack front as follows:

[F,1{G} = {g—;’} (2.3.18)

(I) Quadratic Variation

The sides of the elements on the crack front have quadratic variation with s, when the
20-node solid elements (SOLID20) are allocated along the crack front. Let us consider an
arbitrary side of the element on the crack front (123) as shown in Fig. 2.3.2(b) in which the
x-axis corresponds to the side 13 and the y-axis is normal to the x-axis at the point 1.
Assuming that the length of the side 13 is b and the coordinates of the points 1, 2 and 3 are,
respectively, —1, 0 and 1 by the generalized coordinate £, the relation between x and £ is given
as follows.

x =—bE (1 +§) (2.3.19)

1
2
Then, the virtual extension value on the side Ay can be interpolated using quadratic
polynomials by those of the points 1, 2 and 3, i.e. Ay, Ay, and Ay;, as follows:
Ay,
Ay =N, N, N3 | 4§ by, (2.3.20)
Ay,

1 1
N, =—2—£(£— 1), Ny=1-§%, N, =7£(£+ 1)
The energy release rate G can be also interpolated as the same manner above.

G,
G =N, Ny Ny | (6;?2 (2.3.21)
3

in which G,, G, and G; denote the energy release rates at the points 1, 2 and 3, respectively.
The following matrix form equation is obtained by the same procedure presented in ().

Am, ]
Ay,
Am,
Ay,
ATy
Ay,

S [ﬁal G, (2.3.22)

\ J

in which

Fl=-35 |2 16 2 (2.3.23)
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Assemblage of the above equation for all sides of the elements on the crack front leads to the
equation for calculating energy release rate at the nodes on the crack front as follows:

[F31{G} = {g—;} (2.3.24)

The energy release rate at the nodes on the crack front can be obtained from eqs. (2.3.18) or
(2.3.24), because the right hand side of these equation is a known value calculated from virtual
crack etension. Furthermore, the stress intensity factors of mode I along the crack front can be
obtained from eq. (2.3.4) as follows, by assuming the plane strain condition.
G
K, = . (2.3.25)

The stress intensity factors K[, K” and KH] for the mixed mode cannot be dealt with by
the method presented above, because according to eq. (2.3.4) these stress intensity factors
cannot be obtained in the separate form, even if energy release rate G is a known value. Then,
a new virtual crack extension method is proposed in Appendix C to obtain the stress intensity
factors for the mixed mode two-dimensional crack problem.
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3. Numerical Examples and Discussion

Some numerical examples analyzed by the EPAS-J1 program and discussion on the results
are presented in this chapter. Namely, the accuracy of the connection elements employed in
the EPAS-J1 program is confirmed in Section 3.1. In Section 3.2, relatively simple problems of
the two- and three-dimensional cracks are analyzed to show the effectiveness of the virtual
crack extension method. In Section 3.3, the stress intensity factors are obtained using the
connection element.

3.1 Numerical Tests on Connection Elements

The problem presented in ref. (15) was taken to confirm the accuracies of the connection
elements employed in the EPAS-J1 program and the results were compared with those of other
methods.

Figure 3.1.1 shows the analytical model composed of solid and plate parts, the
dimensions of which are given in the same figure. In this structure, the origin of the coordinate
system is completely fixed. The modulus of elastisity and Poission’s ratio were assumed to be
2.0 x 10* kg/mm? and 0.3, respectively. The six loading conditions shown in Fig. 3.1.2 were
considered in the analysis. The following six cases of analyses were performed by the EPAS-J1
program.

CASE 1: The structure was modeled by SOLID16, BOUNDS and FSHEL4 elements. All
SOLID16 elements in the connection plane are connected to FSHEL4 elements
by BOUNDS elements, in which the Lagrange multiplier was assumed to be
constant — Refer to Fig. 3.1.3(a).

CASE 2: The same finite element modeling as in CASE 1 was used in the analysis but the
Lagrange multiplier was assumed to vary linearly in the connection element
BOUNDS — Refer to Fig. 3.1.3(a).

CASE 3: The structure was modeled by SOLID20, BOUNDI10 and FSHEL4 elements.
All SOLID20 elements in the connection plane are connected to FSHEL4

Fig. 3.1.1 Model composed of solid and plate.
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fy =- 1 kg/mm?2

myx =.66666

my =-.66666 ) K /
kg- mm/mm g.mm/mm

Mmyy =.66666
kg-mm/mm

LC-6

Fig. 3.1.2 Loading conditions.

A
G G2 G3{GI G2 G3
2 |10
1 9

CASE 1, CASE2, CASE®G CASE 3,CASE 4, CASE 5

(a) (b)

Fig. 3.1.3 Finite element mesh of CASE 1-6.
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CASE §:

CASE 6:
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elements by BOUNDIO elements, in which the Lagrange multiplier was
assumed to be constant — Refer to Fig. 3.1.3(b).

The same finite element modeling as in CASE 3 was used in the analysis but the
Lagrange multiplier was assumed to vary linearly in the connection element
BOUNDI10 — Refer to Fig. 3.1.3(b).

SOLID20, BOUNDI10 and FSHEL4 elements were used to model the structure.
In this case, four couples of the elements (9, 11), (10, 12), (13, 15) and (14,
16) shown in Fig. 3.1.3(a) were connected to FSHEL4 elements by BOUND10
elements.

The structure was modeled by SOLID16 and FSHEL4 elements. A set of linear
constraint equations was used to connect these two kinds of elements.
Considering that the displacements of solid are subjected to those of shell and
assuming that the rotation of shell are small, ie., 8 =6, ~ 0 y 6, = 0, the
displacements of solid are related with those of shell as follows:

Usolid

Veolia =

Weotia =

= Ushell + Zey - »0

Vinen = 20,

Wshell

3.1
(3.2)
(3.3)

4

in which U, V and W are the displacements of x, ¥y and z directions,
respectively, and the subscripts of solid and shell denote the components of the
solid and shell parts, respectively. Among the above equations, eq. (3.1) is
applied to the all nodes in the connection plane, while eqs. (3.2) and (3.3) are
applied to only the nodes on the intersectional line of the solid and shell parts.
the results were quoted from ref. (15). The method used in ref. (15) are

described below.

CASE 7:

The anisotropic shell element was used to connect solid element to shell
element. Figure 3.1.4 shows the finite element model for this case. The 8-node
solid elements and the 4-node flat shell elements were used to model the solid
and ‘shell parts, respectively. The anisotropic element used as a connection
element was assumed to have the following meterial properties:

§

AW

5
o
o

AN

A
1
|1
|1
/
1
|~

V

‘.
\

[T /]

NN
N,

////‘///
b’,b
\

SHELL ELEMENT
(4- Node Sheli Element)

AN WY

\

MNAVANANAVAVAVA VAN

\
e WANANA VA VAVANAN

— ][]

CONNECTION ELEMENT

(8- Node Solid Element) Ex < E,Ey» E,

SOLID ELEMENT 4- Node Shell Element
ny «Go or ny » Go

Fig. 3.1.4 Finite element mesh of CASE 7.
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E, = 107E,

E, = 10°E,

G, = 103G, or G, = 103G,
Vey = 0

in which E, G and v are the modulus of elasticity, the shearing modulus of
elasticity and Poisson’s ratio, respectively, and subscript 0 denotes the value
related to the base material.

