Japanese Evaluated Nuclear Data Library, Version-3
—JENDL-3—

June 1990

日本原子力研究所
Japan Atomic Energy Research Institute
Japanese Evaluated Nuclear Data Library, Version-3
— JENDL-3 —

Keiichi SHIBATA, Tsuneo NAKAGAWA, Tetsuo ASAMI*,
Tokio FUKAHORI, Tsutomu NARITA, Satoshi CHIBA,
Motoharu MIZUMOTO, Akira HASEGAWA, Yasuyuki KIKUCHI,
Yutaka NAKAJIMA and Sin-iti IGARASI*

JENDL-3 Compilation Group
Japanese Nuclear Data Committee
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken

Abstract

The general purpose file of the third version of Japanese Evaluated Nuclear Data Library, JENDL-3, has been compiled by the JAERI Nuclear Data Center in cooperation with the Japanese Nuclear Data Committee. It contains neutron nuclear data for 171 nuclides which are needed for design of fission and fusion reactors and for shielding calculation. In the JENDL-3 evaluation, much effort was devoted to improve reliability of high-energy data for fusion application and to include gamma-ray production data. Theoretical calculations played an important role in achieving these purposes. A special method called simultaneous evaluation was adopted to determine important cross sections of fissile and fertile nuclides. This report presents a general description for the evaluation of light, medium-heavy and heavy nuclide data. Also given are the descriptive data for each nuclide contained in the File 1 part of JENDL-3.

Keywords: JENDL-3, Neutron Nuclear Data, Nuclear Data Library, Evaluation, Data Compilation, Cross Section, Calculation, Fission Reactors, Fusion Reactors, Shielding

* Nuclear Energy Data Center
日本の評価済み核データライブラリー、第3版
—JENDL-3—

日本原子力研究所シグマ研究委員会
JENDL-3編集グループ

栄田更一・中川広雄・浅見哲夫・深尾智生
高田孟・中島宏敏・水本元治・長谷川明
菊池信之・中島豊・五十嵐信一

日本の評価済み核データライブラリーの第3版JENDL-3の汎用ファイルがシグマ研究委員会の協力の
基に原研核データセンターにより編集された。この汎用ファイルは、核分裂炉、核融合炉の設計や遺伝計
算に必要な171核種の中性子核データを収納している。JENDL-3作成に於いては、核融合への適用を考え
慮して高エネルギーデータの精度改善及びガンマ線生成データの評価に注意を払った。その際、理論計算
は重要な役割を果たした。また、重要な核分裂性核種及び熟物質の断面積の決定には、同時評価と呼ばれ
る評価手法を用いた。本報告書では、軽核、中重核、重核の評価方法の概要が記述されている。また、付録
には、JENDL-3のFile1にあるコメントデータを核種毎に掲げた。

*（財）原子力データセンター
Contents

1. Introduction .. 1
2. General Description for Evaluation 8
 2.1 Light Nuclide Data 8
 2.2 Medium-Heavy Nuclide Data 9
 2.3 Heavy Nuclide Data 10
3. Conclusions ... 19
 Acknowledgments ... 19
 References .. 20
 Appendix Descriptive Data for Each Nuclide 22

目　次

1. はじめに ... 1
2. 評価の概要 .. 8
 2.1 輕核データ ... 8
 2.2 中重核データ .. 9
 2.3 重核データ ... 10
3. 結論 ... 19
 謝辞 ... 19
 参考文献 .. 20
 付録 核種毎のコメント・データ 22
List of Table

Table 1 Nuclides contained in the general purpose file of JENDL-3.

List of Figures

Fig. 2.1.1 \(^7\)Li(n,n')\(\alpha\) reaction cross sections.
Fig. 2.1.2 Double differential cross sections of natural lithium at 14 MeV.
Fig. 2.2.1 Double differential cross sections of natural iron at 14 MeV.
Fig. 2.2.2 Total cross sections of natural iron averaged over 0.5 MeV.
Fig. 2.2.3 (n,2n) reaction cross section of natural lead.
Fig. 2.2.4 Helium-production cross sections of natural chromium, iron and nickel.
Fig. 2.2.5 Gamma-ray spectra from natural silicon at 13 MeV.
Fig. 2.2.6 Gamma-ray spectra from natural iron at 0.0253 eV.
Fig. 2.3.1 Fission cross sections of \(^{235}\)U and \(^{239}\)Pu.
 (a) \(^{235}\)U(n,f), (b) \(^{239}\)Pu(n,f)/\(^{235}\)U(n,f) and (c) \(^{239}\)Pu(n,f).
Fig. 2.3.2 Capture cross sections of \(^{238}\)U.
Fig. 2.3.3 Fission neutron spectra for \(^{239}\)Pu at 200 keV.
1. Introduction

Evaluated nuclear data libraries are requisite for nuclear engineering such as design of nuclear reactors and shielding calculation. The first version of Japanese Evaluated Nuclear Data Library, JENDL-1.2\(^1,2\), was compiled in 1977 in cooperation with the Japanese Nuclear Data Committee (JNDC). It contained 72 nuclides required for fast reactor calculation. The second version, JENDL-2\(^3\), made in 1982 was applicable not only to fast reactor but also to thermal reactor and shielding calculation. However, it was pointed out that applicability of JENDL-2 to fusion neutronics was unsatisfactory.

Under such a situation, the JAERI Nuclear Data Center and JNDC started evaluation and compilation work for the third version, JENDL-3, in April 1982. Main purpose for making JENDL-3 is to remedy the defects of JENDL-2 as pointed out in benchmark tests, to add gamma-ray production cross sections, to evaluate nuclear data in higher energy region as precisely as possible, and to make it a large general purpose nuclear data library which is applicable to fusion neutronics calculation as well as the fast reactor, thermal reactor and shielding calculations. In 1987, a temporary version, JENDL-3T, was offered for use in the various benchmark tests to check its applicability. The defects pointed out in the benchmark tests were carefully examined and a slight modification was made. The results of the benchmark tests are reviewed in Ref. 4. The general purpose file (GPF) of JENDL-3 was finally compiled in October 1989 within the framework of the ENDF-5 format\(^5\). The GPF of JENDL-3 includes 171 nuclides, 59 out of which have gamma-ray production data, as given in Table 1.

Several computer codes were made ready for the JENDL-3 evaluation. To calculate cross sections for direct, preequilibrium and multi-step compound nuclear processes, some existing nuclear model codes such as ECIS\(^6\), DWUCK4\(^7\), GNASH\(^8\) and TNG\(^9\) were made available in JAERI. A preequilibrium and multi-step evaporation model code, PEGASUS\(^10\), was developed for calculating multi-particle emission cross sections. For the evaluation of resonance cross sections for light nuclide, a code based on the R-matrix theory, RESCAL\(^11\), was made. Double differential cross sections (DDXs) are important for fusion neutronics calculation. To generate and/or analyze DDX, two computer codes, FAIRDHX\(^12\) and DDXPLOT\(^13\), were developed. With these tools, the evaluation for JENDL-3 was made efficiently and precisely.

This report presents a brief description of the evaluation methods for making the GPF of JENDL-3. In Chapter 2, a general description is given for light nuclide, medium-heavy nuclide and heavy nuclide data. Appendix deals with the descriptive data for each nuclide contained in the File 1 part of JENDL-3.
Table 1 Nuclides contained in the general purpose file of JENDL-3.

<table>
<thead>
<tr>
<th>Tape No.</th>
<th>No.</th>
<th>Nuclide</th>
<th>MAT No.</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>1</td>
<td>$^1\text{H}^*$</td>
<td>3011</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>^2H</td>
<td>3012</td>
<td>1103</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>^3He</td>
<td>3021</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>^4He</td>
<td>3022</td>
<td>1272</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>$^6\text{Li}^*$</td>
<td>3031</td>
<td>2297</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>$^7\text{Li}^*$</td>
<td>3032</td>
<td>3523</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>$^8\text{Be}^*$</td>
<td>3041</td>
<td>2702</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>$^{10}\text{B}^*$</td>
<td>3051</td>
<td>3705</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>$^{11}\text{B}^*$</td>
<td>3052</td>
<td>5136</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>$^{12}\text{C}^*$</td>
<td>3061</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>$^{14}\text{N}^*$</td>
<td>3071</td>
<td>4302</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>$^{15}\text{N}^*$</td>
<td>3072</td>
<td>2970</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>$^{16}\text{O}^*$</td>
<td>3081</td>
<td>5475</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>^{19}F</td>
<td>3091</td>
<td>1455</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>$^{23}\text{Na}^*$</td>
<td>3111</td>
<td>4709</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Mg^*</td>
<td>3120</td>
<td>4252</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>^{26}Mg</td>
<td>3121</td>
<td>1584</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>^{25}Mg</td>
<td>3122</td>
<td>2046</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>^{26}Mg</td>
<td>3123</td>
<td>1677</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>$^{27}\text{Al}^*$</td>
<td>3131</td>
<td>4982</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Si^*</td>
<td>3140</td>
<td>8719</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>$^{28}\text{Si}^*$</td>
<td>3141</td>
<td>4184</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>$^{29}\text{Si}^*$</td>
<td>3142</td>
<td>5018</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>$^{30}\text{Si}^*$</td>
<td>3143</td>
<td>3824</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>^{31}P</td>
<td>3151</td>
<td>1326</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>S</td>
<td>3160</td>
<td>3955</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>^{32}S</td>
<td>3161</td>
<td>1470</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>^{33}S</td>
<td>3162</td>
<td>1231</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>^{34}S</td>
<td>3163</td>
<td>1239</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>^{36}S</td>
<td>3164</td>
<td>1034</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>K</td>
<td>3190</td>
<td>2887</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Tape No.</th>
<th>No.</th>
<th>Nuclide</th>
<th>MAT No.</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>32</td>
<td>^{39}K</td>
<td>3191</td>
<td>1233</td>
</tr>
<tr>
<td>33</td>
<td>40K</td>
<td>3192</td>
<td>1190</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>^{41}K</td>
<td>3193</td>
<td>1088</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ca *</td>
<td>3200</td>
<td>5639</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>^{40}Ca *</td>
<td>3201</td>
<td>3757</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>^{42}Ca</td>
<td>3202</td>
<td>1784</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>^{43}Ca</td>
<td>3203</td>
<td>1758</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>^{44}Ca</td>
<td>3204</td>
<td>1781</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>^{46}Ca</td>
<td>3205</td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>^{48}Ca</td>
<td>3206</td>
<td>1528</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>^{45}Sc</td>
<td>3211</td>
<td>2204</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Ti *</td>
<td>3220</td>
<td>5250</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>^{46}Ti</td>
<td>3221</td>
<td>2083</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>^{47}Ti</td>
<td>3222</td>
<td>1672</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>^{48}Ti</td>
<td>3223</td>
<td>2441</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>^{49}Ti</td>
<td>3224</td>
<td>1582</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>^{50}Ti</td>
<td>3225</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>^{51}V</td>
<td>3231</td>
<td>3007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Total 131165)</td>
<td></td>
</tr>
</tbody>
</table>

302 1 Cr * 3240 9164
2 ^{50}Cr 3241 2378
3 ^{52}Cr 3242 3740
4 ^{53}Cr 3243 3454
5 ^{54}Cr 3244 2287
6 ^{55}Mn * 3251 20461
7 Fe * 3260 8817
8 ^{56}Fe * 3261 4878
9 ^{56}Fe * 3262 6033
10 ^{57}Fe * 3263 5176
11 ^{58}Fe * 3264 4090
<table>
<thead>
<tr>
<th>Tape No.</th>
<th>No.</th>
<th>Nuclide</th>
<th>MAT No.</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>12</td>
<td>^{59}Co</td>
<td>3271</td>
<td>3663</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Ni*</td>
<td>3280</td>
<td>8004</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>^{58}Ni*</td>
<td>3281</td>
<td>3526</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>^{60}Ni*</td>
<td>3282</td>
<td>3732</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>^{61}Ni</td>
<td>3283</td>
<td>2119</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>^{62}Ni</td>
<td>3284</td>
<td>2247</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>^{64}Ni</td>
<td>3285</td>
<td>2137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Total)</td>
<td></td>
<td>95906</td>
</tr>
<tr>
<td>303</td>
<td>1</td>
<td>Cu*</td>
<td>3290</td>
<td>5827</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>^{63}Cu</td>
<td>3291</td>
<td>5977</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>^{65}Cu</td>
<td>3292</td>
<td>5766</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Zr*</td>
<td>3400</td>
<td>8530</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>^{90}Zr</td>
<td>3401</td>
<td>1781</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>^{91}Zr</td>
<td>3402</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>^{92}Zr</td>
<td>3403</td>
<td>2091</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>^{94}Zr</td>
<td>3405</td>
<td>1818</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>^{96}Zr</td>
<td>3407</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>^{98}Nb*</td>
<td>3411</td>
<td>6482</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Mo*</td>
<td>3420</td>
<td>8745</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>^{92}Mo</td>
<td>3421</td>
<td>1516</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>^{94}Mo</td>
<td>3422</td>
<td>1838</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>^{95}Mo</td>
<td>3423</td>
<td>2426</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>^{96}Mo</td>
<td>3424</td>
<td>1960</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>^{97}Mo</td>
<td>3425</td>
<td>2499</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>^{98}Mo</td>
<td>3426</td>
<td>2225</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>^{100}Mo</td>
<td>3428</td>
<td>2073</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Ag*</td>
<td>3470</td>
<td>9276</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>^{107}Ag*</td>
<td>3471</td>
<td>6927</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>^{109}Ag*</td>
<td>3472</td>
<td>6646</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Cd*</td>
<td>3480</td>
<td>9487</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Tape No.</th>
<th>No.</th>
<th>Nuclide</th>
<th>MAT No.</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>23</td>
<td>Sb</td>
<td>3510</td>
<td>3575</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>121Sb</td>
<td>3511</td>
<td>2216</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>122Sb</td>
<td>3512</td>
<td>2035</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Eu*</td>
<td>3630</td>
<td>7746</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>151Eu</td>
<td>3631</td>
<td>4558</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>152Eu</td>
<td>3633</td>
<td>4647</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Total 122027)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>1</td>
<td>Hf*</td>
<td>3720</td>
<td>6645</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>174Hf*</td>
<td>3721</td>
<td>4208</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>176Hf*</td>
<td>3722</td>
<td>5185</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>177Hf*</td>
<td>3723</td>
<td>4990</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>178Hf*</td>
<td>3724</td>
<td>4855</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>179Hf*</td>
<td>3725</td>
<td>4404</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>180Hf*</td>
<td>3726</td>
<td>3935</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>181Ta*</td>
<td>3731</td>
<td>4615</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>W*</td>
<td>3740</td>
<td>8044</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>182W</td>
<td>3741</td>
<td>3024</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>183W</td>
<td>3742</td>
<td>3409</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>184W</td>
<td>3743</td>
<td>3239</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>185W</td>
<td>3744</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Pb*</td>
<td>3820</td>
<td>6595</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>204Pb*</td>
<td>3821</td>
<td>2709</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>206Pb*</td>
<td>3822</td>
<td>4030</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>207Pb*</td>
<td>3823</td>
<td>3891</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>208Pb*</td>
<td>3824</td>
<td>3959</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>209Bi*</td>
<td>3831</td>
<td>4225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Total 85362)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>1</td>
<td>225Ra</td>
<td>3881</td>
<td>1273</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>226Ra</td>
<td>3882</td>
<td>1065</td>
</tr>
<tr>
<td>Tape No.</td>
<td>No.</td>
<td>Nuclide</td>
<td>MAT No.</td>
<td>Records</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>305</td>
<td>3</td>
<td>225Ra</td>
<td>3883</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>226Ra</td>
<td>3884</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>225Ac</td>
<td>3891</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>226Ac</td>
<td>3892</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>227Ac</td>
<td>3893</td>
<td>986</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>227Th</td>
<td>3901</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>228Th</td>
<td>3902</td>
<td>1557</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>229Th</td>
<td>3903</td>
<td>817</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>230Th</td>
<td>3904</td>
<td>1511</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>232Th</td>
<td>3905</td>
<td>6264</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>233Th</td>
<td>3906</td>
<td>1806</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>234Th</td>
<td>3907</td>
<td>1877</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>231Pa</td>
<td>3911</td>
<td>1752</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>232Pa</td>
<td>3912</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>233Pa</td>
<td>3913</td>
<td>1666</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>232U</td>
<td>3921</td>
<td>1329</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>233U</td>
<td>3922</td>
<td>9216</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>234U</td>
<td>3923</td>
<td>2829</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>235Ua</td>
<td>3924</td>
<td>11021</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>236U</td>
<td>3925</td>
<td>4432</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>238Ua</td>
<td>3926</td>
<td>9794</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>237Np</td>
<td>3931</td>
<td>4748</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>239Np</td>
<td>3932</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Total 69546)</td>
</tr>
</tbody>
</table>

306	1	236Pu	3941	1018
	2	238Pu	3942	2416
	3	239Pua	3943	10073
	4	240Pu	3944	7452
	5	241Pu	3945	5635
	6	242Pu	3946	4102
Table 1 (continued)

<table>
<thead>
<tr>
<th>Tape No.</th>
<th>No.</th>
<th>Nuclide</th>
<th>MAT No.</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>306</td>
<td>7</td>
<td>261Am</td>
<td>3951</td>
<td>1937</td>
</tr>
<tr>
<td>8</td>
<td>242Am</td>
<td>3952</td>
<td>1594</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>242mAm</td>
<td>3953</td>
<td>2193</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>243Am</td>
<td>3954</td>
<td>1590</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>244Am</td>
<td>3955</td>
<td>2219</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>244mAm</td>
<td>3956</td>
<td>2233</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>247Cm</td>
<td>3961</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>247Cm</td>
<td>3962</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>249Cm</td>
<td>3963</td>
<td>1811</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>249Cm</td>
<td>3964</td>
<td>1444</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>250Cm</td>
<td>3965</td>
<td>2898</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>250Cm</td>
<td>3966</td>
<td>2316</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>251Cm</td>
<td>3967</td>
<td>1873</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>252Cm</td>
<td>3968</td>
<td>1121</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>253Cm</td>
<td>3969</td>
<td>1227</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>254Cm</td>
<td>3970</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>254Bk</td>
<td>3971</td>
<td>1868</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>254Bk</td>
<td>3972</td>
<td>1932</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>255Cf</td>
<td>3981</td>
<td>1671</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>255Cf</td>
<td>3982</td>
<td>2225</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>256Cf</td>
<td>3983</td>
<td>2144</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>257Cf</td>
<td>3984</td>
<td>1294</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>258Cf</td>
<td>3985</td>
<td>765</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>259Es</td>
<td>3991</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>260Es</td>
<td>3992</td>
<td>868</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>265Fm</td>
<td>3995</td>
<td>751</td>
<td></td>
</tr>
</tbody>
</table>

(Total 72045)

*) Gamma-ray production data are included.
2. General Description for Evaluation

2.1 Light nuclide data

The nuclides with mass number less than 20 are considered as light nuclides. In JENDL-3, included are 14 nuclides from \(^1\text{H}\) to \(^{19}\text{F}\) in this region. The evaluation method is briefly described in this section.