Table 3.1.1 Comparison of displacements among
various methods for loading condi-

tion LC-1
DISPLACEMENT (mm)
CASE NO.
A B C
Exact -1.5000x1075 5.0000x107% —7.5000x107¢
1 -1.5000x107% 5.0000x107% ~7.5000x107%
2 -1.5000x107% 5.0000x1075 —7.5000x107¢
3 -1.5000x1075 5.0000x1075 ~7.5000x107®
4 -1.5000x107% 5.0000x1075 —7.5000x107¢
5 —-2.8580x107% 6.6010x1075 —7.4434x1078
6 -1.0269x107° 5.1188x107% —-7.5460x107¢
7 0.0 501 x1075 -7.7  x1078

Table 3.1.2 Comparison of displacements among
various methods for loading condi-

tion LC-2
DISPLACEMENT (mm)
CASE NO.
A B C
Exact -1.5000x1075  —1.5000x107°% 2.5000x107%
1 -1.5000x107° ~1.5000x1075 2.5000x10°5
2 -1.5000x10°  —1.5000x107° 2.5000x107%
3 -1.5000x107%  -1.5000%x1075 2.5000%1073
4 —-1.5000%107*  -1.5000%x107° 2.5000%1075
5 -1.5000x107% -1.5000%107% 2.5000x1075
6 -1.4843x107%  -1.4937x1075 2.5200%107%
7 -2.0 X10® -148 x10°% 2.5 X107°
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Tables 3.1.1 ~ 3.1.6 show the comparison of displacements among various methods. It is
found from the tables that the connection elements in the EPAS-J1 program provide good
agreements with the theoretical values for the loading conditions of LC-1 ~ LC-3. On the other
hand, for the loading conditions of LC-4 ~ LC-6, some differences are found between the
results obtained from the analyses using the connection elements and the theoretical values.
However, comparing the results of CASE 1 ~ CASE 5 with those of CASE 6 and CASE 7, the
connection elements included in the EPAS-J1 program provide more accurate displacements
than other methods such as using the linear constraint equations and the anisotropic flat shell
element. Tables 3.1.7 ~ 3.1.12 show the comparison of stresses among various methods. For
the loading conditions of LC-1 ~ LC-3, the results of CASE 1 ~ CASE 3 where all solid

Table 3.1.3 Comparison of displacements among
various methods for loading condi-

tion LC-3
DISPLACEMENT (mm)
CASE NO.
A B

Exact -1.3000x107* 1.3000x107*

1 —-1.3000x10 ™ 1.3000x107*

2 -1.3000x1074 1.3000x107*

3 -1.3000x107* 1.3000x107*

4 -1.3000x107* 1.3000x1074

5 -1.6714x107* 1.3079x107¢

6 -3.0903x107* 1.2788x107*
; -13  x10™ 1.3. x107* «Gyy >>G,
-2.93 x107* 132 x107* « Gy << G,

Table 3.1.4 Comparison of displacements among
various methods for loading condi-

tion LC-4
DISPLACEMENT (mm)
CASE NO.
A B C D
Exact 7.5000x107¢ 7.5000x107° 2.3100x1075 2.5000x107%
1 1.1575x1073 1.0590x1075 2.3177x1078 2.5060x107%
2 1.0728x1075 1.0939x107% 2.3080x107° 2.4969x10°5
3 1.0651x107% 2.3686x1075 2.3189x10°% 2.5075x107°
4 1.0059x107% 2.4703x1075 2.2979x1073 2.4869x1075
5 1.0505x107% 2.5965x1075 2.2958x107S 2.4848x107°
6 8.6425x107% 5.7342x107° 2.9006x107° 3.0750x107%
7 8.8 x107° 1.9 x107¢ 2.42 x107%




JAERI 1276 3. Numerical Examples and Discussion 21

elements in the connection plane are connected to the flat shell elements are identical with the
theoretical values, while those of CASE 5 where the solid elements in the connection plane are
partially connected to the flat shell elements does not completely agree with the theoretical
values. Even in the latter case, however, the further element from the connection plane,
elem. 2, gives better results than the element adjacent to the connection plane, elem. 10. The
same tendency can be also found for the loading conditions of LC-4 ~ LC-6. This means that
the disturbance of stress distribution is localized near the connection plane. Generally
speaking, the connection elements in the EPAS-J1 program provide more accurate stress than
the others.

Table 3.1.5 Comparison of displacements among
various methods for loading condi-

tion LC-5
DISPLACEMENT (mm)
CASE NO.
A B C D
Exact -2.5000x1075 7.5000x107¢ 6.2500x107 ~7.5000x107¢
1 -2.4739x107% 1.1781x1075 6.2448x107° —17.4955x107¢
2 ~2.4805x1075 1.1796x1075 6.2436x107¢ —7.4980x107¢
3 -2.5000x107° 1.2292x1075 6.2500x107 —~7.4999x107¢
4 —-2.5000x107% 1.2292x1075 6.2500x107° -7.4999x1076
5 ~2.5000x10°% 1.2292x107% 6.2500x1078 —7.4999x107%
6 ~2.4861x1075 1.6543x1075 6.1761x107¢ —7.4617x107°
7 -2.1  x107% 6.2 x107¢ 0 -7.46 x107°

Table 3.1.6 Comparison of displacements among
various methods for loading condi-

tion LC-6
DISPLACEMENT (mm)
CASE NO.
A B

Exact 6.5000x1075 -6.5000x10"°

1 4.4983x1075 -3.7407x107°

2 4,0053x1075 -4.0041x1075

3 4.7900x1075 -3.7382x107%

4 4.1774x1075 —-4,0055x1075

5 4.1217x10°5 ~4.0162x1075

6 7.0929x107¢ -2.6495x107%
20 x1077 -2.4 x107% «Gyy >>G,
7 53 x1075 -38 x10™* « Gy << G,
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Table 3.1.7 Comparison of stresses among various
methods for loading condition LC-1

STRESS (kg/mm?)
CASE NO. Solid Solid Shell
(elem. 2) (elem. 10)
Exact 0,=1.0000 6,=1.0000 0,=1.0000

1.0000 (G1) 1.0000 (G1)

1 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

2 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

3 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

4 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
0.9711 (G1) 1.2311 (G1)

5 0.9315 (G2) 1.0464 (G2) 1.0000
0.9270 (G3) 0.7977 (G3)
0.9456 (G1) 1.2728 (G1)

6 0.8585 (G2) 1.2545 (G2) 1.0000
0.7934 (G3) 1.1484 (G3)

7 1.1 1.1 0.997

JAERI 1276
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Table 3.1.8 Comparison of stresses among various
methods for loading condition LC-2

3. Numerical Examples and Discussion

STRESS (kg/mm?)
CASE NO. Solid Solid Shell Shell
(elem. 2) (elem. 10) (elem. 18) (elem. 20)
Exact 0,=1.0000 0,=1.0000 0,=1.0000 0,=1.0000

1.0000 (G1) 1.0000 (G1)

1 1.0000 (G2) 1.0000 (G2) 1.0000 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

2 1.0000 (G2) 1.0000 (G2) 1.0000 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

3 1.0000 (G2) 1.0000 (G2) 1.0000 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

4 1.0000 (G2) 1.0000 (G2) 1.0000 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

5 1.0000 (G2) 1.0000 (G2) 1.0000 1.0000
1.0000 (G3) 1.0000 (G3)
0.9871 (G1) 1.0180 (G1)

6 1.0122 (G2) 0.9507 (G2) 0.9289 1.0079
1.0312 (G3) 0.8913 (G3)