Hydrogen

The elastic scattering cross section of \(^1\text{H}\) was evaluated on the basis of the effective range theory using the parameters of Poonitz and Whalen\(^{14}\) below 100 keV, and in the energy region above 100 keV the JENDL-2 data\(^3\) were adopted. As for \(^2\text{H}\), the JENDL-2 data\(^{15}\) were recommended without any modifications.

Helium

The total, elastic scattering and (n,p) reaction cross sections of \(^3\text{He}\) in the energy region below 1 MeV were calculated\(^{16}\) by the RESCAL code based on the R-matrix theory. The evaluated (n,p) reaction cross section of \(^3\text{He}\), which is considered as a standard below 50 keV, was found to be consistent with the latest measurements of Borzakov et al.\(^7\). The total and elastic scattering cross sections of \(^4\text{He}\) were also analyzed\(^{16}\) with the R-matrix theory in the energy region from \(10^{-5}\) eV to 20 MeV.

Lithium

Lithium is a candidate for the fusion-blanket material and thus its tritium-production cross section is important. The (n,t) reaction cross section of \(^6\text{Li}\) was evaluated\(^{18}\) with the R-matrix theory below 1 MeV, and the cross sections above 1 MeV were obtained by the spline-function fitting to experimental data with the least-squares method.

The tritium-production cross section of \(^7\text{Li}\) was evaluated\(^{19}\) in 1984. After that, however, some modifications were made\(^{20}\) because the new measurements\(^{21-24}\) were made available. The 14-MeV cross section of JENDL-3 is by 10% smaller than that of ENDF/B-IV, as seen in Fig. 2.1.1.

Energy distributions of continuum neutrons for both isotopes were calculated\(^{20}\) with the phase-space model, and they were given by about 30 pseudo levels in actual data-file. It is found from Fig. 2.1.2 that the DDXs of natural lithium calculated from JENDL-3 are in good agreement with the measurements of Takahashi et al.\(^{25}\).

Beryllium

The (n,2n) reaction cross section of \(^9\text{Be}\), which is important for neutron multiplication in the fusion reactors, was evaluated on the basis of available experimental data. Its 14-MeV cross section was based on the measurement of Takahashi et al.\(^{26}\) and Baba et al.\(^{27}\), and found to be by 4% smaller than that of JENDL-2. This result is consistent with the data of ENDF/B-VI. According to the analyses\(^{28}\) of the integral measurements using 14 MeV neutrons, however, it was pointed out that existing nuclear data libraries overestimated the measured neutron multiplication. This inconsistency would still remain even though the JENDL-3 data were used for the analyses. At the present time it is unlikely that the 14-MeV cross section for the \(^9\text{Be}(n,2n)\) reaction lowers.

Carbon

The total cross section of \(^12\text{C}\) below 4.8 MeV calculated\(^{29}\) using the RESCAL code, and was evaluated on the basis of available experimental data above 4.8 MeV. Three discrete
levels up to an excitation energy of 9.6 MeV were taken into account for the inelastic scattering.

Fluorine

The JENDL-2 data\(^3\) were adopted for JENDL-3 except that the total cross section above 100 keV was modified on the basis of the measurements of Larson et al.\(^3\)

Boron, Nitrogen and Oxygen

The cross sections of these nuclides were evaluated\(^3\) with the R-matrix theory, statistical model and direct reaction theory. The \((n,\alpha_0)\) and \((n,\alpha_1)\) channels were separately considered for the \(^{10}\)B\((n,\alpha)\) reaction cross section which is regarded as a standard below 100 keV.

2.2 Medium-heavy nuclide data

The nuclides between Na and Bi are regarded as medium-heavy nuclides. This region includes the nuclides which are constituents of structural materials for the fission and fusion reactors.

Theoretical Calculation

Theoretical calculations\(^3\) play the important role in the evaluation of medium-heavy nuclides. In the JENDL-3 evaluation, the nuclear-model codes mentioned in Chapter 1 were employed, together with the statistical-model code CASTHY\(^3\). The pre-equilibrium and direct reaction processes were taken into account in order to raise the reliability of the evaluated data in the MeV region. As an example, the DDXs for natural iron calculated at 14 MeV are illustrated in Fig. 2.2.1, together with the measurements of Takahashi et al.\(^2\). It is found from the figure that the DDXs calculated from JENDL-3 are in good agreement with the experimental data, whereas those of JENDL-2 underestimate the inelastic scattering above 6 MeV.

In the theoretical calculation, various parameters are required as input to the computer codes; optical-model potential parameters, level density parameters and information on nuclear level scheme. These parameters were determined on the basis of experimental data. In most cases, the formula of Gilbert and Cameron\(^3\) was employed for the level density. In the evaluation of lead, however, the formula of Ignatyuk et al.\(^3\) was used in order to consider the shell effects on the Fermi-gas parameter.

Total Cross Section

Resonance structures are found up to several MeV in the total cross sections of structural materials. It is required to reproduce these structures for the shielding calculation. Thus, the high resolution experimental data were traced by using the Neutron Data Evaluation System (NDES)\(^4\). Normalization was made\(^5\) for Cr, Fe and Ni by using the energy-average experimental data. Figure 2.2.2 shows the total cross section of natural iron averaged over 0.5 MeV.

Threshold Reaction Cross Section

The threshold-reaction cross sections are important as the nuclear data for fusion and dosimetry applications. In most cases, they were calculated with the statistical model including pre-equilibrium effects, and normalized to reliable experimental data if it was necessary.

The \((n,2n)\) reaction cross section of lead is important for neutron multiplication in the fusion blanket. A discrepancy in the measurements still exists by as much as 20% at 14 MeV. In the JENDL-3 evaluation, the cross sections were calculated by the GNASH code and normalized to 2.184 barns at 14 MeV, which is the average value of several measurements\(^4\). Figure 2.2.3 shows the evaluated results.

Helium-production cross sections are needed for the neutron damage study. Figure 2.2.4
shows the helium-production cross sections of Cr, Fe and Ni. The JENDL-3 data agree well with the experimental data.

Gamma-Ray Production Cross Section

The gamma-ray production cross sections and spectra for medium-heavy nuclides were calculated by the statistical-model codes such as GNASH and TNG, whereas those for light nuclides were mainly obtained from the experimental data on discrete gamma-ray intensities. In the nuclear-model calculation, three types of transitions were considered, i.e., E1, E2 and M1. The calculated spectra were found to be very sensitive to the discrete levels and level density parameters required as input to the codes. In the MeV region, the calculations are almost consistent with the measurements performed at the Oak Ridge Electron Linear Accelerator Laboratory, as seen in Fig. 2.2.5. At the thermal neutron energy, however, the calculated results for several nuclides disagreed with the data measured by Maeker\(^{45}\) using the Oak Ridge Tower Shielding Facility. Thus, the thermal cross sections and spectra were evaluated by adopting available experimental data. Figure 2.2.6 shows the evaluated thermal gamma-ray spectrum for iron which was based on the gamma-ray intensity data contained in Evaluated Nuclear Structure Data File (ENDSF)\(^{46}\), together with the measurements of Maeker.

2.3 Heavy nuclide data

Fifty-seven nuclides between \(^{223}\)Ra and \(^{225}\)Fm are contained in JENDL-3 as heavy nuclides.

Simultaneous Evaluation

Important cross sections of fissile and fertile nuclides were simultaneously evaluated\(^{47}\) by taking account of the ratio measurements such as \(\sigma_t(\text{\(^{239}\)Pu})/\sigma_t(\text{\(^{235}\)U})\) as well as the absolute measurements in the energy region above 50 keV. The cross sections obtained in the simultaneous evaluation are the fission cross sections of \(^{235}\)U, \(^{238}\)U, \(^{239}\)Pu, \(^{240}\)Pu and \(^{241}\)Pu and the capture cross section of \(^{238}\)U, together with the capture cross section of \(^{197}\)Au which was used as a standard. These cross sections were determined by the generalized least-squares method using the B-spline function. The measurements after 1970 were mainly considered for the spline-function fitting. Covariance data required for this method were estimated from the experimental conditions. The evaluated results of \(^{235}\)U and \(^{239}\)Pu are shown in Fig. 2.3.1.

Capture Cross Section of \(^{238}\)U

The capture cross section of \(^{238}\)U was obtained by the simultaneous evaluation mentioned above. It was found, however, that the latest measurements of Kazakov et al.\(^{48}\) were smaller than the results of the simultaneous evaluation in the energy region from 50 keV to 300 keV. The results of the benchmark tests also favored the smaller cross section. Thus, the capture cross section was re-evaluated with much weight on the data of Kazakov et al. It should be noted that the present evaluated data are by 10% smaller than the JENDL-2 data around 100 keV, as seen in Fig. 2.3.2.

Resonance Parameters for \(^{238}\)U and \(^{239}\)Pu

Large modification was made for the resonance parameters of \(^{238}\)U and \(^{239}\)Pu.

Concerning \(^{238}\)U, the resolved resonance parameters were determined on the basis of the JENDL-2 data\(^{3}\) up to 4 keV and of the analyses of Olsen\(^{49}\) up to 10 keV. As a result, the upper limit of the resolved resonance region was extended to 9.5 keV. Above 1.5 keV, smooth background cross sections were added to the capture cross sections in order to take account of the contribution from the missing p-wave resonances.

As for \(^{239}\)Pu, the resolved resonance parameters were obtained from the analyses of
Derrien and de Saussure. The upper limit of the resolved resonance region is 1 keV, while that of JENDL-2 is 598 eV.

Fission Neutron and Gamma-Ray Spectra

The prompt fission neutron spectra obtained by Madland and Nix were adopted for 233U, 234U, 235U, 238U, 239Pu and 240Pu. This type of spectrum has larger average neutron energy than the Maxwellian and Watt spectra adopted in JENDL-2. The spectra for 239Pu are shown in Fig. 2.3.3. The Maxwellian spectra were adopted for the other nuclides.

The prompt fission gamma-ray spectra and multiplicities were obtained from the measurements of Verbinski et al. for 235U, 238U and 239Pu. The non-elastic gamma-ray spectra from the reactions other than fission were calculated by the GNASH code.

Transplutonium Data

In general, the experimental data on transplutonium nuclides are very scarce, and only available are the resonance parameters, the fission and capture cross sections. Therefore, the optical and statistical model code CASTHY was unexceptionally used to evaluate the cross sections. The optical-model potential parameters for neutrons were determined so as to reproduce the total cross section of 241Am, and they were used for other transplutonium nuclides with slight modifications.

The fission cross sections were evaluated on the basis of available experimental data, because it was difficult to predict them theoretically. If no measurements are available for fission, the cross section is obtained by considering the systematics of the experimental data for the neighboring nuclides.
Fig. 2.1.1 $^7\text{Li}(n,n')\alpha$ reaction cross sections.

Fig. 2.1.2 Double differential cross sections of natural lithium at 14 MeV.
Fig. 2.2.1 Double differential cross sections of natural iron at 14 MeV.

Fig. 2.2.2 Total cross sections of natural iron averaged over 0.5 MeV.
Fig. 2.2.3 (n,2n) reaction cross section of natural lead.

Fig. 2.2.4 Helium-production cross sections of natural chromium, iron and nickel.
Fig. 2.2.5 Gamma-ray spectra from natural silicon at 13 MeV.

Fig. 2.2.6 Gamma-ray spectra from natural iron at 0.0253 eV.
Fig. 2.3.1 Fission cross sections of 235U and 239Pu.

(a) 235U(n,f), (b) 239Pu(n,f)/235U(n,f) and (c) 239Pu(n,f).
Fig. 2.3.3 Fission neutron spectra for 239Pu at 200 keV. The lower part shows the ratio of JENDL-3 to JENDL-2, which is illustrated by the solid line.
3. Conclusions

The third version of Japanese Evaluated Nuclear Data Library, JENDL-3, has been made available. Its evaluation methods were briefly described in this report.

Much effort was made to improve the reliability of high-energy data and to include the gamma-ray production data. The theoretical calculations were rigorously carried out to meet these purposes. Moreover, the simultaneous evaluation method has been established to determine important cross sections of fissile and fertile nuclides. The quality and quantity of the evaluated data have considerably increased as compared with JENDL-2. In fact, the results of the benchmark tests4,60 were found to be quite satisfactory.

The Compilation Group expects JENDL-3 to be used in the various fields of nuclear engineering, and also welcomes any comments and suggestions on the basis of experience in the practical use of JENDL-3.

Acknowledgments

The present work was performed under constant encouragement and interest of the members of JNDC. The authors would like to thank them for their invaluable help. They are very much indebted to Drs. N. Shikazono and M. Ishii of JAERI for their support during the course of this work. They also acknowledge Miss M. Mori for her aid in preparing the printouts for the appendix. Careful typewriting by Miss S. Ishibashi is much appreciated.
3. Conclusions

The third version of Japanese Evaluated Nuclear Data Library, JENDL-3, has been made available. Its evaluation methods were briefly described in this report.

Much effort was made to improve the reliability of high-energy data and to include the gamma-ray production data. The theoretical calculations were rigorously carried out to meet these purposes. Moreover, the simultaneous evaluation method has been established to determine important cross sections of fissile and fertile nuclides. The quality and quantity of the evaluated data have considerably increased as compared with JENDL-2. In fact, the results of the benchmark tests\(^{4,60}\) were found to be quite satisfactory.

The Compilation Group expects JENDL-3 to be used in the various fields of nuclear engineering, and also welcomes any comments and suggestions on the basis of experience in the practical use of JENDL-3.

Acknowledgments

The present work was performed under constant encouragement and interest of the members of JNDC. The authors would like to thank them for their invaluable help. They are very much indebted to Drs. N. Shikazono and M. Ishii of JAERI for their support during the course of this work. They also acknowledge Miss M. Mori for her aid in preparing the printouts for the appendix. Careful typewriting by Miss S. Ishibashi is much appreciated.
References

46) Evaluated Nuclear Structure Data File, a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory. (File as of Aug., 1989).
Appendix Descriptive Data for Each Nuclide

The File 1 part of JENDL-3 contains the descriptive data which give information on how the evaluation was performed for each nuclide. The descriptive data are given in this appendix, where characters are converted from capital letters to a normal style of mixture of capital and small letters.
MAT number = 3011

1-H - 1 JAERI Eval-Dec84 K. Shibata
JAERI-1261 Dist-Sep89

History
83-03 Compiled by K. Shibata for JENDL-2
Main part was carried over from JENDL-1 data evaluated by
M. Yamamoto. Details are given in ref. /1/.
83-11 MF=2 was added. The transformation matrix given for MT=2 of
MF=4.
84-12 Re-evaluated by K. Shibata (JAERI) for JENDL-3
Elastic scattering cross section was re-calculated below
100 keV.
Mu-bar was also re-calculated.
Photon-production cross section was added.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Scattering radius only

MF=3 Neutron Cross Sections
Calculated 2200m/s cross sections and res. integrals
2200m/s (b) res. integ. (b)
total 20.806 -
elastic 20.474 -
capture 0.332 0.1491

MT=1 Total cross section
Sum of elastic and capture cross sections

MT=2 Elastic scattering cross section
Below 100 keV, calculated by using effective range and
scattering length parameters of Poenitz and Whalen /2/.
Above 100 keV, the data of Hopkins and Breit /3/ were
recommended.

MT=102 Capture cross section
The data of Horsley /4/ were recommended.

MT=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Below 100 keV, isotropic in the center of mass system was
assumed. Above 100 keV, the data of Hopkins and Breit /3/
were recommended.

MF=12 Photon Production Multiplicity
MT=102
m=1.0

MF=14 Photon Angular Distribution
MT=102
Assumed to be isotropic.

References
3) Hopkins J.C. and Breit G.: Nucl. Data Table A9(1971) 137.
MAT number = 3012

1-H - 2 JAERI Eval-Jul82 K.Shibata, T.Narita, S.Igarashi
JAERI-M 83-006 Dist-Mar83

History
83-01 New evaluation for JENDL-2. Details are given in ref. /1/.
Data were compiled by the authors.
83-11 MF=2 was added.
87-05 Carried over from JENDL-2.