7 0.897 0.995 0.992 1.02
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Table 3.1.9 Comparison of stresses among various
methods for loading condition LC-3

Txy = |

- A >
[}
Txy
STRESS (kg/mm?)
E NO.
CAS Solid Solid Shell
(elem. 2) (elem. 10)
Exact Txy=1.0000 T xy=1.0000 Txy=1.0000

1.0000 (G1) 1.0000 (G1)

1 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

2 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

3 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0000 (G1) 1.0000 (G1)

4 1.0000 (G2) 1.0000 (G2) 1.0000
1.0000 (G3) 1.0000 (G3)
1.0289 (G1) 0.9994 (G1)

5 0.9910 (G2) 0.7722 (G2) 1.0000
0.9457 (G3) 0.5988 (G3)
1.0225 (G1) 0.5985 (G1)

6 0.9375 (G2) 0.4995 (G2) 1.0000
0.8572 (G3) 0.3180 (G3)

7 1.0

JAERI 1276
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Table 3.1.10 Comparison of stresses among various
methods for loading condition LC-4

3. Numerical Examples and Discussion 25

STRESS (kg/mm?)
CASE NO. Solid Solid Solid Shell
(elem. 2) (elem. 10) (Top Surface)
Exact 0,=—0.9436 04=—0.9436 04=-0.8750 0,=—1.0000

-0.9693 (G1) -1.2765 (G1)

1 -1.0661 (G2) -1.6120(G2) -1.0000
—1.1744 (G3) -1.8321 (G3)
-0.9690 (G1) -1.2705 (G1)

2 -1.0651 (G2) -1.6171 (G2) —-1.0000
-1.1733 (G3) -1.8520 (G3)
-0.9132 (G1) -1.7415 (G1)

3 -0.9910 (G2) -2.2270 (G2) —1.0000
—1.1011 (G3) —2.3028 (G3)
-09113 (G1) -1.7534 (G1)

4 -0.9897 (G2) —2.2680 (G2) —-1.0000
—1.1011 (G3) -2.3634 (G3)
-0.9089 (G1) -1.7594 (G1)

5 —-0.9898 (G2) -2.2657 (G2) —-1.0000
—1.1039 (G3) -2.3541 (G3)
-0.9676 (G1) -0.9419 (G1)

6 -0.9900 (G2) —0.8944 (G2) -1.0000
—-0.10089 (G3)  -0.8822(G3)

7 -0.844
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Table 3.3.11 Comparison of stresses among various
methods for loading condition LC-5
Oy,max = |
STRESS (kg/mm?)
CASE NO. Solid Solid Solid Shell Shell
(elem. 2) (elem. 10) (Top Surface) (elem. 17 18)  (elem. 19 20)
Exact a,=-0.9436 04=-0.9436 0,=—0.8750 0,=—1.0000 0,=-1.0000

-0.9564 (G1) -0.9565 (G1)

1 -0.9561 (G2) —0.9560 (G2) -0.9994 —0.9999
-0.9567 (G3) -0.9571 (G3)
-0.9565 (G1) -0.9563 (G1)

2 —-0.9560 (G2) —-0.9564 (G2) -0.9990 -0.9998
-0.9566 (G3) -0.9593 (G3)
-0.9436 (G1) -0.9436 (G1)

3 -0.9436 (G2) —0.9436 (G2) -1.0000 -1.0000
—0.9436 (G3) —0.9436 (G3)
-0.9436 (G1) -0.9436 (G1)

4 -0.9436 (G2) -0.9436 (G2) —1.0000 -1.0000
-0.9436 (G3) -0.9436 (G3)
-0.9436 (G1) —0.9436 (G1)

5 -0.9436 (G2) -0.9436 (G2) —1.0000 —1.0000
—0.9436 (G3) —0.9436 (G3)
-0.9582 (G1) -0.9436 (G1)

6 -0.9555 (G2) —0.9436 (G2) =0.9940 =0.9979
-0.9555 (G3) -0.9436 (G3)

7 -0.814
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i
Table 3.1.12 Comparison of stresses among various
methods for loading condition LC-6
STRESS (kg/mm?)
CASE NO. Solid Solid Solid Shell Shell
(elem. 2) (elem. 10) (Top Surface) (elem. 17 18) (elem. 19 20)
Exact Txy=0.9436 Txy=0.9436 Txy=0.8750 Txy=1.0000 Txy=1.0000

0.9145 (G1) 1.1012 (Gl1)

1 0.9406 (G2) 1.2097 (G2) 0.8711 0.8599
0.9708 (G3) 1.2691 (G3)
0.9399 (G1) 1.0473 (G1)

2 0.9550 (G2) 1.1017 (G2) 0.8036 0.8652
0.9704 (G3) 1.1540 (G3)
0.9026 (G1) 1.3114 (G1)

3 0.9413 (G2) 1.3927(G2) 0.8776 0.8594
0.9869 (G3) 1.4202 (G3)
0.9327 (G1) 1.1991 (G1)

4 0.9582 (G2) 1.2319 (G2) 0.8158 0.8653
0.9866 (G3) 1.2509 (G3)
0.9326 (G1) 1.2004 (G1)

5 0.9585 (G2) 1.2243 (G2) 0.8096 0.8655
0.9852 (G3) 1.2381 (G3)
0.9674 (G1) 0.7610 (G1)

6 0.9642 (G2) 0.5141 (G2) 0.8862 0.7981
0.9510 (G3) 1.1846 (G3)

7 0.705 “Gyy>> Gq

0.504 “ Gyy<<G,

3.2 Numerical Tests on Virtual Crack Extension Method

3.2.1 Two-dimensional Crack Probhelm

The results are shown for the two-dimensional crack problem analyzed by the virtual
crack extension method. Figure 3.2.1 shows the centrally cracked plate under uniform tension
which was treated as a plane stress problem. One quarter of the plate was taken due to the
symmetry of the structure. Figure 3.2.2 shows the two patterns of the finite element mesh.
The 8-node elements (PLANES) are used in the analysis. The mid-nodes of the two elements
allocated at the crack tip were shifted at the quarter points. Singularity of the stress field
around the crack tip can be taken into accounts by this type of the element called ‘distorted
element’. Figure 3.2.3 shows the two cases of the method of advancing the crack tip node.
Namely, only one node at the crack tip was advanced by Aa in CASE 1, whereas three
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Fig. 3.2.2 Finite element mesh for one quarter
of cracked plate.
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Fig. 3.2.3 Method of advancing crack tip node. Fig. 3.2.4 Nondimensional stress intensity factor

vs. virtual crack extension value.

quarter-point nodes around the crack were advanced by Aa in CASE 2. The curves of
nondimensional stress intensity factor vs. virtual crack extension value are shown in Fig. 3.2.4
where 2 denotes the side length of the element measured in the direction of crack extension.
F ;18 the nondimensional stress intensity factor defined by

and the subscripts e and a represent the values obtained by the present method and Ishida'®),

respectively. It can be seen from the figure that the convergent stress intensity factors are
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obtained for both MODEL 1 and MODEL 2 when Ag/{ is smaller than the value of 1072,
Especially, the convergent solution of MODEL 2 is almost coincident with that of Ishida which
is regarded as an exact solution. The accuracy of solution is sharply deteriorated when Aa/% is
larger than the value of 1072 due to the reason that the derivative of the stiffness matrix
contained in eq. (2.3.9) cannot be accurately estimated. On the other hand, the accuracy of
solution is also thought to be detriorated due to the round-off error, when Aa/% is relatively
small compared with the number of digits which the computer used in the calculation can
represent. In this analysis, deterioration of accuracy cannot be found even at Aa/Q of 1078,
because CDC 6600 machine used in the analysis has 60 bits per one word. According to
Hellen’s analysis®), deterioration of accuracy could be found when Aa/f was smaller than the
value of 107, since the computer used had 32 bits per one word which could represent only
the six or seven digits.