MF=1 General Information
Mt=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Scattering radius only

MF=3 Neutron Cross Sections
2200-m/s cross sections and calculated res. integrals.

2200-m/s res. integ.
elastic 3.389 b -
capture 0.00055 b 0.000286 b
total 3.390 b -

MT=1 Total
Based on a least-squares fit to the experimental data of
/2/-/8/.

MT=2 Elastic
elastic = total - (n,2n) - capture.

MT=16 (n,2n)
Based on a least-squares fit.
Data listed in /9/-/11/ were used.

MT=102 Capture
Below 1 keV, 1/ν form normalized to the data of
Ishikawa /12/.
Above 1 keV, evaluated on the basis of the inverse
reaction /13/.

Mt=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,16
Calculated from the three-body model based on
the Faddeev equation /14/.

MF=5 Energy Distributions of Secondary
Neutrons
MT=16 The three-body model calculation.

References
MAT number = 3021

2-He-3 JAERI Eval-Jun87 K. Shibata
Dist-Sep89

History
87-06 Newly evaluated by K. Shibata

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameters
MT=151 Scattering radius only

MF=3 Neutron Cross Sections
Calculated 2200m/s cross sections and res. integrals
2200m/s (b) res. integ (b)
total 5331.1 -
elastic 3.135 -
(n,p) 5328.0 -

MT=1 Total
Below 1 MeV, the experimental data /1/ were analyzed using
the R-matrix theory.
Above 1 MeV, based on experimental data /2-4/.

MT=2 Elastic
Below 1 MeV, the experimental data /1/ were analyzed using
the R-matrix theory.
Above 1 MeV, (elastic) = (total) - (reaction)

MT=103 (n,p)
Below 1 MeV, the experimental data /5/ were analyzed using
the R-matrix theory.
Above 1 MeV, based on experimental data /6,7/.

MT=104 (n,d)
Evaluation was performed on the basis of experimental
data /6,7/.

MT=251 MU-BAR
Calculated from the data in file-4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic
Based on the following experimental data:
1.0E-5 eV to 500 keV : isotropic in c.m.
1.0, 2.0, 3.5 MeV : Seagrave et al. /8/
5 to 20 MeV : Haesner /6/

References
2) Los Alamos Physics and Cryogenics Groups: Nucl. Phys., 12,
MAT number = 3022

2-He- 4 JAERI Eval-Feb87 K.Shibata
Dist-Sep89

History
87-02 Newly evaluated by K.Shibata

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameters
MT=151 Scattering radius only

MF=3 Cross Sections
Calculated 7200m/s cross sections
 total 0.7583 barn
 elastic 0.7583 barn

MT=1,2 Sig-t, Sig-el
Experimental data /1/-/6/ were analyzed using
the R-matrix theory.

MT=251 Mu-bar
Calculated from the data in file-4

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic
R-matrix calculations

References
MAT number = 3031

3-Li 6 JAERI Eval-Mar85 S.Chiba and K.Shibata
JAERI=M 88-164 Dist-Sep89

History
83-12 Newly evaluated by K.Shibata
84-07 Data of MF=4 (MT=16,91) and MF=5 (MT=16,91) were revised.
Comment was also modified.
85-03 Modified by S. Chiba
Data of MF=3 (MT=59,63) and MF=4 (MT=59,63) were added.
Data of MF=3 (MT=16), MF=4 (MT=2,16,53), MF=5 (MT=16)
were revised.
Pseudo-level representation was adopted for the
\(\langle n,n'\rangle \alpha \text{-d continuum} \quad (MT=51,52,54-56,58,60-62,64-86). \)

MT=1 General Information
MT=451 Descriptive data

MT=2 Resonance Parameters
MT=151 Scattering radius only.

MT=3 Cross Sections
Calculated 2200m/s cross sections and res. integrals
2200m/s \((b) \) res. integ. \((b) \)
total 94.11 -
elastic 0.735 -
capture 0.030 0.017
\(\langle n,t\rangle \) 94.03 -

MT=1 Sig-\(t \)
Below 1 MeV based on the R-matrix calculation. Sig-cap
was added to the calculated cross section.
Above 1 MeV, based on the experimental data /1/-/3/.

MT=2 Sig-el
Below 1 MeV, based on the R-matrix calculation.
Above 1 MeV, the cross section was obtained by subtracting
the reaction cross section from the total cross section.

MT=3 Non-elastic
Sum of MT=4, 16, 102, 103 and 107.

MT=4 Total inelastic
Sum of MT=51, 52, 53, 54 and 91.

MT=16 \(\langle n,2n\rangle Li5 \)
Based on the experimental data /4/ ,/5/ ,/12/.

MT=53 Sig-in 2.185 MeV
Based on the experimental data /3/ ,/6/-/9/.

MT=57 Sig-in 3.562 MeV
Based on the experimental data /10/ ,/11/.

MT=59 Sig-in 4.31 MeV
Based on a coupled-channel calculation. The symmetric
rotational model was assumed. The coupling scheme was
\(1+(\text{g.s.}) - 3+(2.185) - 2+(4.31) - 1+(5.7). \)
The potential parameters were:

\[V = 45.0766 \text{ MeV}, \quad r = 1.1875 \text{ fm}, \quad a = 0.57335 \text{ fm} \]
\[Ws = 0.4432 \text{ El} - 1.1631 \text{ MeV}, \quad ri = 1.6113 \text{ fm}, \quad ai = 0.26735 \text{ fm} \]
\[Vso = 5.5 \text{ MeV}, \quad rso = 1.15 \text{ fm}, \quad aso = 0.5 \text{ fm} \]
\[\beta_{2}(2) = 1.1395. \]

where El means the incident neutron energy in the lab.
system (MeV).

MT=63 Sig-in 5.7 MeV
Based on the CC calculation normalized to the experimental data /12/.

MT=51,52,54-56,58,60-62,64-86 (n,n')alpha-d continuum
Represented by pseudo-levels, binned in 0.5 MeV intervals.
The (n,n')alpha-d cross section was based on the measurement of Rosen and Stewart /13/.
The contribution from MT=53, 59 and 63 was subtracted so that Sig-t might be equal to the sum of partial cross sections.
The cross section for each level was calculated by the 3-body phase-space distribution with a correction of the Coulomb interaction in the final state, assuming isotropic center-of-mass distributions.

MT=102 Capture
Below 100 keV, 1/v curve normalized to the thermal data of Jurney /14/.
Above 100 keV, the inverse reaction data of Ferdinande et al. /15/ were added.

MT=103 (n,p)
Based on the experimental data /10/, /16/.

MT=105 (n,t)alpha
Below 1 MeV, R-matrix calculation.
Above 1 MeV, based on the experimental data /17/, /18/.

MT=251 Mu-bar
Calculated from the data in file4.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Below 500 keV, R-matrix calculation.
Between 500 keV and 14 MeV, based on the experimental data /1/, /6/, /19/.
Above 15 MeV, based on the CC calculation.

MT=16
Based on the experimental data /12/ at 14.2 MeV.
Angular distributions are given in the laboratory system.

MT=53
Below 4.8 MeV, assumed to be isotropic in CM.
Between 4.8 and 14 MeV, based on the experimental data /6/, /20/.
Above 15 MeV, the CC calculation.

MT=57
Assumed to be isotropic in CM.

MT=59
Based on the CC calculation.

MT=63
Assumed to be isotropic in CM.

MT=51,52,54-56,58,60-62,64-86
Assumed to be isotropic in CM.

MF=5 Energy Distribution of Secondary Neutrons

MT=16
The evaporation model was assumed. The evaporation temperature of Ref. 12 was adopted. It was extrapolated as
\[T = 0.176497 \times \sqrt{E_i} \text{ MeV}, \]
where \(E_i \) means the incident neutron energy in the lab.
system (MeV).
MF=12

Photon-Production Multiplicities

MT=57

\[m = 1.0 \]

MT=102

Based on the thermal measurement of Jurney /13/.

MF=14

Photon Angular Distributions

MT=57

Isotropic

MT=102

Assumed to be isotropic.

References

MAT number = 3032

3-Li- 7 JAERI Eval-Dec84 S.Chiba and K.Shibata
JAERI-M 88-164 Dist-Sep89

History
83-12 Newly evaluated by K.Shibata
84-07 Data of MF=4 (MT=16.91) and MF=5 (MT=16.91) were revised.
 Comment was also modified.
84-12 Modified by S. Chiba
 Data of MT=62 and 64(MF=3.4) were added. Data of MF=4
 (MT=2.51.57.16) and MF=5 (MT=16.91) were modified.
 Pseudo-level representation was adopted for the
 (n,n')alpha-t continuum (MT=52-55, 58-61, 63, 65-84).
 Comment was also modified.
87-02 Li7(n,nt) cross section was modified.
88-02 Li7(n,n2) cross section and ang. dist. were modified.
 Li7(n,n0) was also modified so as to give the total cross
 section which is equal to JENDL-3PR1. The Li7(n,n1) ang.
 dist. was also modified. Li7(n,nt) cross section was
 fixed to 87-02 version by modifying the pseudo-level
 cross sections. Comment was also modified.

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameters
MT=151 Scattering radius only.

MF=3 Cross Sections
 Calculated 2200m/s cross sections and res. integrals
 2200 m/s (b) res. integ. (b)
 total 1.015
 elastic 0.97
 capture 0.045 0.020

MT=1 Sig-t
 Below 100 keV, Sig-t = 0.97 + Sig-cap (barns).
 Above 100 keV, based on the experimental data /1/-/4/.

MT=2 Sig-el
 Below 100 keV, Sig-el = 0.97 (barns).
 Above 100 keV, Sig-el = Sig-t - Sig-react.

MT=3 Non-elastic
 Sum of MT=4, 16, 102 and 104.

MT=4 Total inelastic
 Sum of MT=51 to 84.

MT=16 (n,2n)
 Based on the experimental data /5/-/6/.

MT=51 Sig-in 0.478 MeV
 Based on the (n,n'gamma) data of Morgan /7/.

MT=57 Sig-in 4.63 MeV
 Based on the experimental data /8/-/10/.

MT=62 Sig-in 6.68 MeV
 Based on a coupled-channel calculation normalized to the
 experimental data /13,14/. The symmetric rotational model
 was assumed. The coupling scheme was
 3/2-(g.s.) - 1/2-(0.478) - 7/2-(4.63) - 5/2-(6.68).
 The potential parameters were as follows:
$V = 49.6 - 0.362\cdot E_{l}\ \text{MeV, } r = 1.28\ \text{fm, } a = 0.620\ \text{fm}$

$W_{s} = -13.2 + 1.88\cdot E_{l}\ \text{MeV, } r_{l} = 1.34\ \text{fm, } a_{l} = 0.104\ \text{fm}$

$V_{so} = 5.500\ \text{MeV, } r_{so} = 1.150\ \text{fm, } a_{so} = 0.50\ \text{fm}$

$\beta_{e}(2) = 0.952.$

where E_{l} means laboratory incident energy in MeV.

$MT = 64$ Sig-in $7.467\ \text{MeV}$

Assumed to have the same excitation function as $MT = 53$, normalized to the experimental data /13, 14/. $MT = 52-58, 61, 63, 65-84$, $(n, n')\alpha$-t continuum

Represented by pseudo-levels, binned in 0.5 MeV intervals. The cross section was obtained by subtracting the contribution of $MT = 57, 62$ and 64 from the $(n, n')\alpha$-t cross section ($MT = 205$). The cross section for each level was calculated by the 3-body phase-space distribution with a correction of the Coulomb interaction in the final state.

$MT = 102$ Capture

$1/\nu$ normalized to the thermal measurement /15/.

$MT = 104$ (n, d)

The (n, d) cross section was calculated with DWBA. Normalization was taken so that the calculated cross section might be consistent with the activation data /16/.

$MT = 205$ $(n, n')\alpha$-t

Based on the experimental data /17/-/22/.

$MT = 251$ Mu-bar

Calculated from the data in file 4.

$MF = 4$ Angular Distributions of Secondary Neutrons

$MT = 2$

Below 4 MeV, an R-matrix calculation with the parameters of Knox and Lane /23/.

Between 4 MeV and 14 MeV, based on the experimental data /8/-/24/.

Above 15 MeV, the coupled-channel calculation.

$MT = 16$

Based on the experimental data /13/ at 14.2 MeV.

Angular distributions are given in the laboratory system.

$MT = 51$

Below 4 MeV, the R-matrix calculation.

4 to 10 MeV, evaluation of Liskien /25/ was adopted.

Above 10 MeV, the coupled-channel calculation.

$MT = 57$

Below 8 MeV, the R-matrix calculation.

Between 8 MeV and 14 MeV, based on the experimental data /10/-/12/.

Above 15 MeV, the coupled-channel calculation.

$MT = 62$

At the threshold, an isotropic distribution was assumed.

Above 10 MeV, the coupled-channel calculation.

$MT = 64$

Isotropic distributions were assumed in the center-of-mass system.

$MT = 52-58, 61, 63, 65-84$

Experimental data /13/ were adopted.

$MF = 5$

Energy Distribution of Secondary Neutrons

$MT = 16$
The evaporation model was assumed, with the temperature deduced experimentally at 14.2 MeV. The temperature was extrapolated as
\[t = 0.229 - \sqrt{E_l} \text{ MeV}, \]
where \(E_l \) means laboratory incident energy in MeV.

MF=12
Photon-Production Multiplicities

MT=51

\[m=1.0 \]

MT=102

Multiplicities were obtained from ref. /26/.

MF=14
Photon Angular Distributions

MT=51

Isotropic

MT=102

Assumed to be isotropic.

References
MAT number = 3041

4-Be- 9 JAERI Eval-Aug84 K.Shibata
JAERI-M 84-226 Dist-Sep89

History
84-08 Reevaluated for JENDL-3 by K.Shibata.
Details of the evaluation are given in ref/1/.
89-01 Modified by considering neutron emission spectra

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameter
MT=151 Scattering radius only.

MF=3 Cross Sections
Calculated 2200m/s cross sections and res. integrals
2200m/s (b) res. integ. (b)
total 6.1586
elastic 6.1510
capture 0.0076 0.0034

MT=1 Sig-t
Below 1 eV, sum of sig-el and sig-cap. Between 1 eV and
830 keV, the cross section was calculated on the basis of
the R-matrix theory. The R-matrix parameters were
obtained so as to give the best fit to the experimental
data /2/,-/6/.. Above 830 keV, based on the measurements
/5/,-/7/,-/8/.

MT=2 Sig-el
Below 1 eV, sig-el = 6.151 barns.
Above 1 ev, the cross section was obtained by subtracting
the reaction cross section from the total cross section.

MT=3 Non-elastic
Sum of MT=4,16,24,102,103,105,107

MT=4 Total inelastic
Sum of MT=51 and 52.

MT=6, 7, 16, 51, 52
The shape of the inelastic scattering cross section was
obtained from the statistical model calculation. The
absolute value was determined so that a sum of the
inelastic scattering and (n,el) reaction cross sections
might be equal to the (n,2n) reaction cross section in
JENDL-2. Optical potential parameters of Agee and Rosen
/9/ were used.

\[V = 49.3 - 0.33E, \quad Ws = 5.75, \quad Vso = 5.5 \quad (\text{MeV}) \]
\[r = 1.25, \quad rs = 1.25, \quad rso = 1.25 \quad (\text{fm}) \]
\[a = 0.65, \quad b = 0.70, \quadaso = 0.65 \quad (\text{fm}) \]

Level scheme

<table>
<thead>
<tr>
<th>no</th>
<th>energy(MeV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>3/2-</td>
</tr>
<tr>
<td>1</td>
<td>1.68</td>
<td>1/2+</td>
</tr>
<tr>
<td>2</td>
<td>2.429</td>
<td>5/2-</td>
</tr>
<tr>
<td>3</td>
<td>2.800</td>
<td>1/2+</td>
</tr>
<tr>
<td>4</td>
<td>3.06</td>
<td>5/2+</td>
</tr>
<tr>
<td>5</td>
<td>4.7</td>
<td>3/2+</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>7/2-</td>
</tr>
</tbody>
</table>
7 7.9 5/2- (*)
8 11.28 9/2- (*)
9 11.81 7/2- (*)
10 13.79 5/2- (*)
11 14.396 3/2- (*)

(*) Spin-parity value was tentatively assigned.
All the excited levels except 7.9 and 13.79 MeV ones decay by emitting neutrons, contributing to the (n,2n) cross section. Within the framework of the current ENDF/B format, different MT numbers were assigned to these levels.

<table>
<thead>
<tr>
<th>MT no.</th>
<th>level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2nd+3rd+4th</td>
</tr>
<tr>
<td>7</td>
<td>6th</td>
</tr>
<tr>
<td>18</td>
<td>1st+5th+8th+9th+11th+cont</td>
</tr>
<tr>
<td>51</td>
<td>7th</td>
</tr>
<tr>
<td>52</td>
<td>10th</td>
</tr>
</tbody>
</table>

The (n,2n) cross sections is given as a sum of MT=6, 7, 16, and 24.

MT=24 (n,2n alpha)
This is the cross section for the (n,a1) reaction. The 1st excited level of He-6 decays by emitting 2 neutrons, the (n,a1) cross section was calculated with the statistical model.

Alpha potential parameters are the following /10/:

\[V = 125.0, \text{ Ws} = 15.0, \text{ Vs} = 0.0 \text{ (MeV)} \]
\[r = 1.56, r_s = 1.56, r_c = 1.22 \text{ (fm)} \]
\[a = 0.50, b = 0.11 \text{ (fm)} \]

The cross section was normalized to the data of Perroud and Sellem /11/ at 14 MeV.

MT=46, 47 Sig-in
Same as MT=6, 7, respectively.

MT=102 Capture
Thermal cross section of 7.6E-3 barn was obtained from the recommendation by Mughabghab et al. /12/

1/v curve was assumed over the whole energy range.

MT=103 (n,p)
Calculated with the statistical model.
Proton potential parameters are the following /13/:

\[V = 59.5 - 0.36e, Ws = 12.0 + 0.07E, Vs = 4.9 \text{ (MeV)} \]
\[r = 1.24, r_s = 1.36, \text{ rso} = 1.22 \text{ (fm)} \]
\[a = 0.63, b = 0.35, \text{ aso} = 0.31 \text{ (fm)} \]

The cross section was normalized to the experimental data of Augustson and Menlove /14/, who measured delayed neutrons, by taking account of the branching ratio of 49.5% for Li-9 => Be-9+ => 2a + n.

MT=104 (n,d)
Based on the experimental data of Scobel /15/.

MT=105 (n,t)
Sum of MT=740 and 741.

MT=107 (n,a0)
Based on the experimental data /10/, /11/, /16/-/19/.

MT=251 Mu-bar
Calculated from the data in file4.
MT=740, 741 (n,t0),(n,t1)
Calculated with the statistical model.
Triton potential parameters are the following /20/:
- $V = 140.0$, $W_s = 7.5$, $V_{so} = 6.0$ (MeV)
- $r = 1.20$, $r_s = 2.69$, $r_{so} = 1.20$, $r_c = 1.30$ (fm)
- $a = 0.46$, $b = 0.36$, $a_{so} = 0.7$ (fm)
Normalization was taken so that the total (n,t) cross section might be consistent with the experimental data of Boedy et al./21/.

MT=4
Angular Distributions

MT=2
1.0E-5 eV to 50 keV Isotropic in CM.
50 keV to 14 MeV Based on the experimental data /22/./27/.
14 MeV to 20 MeV Optical-model calculations using the potential parameters of Agee and Rosen /9/.

MT=6
Legendre coefficients were derived from the experimental data /27/./28/.

MT=7
Statistical model calculation

MT=16
Kalbach-Mann systematics /31/.

MT=24, 46, 47
Calculated by assuming the two-step sequential reaction /29/.

MT=5
Energy Distribution

MT=16
Evaporation plus 3-body phase space

MT=24, 46, 47
Calculated by assuming the two-step sequential reaction /29/.

MT=12
Photon-Production Multiplicities

MT=102
Based on the measurement of Jurney /30/.

MT=741
m=1.0

MT=14
Photon Angular Distributions

MT=102
Assumed to be isotropic.

MT=741
Isotropic

References
4) Bilipuch, E.G. et al.: Taken from EXFOR (1962).
MAT number = 3051

5-B - 10 JAERI Eval-Mar87 S.Chiba Dist-Sep89

History
87-03 Newly evaluated by S.Chiba (JAERI) for JENDL-3.
88-11 Data for MF=3(MT=1,2,3,4,51,103,107,113,780,781) were modified. Data for MF=12(MT=102,781), MF=13(MT=4,103), MF=14(MT=4,102,103,781) were added. Comment was also modified.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Scattering radius only.
The 2200 m/s and 14 MeV cross sections are in Table 1.

MF=3 Neutron Cross Sections
MT=1 Total
Below 1.2 MeV, sum of the partial cross sections.
1.2 to 17 MeV, based on the experimental data /1/-/9/.
Above 17 MeV, optical model calculation was normalized at
17 MeV. The spherical optical potential parameters/10/
are listed in Table 2.

MT=2 Elastic scattering
Below 10 keV, based on the R-matrix calculation. The
R-matrix parameters are mainly based on ref./11/.
10 keV to 1.2 MeV, based on the experimental data /12/-
/14/.
Above 1.2 MeV, calculated by subtracting all the other
partial cross sections from the total cross section.

MT=3 Non-elastic
Sum of MT=4, 10, 102, 103, 104, 107 and 113.

MT=4 Total inelastic
Sum of MT=51 to 89.

MT=16 (n,2n)
Based on the experimental data /15/. Cross section was
extrapolated as 0.0120*sqrt(E-Eth), where E is incident
neutron energy and Eth threshold energy in MeV. Note
that this reaction produces 1 proton and 2 alpha
particles, i.e. (n,2np)2alpha.

MT=51-59, 61, 62, 64-66 Inelastic scattering to real levels
Cross sections were calculated by the collective model
DWBA and normalized to the experimental data/16/ at 14
MeV. Calculated levels and assumed orbital angular
momentum transfers (I) are summarized in Table 3.
Data for MT=61 was normalized to the experimental
data/17/ below 6 MeV. Above 6 MeV, the deformation
parameter deduced from (p,p') reaction/18/ was used.

MT=60,63,67-89 (n,n'd)2alpha continuum
Represented by pseudo-levels, binned in 0.5 MeV intervals.
The (n,n'd)2alpha cross section was based on the
measurement of Frye+ /19/. The cross section for each
level was calculated by the 3-body phase space
distribution, assuming isotropic center-of-mass
angular distributions.

MT=102 Capture
1/v shapes was normalized to the experimental data /20/.

MT=103 (n,p)
Sum of MT = 700 to 705.

MT=104 (n,d)
Sum of MT = 720 and 721.

MT=107 (n, alpha)
Sum of MT = 780 and 781. The thermal cross section of
3837 barns was adopted /21/.

MT=113 (n,t)2 alpha
Based on the experimental data /19/, /22/-/29/

MT=251 Mu-bar
Calculated from the data in file4.

MT=700 (n,p) to the ground state of Be-10.
Below 100 keV, assumed to be 1/v. The thermal cross
section was assumed to be 3mb /30/.
From 100 keV to 500 keV, assumed to be constant.
From 500 keV to 1 MeV, linearly interpolated.
Above 1 MeV, the statistical model calculation was
normalized by a factor of 0.704. The optical potential,
level schemes and level density parameters used in the
calculation are summarized in Tables 2, 3 and 4.

MT=701-705 (n,p) to the low lying excited states of Be-10.
The statistical model calculation was normalized to the
experimental data /26/ at 14 MeV.

MT=720 (n,d)
Below 7.6 MeV, the inverse reaction cross sections /31/-
/32/ were converted by the principle of detailed
balance.
From 7.6 to 14 MeV, interpolated linearly.
Above 14 MeV, DWBA calculation with the proton pickup
mechanism was normalized to the experimental data,
/33/-/34/ at 14 MeV. The d + Be-9 and bound proton
potentials of Valkovic + /34/ were used. Depth of the
proton potential was searched by the separation energy
method. The potential parameters are listed in Table 2.

MT=721 (n,d2)
DWBA calculation with the proton pickup mechanism was
normalized to the experimental data /28/, /33/-/34/ at 14
MeV. This is really the (n,d) reaction to the second
level of Be-9.

MT=780, (n, alpha 0)
Below 10 keV, R-matrix calculation.
From 10 keV to 800 keV, based on the experimental data
/35/-/36/.
From 800 keV to 7.5 MeV, the experimental data /37/ were
normalized by a factor of 1.38 and fitted by the spline
function.
Above 7 MeV, the experimental data /26/ were adopted.

MT=781 (n, alpha 1)
Below 10 keV, the R-matrix calculation.
From 10 keV to 100 keV, based on the experimental data /36/
/38/.
From 100 keV to 2 MeV, recommendation by Liskien and
Wattecamps /39/ was adopted.
From 2 to 7.5 MeV, the experimental data /37-40/ were
normalized by a factor of 1.38 and fitted by the spline function.
Above 7 MeV, the experimental data/40/ was adopted.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Below 100 keV, the R-matrix calculation.
From 100 keV to 6 MeV, ENDF/B-V was adopted.
Above 6 MeV, based on the optical model calculation.

MT=16
Calculated by the method of Nakagawa/41/.
Angular distributions are given in the laboratory system.

MT=51-59, 61, 62, 64-66.
DWBA calculation.

MT=60, 63, 67-89
Assumed to be isotropic in CM.

MF=5 Energy Distribution of Secondary Neutrons
MT=16
The evaporation model was assumed. The evaporation temperature was assumed to be 1 MeV at 14 MeV. It was extrapolated as
\[t = 0.2673 \cdot \sqrt{E_n} \text{ MeV}, \]
where \(E_n \) means the incident neutron energy in the laboratory system in MeV.

MF=12 Photon Multiplicities
MT=102
Multiplicities were given according to a compilation of Ajzenberg et al./43/. However, they were normalized for the total secondary gamma-ray energy to match the available energy in the final state.

MT=781
Multiplicity for the 0.478-MeV gamma-ray was given as 1.0.

MF=13 Photon Production Cross Sections
MT=4
Experimental data/41,44/ were adopted for 0.4138-, 0.7183- and 1.0219-MeV gamma-rays. For 1.44- and 2.15-MeV gamma-rays, excitation function of the 0.4138-MeV gamma-ray production was normalized to the data/41/ at 14.8MeV. For 2.87-, 3.01-, 4.44- and 6.03-MeV gamma-rays, shapes of the corresponding \((n,n')\) excitation functions in MF=3 were normalized to the data/41/ at 14.8MeV.

MT=103
For 3.368- and 2.592-MeV gamma-rays, shapes of the corresponding \((n,p)\) excitation functions in MF=3 were normalized to the experimental data/41/ at 14.8MeV.

MF=14 Angular Distribution of Secondary Photons
MT=4, 102, 103, 113
Assumed to be isotropic.

References
Table 1 The 2200-m/s and 14 MeV cross sections

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s (b)</th>
<th>14 MeV (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>2.144</td>
<td>0.943</td>
</tr>
<tr>
<td>(n,n')</td>
<td></td>
<td>0.269</td>
</tr>
<tr>
<td>(n,p)</td>
<td>0.003</td>
<td>0.038</td>
</tr>
<tr>
<td>(n,d)</td>
<td></td>
<td>0.047</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
(n,t) & \quad 0.012 & \quad 0.095 \\
(n,\text{alpha}) & \quad 3.837 & \quad 0.049 \\
(n,2n) & \quad \text{---} & \quad 0.027 \\
capture & \quad 0.50 & \quad 0.000 \\
total & \quad 3.839 & \quad 1.467 \\
\end{align*}
\]

Table 2 Optical potential parameters

\[
\begin{align*}
\text{B-10} + n & /10/ \\
V & = 47.91 - 0.346 En, \quad W = 0.657 + 0.810 En, \quad V_{so}=5.5 \quad \text{(MeV)} \\
r & = 1.387, \quad rs = 1.336, \quad rso=1.15 \quad \text{(fm)} \\
a & = 0.464, \quad a_{so}=0.278 \quad \text{(fm)} \\
\text{Be-10} + p & /45/ \\
V & = 60.0 + 27.0 (N-Z)/A - 0.3 Ecm \quad \text{(MeV)} \\
W & = 0.64 Ecm + 10.0 (N-Z)/A, \quad (Ecm < 13.8 \text{ MeV}) \\
& \quad = 9.60 - 0.06 Ecm + 10.0(N-Z)/A, \quad (Ecm > 13.8 \text{ MeV}) \\
V_{so} & = 5.5 \quad \text{(MeV)} \\
r & = rs = rso = 1.15 \quad \text{(fm)} \\
a & = a_{so}=0.57, \quad a = 0.5 \quad \text{(fm)} \\
\text{Be-9} + d & /34/ \\
V & = 80.0, \quad W = 30.0, \quad V_{so}=6.0 \quad \text{(MeV)} \\
r & = 1.0, \quad r_{v}=1.0, \quad rso=1.0, \quad rc=1.3 \quad \text{(fm)} \\
a & = 1.0, \quad a_{v}=0.8, \quad a_{so}=1.0 \quad \text{(fm)}
\end{align*}
\]

Table 3 Level schemes used in the DWBA or statistical model calculation

<table>
<thead>
<tr>
<th>MT</th>
<th>Energy (MeV)</th>
<th>JP</th>
<th>l</th>
<th>MT</th>
<th>Energy (MeV)</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0</td>
<td>3+</td>
<td></td>
<td>700</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>51</td>
<td>0.7183</td>
<td>1+</td>
<td>2</td>
<td>701</td>
<td>3.368</td>
<td>2+</td>
</tr>
<tr>
<td>52</td>
<td>1.7402</td>
<td>0+</td>
<td>4</td>
<td>702</td>
<td>5.958</td>
<td>2+</td>
</tr>
<tr>
<td>53</td>
<td>2.154</td>
<td>1+</td>
<td>2</td>
<td>703</td>
<td>5.980</td>
<td>1-</td>
</tr>
<tr>
<td>54</td>
<td>3.587</td>
<td>2+</td>
<td>2</td>
<td>704</td>
<td>6.179</td>
<td>0+</td>
</tr>
<tr>
<td>55</td>
<td>4.774</td>
<td>3+</td>
<td>2</td>
<td>705</td>
<td>6.263</td>
<td>2-</td>
</tr>
<tr>
<td>56</td>
<td>5.110</td>
<td>2-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>5.163</td>
<td>2+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>5.18</td>
<td>1+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>5.920</td>
<td>2+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>6.025</td>
<td>4+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>6.127</td>
<td>3-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6.561</td>
<td>3+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>6.881</td>
<td>1-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>7.00</td>
<td>1+</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.430</td>
<td>1-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.470</td>
<td>1+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.477</td>
<td>2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.560</td>
<td>0+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.670</td>
<td>1+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.840</td>
<td>1-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.070</td>
<td>2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.650 1+
8.890 3–
8.894 2+

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Level density parameters used in the statistical model calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a(1/MeV)</td>
</tr>
<tr>
<td>B-10</td>
<td>1.196</td>
</tr>
<tr>
<td>Be-10</td>
<td>1.088</td>
</tr>
</tbody>
</table>
MAT number = 3052

5-B 11 JAERI Eval-May88 T.Fukahori
JAERI-M 89-045 Dist-Sep89

History
87-03 Newly evaluated by T.Fukahori (JAERI)
88-05 Revised by T.Fukahori (JAERI)
(n,d),(n,nd),(n,t),(n,nt) and (n,n2a) added

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Only scattering radius is given.

MF=3 Cross Sections
2200 m/sec cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>5.050 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.045 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>5.075 mb</td>
<td>2.542 mb</td>
</tr>
</tbody>
</table>

MT=1 Total cross section
Below 1 MeV, calculated with the multi-level Breit-Wigner formula and the resonance parameters taken from ref. /1/. In the range of 1 to 4 MeV, based on the R-matrix calculation which was performed by using Koehler et al.‘s parameters /2/. Above 4 MeV, smooth curve was obtained by fitting to the experimental data of Auchampaugh et al./3/.

MT=2 Elastic scattering cross section
Below 1 MeV based on the multi-level Breit-Wigner formula. In the range of 1 to 2.2 MeV, the R-matrix calculation was adopted. Above 2.2 MeV, the cross section was obtained by subtracting the reaction cross sections from the total cross section.

MT=4 Total inelastic scattering cross section
Sum of MT=51-57 and 91.

MT=16 (n,2n)B-10 cross section
Calculated with GNASH /4/. The optical potential parameters, the level density parameters and the level scheme are shown in Tables 1-3, respectively.

MT=22 (n,n'alpha)Li-7 cross section
Calculated with GNASH. The optical potential parameters, the level density parameters and the level scheme are shown in Tables 1-3, respectively.

MT=28 (n,n'p)Be-10 cross section
Based on the GNASH calculation. The parameters used are listed in Tables 1-3.

MT=29 (n,n'2alpha)t cross section
Based on (n,n't) cross section of the GNASH calculation and normalized to He production cross section of Kneff et al. /5/.

MT=32 (n,n'd)Ba-9 cross section
Based on the GNASH calculation. The parameters used are listed in Tables 1-3.

MT=33 (n,n't)Be-8 cross section
Based on the GNASH calculation. The parameters used are
listed in Tables 1-3.

MT=51 Inelastic scattering
The R-matrix calculation with Koehler et al.'s parameters was adopted below 7 MeV. Above 7 MeV, the GNASH and DWBA calculations were performed. The sum of both results was adopted, and normalized to the experimental data of Koehler et al. /2/ and Glendenning et al. /6/.

MT=52,53 Inelastic scattering
Below 7 MeV, based on the R-matrix calculation with the searched parameters. Above 7 MeV, the sum of the GNASH and DWBA calculations was adopted, and fitted to the experimental data of Glendenning et al.

MT=54-57 Inelastic scattering
The sum of results of the GNASH and DWBA calculations was normalized to the result of OKTAVIAN's DDX data /7/.

MT=91 Continuum inelastic scattering
Above 7.2 MeV, continuum levels were adopted. Based on the GNASH calculation.

MT=102 Capture cross section
Calculated from the multi-level Breit-Wigner formula. The direct capture /1/ is also considered.

MT=103 (n,p)Be-11 cross section
Based on the GNASH calculation with being normalized to the experimental data of Stepanic et al. /8/. The parameters used are shown in Tables 1-3.

MT=104 (n,d)Be-10 cross section
Based on the GNASH calculation.

MT=105 (n,t)Be-9 cross section
Based on the GNASH calculation.

MT=107 (n,alpha)Li-8 cross section
The GNASH calculation was performed, and normalized to the experimental data of Antolkovic et al. /9/ and Scobel et al. /10/. The parameters used are shown in Tables 1-3.