Table 3.2.1 shows the nondimensional stress intensity forctor for each case and each
model. As stated above, the results of MODEL 1 are coincident with that of Ishida for both
CASE 1 and 2. On the other hand, it is notable that the difference is only 4 ~ 6% between the
result of Ishida and that of MODEL 1 where relatively coarse mesh was employed. Comparing
two types of the methods of advancing crack, CASE 2 gives better results than CASE 1.
However, the difference between CASE | and 2 becomes small when the size of the crack tip
element becomes small.

Table 3.2.1 Nondimensional stress intensi-
ty factor for centrally cracked
plate under uniform tension

CASE NO. F; (FDe/(FDa

MODEL 1 1 1.057 0.942
2 1.077 0.960
1 1.120 0.998
MODEL 2 2 1.123 1.001
Ishida’s Sol. 1.122

(F1)e = Fj of Finite Element Method
(Fy)a = F of Analytical Solution (Ishida’s Sol.)

3.2.2 Three-dimensional Crack Problem

The stress intensity factor analyses were performed using the 16-node and 20-node solid
elements for some simple three-dimensional structures to confirm the accuracy of the virtual
crack extension method.
[1] Three-dimensional Analysis of Compact Tension Specimen

An analysis was performed to obtain the thickness distribution of the stress intensity
factor of a compact tension specimen shown in Fig. 3.2.5 using SOLID16 and SOLID20
elements. The dimensions of the compact tension specimen and the loading applied to the
specimen are given in Fig. 3.2.5. One quarter of the specimen was taken due to the symmetry
of the structure. Figure 3.2.6 shows the finite element model of the compact tension
specimen. The same finite element model was used in the analyses using SOLID16 and
SOLID20 elements. The three-dimensional distorted elements were allocated along the crack
front to take account of the singularity of the stress around the crack tip.

Figure 3.2.7 shows the ratio of the incremental potential energy Ar to the virtual crack
extension value Ay vs. nondimensional virtual crack extension value Ay/{ in which £ denotes
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Analyzed Part

C/W=h/W=t/W=05
V=03

Fig. 3.2.56 Compact tension specimen.

(b) SOLID 20

Fig. 3.2.6 Finite element mesh of compact
tension specimen.

the side length of the element measured in the direction of the y-axis in Fig. 3.2.5. It is shown
in the figure that Am/Ay is constant when Ay/{ -is smaller than the value of 1073, Large
difference is seen between the results of the mid- and corner-nodes of SOLID20 element.

The thickness distribution of the nondimensional stress intensity factor F obtained by the
analysis is given in Fig. 3.2.8 where the results obtained by Yagawa et al'”, Reynen!) and
Traceyls) are also depicted. Yagawa et al. proposed the method based on the discretization
error of the finite element technique and obtained the accurate stress intensity factor. Reynen
applied the virtual crack extension method to the BERSAFE code, together with the
substructuring technique. It is, however, not clear whether the element allocated along the
crack front was the 16-node or 20-node solid elements. Tracey utilized the direct method
based on the displacements and the stresses obtained from the finite element analysis using the
6-node prismatic singular element developed by himself. The load in the analyses by Reynen
and Tracey was the same as that of the present analysis, while in the analysis by Yagawa ef al.
the load was applied at the location distant by 4/2 from the crack edge. The present solution
with SOLID16 gives smooth stress intensity factor throughout the thickness and lies between
other three solutions. On the other hand, large discrepancy is found in the present method
between the stress intensity factors obtained from the mid- and corner-nodes of SOLID20
element used in the present analysis. It is, therefore, required in the case of SOLID20 element
either to average the values of the mid- and corner-nodes or to employ one of two values,
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based on reasonable judgement. From this reason, SOLID16 element is recommended for the

Fig. 3.2.7 Energy release rate vs. virtual crack
extension value.

Fig. 3.2.8

stress intensity factor analysis using the virtual crack extension method.
[II] Surface Crack Problem
Next, let us consider the problem of obtaining the stress intensity factor for the
semi-circular surface crack in a finite plate subjected to a uniform tension o, as shown in Fig.

y

a/t=04, L/t=25,a/W=02
Fig. 3.2.9 Plate with semi- X

circular surface

Z

[}
Crack Front

Thickness distribution of non-
dimensional stress intensity
factors for compact tension
specimen.

31

L)< Crack Front

crack, Fig. 3.2.10 Finite element mesh of surface crack problem.
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3.2.9. The configuration of the plate is also given in Fig. 3.2.9. Poisson’s ratio was assumed to
be 0.3. The finite element mesh of one quarter of the plate and the node allocation are given in
Fig. 3.2.10 and Fig. 3.2.11, respectively. The distorted elements were allocated along the crack
front to take account of the sigularity of the stress around the crack tip. The analyses were
carried out using SOLID16 and SOLID20 elements, together with the virtual crack extension
value Aa of 4 x 1077 ¢, where £ denotes the length of the crack element.

Figure 3.2.12 shows the peripheral distribution of nondimensional stress intensity factors
obtained by the EPAS-J1 code. In the figure, M denotes the non-dimensional stress intensity

3D Distorted 3D Distorted
Eiements < Elements <
y y

L. L.

(a) SOLID 16 (b) SOLID 20

A
X Crack Front Craék Front

Fig. 3.2.11 Node allocations of surface crack problem.

e SOLID 16
o SOLID20
—— YAGAWA - ICHIMIYA- ANDO

% o0z o4 06 o8 10
6/(%)

Fig. 3.2.12 Peripheral distribution of nondimensional stress intensity factors
for semi-circular surface crack.
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factor defined by

M = K,/K,

KO = 200 a/7r
where K, is the stress intensity factor of a circular crack with radius a in a infinite plate
subjected to a stress 0,. Yagawa et al.’s solution is also depicted in the figure for comparison.
The present analysis using SOLID16 element gives about 3.5 percent larger value at 6/(—725) =
0.0 than Yagawa et al.’s solution, but both are almost coincident in the region where 0/(%) is
larger than 0.5. On the other hand, there is large difference between the results obtained from
mid- and corner-nodes in the present analysis using SOLID20 element, which was also found in
the case of the stress intensity factor analysis of the compact tension specimen presented in

[I] in this section. Therefore, it can be concluded that SOLID16 element should be used to
obtain the stress intensity factors of the three-dimensional cracks.

3.3 Stress Intensity Factor Analyses of Three-dimensional Surface Cracks

In this section are presented the results of the stress intensity factor analyses for a
pressurized cylinder with an outer semi-elliptical crack, a cylinder with a single surface crack or
nearly-located three surface cracks subjected to shear force. In the analyses, the connection
elements were used to connect different kinds of elements such as the beam, shell and solid
elements.