MT=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
The R-matrix and DWBA calculations were adopted below 8 MeV and above 8 MeV, respectively.

MT=16,22,28,29,32,33,91
Assumed to be isotropic in the center of mass system.

MT=51,52,53
Below 8 MeV based on R-matrix calculation. Above 8 MeV, based on the DWBA and the GNASH calculations.

MT=54,55,56,57
Based on the DWBA and the GNASH calculations.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,22,28,29,32,33,91
Based on the GNASH calculation.

MF=12-15 Gamma-ray Data
Based on the GNASH calculation.

Table 1 The optical potential parameters
neutron \(V = 41.8 - 0.005E \text{ MeV} \cdot \) \(r_0 = 1.40 \text{ fm} \) \(a_0 = 0.35 \text{ fm} \) ref. 12

proton \(V = 66.1 - 0.273E \text{ MeV} \cdot \) \(r_0 = 1.15 \text{ fm} \) \(a_0 = 0.57 \text{ fm} \) ref. 13

deuteron \(V = 80.0 \text{ MeV} \cdot \) \(r_0 = 1.0 \text{ fm} \) \(a_0 = 1.0 \text{ fm} \) ref. 14

triton \(V = 103.0 + 20.0E \text{ MeV} \cdot \) \(r_0 = 0.85 \text{ fm} \) \(a_0 = 0.70 \text{ fm} \) ref. 15

alpha \(V = 285.2 - 2.40E \text{ MeV} \cdot \) \(r_0 = 1.61 \text{ fm} \) \(a_0 = 0.55 \text{ fm} \) ref. 16

Note: \(E \) is incident neutron energy in lab. system.
* means that parameter is modified from original one.

Table 2 The level density parameters

<table>
<thead>
<tr>
<th>(a(1/\text{MeV}))</th>
<th>(T(\text{MeV}))</th>
<th>(\text{pair} \cdot (\text{MeV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-10</td>
<td>1.196</td>
<td>7.990</td>
</tr>
<tr>
<td>B-11</td>
<td>1.431</td>
<td>6.112</td>
</tr>
<tr>
<td>B-12</td>
<td>1.491</td>
<td>6.201</td>
</tr>
<tr>
<td>Be-8</td>
<td>1.115</td>
<td>9.187</td>
</tr>
<tr>
<td>Be-9</td>
<td>1.125</td>
<td>8.248</td>
</tr>
<tr>
<td>Be-10</td>
<td>1.088</td>
<td>10.029</td>
</tr>
<tr>
<td>Be-11</td>
<td>1.419</td>
<td>7.277</td>
</tr>
<tr>
<td>Li-7</td>
<td>1.138</td>
<td>7.197</td>
</tr>
<tr>
<td>Li-8</td>
<td>1.115</td>
<td>8.170</td>
</tr>
</tbody>
</table>

Table 3 The level scheme (energy(MeV), spin and parity) /17-18/

<table>
<thead>
<tr>
<th>gs</th>
<th>0.0</th>
<th>3+</th>
<th>0.0</th>
<th>3/2-</th>
<th>0.0</th>
<th>0+</th>
<th>0.0</th>
<th>1/2+</th>
<th>0.0</th>
<th>3/2-</th>
<th>0.0</th>
<th>2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.718</td>
<td>1+</td>
<td>2.125</td>
<td>1/2-</td>
<td>3.368</td>
<td>2+</td>
<td>0.320</td>
<td>1/2-</td>
<td>0.478</td>
<td>1/2-</td>
<td>0.981</td>
<td>1+</td>
</tr>
<tr>
<td>2</td>
<td>1.740</td>
<td>0+</td>
<td>4.445</td>
<td>5/2-</td>
<td>5.955</td>
<td>2+</td>
<td>4.630</td>
<td>7/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.154</td>
<td>1+</td>
<td>5.020</td>
<td>3/2-</td>
<td>5.960</td>
<td>1-</td>
<td>6.680</td>
<td>5/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.587</td>
<td>2+</td>
<td>6.743</td>
<td>7/2-</td>
<td>6.179</td>
<td>0+</td>
<td>7.460</td>
<td>5/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.774</td>
<td>3+</td>
<td>6.792</td>
<td>1/2+</td>
<td>6.263</td>
<td>2-</td>
<td>9.670</td>
<td>7/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.110</td>
<td>2-</td>
<td>9.120</td>
<td>7/2+</td>
<td>7.371</td>
<td>3-</td>
<td>9.850</td>
<td>3/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.164</td>
<td>2-</td>
<td>10.60</td>
<td>7/2+</td>
<td>7.452</td>
<td>2+</td>
<td>11.240</td>
<td>3/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.180</td>
<td>1+</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.926</td>
<td>2+</td>
<td>9.400</td>
<td>2+</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.025</td>
<td>4+</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6.127</td>
<td>3-</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.561</td>
<td>4-</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.873</td>
<td>1-</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7.002</td>
<td>2+</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7.430</td>
<td>2-</td>
<td>9.270</td>
<td>4-</td>
<td>9.400</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7.467 1+</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>7.479 2+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7.561 0+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7.670 1+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7.819 1-</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.070 2+</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8.700 2+</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8.889 3-</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8.895 2+</td>
<td></td>
</tr>
</tbody>
</table>

References
MAT number = 3061

6-C - 12 JAERI Eval-Aug83 K.Shibata
JAERI-M 83-221 Dist-Sep89

history
83-08 Newlly evaluated by K.Shibata
Details of the evaluation are given in ref./1/.
84-07 Data of MF=4 MT=91 were revised.
Comment was also modified.
85-02 Data of MT=2, 3, 4, 53 of MF=3 were revised above 10.45
MeV. Angular distributions for MT=52, 53 were also
revised.
88-07 Data of MT=1, 3, 4, 52 of MF=3 were revised above 8.3 MeV.

MF=1 General Information
MF=2 Resonance Parameters
MF=3 Cross Sections
MT=451 Descriptive data
MT=151 Scattering radius only.

Cross Sections
Calculated 2200m/s cross sections and res. integrals

<table>
<thead>
<tr>
<th></th>
<th>2200m/s (b)</th>
<th>res.integ. (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>4.750</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>4.746</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.0035</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

MT=1 Sig-t
Below 10 eV, sum of Sig-el and Sig-cap.
Between 10 eV and 4.8 MeV, the cross section was calcu-
lated on the basis of the R-matrix theory. The R-matrix
parameters were obtained so as to give the best fit to
the experimental data /2/-/7/.
Above 4.8 MeV, based on the measurements /8/-/10/.

MT=2 Sig-el
Below 10 eV, Sig-el = 4.746 barns.
Above 10 eV, the cross section was obtained by subtracting
the reaction cross section from the total cross section.

MT=3 Non-elastic
Sum of MT=4, 102, 103, 104 and 107.

MT=4 Total inelastic
Sum of MT=51, 52, 53 and 91.

MT=51 Sig-in 4.44 MeV level
Based on the experimental data of Morgan et al./11/.

MT=52 Sig-in 7.65 MeV level
The cross section was estimated so that the elastic scat-
tering cross section given as the difference between the
total and reaction cross sections might be consistent
with experimental data. Taking account of the measurement
/33/., the cross section was modified by multiplying a
factor of 0.5.

MT=53 Sig-in 9.63 MeV level
Based on the experimental data of Antolkovic et al./12/.
Taking account of the measurement of Ono et al./31/., the
cross section was modified by a factor of 0.8.

MT=91 (n, n')3a
Based on the experimental data of Antolkovic et al./12/.
Total \((n,n')\) cross section is the sum of MT=52, 53 and 91.

MT=102 Capture
Below 100 keV, \(1/\gamma\) curve.
Above 100 keV, the inverse reaction data of Cook /13/ were added.

MT=103 \((n,p)\)
Based on the measurement of Rimmer and Fisher /14/.

MT=104 \((n,d)\)
Calculated with DWBA.

MT=107 \((n,a)\)
Based on the experimental data /15/-/23/.

MT=251 Mu-bar
Calculated from the data in file4.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Below 10 eV, isotropic in the center-of-mass system (CM).
Between 10 eV and 4.8 MeV, calculated with the R-matrix theory.
Above 4.8 MeV, based on the experimental data /24/-/28/.

MT=51 Based on the experimental data /24/-/28/.

MT=52, 53 Based on the experimental data /31/-/32/.

MT=91 Isotropic distributions in CM were transformed into
the ones in the laboratory system. The formula is given
in ref /30/.

MF=5 Energy Distribution of Secondary Neutrons

MT=91 Evaporation spectrum.

MF=12 Photon-Production Multiplicities

MT=51 \((n,n')\)gamma
\(m=1.0\)

MT=102 \((n,\gamma)\)
Based on the measurement of Spilling et al. /29/.

MF=14 Photon Angular Distributions

MT=51 Based on the experimental data of Morgan et al. /11/.

MT=102 Assumed to be isotropic.

References
MAT number = 3071

7-N - 14 JNDC Eval-Jun89 Y.Kando(KYU) T.Murata(NAIG)+
Dist-Sep89

History
89-06 New evaluation for JENDL-3
Sub-working group on evaluation of N-14,
working group on nuclear data for fusion,
Japanese Nuclear Data Committee

In charge
Sig-t K.Shibata (JAERI)
Sig-el T.Asami (JAERI), T.Murata (NAIG)
Sig-in T.Asami, T.Murata
(n,2n),(n,p),(n,t),(n,a)
Y.Kanda(KYU)
(n,na),(n,np),(n,nd),(n,d)
T.Asami
Capture T.Asami
Photon production T.Asami

Compilation
Evaluated data were compiled by T.Fukahori.

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameters
MT=151 Scattering radius only.

MF=3 Cross Sections
Calculated 2200m/s cross sections and res. integ.
2200m/s (b) res. integ. (b)
total 11.851 -
elastic 10.007 -
capture 0.075 0.0034

MT=1 Sig-t
Below 1 eV, a sum of partial cross sections.
Above 1 eV, based on the experimental data /1,2,3,4/.

MT=2 Sig-el
Below 1 eV, sig-el = 10 barns.
Above 1 eV, the elastic scattering cross section was
obtained by subtracting the reaction cross sections from
the total cross section.

MT=4 Total inelastic
Sum of MT=51 to 91.

MT=16 (n,2n)
Based on experimental data/5/-7/.

MT=22 (n,n alpha)
Calculated with the GNASH code/8/.

MT=28 (n,np)
Calculated with the GNASH code/8/, and normalized
to the experimental data/8/.

MT=32 (n,nd)
Calculated with the GNASH code/8/.

MT=51-64,91 Sig-in
The cross sections were calculated with the statistical
model. The low-energy portion was analyzed with the resonance theory/10/. For MT=51 to 59, the direct interaction was considered by using DWBA.

The optical potential parameters used are the following:

\[V = 50.08 - 0.01E, \quad W_s = 9.0 + 0.62E, \quad V_{so} = 5.5 \text{ (MeV)} \]
\[r = 1.22, \quad r_s = 1.45, \quad r_{so} = 1.15 \text{ (fm)} \]
\[a = 0.66, \quad b = 0.13, \quad a_{so} = 0.50 \text{ (fm)} \]

level scheme

<table>
<thead>
<tr>
<th>no.</th>
<th>energy(MeV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>1 +</td>
</tr>
<tr>
<td>1.</td>
<td>2.3129</td>
<td>0 +</td>
</tr>
<tr>
<td>2.</td>
<td>3.9478</td>
<td>1 +</td>
</tr>
<tr>
<td>3.</td>
<td>4.9150</td>
<td>0 -</td>
</tr>
<tr>
<td>4.</td>
<td>5.1059</td>
<td>2 -</td>
</tr>
<tr>
<td>5.</td>
<td>5.6900</td>
<td>1 -</td>
</tr>
<tr>
<td>6.</td>
<td>5.8320</td>
<td>3 -</td>
</tr>
<tr>
<td>7.</td>
<td>6.2040</td>
<td>1 +</td>
</tr>
<tr>
<td>8.</td>
<td>6.4440</td>
<td>3 +</td>
</tr>
<tr>
<td>9.</td>
<td>7.0280</td>
<td>2 +</td>
</tr>
<tr>
<td>10.</td>
<td>7.9670</td>
<td>2 -</td>
</tr>
<tr>
<td>11.</td>
<td>8.0620</td>
<td>1 -</td>
</tr>
<tr>
<td>12.</td>
<td>8.4880</td>
<td>4 -</td>
</tr>
<tr>
<td>13.</td>
<td>8.6180</td>
<td>0 +</td>
</tr>
<tr>
<td>14.</td>
<td>8.7600</td>
<td>0 -</td>
</tr>
</tbody>
</table>

Continuum levels were assumed above 8.91 MeV.

MT=102 Capture
Calculated with the CASTHY code/12/.

MT=103 (n,p)
Below 7 MeV, based on experimental data/13/-/18/.
Above 7 MeV, based on the calculations with GNASH.

MT=104 (n,d)
Below 8.5 MeV, based on the experimental data/19/.
Above 8.5 MeV, calculated with GNASH.

MT=105 (n,t)
Below 9 MeV, based on the experimental data/20/.
Above 9 MeV, calculated with GNASH and normalized at 9 MeV.

MT=107 (n, alpha)
Based on the experimental data/17/-/20/.

MT=108 (n, 2alpha)
Calculated with GNASH and normalized at 14.1 MeV to an average value among the experimental data/21/-/22/.

MT=251 Mu-bar
Calculated from angular distributions in MF=4.

MT=780 (n, alpha0)
Based on experimental data.

MT=781 (n, alpha1)
Based on experimental data.

MT=798 (n, alpha) continuum
Based on experimental data.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
10E-5 eV to 8 MeV Calculated with the resonance theory.
8 MeV to 20 MeV Calculated with CASTHY.

MT=16, 22, 28, 32
Assumed to be isotropic in the laboratory system.

MT=51-64
Calculated with CASTHY.
For MT=51,52,59, the direct interaction was considered by using DWBA.

MT=91
Symmetric distributions in the laboratory system.

MF=5
Energy Distribution for Secondary Neutrons
MT=16,22,28,32,91
Calculated with GNASH.

MF=12
Photon Production Multiplicities
MT=102,103
Calculated with GNASH.
For MT=102, modified by using the level scheme data of N-15/23/ at thermal energy.

MF=13
Photon Production Cross Sections
MT=3
Calculated with GNASH.

MF=14
Photon Angular Distributions
MT=3,102,103
Isotropic

MF=15
Photon Energy Distributions
MT=3,102,103
Calculated with GNASH.
For MT=102, modified by using the experimental data/24/ at thermal energy.

References
3) Bilpuch E.G. et al.: Taken from EXFOR (1962).
MAT number = 3072

7-N - 15 Eval-Dec88 T.Fukahori
JAERI-M 89-047 Dist-Sep89
HISTORY
88-12 Newly Evaluated by T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive Data and Dictionary

MF=2 Resonance Parameters
MT=151 MLBW parameters are given.
Below 5.5 MeV, parameters of the multi-level Breit-Wigner
formula /1,2/ are adjusted to reproduce the experimental
data of B.Zeitnitz et al./3/.

2200 m/sec cross sections and resonance integrals
2200 m/sec Res. Integ.
total 4.590 b
elastic 4.590 b
capture 0.024 mb 0.016 mb

MF=3 Cross Sections
MT=1 Total Cross Section
Below 5.5 MeV, background cross section for MLBW
calculation is given. Above 5.5 MeV, smooth curve was
obtained by fitting to the experimental data of
B.Zeitnitz et al./3/.

MT=2 Elastic Scattering Cross Section
Below 5.5 MeV, background cross section for MLBW
calculation is given. Above 5.5 MeV, the cross section
was obtained by subtracting the reaction cross sections
from the total cross section.

MT=4 Total Inelastic scattering Cross Section
Sum of MT=51-66 and 91.
MT=16,22,28,32,33,103,104,105,107
Calculated with GNASH /4/. The optical potential
potenital parameters, the level density parameters and
the level scheme are shown in Tables 1-3, respectively.

MT=51-91 Inelastic Scattering
Calculated with CASTHY /5/. The parameters are also
shown in Tables 1-3.

MT=102 Capture Cross Section
Above 5.5 MeV, the cross section was obtained by
CASTHY calculation.

MT=251 Mu-Bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-66
Based on the CASTHY calculation.
MT=16,22,28,32,33,91
Assumed to be isotropic in the center of mass system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,32,33,91
Based on the GNASH calculation.
Gamma-ray Data

Based on the GNASH calculation.