3.3.1 Longitudinal Semi-elliptical Crack in Quter Surface of a Pressurized Cylinder

Consider a pressurized cylinder with an outer semi-elliptical crack shown in Fig. 3.3.1
whose solutions were obtained by Atluri and Kathiresan?®), Blackburn and Hellen?!) and
Kobayashi, et al.??). The dimensions of the cylinder and Poisson’s ratio » used in the analysis
are as follows:

RO/RI. = 1.5, b/a = 0.6, b/(Ro - R) = 04,
L = 480 mm, Ri = 120 mm, Ro = 180 mm,
a =40mm, b = 24 mm, v = 0.3

The finite element model used in the analysis is given in Fig. 3.3.2. One quarter of the
structure was taken due to the symmetry of the structure. The 16-node solid elements
(SOLID16) were used in the neighborhood of the crack and the remainder of the cylinder was
modeled by the 4-node thin shell elements (FSHEL4). The 8-node connection elements
(BOUNDS) were used to connect these two kinds of elements. In addition to internal pressure,
the axial force corresponding to internal pressure was assumed to act upon the cylinder to take
account of the end effect of internal pressure. The shell element is thought to be more flexible
under internal pressure than the solid element, because the shell element has larger area per
unit circumferential angle subjected to internal pressure than the solid element. Therefore, a
preliminary calculation was carried out to study the methods for loading of internal pressure.
For this purpose, analyses were performed for the cylinder without crack whose inner and
outer diameters were same as the cylinder shown in Fig. 3.3.1 and whose length was 120 mm.
Only the region from 0° to 90° of the cylinder was taken due to the symmetry of the
structure. The solid elements (SOLID16), the shell elements (FSHEL4) and the solid-shell
connection elements (BOUNDS) were used to model the cylinder as shown in Fig. 3.3.3. The
following three cases were considered for the loading of internal pressure.
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LC-1: Same internal pressure 1.0 P; kg/mm? was loaded on both solid and shell
regions.
LC-2: Considering the difference in area per unit circumferential angle between the

solid and shell elements, 1.2 P; and 1.0 Pt. were loaded on the solid and shell
regions, respectively.
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Fig. 3.3.2 Analytical model of a
pressurized cylinder with
outer semi-elliptical crack.
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Fig. 3.3.1 A pressurized cylinder with
outer semi-elliptical crack.
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LC-3: 1.0 P, and 0.8 P; were loaded on the solid and shell regions, respectively, based
on the same reason as in LC-2.

Figures 3.3.4 and 3.3.5 show the distributions of radial displacement U, along z-axis and
circumferential direction, respectively. In the figures, the solid lines show the exact solution
for the displacement in the mid-thickness of the cylinder. Large displacement is caused in the
shell region, since relatively large load acts upon this region. Compared with the exact solution,
LC-2 gives better results than LC-3. This is due to the reason that LC-2 can represent the
displacement behavior of the thick cylinder subjected to internal pressure based on the thin
shell theory. Therefore, the loading condition of LC-2 was employed for the present analysis.

e Z(mm)[C ASE 1|CASE 2[CASE 3
E 120 o | -o- | -o-
™ 50
o 60| - | -o- | -o-
= Q| — B | —te
5
""'I - 4.0 :
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6——8 g -8

Oo L ! 1 I £ 1 L 1 ]
0 30 60 S0
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Fig. 3.3.5 Distribution of radial displacements U, along circumference for a pressurized
cylinder without crack.
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Fig. 3.3.6 Finite element mesh of a pressurized cylinder with outer semi-elliptical crack.
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Figure 3.3.6 shows the finite element model of a pressurized cylinder in the development
figure. Figure 3.3.7 also shows the finite element mesh in the surface with the crack. In the
analysis, the distorted elements were allocated along the crack front. The numbers of each
element, nodes and total degrees-of-freedom used in the analysis, are given in Table 3.3.1.
Figures 3.3.8 and 3.3.9 show the distributions of the radial displacement along the z-axis and
circumferential direction, respectively. From the figures, good agreement is found between the
present solution and exact one regarding to the displacement far from the crack. On the other

CRACK FRONT —

Fig. 3.3.7 Finite element mesh in the surface with crack.

¢
~ 0°| —o— Table 3.3.1 Numbers of elements, nodes
E 37.5°| —— Theory (Rm=150mm) and degrees-of-freedom for the
£ 0 . . .
— 90" | 00— stress intensity factor analysis
N 1807 —+— of a pressurized cylinder with a
semi-elliptical crack
2001 Number of Elements
SOLID16 229
FSHEL4 107
1 BOUNDS 46
Shell Number of Nodes 1,456
100——--———-————I —————— Number of Degrees-of-freedom 4,830
Solid
1 1 P O 1
00 1.0 2.0 3.0 40 5.0
E 2
= ur (x40 mm)

Fig. 3.3.8 Distribution of radial displacements U, along
z-axis for a pressurized cylinder with outer
semi-elliptical crack.
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hand, large displacement is found near the crack, since stiffness decreases locally in the
neighborhood of the crack. It is also found that displacement varies smoothly at the boundary
of the solid and shell elements.

Figure 3.3.10 shows the peripheral distribution of the nondimensional stress intensity
factor normalized by the following closed form solution K, of the elliptical crack embedded in
an infinite body subjected to an uniform tensile stress 0y:

E
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o 240 | —o-
= 5.0k 100] —=
5 ! o] -
- I
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|
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° Solid | Shell
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Lt | ! L ! !
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Fig. 3.3.9 Distribution of radial displacement U, along cicumference for a pressurized
cylinder with outer semi-elliptical crack.
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Fig. 3.3.10 Peripheral distribution of nondimensional stress intensity factors
for a pressurized cylinder with outer semi-elliptical crack.
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The results obtained by Atluri and Kathiresan?®), Blackbumn and Hellen?"), and Kobayashi, et
al.?®) are also given in the figure. Atluri and Kathiresan used the special elements containing
the singularity of stress around the crack and the hybrid displacement technique to satisfy the
continuity of the displacement between the special and conventional elements. In this method,
the stress intensity factors can be solved directly along with the unknown nodal displacements.
Blackburn and Hellen utilized the virtual crack extension method. Kobayashi, et al. obtained
the stress intensity factor by applying the curvature correction to that of the surface crack in
the flat plate. The geometric parameters in Atluri and Kathiresan’s and Kobayashi, et al.’s
analyses were same as present one, while Balckburn and Hellen analyzed the cylinder with
R, /Rl. = 1.461. Farily good agreement is found between present and Atluri and Kathiresan’s
solutions.

3.3.2 Circumferential Circular Shaped Cracks in Inner Surface of a Cylinder Subjected
to Shear Force

As in the following paragraphs are shown the analytical results of the stress intensity
factors of circumferential circular shaped single crack or three cracks in a cylinder subjected to
shear force.
[I1 Single Crack Case

Figure 3.3.11 shows the cylinder subjected to shear force P of 17330 kg. Single surface
crack was assumed to be contained in the fixed end C—C' in the figure. Following two cases

c y 1703
Z —T ____________
S P =17330kg
7 “'l
' (]
¢ Sym.
C‘

Fig. 3.3.11 A cylinder with a single semi-circular crack subjected to shear force.
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Fig. 3.3.12 Analytical Models of a cylinder with a single semi-circular crack subjected to
shear force.

were considered as the boundary conditions.

BC-1: The cross section C—C' was completely fixed.

BC-2: The deformation in the X—Y plane was not constrained in the fixed end C—C'.
Young’s modulus and Poission’s ratio were assumed to be 19700 kg/mm? and 0.3,
respectively.

As shown in Fig. 3.3.12, one half of the cylinder was analyzed due to the symmetry of
the structure. The 16-node solid elements (SOLID16) were allocated at the neighborhood of
the crack, while the shell and beam elements (FSHEL4 and BEAM3D) were used to model the
remainder of the cylinder. The 3-node or 8-node connection elements (BOUND3 or BOUNDS)
were used to connect the beam and shell elements or the shell and solid elements. The above
modeling was employed due to the reasons that the region near the surface crack was governed
by the three-dimensional stress field and that the whole deformation of the cylinder could be
represented by the beam type simplification. Two models shown in Fig. 3.3.12 were taken to
study the effect of different model of the cylinder on the stress intensity factors. Figures
3.3.13(a) and (b) show the finite element mesh of the cylinder in the development figure.
Figure 3.3.14 shows the finite element mesh in the surface with the crack which was used in
both cases of MODEL 1 and MODEL 2. The distorted elements were allocated along the crack
front. The numbers of each element, nodes, and total degrees-of-freedom used in the analyses
are shown in Table 3.3.2.

Figure 3.3.15 shows the comparison of the axial distributions of deflection U, for the
case of BC-1 between the present analysis and the beam theory. The deflection UZ obtained
from the present analysis is found to vary smoothly at the boundary of different kinds of
element. It is also found from the figure that the present results are in good agreement with
that of the beam theory.

Figure 3.3.16 shows the distributions of deflection U, along circumferential direction.
The boundary of the solid and shell elements are z = 200 mm and 6 = 30° for MODEL 1, and z
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Fig. 3.3.13 Finite element mesh of a cylinder with a single semi-circular crack
subjected to shear force.

Distorted Elements

OD
Qs'b

Table 3.3.2

Crack Front

Numbers of elements, nodes
and degrees-of-freedom for the
stress intensity factor analysis
of acylinder with a single crack
subjected to shear force

MODEL 1 MODEL 2

Number of Elements

SOLID16 228 152
FSHEL4 119 75
BEAM3D 6 6
BOUND3 13 13
BOUNDS 36 28
Number of Nodes 1,024 714

Number of Degrees-

of-freedome

3,597 2,511

Fig. 3.3.14 Finite element mesh in the surface with crack.
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Fig. 3.3.15 Distribution of deflections Uy along z-axis for a cylinder with a
single semi-circular crack subjected to shear force.
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Fig. 3.3.16 Distribution of deflections U, along circumference for a cylinder

with a single semi-circular crack subjected to shear force.
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= 120 mm and 6 = 30° for MODEL 2. No disturbance of U, is found at the boundary of the

solid and shell elements.

Figure 3.3.17 shows the axial distributions of the stress o, for the case of BC-1. The
results of the beam theory are also given in the figure. The present results are found to be in
good agreement with those of the beam theory except near the fixed end in which
three-dimensional effects are important. On the other hand, discontinuity of the stress is found
near the connection of the solid and shéll elements, i.e. ¢ = 4°, z = 180 mm for MODEL 1 and
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Fig. 3.3.17 Distribution of stresses 0, along z-axis for a cylinder with a single semi-circular
crack subjected to shear force.

¢ = 4°, z = 100 mm for MODEL 2. This discontinuity is, however, localized and the stress
varies smoothly in other part. It is also found that the difference between MODEL 1 and

MODEL 2 is very small.

Figures 3.3.18 and 3.3.19 show the peripheral distributions of the stress intensity factors
for the case of BC-1 and BC-2, respectively. K, in these figures show the stress intensity factor
of the circular crack embedded in the infinite body subjected to a uniform stress o,

60

K (kg~mrn"i')
3

40

2
K

{ Ko=20 o\~

Co= {0z +0x)72

Ki /Ko

‘ —o- MODEL f
— 1\ —e- MODEL 2
Ozi Oz
| 1 i 1 1 1 1 A
30 60 20
8 (degree)

Fig. 3.3.18 Peripheral distribution of stress intensity factors for a cylinder with a

single semi-circular crack subjected to shear force — BC-1, Fixed end.
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Fig. 3.3.19 Peripheral distribution of stress intensity factors for a cylinder
with a single semi-circular crack subjected to shear force — BC-2,
Symmetrical end.

corresponding to the average value of 0,; and o, which denote the stresses in the inner and
outer surface of the cylinder at the cross section C—C' obtained by the beam theory. It is
found from Fig. 3.3.18 that the difference between MODEL 1 and MODEL 2 is less than 2%.
This indicates that the accuracy of the stress intensity factor is not deteriorated by the
reduction of the solid region such as MODEL 2. Therefore, MODEL 2 was employed to
analyze the case of BC-2. It is found from Fig. 3.3.18 that the stress intensity factor of BC-1 is
much smaller than K, because of excessive constraint of degrees-of-freedom at the cross
section C—C'.
[II] Three Cracks Case

As shown in Fig. 3.3.20, three surface cracks were assumed to be contained in the fixed
end C—C' of the cylinder shown in Fig. 3.3.11. The same loading and material properties as in
the single crack case were used in the present analysis. It was assumed that the deformation in

Sym.

c '

Fig. 3.3.20 A cylinder with three semi-circular cracks subjected to shear force.
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the X—Y plane was not constrained in the fixed end C—C', which was corresponding to BC-2
in the single crack case.

One half of the cylinder was taken due to the symmetry of the structure. The cylindér
was modeled by the solid, shell, beam and connection elements (SOLID16, FSHELA4,
BEAMB3D and BOUNDS), as shown in Fig. 3.3.21. Figure 3.3.22 shows the finite element mesh
in the development figure. Larger solid element region was taken in this case than in the single
crack case previously metioned because of the increase of number of the cracks contained in
the fixed end C—C'. Figure 3.3.23 shows the finite element mesh in the surface with the crack.
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Fig. 3.3.21 Analytical model of a cy- ¢ (degree)
linder with three semi-cir-
cular cracks subjected to Fig. 3.3.22 Finite element mesh of a cylinder with three
shear force force. semi-circular cracks subjected to shear force.
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Fig. 3.3.23 Finite element mesh in the surface with cracks.
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The distorted elements were allocated along the crack fronts. The same finite element model as
the single crack case was used around Crack No. 1 to obtain the distribution of the stress
intensity factor of Crack No. 1 with that of the single crack case obtained in [I] of this
section. Table 3.3.3 shows the numbers of each element, nodes and total degrees-of-freedom
used in the analysis.

Figure 3.3.24 shows the peripheral distributions of the stress intensity factor where the
result is also given for the single crack which had the same geometry as Crack No. 1 in Fig.
3.3.20. It can be seen from the figure that the stress intensity factor of Crack No. 1 is higher
by 3 ~ 9% than that of single crack. The difference between the result of Crack No. 1 of the
three cracks and that of the single crack is found to become larger in the region of large angle 6
where Cracks No. 1 and No. 2 are contiguous to each other. It may be, therefore, concluded
that the effect of interaction of the nearly-located surface cracks is found in the stress
intensity factor of Crack No. 1.