Table 1 The Optical Potential Parameters

<table>
<thead>
<tr>
<th></th>
<th>Neutron</th>
<th>Proton</th>
<th>Deuteron</th>
<th>Triton</th>
<th>Alpha</th>
<th>Triton</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$50.08 - 0.012E$ MeV</td>
<td>$51.30 - 0.220E$ MeV</td>
<td>43.90 MeV</td>
<td>31.38 MeV</td>
<td>31.38 MeV</td>
<td>31.38 MeV</td>
</tr>
<tr>
<td>r_0</td>
<td>1.22 fm</td>
<td>1.21 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
</tr>
<tr>
<td>a_0</td>
<td>0.66 fm</td>
<td>0.61 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
</tr>
<tr>
<td>V_{sym}</td>
<td>5.50 MeV</td>
<td>$6.40 - 0.050E$ MeV</td>
<td>6.00 MeV</td>
<td>6.00 MeV</td>
<td>6.00 MeV</td>
<td>6.00 MeV</td>
</tr>
<tr>
<td>r_0</td>
<td>1.15 fm</td>
<td>1.06 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
<td>1.91 fm</td>
</tr>
<tr>
<td>a_0</td>
<td>0.50 fm</td>
<td>0.53 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
<td>0.45 fm</td>
</tr>
</tbody>
</table>

Table 2 The Level Density Parameters

<table>
<thead>
<tr>
<th></th>
<th>a(1/MeV)</th>
<th>T(MeV)</th>
<th>Pair. (MeV)</th>
<th>Ex(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-11</td>
<td>1.431</td>
<td>6.149</td>
<td>2.67</td>
<td>25.58</td>
</tr>
<tr>
<td>B-12</td>
<td>1.491</td>
<td>6.201</td>
<td>0.00</td>
<td>26.78</td>
</tr>
<tr>
<td>C-12</td>
<td>1.700</td>
<td>5.971</td>
<td>5.60</td>
<td>37.91</td>
</tr>
<tr>
<td>C-13</td>
<td>1.846</td>
<td>5.382</td>
<td>2.80</td>
<td>30.57</td>
</tr>
<tr>
<td>C-14</td>
<td>1.988</td>
<td>4.887</td>
<td>5.00</td>
<td>28.94</td>
</tr>
<tr>
<td>C-15</td>
<td>1.988</td>
<td>4.600</td>
<td>0.00</td>
<td>19.28</td>
</tr>
<tr>
<td>N-14</td>
<td>1.600</td>
<td>5.000</td>
<td>0.00</td>
<td>10.00</td>
</tr>
<tr>
<td>N-15</td>
<td>2.130</td>
<td>3.758</td>
<td>2.20</td>
<td>10.07</td>
</tr>
<tr>
<td>N-16</td>
<td>2.130</td>
<td>4.547</td>
<td>0.00</td>
<td>22.11</td>
</tr>
</tbody>
</table>

Table 3 The Level Scheme (Energy(MeV), Spin and Parity) /2,8,9/

<table>
<thead>
<tr>
<th></th>
<th>N-14</th>
<th>N-15</th>
<th>N-16</th>
<th>C-15</th>
<th>C-14</th>
<th>C-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs 0.0</td>
<td>1+</td>
<td>0.0</td>
<td>1/2-</td>
<td>0.0</td>
<td>2-</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>2.313</td>
<td>0+</td>
<td>0.720</td>
<td>0.120</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>2</td>
<td>3.984</td>
<td>1+</td>
<td>5.290</td>
<td>1/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>3</td>
<td>4.915</td>
<td>0-</td>
<td>6.324</td>
<td>3/2-</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>4</td>
<td>5.106</td>
<td>2-</td>
<td>7.155</td>
<td>5/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>5</td>
<td>5.691</td>
<td>1-</td>
<td>7.301</td>
<td>3/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>6</td>
<td>6.834</td>
<td>2-</td>
<td>7.967</td>
<td>7/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>7</td>
<td>6.204</td>
<td>1+</td>
<td>8.313</td>
<td>1/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>8</td>
<td>6.446</td>
<td>3+</td>
<td>8.571</td>
<td>3/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>9</td>
<td>7.029</td>
<td>2+</td>
<td>9.050</td>
<td>1/2+</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>10</td>
<td>9.152</td>
<td>3/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9.155</td>
<td>5/2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.225</td>
<td>1/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9.758</td>
<td>5/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9.829</td>
<td>7/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9.928</td>
<td>3/2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C-12</th>
<th>B-11</th>
<th>B-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>1</td>
<td>2.125</td>
<td>1/2-</td>
</tr>
<tr>
<td>2</td>
<td>4.445</td>
<td>5/2+</td>
</tr>
<tr>
<td>3</td>
<td>5.020</td>
<td>3/2-</td>
</tr>
<tr>
<td>4</td>
<td>6.743</td>
<td>7/2-</td>
</tr>
<tr>
<td>5</td>
<td>8.793</td>
<td>1/2+</td>
</tr>
</tbody>
</table>
REFERENCES
1) Mughabghab S.F. et al.: 'Neutron Cross Sections' Vol.1
3) Zeitnitz B. et al.: KFK-1443 (1971)
4) Young P.G. et al.: GNASH, A preequilibrium Statistical
 Nuclear-Model Code for Calculation of Cross Section and
7) Becchetti Jr. F.D. and Greenlees G.W.: 'Polarization
 Phenomena in Nuclear Reactions', The University of Wisconsin
 Press (1971)
MAT number = 3081

8-0 - 16 JNDC Eval-Dec83 Y.Kanda(KYU) T.Murata(NAIG)+
Dist-Sep89

History
83-12 New evaluation for JENDL-3
Sub-working group on evaluation of 0-16,
working group on nuclear data for fusion.
Japanese Nuclear Data Committee
In charge
Sig-t Y.Nakajima K.Shibata(JAERI)
Sig-el T.Murata(NAIG)
Sig-in S.Tanaka(JAERI)
Capture T.Asami(JAERI)
(n,2n),(n,p),(n,d),(n,alpha) Y.Kanda(KYU)

Compilation
Evaluated data were compiled by K.Shibata.

84-07 Data of MF=4 (MT=16,91) were revised.
Comment was also modified.
87-01 Data of MF=3 (MT=51-64,67), MF=4 (MT=51-55) and MF=5 (MT=16)
were modified (S.Chiba, JAERI). Comment was also modified.

MF=1 General Information
MT=451 Descriptive data

MF=2 Resonance Parameters
MT=151 Scattering radius only.

MF=3 Cross Sections
Calculated 2200m/s cross sections and res. integrals
2200m/s (b) res. integ. (b)
total 3.780
elastic 3.780
capture 1.9E-4 8.56E-5

MT=1 Sig-t
Below 3 MeV, the total cross section was calculated
with the R-matrix theory.
Above 3 MeV, based on the experimental data of
Cierjacks et al./1/.

MT=2 Sig-el
Below 3 MeV, calculated with the R-matrix theory.
Above 3 MeV, the elastic scattering cross section was
obtained by subtracting the reaction cross sections from
the total cross section.

MT=3 Non-elastic
Sum of MT=4, 16, 102, 103, 104 and 107.

MT=4 Total inelastic
Sum of MT=51 to 91.

MT=16 (n,2n)
Based on experimental data/2/.

MT=51-79,91 Sig-in
Shape of the excitation functions was calculated with
the statistical model.
The optical potential parameters are the following:
V = 48.25 - 0.053E, Ws = 3.0 + 0.25E, Vso = 5.5 (MeV)
r = 1.255 , rs = 1.352 , rso = 1.15 (fm)
\[a = 0.536 \quad , \quad b = 0.205 \quad , \quad a_{so} = 0.50 \ (\text{fm}) \]

level scheme

\begin{center}
\begin{tabular}{lll}
\text{no} & \text{energy(MeV)} & \text{spin-parity} \\
g.s. & 0.0 & 0+ \\
1 & 6.0490 & 0+ \\
2 & 6.1300 & 3- \\
3 & 6.9170 & 2+ \\
4 & 7.1168 & 1- \\
5 & 8.8720 & 2- \\
6 & 9.6300 & 1- \\
7 & 9.8470 & 2+ \\
8 & 10.360 & 4+ \\
9 & 10.960 & 0- \\
10 & 11.080 & 3+ \\
11 & 11.100 & 4+ \\
12 & 11.520 & 2+ \\
13 & 11.600 & 3- \\
14 & 12.050 & 0+ \\
15 & 12.440 & 1- \\
16 & 12.530 & 2- \\
17 & 12.800 & 0- \\
18 & 12.970 & 2- \\
19 & 13.020 & 2+ \\
20 & 13.090 & 1- \\
21 & 13.120 & 3- \\
22 & 13.260 & 3- \\
23 & 13.660 & 1+ \\
24 & 13.870 & 4+ \\
25 & 13.980 & 2- \\
26 & 14.030 & 0+ \\
27 & 14.100 & 3- \\
28 & 14.300 & 4+ \\
29 & 14.400 & 5+ \\
\end{tabular}
\end{center}

Continuum levels were assumed above 14.4 MeV.

Constant temperature of 3.4 MeV was used.

For the inelastic scattering to the second and third levels, the \((n,n')\)gamma data of Nordborg et al. /3/ and Lundberg et al. /4/ below 10 MeV.

For MT=51 to 55, the 14 MeV cross sections were normalized to the experimental data /5/-/8/.

Cross sections for MT=56-64 and 67 were normalized to reproduce the DDX data at 14 MeV /8/-/9/.

MT=102 Capture

1/\(v\) curve normalized to the recommended value in the 4th edition of BNL-325 /10/ at 0.0253 eV.

MT=103 \((n,p)\)

Based on experimental data /11/-/14/.

MT=104 \((n,d)\)

Based on the evaluation of Foster, Jr. and Young /15/.

MT=107 \((n,\alpha)\)

Based on experimental data /3/.,/16/-/21/.

MT=251 Mu-bar

Calculated from angular distributions in MF=4.

MF=4 Angular Distributions of Secondary Neutrons

MT=2

10 e-5 eV to 3 MeV R-matrix calculation
3 MeV to 5 MeV Based on the experimental data of Lister and Sayres /22/.
5 MeV to 9 MeV Multi-level formula/23/.
9 MeV to 15 MeV Based on the experimental data of Glendenin et al. /24/
15 MeV to 20 MeV Calculated with the spherical optical model. The potential parameters are the same as those given in Sig-in.

MT=16
Assumed to be isotropic in the laboratory system.

MT=51-79
Calculated with the statistical model. For MT=51, 52 and 55, experimental data/8/ at 14.2 MeV. For MT=53 and 54 ENDF/B-IV was adopted.

MT=91
Isotropic distributions in the center of mass system were transformed into the ones in the laboratory system. The formula is given in ref./25/.

MF=5
Energy Distribution for Secondary Neutrons

MT=16
Evaporation spectrum was assumed. Constant temperature was deduced from the experimental data of Chiba et al. /26/ for Li-7 according to the sqrt(E/a) law.

MT=91
Evaporation spectrum was assumed. Constant temperature of 3.4 MeV was determined from the start case plotting.

MF=12
Photon Production Multiplicities

MT=52-68,102,103,107
Calculated with GNASH/27/.

MF=13
Photon Production Cross Sections

MT=3
Calculated with GNASH/27/.

MF=14
Photon Angular Distributions

MT=3,52-68,102,103,107
Isotropic

MF=15
Photon Energy Distributions

MT=3,102,103,107
Calculated with GNASH/27/.

References
MAT number = 3091

9-F - 19 JAERI Eval-Jul89 T.Sugi
Dist-Sep89

History
83-11 Evaluation for JENDL-2 was performed by Sugi and Nishimura (JAERI)/1/.
89-07 Resonance parameters and total cross section were re-evaluated for JENDL-3.
89-07 Compiled by T. Narita (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters: 1.0E-5 eV - 100 keV
The multi-level Breit-Wigner formula was used.
Res. energies and Gam-n: The first two levels were based on Johnson et al. /2/.
 The 3rd and 4th levels were adjusted so as to fit to the experimental data of
 Larson et al. /3/.
Gam-g: The first three levels were based on Macklin and Winters /4/.
 The 4th level was adjusted so as to fit to the recommended thermal capture cross section of
 Mughabghab et al. /5/.
Scattering radius: 5.525 fm

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.643 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>9.6 milli-b</td>
<td>19.5 milli-b</td>
</tr>
<tr>
<td>total</td>
<td>3.652 b</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 100 keV: No background.
Above 100 keV: Based on the experimental data of Larson et al. /3/.

MT=2 Elastic scattering cross section
Derived by subtracting the nonelastic cross section from the total cross section.

MT=4 Total inelastic scattering cross section
Sum of MT=51-58.91:

MT=16 (n,2n) cross section
Calculated by fitting the Perlstein's function /6/ to the experimental data.

MT=22 (n,n' alpha) and (n,alpha n') cross sections
Calculated with a statistical model by using Perlstein's empirical formula.

MT=28 (n,n' p) and (n,p n') cross sections
Calculated with a statistical model by using Perlstein's empirical formula.

MT=51-56 Inelastic scattering cross sections
Up to 1MeV: Based on the experimental data of Broder et al. /7/.
1MeV - 5.5MeV: Calculated with the Hauser-Feshbach method (ELIESE-3 /8/)) taking into account (n,alpha) and (n,p)
as competing processes. The level scheme of F-19, N-16
0-18 was taken from Ajzenberg-Selove /9/, /10/.
The optical potential parameters are:
\[\begin{align*}
V &= 51.56 - 1.492+E \text{ (MeV)}, \\
W_s &= 11.82 \text{ (MeV)}, \\
V_{so} &= 10.0 \text{ (MeV)}, \\
r_0 &= r_s = r_{so} = 1.31 \text{ (fm)}, \\
a &= a_{so} = 0.68 \text{ (fm)}, \\
b &= 0.47 \text{ (fm)}.
\end{align*} \]
The level density parameter of 3.609 (1/MeV)/11/ and
pairing energy of 2.52 MeV /12/ were used.

MT=91 Inelastic to continuum
Calculated with ELIESE-3.

MT=102 Capture cross section
Below 100 keV : No background.
100 keV - 1.87 MeV : Based on the experimental data of
Gabbard et al. /13/.
1.87 MeV - 20 MeV : Assumed to decrease with 1/v law.

MT=103 (n,p) cross section
Up to 9 MeV : Based on the experimental data of Bass et al.
/14/.
9 MeV - 20 MeV : Calculated with the statistical model by
using Pearlstein's empirical formula.

MT=104 (n,d) cross section
Calculated with the Pearlstein's empirical formula /15/.
The cross section was normalized to 39.5 milli-barns at
14.4 MeV.

MT=105 (n,t) cross section
Calculated with the Pearlstein's empirical formula /15/.
The cross section was normalized to 15.0 milli-barns at
14.4 MeV.

MT=107 (n,\alpha) cross section
Below 9 MeV. Based on the following experimental data:
Up to 4 MeV : Davis et al. /16/.
4 MeV - 5.5 MeV : Smith et al. /17/.
5.5 MeV - 9 MeV : Bass et al. /14/.
Above 9 MeV. Calculated with the Pearlstein's formula.

MT=251 Average cosine in the laboratory system
Derived from the angular distributions.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with optical model.

MT=16,22,28
Assumed to be isotropic in the laboratory system.

MT=51-56
Assumed to be isotropic in the center-of-mass system.

MT=91
Assumed to be isotropic in the center-of-mass system and
transformed into the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91
Evaporation spectra were given.

References
1) Sugi T. and Nishimura K.: JAERI-M 7253 (1977), English trans-
lation: ORNL-TR-4605.
11) Abdelmalek N.N. and Stavinsky V.S.: Nucl. Phys. 58, 601 (1964)
14) Bass R. et al.: EANDC(E) 66-64.
MAT number = 3111

11-Na-23 SRI Eval-Mar87 H. Yamakoshi (Ship Research Inst.)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
89-08 The data for MF=15, MT=102 modified.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 350 keV.
Parameters were mainly taken from the recommended data of BNL
/1/, and the data for some levels were modified so that the
calculated total cross sections for Na-23 were fitted to the
experimental data.
The scattering radius was assumed to be 5.2 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.024</td>
</tr>
<tr>
<td>capture</td>
<td>0.531</td>
</tr>
<tr>
<td>total</td>
<td>3.555</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 350 keV, background cross section was given for
the total and elastic scattering cross sections.
The cross-section data are reproduced from the evaluated
resolved resonance parameters with MLBW formula.
Above 350 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
In the energies between 350 keV and 14 MeV, evaluated based on
the experimental data of Cierjacks/2/ and tracing their fine
structures. Above 14 MeV, based on the experimental data of
Langsford/3/, Stoler/4/ and Larson/5/.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-77, 91 inelastic scattering
Below 5 MeV, the inelastic scattering cross section to the 1st
level (MT=51) was evaluated based on the experimental data of
Towle and Gilboy/5/, Chrien and Smith/7/, and Lind and Dat/8/.
Below 5 MeV, the inelastic scattering cross section to the 2nd
and 3rd level (MT=52, 53) was evaluated based on the experimental
data of Freeman and Montague/9/, Lind and Dat/8/, and Towle and
Owens/10/.
For the inelastic scattering cross sections to the
1st to 3rd levels above 5 MeV and the other inelastic scattering
data, optical and statistical model calculations were made with
the CASTHY code/11/, taking account of the contribution from the
competing processes. The direct component was calculated with
the DWUCK code/12/ for five lowest levels. The deformation
parameters were estimated based on a weak coupling model.
The optical potential parameters used are:

\[V = 46.0 - 0.25\cdot En, \quad V_{so} = 6.0 \quad (\text{MeV}) \]

\[W_s = 14.0 - 0.2\cdot En, \quad W_v = 0.125\cdot En \quad (\text{MeV}) \]

\[r = 1.286, \quad r_s = 1.39, \quad r_{so} = 1.07 \quad (\text{fm}) \]

\[a = 0.62, \quad a_{so} = 0.62, \quad b = 0.7 \quad (\text{fm}) \]

The level data used in the above two calculations were taken from ref. 13 as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.4399</td>
<td>5/2+</td>
</tr>
<tr>
<td>52</td>
<td>2.0764</td>
<td>7/2+</td>
</tr>
<tr>
<td>53</td>
<td>2.3909</td>
<td>1/2+</td>
</tr>
<tr>
<td>54</td>
<td>2.6398</td>
<td>1/2-</td>
</tr>
<tr>
<td>55</td>
<td>2.7037</td>
<td>9/2+</td>
</tr>
<tr>
<td>56</td>
<td>2.9824</td>
<td>3/2+</td>
</tr>
<tr>
<td>57</td>
<td>3.6783</td>
<td>3/2-</td>
</tr>
<tr>
<td>58</td>
<td>3.8480</td>
<td>5/2-</td>
</tr>
<tr>
<td>59</td>
<td>3.9147</td>
<td>5/2+</td>
</tr>
<tr>
<td>60</td>
<td>4.4320</td>
<td>1/2+</td>
</tr>
<tr>
<td>61</td>
<td>4.7756</td>
<td>7/2+</td>
</tr>
<tr>
<td>62</td>
<td>5.3800</td>
<td>3/2+</td>
</tr>
<tr>
<td>63</td>
<td>5.5360</td>
<td>11/2+</td>
</tr>
<tr>
<td>64</td>
<td>5.7410</td>
<td>3/2+</td>
</tr>
<tr>
<td>65</td>
<td>5.7660</td>
<td>5/2+</td>
</tr>
<tr>
<td>66</td>
<td>5.9310</td>
<td>1/2-</td>
</tr>
<tr>
<td>67</td>
<td>5.9670</td>
<td>3/2-</td>
</tr>
<tr>
<td>68</td>
<td>6.0430</td>
<td>1/2-</td>
</tr>
<tr>
<td>69</td>
<td>6.1170</td>
<td>11/2+</td>
</tr>
<tr>
<td>70</td>
<td>6.1910</td>
<td>11/2+</td>
</tr>
<tr>
<td>71</td>
<td>6.2360</td>
<td>13/2+</td>
</tr>
<tr>
<td>72</td>
<td>6.3080</td>
<td>1/2+</td>
</tr>
<tr>
<td>73</td>
<td>6.3506</td>
<td>9/2-</td>
</tr>
<tr>
<td>74</td>
<td>6.5770</td>
<td>5/2+</td>
</tr>
<tr>
<td>75</td>
<td>6.6170</td>
<td>9/2+</td>
</tr>
<tr>
<td>76</td>
<td>6.7340</td>
<td>3/2+</td>
</tr>
<tr>
<td>77</td>
<td>6.8680</td>
<td>5/2+</td>
</tr>
</tbody>
</table>

Levels above 6.9 MeV were assumed to be overlapping.