Table 3.3.3 Numbers of elements, nodes
and degrees-of-freedom for the
stress intensity factor analysis
of a cylinder with three cracks
subjected to shear force

Number of Elements

SOLID16 385
FSHEL4 92
BEAM3D 6
BOUNDS 32
BOUND3 13
Number of Nodes 1,517
Number of Degrees-of-freedom 4,989

—o— Three Cracks Model
—=a— Single Crack Model
No. {
;1'—.—/1
No.2
-{00 -80 -60 -40 -20 0 20 40 60 80 100
6 (degree)

Fig. 3.3.24 Peripheral distribution of stress intensity fastors for a cylinder with three
semi-circular crack subjected to shear force.
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4. Conclusions

Theoretical background and application of the EPAS-J1 program were presented in this
paper. The special feature of this program is inclusion of the connection elements based on the
Lagrange multiplier concept, by which different kinds of elements can be connected easily.
Computer storage and computational time can be reduced meaningfully using different kinds
of elements for calculation of the stress intensity factors of the three-dimensional surface
cracks. The following conclusions were obtained by the analyses using the EPAS-J1 program.
(1) The connection elements based on the Lagrange multiplier concept provide more accurate

results than other techniques of connecting different kinds of elements such as the tying

method or the method using the anisotropic plate element.

(2) Convergent stress intensity factors can be obtained by the virtual crack extension method
if the virtual crack extension value Aa is less than 1072 ~ 1073 Q where £ denotes the side
length of the element measured in the direction of crack extension.

(3) In order to obtain the stress intensity factor of the three-dimensional cracks by the virtual
crack extension method, the 16-node solid element (SOLID16) should be used rather
than the 20-node solid element (SOLID20), in which the discrepancy is found between
the stress intensity factors obtained from the corner-nodes and the mid-nodes of the
elements.

(4) In the stress intensity factor analysis of the longitudinal semi-elliptical crack in the outer
surface of a pressurized cylinder, fairly good agreement is found between Atluri and
Kathiresan’s solution and the present one obtained using the modeling of different kinds
of elements together with the connection elements.

(5) Comparing the stress intensity factors of circumferential circular shaped single surface
crack and nearly-located three surface cracks in the inner surface of a cylinder subjected
to shear force, interaction effect of multiple surface cracks is found in the stress intensity
factors.
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= crack area

Jacobian matrix

Nomenclature

= component of transformation matrix between strain and displacement
elastic modulus

yield function

= energy release rate

= unit matrix

= stress intensity factors corresponding to Mode 1, II and I11
= unit normal vector outwards on S

= body force
= nodal displacement

= generalized coordinate of fictitious element
= displacement boundary

= mechanical boundary

= fictitious boundary surface

= temperature
= traction force
= displacement

= region of continuum

= coordinate

= stress
= strain

= Lagrange multiplier

= rotation

= interpolation functions

= prescribed value

= incremental value

= elastic component
= plastic component

= elastic-plastic component

= thermal component

= quantity belonging to fictitious region

= virtual quantity

= vector
= matrix

= transpose matrix
= inverse matrix

= partial differentiation with respect to coordinate i
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Appendix A. Constitutive Equation for Thermo-
elastoplasticity

Here is shown the derivation of the constitutive equation for thermo-elastic-plastic
behavior of materials.
The stress-strain rélation is generally given as follows:

o.=FE% ¢€° (A.1)

ij ifk? "k
in which 0y ef. and Et]ksl represent the stress, the elastic strain and the elastic modulus,
respectively. Assuming that Ef].kQ is a function of temperature 7, the incremental form of eq.

(A.1) is given as follows:

do deS, + % ks o dT (A2
i z]kSZ € 3T € ke 2)
The plastic strain increment is written as follows using the incremental theory of plastic-
ity:
o9
P =
del_]_ d\ % (A.3)

where ¢ and positive value d\ denote the plastic potential and the unknown constant. Let us
assume that the yield suface is given as follows:

f(o’.]., e’;j, T)=20 (A4)
According to the associated flow rule, the above function f is used as the plastic potential.
Then, eq. (A.3) yields

of

p -
de dA\—=— 80 (A.5)

Furthermore, it is assumed that the incremental strain Aei]. can be decomposed as follows:
de, = de;, + det + de;; + def; + de; (A.6)

deu, deU and de in eq. (A.6) are the increments of thermal strain, creep strain and swelling

strain, respectlvely, and these components are written as follows:

deg. = 6. adT
17
of
c _ c
det.]. de aaij
des = §. dV

1 i}
in which «, Sij, dV and de® denote the thermal expansion coefficient, the Croneker’s delta, the

increment of average volume and the increment of equivalent creep strain, respectively. def.']l’is
defined by the sum of defj and deé’]. as follows:

ep _ e p — _ 0 _ 3.€ _ 3.8
dei]. del.]. + dei]. del.i deil. deij. dei], (A.7)
The increment of eq. (A.4) are given as follows:

of of aof
d = __d L. p = A'
f b, 271+ e el * o 4T = 0 (A.8)

By using eq. (A.7), eq. (A.2) becomes as follows:
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do. = Ef, (de®P - deP +a—E;*—”edT (A9)
Oy = Eijra ([eg = dege) ¥ =50 €4 '
Substituting eq. (A.5) into eqgs. (A.8) and (A.9) yields
of of of of
=— .+ =
af aai.do” 37 5g” INt—Z5dT = 0 (A.10)
J ij ij
_ e of \ . ke e
dol.]. = El.].,dz (dezg -d\ aokg) + alT €o dT (A.1])
dX\ can be obtained by eliminating doi]. from eqs. (A.10) and (A.11) as follows:
of . of OE;,, of
—_ P 4~ UKX e —
aoij El.].kSZ d%z + aU,-j 5T €dT + T dT
d\= o 2 o o (A.12)
L E;

p ijke
aei]. aol.]. aol_]. aok,2

The following stress-strain relation can be obtained by substituting eq. (A.12) into eq. (A.11):
of of .

e

| iimn 3, 0,, Pk e
do, =\ Ef, - dey,
of of of ge of
" 2¢? a0 * 0 mnop
mn mn omn aoop
E¢ A ( 7 Ernop e + U )
oF?, ijk2 30,4 \ 30 oT °P 9T
+ ke ce k mn dT
T ke
or _ o .
aofnn és,, 00, ""oP aoop
(A.13)

— pep ep ep
Eiike deyy, + Gii T



52

Efficient Computer Program EPAS-J1 for Calculating Stress Intensity Factors of JAERI 1276

Three-dimensional Surface Cracks

Appendix B. Finite Elements Contained in the

EPAS-JI Program

The following elements are contained in the EPAS-J1 program.

ELEMENT NAME ELEMENT TYPE No. of Nodes
1. FLA 1D TRUSS ELEMENT 2
2. BEAM2D 2D BEAM ELEMENT 2
3. BEAM3D 3D BEAM ELEMENT 2
4. PLANE4 2D PLANE STRESS ELEMENT 4
5. PLANES 2D PLANE STRESS ELEMENT 8
6. STRAN4 2D PLANE STRAIN ELEMENT 4
7. STRANS 2D PLANE STRAIN ELEMENT 8
8. SRING4 2D AXISYMMETRIC ELEMENT 4
9. SRINGS8 2D AXISYMMETRIC ELEMENT 8

10. FSHEL3 3D FLAT SHELL ELEMENT 3

11. FSHEL4 3D FLAT SHELL ELEMENT 4

12. TSHELS 3D CURVED THICK SHELL ELEMENT 8

13. SOLIDS 3D SOLID ELEMENT 8

14. SOLIDI6 3D SOLID ELEMENT 16

15. SOLID20 3D SOLID ELEMENT 20

16. BOUND3 FSHEL4-BEAM3D CONNECTION ELEMENT 3

17. BOUNDS SOLID16-FSHEL4 CONNECTION ELEMENT 8

18. BOUNDIO SOLID20-FSHEL4 CONNECTION ELEMENT 10
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Appendix C. Application of Virtual Crack Extension Method
to Mixed Mode Stress Intensity Factor Analysis
of Two-dimensional Crack

Ishikawa‘©-!) proposed the method for obtaining the mixed mode stress intensity factor
based on the path independent J integral. Here, the virtual crack extension method is extended
to the mixed mode stress intensity factor analysis of the two-dimensional crack.

The potential energy of the total structure 7 can be written as follows:

NT NT _
=3 | way-vTFx0= T w0 -vTFw C1
i=19v; i=1
in which

W = strain energy density

V. = volume of the i-th element of the mesh

U = vector of nodal displacement.
F = nodal force vector

X = vector of nodal coordinate

W,- = integral of strain energy density

NT = total number of elements
( )T = transpose of matrix or vector

The increment of potential energy 8 can be given as follows:

_ sy T 0T T_0T_
6t = 6U aU+<')X X

NT 3W. NT aw. ofFT
BUT'[ —L-FX]+5XT-[ ‘-—-U] C.2
El U X El X X (€.2)

The first term in eq. (C.2) is equal to zero due to the equilibrium condition. Then, eq. (C.2)
yields as follows:

NT 3w, oFT ]
= T. _t__- .
ot = 86X |:i§1 X ax U (C.3)

Now consider the virtual crack extension of the two dimensional crack shown in Fig. C.1.
In the figure, I'; is fixed and the x-coordinates of all nodes on and within an interior T,
which surrounds the crack tip are incremented virtually by the amount of §£. Then, the virtual
variation of the potential energy can be written as follows:

ot _ NZT aw, oFT
) ) oX
For the two-dimensional elasticity, the integral of the strain energy density W, is repre-

sented as follows:

U (C.49)

W, = j wdV, = tS WdA (C.5)

in which ¢t and A denote the plate thickness and the area of the i-th element of the mesh,
respectively. On the other hand, W in eq. (C.5) is given as follows.

€ij
W= j 0;; de,-,- (C.6)
0
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i

Fig. C.1.  Virtual Crack Extension for Mixed Mode Crack.

Two points P and P’ shown in Fig. C.1 are symmetric with respect to the x, -axis. The stresses
and displacements of the point P are separated into the sum of Mode I and Mode 11
components using those of the points P and P’ as follows:

o= 0, + 0 (C.7)
it 011t 04} ol 01 - O
0122 =’:12_ 02 + 032 Ug =% 032 = 022 (C.7)
0112 012 =012 ), 0{]2 012+ 012

- U= UL+ Ul (C.8)

vl [U:i+ Ui vy | (Ui - U
r (T2 -7 (C8)
U’ 2 v, + U, ), vl U, + U,
where the superscripts I and II denote the values pertinent to Mode I and Mode 1I, and the
superscript ( )’ represents the value of the point P'. Using the strain-displacement relation

e} =—é—( uM+ UMy =11 (C.9)

together with eq. (C.8), the strains of the point P are also separated into the same form as egs.
(C.7) and (C.7’) as follows:

= el tey (C.10)
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I ' ¥/ g '
€n €n t €4 €11 €11 — €n
I 1 big 1 '
€22 =7 €22 + €2, €22 =7 €22 — €22 (C.10")
1 ' n '
€12 €2- €12 |, €12 €12 T €

Using egs. (C.5), (C.6), (C.7) and (C.10), the following equation can be obtained:

€::
N t ij
P2 0400

: eij I7
-] ([Pt + othacel + el ) as

1

= Wpp + Wy + Wiy + Wy ) (C.11)
in which
Wy =%L (0¥ de¥yda (4N = LI (C.12)
i

Let us consider the hatched two elements, Element 1 and Element 2, shown in Fig. C.1 which
are symmetric with respect to x,-axis. The following relations can be obtained in the two
elements using egs. (C.7) and (C.10).

1 ’

0111 = 0111 6111 = Eﬁl
Vol = ol ol = ¢l (C.13)
L"ll; = ‘0112 5]1; = ‘5112
(o = —of! el = —ell

ol = ok el = el (c.14)
| o = of} el = €ll

Introducing eqs. (C.13) and (C.14) into eq. (C.12) leads to the following relations.

Wi =W Wou = Won
(C.15)
Wip=-W Wir =Wy,

In egs. (C.13) through (C.15), the notaions with and without the superscript ““’ > represent
the values pertinent to Element 2 and Element 1, respectively.

Let us assume that the number of the element surrounded between I'y and I'; are 2N,
among which N elements are contained in the plus region of x, , and other N elements exist in
the minus region of x,, and that finite element mesh is symmetric with respect to the x, -axis.
The following relation is obtained, considering that only the elements surrounded between I',
and Iy are subjected to the variation of strain energy due to the virtual crack extension and
using the relations given in eq. (C.15):

NT oW, 2N AW, oW, AWy i)
— 1 -9 { ! } .16
=ye 121 0X lzl 0X aX (€19

For the linear or nonlinear elastic body, the integral of the strain energy density of the i-th
element Wl. can be also given using the stiffness matrix of i-th element as follows:



56 Efficient Computer Program EPAS-J1 for Calculating Stress Intensity Factors of

JAERI 1276
Three-dimensional Surface Cracks A

_ 1 T e
W, =5 UT KU (C.17)

Substituting eq. (C.8) into eq. (C.17) yields the following equation:
W, =2 1L (UHT K (U7 + (0T K- (U™

+ (UNHT K- (U™ + 0T K- (U]

(C.18)
Comparing eq. (C.11) with eq. (C.18), the following equations can be obtained:
(W = 5 WHT K- (W
. 1 IINT 1 (€.19)
Wit ), =‘§‘(U ) K (UT)
Introducing eq. (C.19) into eq. (C.18) leads to the following equation:
NT aw 0K 1 oK.
2 [ T 228 ol +— @uiHT . —L. 11]
Loy " Z F WHT =2 W)+ (U (UT)
N K. okK;
- UI T i, UI + U!I T. I, U[I ] C.20
El[()_ax()()_'ax() (C.20)
The second term in the right hand side of eq. (C.4) becomes as follows, using eq. (C.8)
T T
CLA L W'+ vt (C.21)
oX 0X
Substituting eqs.

(C.20) and (C.21) into eq. (C.4), the following equation can be obtained

om _ J INT . aK I\ - _fi_ I
asz"[,-;(u) X SR U]
N okK; )
I\T | i gl _ 7L
* [El ) X o™ oX v ] (€.22)

Then, the energy release rate Gy and G, corresponding to Mode I and Mode II are given as fol-
lows:

oFT N 0K,
G, = LU - % whHT- vl
17 Tox 1( ) oX - (UY)
- v (C.23)
- II
= "x Z @H" =5 @

For the linear elastic body, the stress intensity factor K; and K; corresponding Mode I and
Mode II are related to G, and G, as follows:

(D Plane strain

E 1/2 E 1/2
K, = (1 — G,) . K= (=) (C.24)

1 -v
(D Plane stress

- 1/2 _ 1/2
K, =(EG)', K, = (EGp) (C.25)
in which E and v denote the modulus of elasticity and Poission’s ratio, respectively
The description presented here is based on the private communication©?) of one of the
authors (N. Miyazaki) with Dr. M. Masuda, JT-60 Project Office I, Division of Large Tokamak
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Development in JAERI. Afterwards, the authors found the paper ©-3) presented in the
‘International Journal of Fracture’ which proposed the same method as the authors’.
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