MT=16
(n,2n)
Mainly based on the experimental data of Adamski/14/.

MT=22
(n,na)
Calculated with the GNASH code/15/ and normalized to the experimental data of Woolfer/16/ at 16.4 MeV.

MT=28
(n,np)
Calculated with the GNASH code/15/.

MT=102
Capture
Calculated with the CASTHY code/11/ and normalized to 0.3 mb at 500 keV.

MT=103
(n,p)
Below 10 MeV, based on the experimental data/17,18/.
Above 10 MeV, calculated with the GNASH code/15/ and normalized to connect smoothly with the data below 10 MeV.

MT=107
(n,a)
Below 12 MeV, based on the experimental data/17,18/.
Above 12 MeV, calculated with the GNASH code/15/ and normalized to connect smoothly with the data below 10 MeV.

MT=251
Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code/11/.
MT=51,77
 Calculated with the CASTHY code/11/ and the DWUCK code/7/.
MT=91
 Calculated with the CASTHY code/11/.
MT=16, 22, 28
 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
 Calculated with the GNASH code/15/.

MF=12 Photon Production Multiplicities
MT=102
 Calculated with the GNASH code/15/ and modified at
 thermal based on the experimental data of Maerker/19/.

MF=13 Photon Production Cross Sections
MT=3
 Calculated with the GNASH code/15/.

MF=14 Photon Angular Distributions
MT=3, 102
 Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MT=3
 Calculated with the GNASH code/15/.
MT=102
 Calculated with the GNASH code/15/ and modified at
 thermal based on the experimental data of Maerker/19/.

References
1) Mughabghab S.F. and Garber D.I. : "Neutron Cross Sections",
13) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3120

12-Mg- 0 DEC, NEDAC Eval-Mar87 M. Hatchya(DEC), T. Asami(NEDAC)
 Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T. Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 520 keV.
 The data are constructed from the evaluated resonance parameters for Mg-24, -25 and -26, considering their
 abundances in the Mg element/1/.

<table>
<thead>
<tr>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.53</td>
</tr>
<tr>
<td>capture</td>
<td>0.063</td>
</tr>
<tr>
<td>total</td>
<td>3.59</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 520 keV, zero background cross section was given.
Above 520 keV, the total and partial cross sections were given pointwise.
All the cross-section data were constructed from the evaluated ones for three stable isotopes of Mg considering their
abundances in the Mg element.

MT=1 Total
 Constructed from the evaluated data for stable isotopes of Mg.

MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-90, 91 Inelastic scattering
 Constructed from the evaluated data for stable isotopes of Mg
 as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Mg-24</th>
<th>Mg-25</th>
<th>Mg-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>0.5851</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0.9748</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>1.3686</td>
<td>51</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>1.6118</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>1.8087</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>1.9647</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>2.5638</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>58</td>
<td>2.7377</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>2.8011</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>2.9384</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>3.4052</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>62</td>
<td>3.4137</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>63</td>
<td>3.5880</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>3.8078</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>3.9405</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>66</td>
<td>3.9707</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>67</td>
<td>4.0596</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.1200</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>4.2384</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.2770</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>4.3180</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.3320</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>4.3500</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.3584</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>4.7114</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.7220</td>
<td>66-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>4.8340</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.9000</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>4.9700</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5.2361</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>5.2910</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>5.4740</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>5.6900</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>6.0103</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>6.4322</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>7.3479</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>7.5530</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>7.6162</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>7.7472</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>7.8120</td>
<td>61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levels above 7.98 MeV were assumed to be overlapping.

MT=16, 22, 28, 102, 103 and 107 \((n,2n)\), \((n,\text{na})\), \((n,\text{np})\),
\((n,\text{gamma})\), \((n,p)\) and \((n,a)\)

- Constructed from the evaluated data for three stable isotopes of Mg, taking account of their abundances in the Mg element.
- The calculated capture cross sections were normalized so as to reproduce the element Mg data of 72 mb at 500 keV/2/.

MT=251 Mu-bar
- Constructed from the evaluated data for stable isotopes of Mg, taking account of their abundances in the Mg element.

MT=4 Angular Distributions of Secondary Neutrons

MT=2
- Constructed from the evaluated data for stable isotopes of Mg, taking account of their abundances in the Mg element.

MT=51-90, 91
- Constructed with the evaluated data for stable isotopes of Mg, taking account of their abundances in the Mg element.

MT=16, 22, 28
- Isotropic in the laboratory system.

MT=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
- Constructed from the evaluated data for stable isotopes of Mg, taking account of their abundances in the Mg element.

MT=12 Photon Production Multiplicities

MT=102
- Calculated with the GNASH code/3/.

MT=13 Photon Production Cross Sections

MT=3
Calculated with the GNASH code/3/.

MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MT=3
Calculated with the GNASH code/3/.

MT=102
Calculated with the GNASH code/3/, and modified at thermal energy by using the experimental ones of Spilling/4/.

References
MAT number = 3121

12-Mg- 24 DEC, NEDAC Eval-Mar87 M.Hatchya(DEC), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters

Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 520 keV.
Parameters were taken from the recommended data of BNL/1/ and
the data for a negative resonance were added so as to reproduce
the recommended thermal cross sections for capture and scattering/1/.
The data for some levels were modified so that the calculated
total cross sections of the element Mg were fitted to the
experimental data of Hibdon/2/ and Singh/3/.
The scattering radius was assumed to be 5.4 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.050</td>
<td>0.0312</td>
</tr>
<tr>
<td>total</td>
<td>3.80</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 520 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated resolved
resonance parameters with MLBW formula.
Above 520 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/4/.
The optical potential parameters used are:

- $V = 49.68$, $V_{so} = 7.12$ (MeV)
- $W_S = 7.76 - 0.5 \cdot E_n$, $W_T = 0$ (MeV)
- $r = 1.17$, $r_s = 1.09$, $r_{so} = 1.17$ (fm)
- $a = 0.6$, $a_{so} = 0.6$, $b = 0.69$ (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51=61, 91 Inelastic scattering
Calculated with CASTHY /4/, taking account of the contribution
from the competing processes. The direct component was
calculated with the DWUCK/5/.
The calculated data for the first level were normalized at 12 MeV to the experimental data/6/.
The level data used in the above two calculations were taken
from ref./7/ as follows:

<table>
<thead>
<tr>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>51</td>
<td>1.3686 2+</td>
</tr>
</tbody>
</table>
Levels above 10.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/8/ using the above optical model parameters.
The (n,2n) cross sections were modified so as to fit to the experimental data.

MT=102 Capture
Calculated with the CASTHY code/4/ and normalized to 1.8 mb at 30 keV.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/4/.

MT=51-61
Calculated with the CASTHY code/4/ and the DWUCK code/5/.

MT=91
Calculated with the CASTHY code/4/.

MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/8/.

References
7) ENDF/E (Evaluated Nuclear Structure Data File)
MAT number = 3122

12-Mg-25 DEC.NEDAC Eval-Mar87 M.Hatchya(DEC), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 220 keV.
Parameters were taken from the recommended data of BNL/1/ and modified for some levels so as to reproduce the experimental total cross section of the element Mg.
The data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.
The data for some levels were modified so that the calculated total cross sections of the element Mg were fitted to the experimental data of Hibdon/2/ and Singh/3/.
The scattering radius was assumed to be 4.9 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

\[
\begin{align*}
\text{elastic} & : 2.60 \\
\text{capture} & : 0.180 \\
\text{total} & : 2.78
\end{align*}
\]

MF=3 Neutron Cross Sections
Below 220 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula.
Above 220 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/2/.
The optical potential parameters used are:
\[V = 49.68, \quad V_{so} = 7.12 \quad (\text{MeV}) \]
\[W_s = 7.76 - 0.5\cdot E_n, \quad W_v = 0 \quad (\text{MeV}) \]
\[r = 1.17, \quad r_s = 1.09, \quad r_{so} = 1.17 \quad (\text{fm}) \]
\[a = 0.6, \quad a_{so} = 0.6, \quad b = 0.69 \quad (\text{fm}) \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4.5 67, 91 inelastic scattering
Calculated with CASTHY/2/, taking account of the contribution from the competing processes. The direct component was calculated with the DWUCK/3/.
The level data used in the above two calculations were taken from ref./4/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5/2+</td>
<td></td>
</tr>
</tbody>
</table>
51 0.5851 1/2+
52 0.9748 3/2+
53 1.6118 7/2+
54 1.9647 5/2+
55 2.5638 1/2+
56 2.7377 7/2+
57 2.8011 3/2+
58 3.4052 9/2+
59 3.4137 3/2-
60 3.9078 5/2+
61 3.9707 7/2-
62 4.0596 9/2+
63 4.2770 1/2-
64 4.3694 3/2+
65 4.7114 9/2+
66 4.7220 1/2-
67 6.0122 7/2+

Levels above 8.0 MeV were assumed to be overlapping.

MT=10, 22, 28, 103, 107 (n,2n), (n,na), (n,na), (n,na), (n,a).
Calculated with the GNASH code/5/ using the above optical
model parameters.
The (n,p) cross sections were normalized to the experimental
data at 14 MeV of Bormann/6/.

MT=107 Capture
Calculated with the CASTHY code/2/ and normalized to 4.7 mb
at 30 keV.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.

MT=51--67
Calculated with the CASTHY code/2/ and the DWUCK code/3/.

MT=81
Calculated with the CASTHY code/2/.

MT=16, 22, 28
Isotopic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/5/.

References
6) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3123

12-Mg 26 DEC.NEDAC Eval-Mar87 M.Hatchya(DEC), T.Asami(NEDAC) Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 450 keV.
Parameters were taken from the recommended data of BNL/1/ and the data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.
The scattering radius was assumed to be 4.3 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.83</td>
<td>0.038</td>
</tr>
<tr>
<td>capture</td>
<td></td>
<td>0.0190</td>
</tr>
<tr>
<td>total</td>
<td>2.87</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 450 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula.
Above 450 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/2/. The optical potential parameters used are:

\[V = 40.68, \quad V_{so} = 7.12 \quad (\text{MeV}) \]

\[W_s = 7.76 - 0.5\times En, \quad W_v = 0 \quad (\text{MeV}) \]

\[r = 1.17, \quad r_s = 1.09, \quad r_{so} = 1.17 \quad (\text{fm}) \]

\[a = 0.6, \quad a_{so} = 0.6, \quad b = 0.69 \quad (\text{fm}) \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4. 51-63. 91 Inelastic scattering
Calculated with CASTHY /2/, taking account of the contribution from the competing processes. The direct component was calculated with the DWUCK code/3/.
The level data used in the above two calculations were taken from ref./4/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1.8087</td>
<td>2+</td>
</tr>
<tr>
<td>52</td>
<td>2.9384</td>
<td>2+</td>
</tr>
<tr>
<td>53</td>
<td>3.5880</td>
<td>0+</td>
</tr>
<tr>
<td>54</td>
<td>3.9406</td>
<td>3+</td>
</tr>
<tr>
<td>55</td>
<td>4.3180</td>
<td>4+</td>
</tr>
</tbody>
</table>
2+ 4.3320
3+ 4.3500
2+ 4.8340
4+ 4.9000
0+ 4.9720
2+ 5.2910
4+ 5.4740
1+ 5.6900

Levels above 8.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/6/ using the above optical model parameters
The (n,a) cross sections were normalized to the experimental data of Bormann/5/ at 14 MeV.

MT=102 Capture
Calculated with the CASTHY code/2/ and normalized to 1.7 mb at 30 keV.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.

MT=51-63
Calculated with the CASTHY code/2/ and the DWUCK code/3/.

MT=91
Calculated with the CASTHY code/2/.

MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 81
Calculated with the GNASH code/6/.

References
4) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3131

13-Al. 27 TIT. JAERI Eval-Mar88 Y. Harima, H. Kitazawa, T. Fukahori
Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Harima,
Kitazawa (Tokyo Institute of Tech.) and Fukahori (JAERI).
Details are given in ref. /1/.
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters:
MT=151

Resolved resonances: 1.0E-5 eV - 0.21 MeV
The resonance parameters were searched, using MLBW formula /2/.
An initial guess of the parameters search was taken from ref. /3/.

Calculated 2200-m/sec cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>1.414 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.231 b</td>
<td>0.123 b</td>
</tr>
<tr>
<td>total</td>
<td>1.645 b</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section

Between 0.21 and 20 MeV, the cross sections were obtained by
an eye-guide so as to follow the experimental data.

MT=2 Elastic scattering cross sections

Obtained by subtracting partial cross sections from the
total cross sections.

MT=4, 51-66.91 Inelastic scattering cross sections

Calculated with the statistical-model code CASTHY /4/ and the
coupled-channel model code ECIS /5/ or JUPITOR-1 /6/, taking
account of competitive processes for neutron, proton,
alpha-particle and gamma-ray emission /1/.

Level scheme was taken from ref. /11/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1.</td>
<td>0.8438</td>
<td>1/2 +</td>
</tr>
<tr>
<td>2.</td>
<td>1.0145</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.2100</td>
<td>7/2 +</td>
</tr>
<tr>
<td>4.</td>
<td>2.7340</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5.</td>
<td>2.9814</td>
<td>3/2 +</td>
</tr>
<tr>
<td>6.</td>
<td>3.0040</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7.</td>
<td>3.6780</td>
<td>1/2 ±</td>
</tr>
<tr>
<td>8.</td>
<td>3.9560</td>
<td>5/2 ±</td>
</tr>
<tr>
<td>9.</td>
<td>4.0540</td>
<td>3/2 ±</td>
</tr>
<tr>
<td>10.</td>
<td>4.4090</td>
<td>5/2 ±</td>
</tr>
<tr>
<td>11.</td>
<td>4.5103</td>
<td>11/2 +</td>
</tr>
<tr>
<td>12.</td>
<td>4.5800</td>
<td>7/2 +</td>
</tr>
<tr>
<td>13.</td>
<td>4.8120</td>
<td>5/2 +</td>
</tr>
<tr>
<td>14.</td>
<td>5.1550</td>
<td>3/2 ±</td>
</tr>
<tr>
<td>15.</td>
<td>5.2460</td>
<td>5/2 ±</td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 5.6 MeV. Level density was calculated using the Gilbert-Cameron formula. The level-density parameters were obtained from a cumulative plot of observed levels.1/.

MT=16 \ (n,2n) cross sections
Calculated by the statistical model, using the GNASH code.1,7/

MT=22 \ (n,na) cross sections
Calculated by the statistical model, using the GNASH code.1,7/
Optical potential for alpha-particles was determined, using the dispersion theory.8/

MT=28 \ (n,np) cross sections
Calculated by the statistical model, using the GNASH code.1,7/

MT=102 Capture
Calculated with the statistical-model code CASTHY 4/ and the direct-semidirect-model code HIKARI 9/. The statistical-model calculations were normalized to 0.6 mb at 0.6 MeV.

MT=103 \ (n,p) cross sections
Calculated by the statistical model, using the GNASH code.1,7/

MT=107 \ (n,a) cross sections
Obtained by an eye-guide to follow observed values 10/.

MT=111 \ (n,2p) cross sections
Calculated by the statistical model, using the GNASH code.1,7/

MT=251 Mu-bar
Calculated with statistical-model code CASTHY 1,4/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the statistical-model code CASTHY 1,4/.

MT=16,22,28
Isotropic in the laboratory system.

MT=51-66
Incoherent sum of the statistical model and coupled-channel model calculations.1/ Calculated with CASTHY and ECIS or JUPITOR-1.

MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,22,28,91
Calculated by using the GNASH code.1,7/

MF=12 Gamma-ray Multiplicities

MT=51-66,102,103,107
Calculated by using the GNASH code.1,7/

MF=13 Gamma-ray Production Cross Sections

MT=3
Calculated by the statistical model and coupled-channel model, using the GNASH code 7/ and the ECIS /5/ or JUPITOR-1 code 6/. Branching ratios for transitions between discrete levels were taken from ref.12/. Gamma-ray transition strength in the continuum was calculated by the Brink-Axel giant resonance model for E1 transition and by the Weisskopf single-particle model for E2 and M1 transition.1/
MF=14 Gamma-ray Angular Distributions
MT=3,51-66,102,103,107
Isotropic distribution was assumed.

MF=15 Gamma-ray Spectra
MT=3,102,103,107
Calculated with the GNASH code. /1,7/

References
MAT number = 3140

14-Si- 0 TIT.JAERI Eval-Mar88 H.Kitazawa,Y.Harima,T.Fukahori Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa,
Harima (Tokyo Institute of Tech.) and Fukahori (JAERI).
Details are given in ref./1/.
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters:
MT=151

Resolved resonances : 1.0E-5 eV - 1.81 MeV
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref./3/.

Calculated 2200-m/s cross sections and resonance integrals
2200-m/sec Res. Integ.
elastic 2.172 b -
capture 0.171 b 0.104 b
total 2.343 b -

MF=3 Neutron Cross Sections
MT=1 Total cross section
Between 1.81 and 12.5 MeV, the cross sections were obtained by
an eye-guide so as to follow the experimental data.
Above 12.5 MeV, the cross sections were calculated with the
statistical-model code CASTHY./1,4/

MT=2 Elastic scattering cross sections
Obtained by subtracting partial cross sections from the
total cross sections.

MT=4.51-90,91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY/4/ and the
coupled-channel model code ECIS/5/ or JUPITOR-1/6/, taking
account of competitive processes for neutron, proton,
alpha-particle and gamma-ray emission./1/
Below 11 MeV, the imaginary potential strength of the neutron
spherical optical potential was modified from that in ref./1/
to be W = 1.09 + 0.55-E (MeV).

Level scheme was taken from ref./10/.

<table>
<thead>
<tr>
<th>Si-28</th>
<th>Si-29</th>
<th>Si-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy(MeV)</td>
<td>J-Pi</td>
<td>Energy(MeV)</td>
</tr>
<tr>
<td>0.0</td>
<td>0 +</td>
<td>0.0</td>
</tr>
<tr>
<td>1.7789</td>
<td>2 +</td>
<td>1.2733</td>
</tr>
<tr>
<td>4.6178</td>
<td>4 +</td>
<td>2.4256</td>
</tr>
<tr>
<td>4.9791</td>
<td>0 +</td>
<td>3.6236</td>
</tr>
<tr>
<td>6.2765</td>
<td>3</td>
<td>4.7410</td>
</tr>
<tr>
<td>6.6914</td>
<td>0 +</td>
<td>4.8950</td>
</tr>
<tr>
<td>6.8786</td>
<td>3</td>
<td>5.2546</td>
</tr>
<tr>
<td>6.8888</td>
<td>4</td>
<td>5.6520</td>
</tr>
<tr>
<td>7.3807</td>
<td>2 +</td>
<td>5.8480</td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 6.999 MeV. Level density was calculated, using the Gilbert-Cameron formula. The level-density parameters were obtained from a cumulative plot of observed levels.1/.

MT=16 (n,2n) cross sections
Calculated by the statistical model, using the GNASH code.1/7/
Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref.1/1 to be W = 1.09 + 0.55e + (MeV).

MT=22 (n,na) cross sections
Calculated by the statistical model, using the GNASH code.1/7/
Optical potential for alpha-particles was determined, using the dispersion theory.8/.

MT=28 (n,np) cross sections
Calculated by the statistical model, using the GNASH code.1/7/
MT=102 Capture
Calculated with the statistical-model code CASTHY /4/ and the direct-semidirect-model code HIKARI /9/.

MT=103 (n,p) cross sections
Calculated by the statistical model, using the GNASH code.1/7/
The imaginary potential strength of the proton spherical optical model was modified from that in ref.1/1 to be W = 11.0 MeV between 11 and 20 MeV and W = 8.8 + 0.2e + (MeV) below 11 MeV.

MT=107 (n,a) cross sections
Constructed from the isotopic data.

MT=111 (n,2p) cross sections
Calculated by the statistical model, using the GNASH code.1/7/

MT=251 Mu-bar
Calculated with statistical-model code CASTHY /1,4/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the statistical-model code CASTHY /1,4/.

MT=16,22,28
Isotropic in the laboratory system.

MT=51-90
Incoherent sum of the statistical model and coupled-channel model calculations.1/ Calculated with CASTHY and ECIS or JUPITOR-1.

MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,22,28,91
Calculated by using the GNASH code.1/7/
MF=12 Gamma-ray Multiplicities
MT=51−90,102,103,107
Calculated by using the GNASH code.1,7/

MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel model, using the GNASH code7 and the ECIS5/ or JUPITOR-1 code6/. Branching ratios for transitions between discrete levels were taken from ref.11/. Gamma-ray transition strength in the continuum was calculated by the Brink-Axel giant resonance model for E1 transition and by the Weisskopf single-particle model for E2 and M1 transition.1/

MF=14 Gamma-ray Angular Distributions
MT=3,51−90,102,103,107
Isotropic distribution was assumed.

MF=15 Gamma-ray Spectra
MT=3,102,103,107
Calculated with the GNASH code.1,7/

References
MAT number = 3141

14-Si-28 TIT:JAERI Eval-Mar88 H.Kitazawa,Y.Harima,T.Fukahori Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa, Harima (Tokyo Institute of Tech.) and Fukahori (JAERI).
Details are given in ref./1/.
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters:
MT=151
Resolved resonances : 1.0E-5 eV - 1.81 MeV
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref./3/.

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.149 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>0.177 b</td>
<td>0.085 b</td>
</tr>
<tr>
<td>total</td>
<td>2.325 b</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Between 1.81 and 12.5 MeV, the cross sections were obtained by an eye-guide so as to follow the experimental data.
Above 12.5 MeV, the cross sections were calculated with the statistical-model code CASTHY./1,4/

MT=2 Elastic scattering cross sections
Obtained by subtracting partial cross sections from the total cross sections.

MT=4.51-66.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY./4/ and the coupled-channel model code ECIS./5/ or JUPITOR-1./6/.
Taking account of competitive processes for neutron, proton, alpha-particle and gamma-ray emission./1/
Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref./1/ to be W = 1.09 + 0.55E (MeV).

Level scheme was taken from ref./11/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>1.7789</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>4.6178</td>
<td>4 +</td>
</tr>
<tr>
<td>3.</td>
<td>4.9791</td>
<td>0 +</td>
</tr>
<tr>
<td>4.</td>
<td>6.2765</td>
<td>3 +</td>
</tr>
<tr>
<td>5.</td>
<td>6.6914</td>
<td>0 +</td>
</tr>
<tr>
<td>6.</td>
<td>8.8786</td>
<td>3 -</td>
</tr>
<tr>
<td>7.</td>
<td>9.8888</td>
<td>4 +</td>
</tr>
<tr>
<td>8.</td>
<td>7.3807</td>
<td>2 +</td>
</tr>
<tr>
<td>9.</td>
<td>7.4173</td>
<td>2 +</td>
</tr>
<tr>
<td>10.</td>
<td>7.7988</td>
<td>3 +</td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 8.9 MeV. Level density was calculated, using the Gilbert–Cameron formula. The level–density parameters were obtained from a cumulative plot of observed levels /1/.

MT=16 \((n,2n)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/. Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref. /1/ to be \(W = 1.09 + 0.55 \times 10^{-E} \) (MeV).

MT=22 \((n,na)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/. Optical potential for alpha-particles was determined, using the dispersion theory /8/.

MT=28 \((n,np)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/.

MT=102 Capture
Calculated with the statistical–model code CASTHY /4/ and the direct–semidirect–model code HIKARI /9/. The statistical–model calculations were normalized to 0.6 mb at 2.0 MeV.

MT=103 \((n,p)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/. The imaginary potential strength of the proton spherical optical model was modified from that in ref. /1/ to be \(W = 11.0 \times 10^{-E}\) between 11 and 20 MeV and \(W = 8.8 + 0.2 \times 10^{-E}\) below 11 MeV. The strength was determined so as to reproduce observed values /10/.

MT=107 \((n,a)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/. Optical potential for alpha-particles was determined, using the dispersion theory /8/.

MT=111 \((n,2p)\) cross sections
Calculated by the statistical model, using the GNASH code /1,7/.

MT=251 Mu-bar
Calculated with statistical–model code CASTHY /1,4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the statistical–model code CASTHY /1,4/.

MT=16,22,28
Isotropic in the laboratory system.

MT=51–68
Incoherent sum of the statistical model and coupled–channel model calculations /1/ Calculated with CASTHY and ECIS or JUPITOR–1.

MT=91
Isotropic in the center–of–mass system converted to the distribution in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91
Calculated by using the GNASH code./1,7/

MF=12 Gamma-ray Multiplicities
MT=51,62,102,103,107
Calculated by using the GNASH code./1,7/

MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel model, using the GNASH code./7/ and the ECIS./5/ or JUPITOR-I code./6/. Branching ratios for transitions between discrete levels were taken from ref./12/. Gamma-ray transition strength in the continuum was calculated by the Brink-Axel giant resonance model for E1 transition and by the Weisskopf single-particle model for E2 and M1 transition./1/

MF=14 Gamma-ray Angular Distributions
MT=3,51-66,102,103,107
Isotropic distribution was assumed.

MF=15 Gamma-ray Spectra
MT=3,102,103,107
Calculated with the GNASH code./1,7/

References
MAT number = 3142

14-Si-29 TIT JAERI Eval-Mar88 H.Kitazawa,Y.Harima,T.Fukahori Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa,
Harima (Tokyo Institute of Tech.) and Fukahori (JAERI).
Details are given in ref./1/.
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters:
MT=151
Resolved resonances : 1.0E-5 eV - 0.1 MeV
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref.
/3/.

Calculated 2200-m/s cross sections and resonance integrals
2200-m/sec Res. Integ.
elastic 2.843 b -
capture 0.101 b 0.067 b
total 2.944 b -

MF=3 Neutron Cross Sections
MT=1 Total cross section
Above 0.1 MeV, the cross sections were calculated with the
statistical-model code CASTHY./1,4/
MT=2 Elastic scattering cross sections
Obtained by subtracting partial cross sections from the
total cross sections.
MT=4.51-79.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY./4/ and the
coupled-channel model code ECIS/5/, taking account of
competitive processes for neutron, proton, alpha-particle
and gamma-ray emission./1/
Below 11 MeV, the imaginary potential strength of the neutron
spherical optical potential was modified from that in ref./1/ to
be W = 1.09 + 0.55 x (MeV).

Level scheme was taken from ref./11/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>1/2 +</td>
</tr>
<tr>
<td>1.</td>
<td>1.2730</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2.</td>
<td>2.0280</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.4250</td>
<td>3/2 +</td>
</tr>
<tr>
<td>4.</td>
<td>3.0670</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5.</td>
<td>3.6240</td>
<td>7/2 -</td>
</tr>
<tr>
<td>6.</td>
<td>4.0800</td>
<td>7/2 +</td>
</tr>
<tr>
<td>7.</td>
<td>4.7410</td>
<td>9/2 +</td>
</tr>
<tr>
<td>8.</td>
<td>4.8400</td>
<td>1/2 +</td>
</tr>
<tr>
<td>9.</td>
<td>4.8950</td>
<td>5/2 +</td>
</tr>
<tr>
<td>10.</td>
<td>4.9340</td>
<td>3/2 -</td>
</tr>
<tr>
<td>11.</td>
<td>5.2550</td>
<td>9/2 -</td>
</tr>
<tr>
<td>12.</td>
<td>5.2860</td>
<td>7/2 +</td>
</tr>
</tbody>
</table>
13. 5.6520 9/2 +
14. 5.8130 7/2 +
15. 5.9480 3/2 +
16. 6.1070 5/2 +
17. 6.1920 7/2 -
18. 6.3780 1/2 -
19. 6.4230 7/2 +
20. 6.4960 1/2 +
21. 6.5220 3/2 +
22. 6.6150 9/2 +
23. 6.6970 3/2 -
24. 6.7100 5/2 +
25. 6.7150 3/2 +
26. 6.7820 11/2 -
27. 6.9070 1/2 -
28. 6.9210 7/2 +
29. 7.0140 5/2 -

Continuum levels were assumed above 7.057 MeV. Level density was calculated, using the Gilbert-Cameron formula. The level-density parameters were obtained from a cumulative plot of observed levels./1/.

MT=16 (n,2n) cross sections
Calculated by the statistical model, using the GNASH code./1,6/
Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref./1/ to be W = 1.09 + 0.55+E (MeV).

MT=22 (n,na) cross sections
Calculated by the statistical model, using the GNASH code./1,6/
Optical potential for alpha-particles was determined, using the dispersion theory./7/

MT=28 (n,np) cross sections
Calculated by the statistical model, using the GNASH code./1,6/

MT=102 Capture
Calculated with the statistical-model code CASTHY /4/ and the direct-semidirect-model code HIKARI /8/. The statistical-model calculations were normalized to 0.6 mb at 0.1 MeV.

MT=103 (n,p) cross sections
Calculated by the statistical model, using the GNASH code./1,6/
The imaginary potential strength of the proton spherical optical potential was modified from that in ref./1/ to be
W = 11.0 MeV between 11 and 20 MeV and W = 8.8 + 0.2+E (MeV) below 11 MeV. The strength was determined so as to reproduce observed values /8/.

MT=107 (n,a) cross sections
Calculated by the statistical model, using the GNASH code./1,6/
Optical potential for alpha-particles was determined, using the dispersion theory./7/

MT=111 (n,2p) cross sections
Calculated by the statistical model, using the GNASH code./1,6/

MT=251 Mu-bar
Calculated with statistical-model code CASTHY /1,4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the statistical-model code CASTHY /1,4/.
MT=16, 22, 28
Isotropic in the laboratory system.

MT=51–79
Incoherent sum of the statistical model and coupled-channel model calculations.\(/1/\) Calculated with CASTHY and ECIS.

MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91
Calculated by using the GNASH code.\(/1,6/\)

MF=12 Gamma-ray Multiplicities
MT=51–79,102,103,107
Calculated by using the GNASH code.\(/1,6/\)

MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel model, using the GNASH code\(/6/\) and the ECIS\(/5/\) code.
Branching ratios for transitions between discrete levels were taken from ref.\(/10/\). Gamma-ray transition strength in the continuum was calculated by the Brink-Axel giant resonance model for E1 transition and by the Weisskopf single-particle model for E2 and M1 transition.\(/1/\)

MF=14 Gamma-ray Angular Distributions
MT=3,51–79,102,103,107
Isotropic distribution was assumed.

MF=15 Gamma-ray Spectra
MT=3,102,103,107
Calculated with the GNASH code.\(/1,6/\)

References
MAT number = 3143

14-Si- 30 TIT, JAERI Eval-Mar88 H.Kitazawa, Y.Harima, T.Fukahori Dist-Sep89

HISTORY
88-03 New evaluation was performed for JENDL-3 by Kitazawa, Harima (Tokyo Institute of Tech.) and Fukahori (JAERI). Details are given in ref./1/.
88-03 Compiled by Fukahori.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters:
MT=151
Resolved resonances : 1.0E-5 eV - 0.5 MeV
The resonance parameters were searched, using MLBW formula/2/.
An initial guess of the parameters search was taken from ref. /3/.

Calculated 2200-m/s cross sections and resonance integrals

\[
\begin{array}{ccc}
\text{2200-m/sec} & \text{Res. Integ.} \\
\text{elastic} & 2.491 \text{ b} & - \\
\text{capture} & 0.108 \text{ b} & 0.709 \text{ b} \\
\text{total} & 2.588 \text{ b} & - \\
\end{array}
\]

MF=3 Neutron Cross Sections
MT=1 Total cross section
Above 0.5 MeV, the cross sections were calculated with the statistical-model code CASTHY./1,4/

MT=2 Elastic scattering cross sections
Obtained by subtracting partial cross sections from the total cross sections.

MT=4.51-69.91 Inelastic scattering cross sections
Calculated with the statistical-model code CASTHY /4/ and the coupled-channel model code ECIS /5/, taking account of competitive processes for neutron, proton, alpha-particle and gamma-ray emission./1/
Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref./1/ to be \(W = 1.09 + 0.55E\) (MeV).

Level scheme was taken from ref./9/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>2.2355</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>3.4982</td>
<td>2 +</td>
</tr>
<tr>
<td>3.</td>
<td>3.7696</td>
<td>1 +</td>
</tr>
<tr>
<td>4.</td>
<td>3.7877</td>
<td>0 +</td>
</tr>
<tr>
<td>5.</td>
<td>4.8090</td>
<td>2 +</td>
</tr>
<tr>
<td>6.</td>
<td>4.8305</td>
<td>3 +</td>
</tr>
<tr>
<td>7.</td>
<td>5.2300</td>
<td>3 +</td>
</tr>
<tr>
<td>8.</td>
<td>5.2790</td>
<td>4 +</td>
</tr>
<tr>
<td>9.</td>
<td>5.3720</td>
<td>0 +</td>
</tr>
<tr>
<td>10.</td>
<td>5.4876</td>
<td>3 -</td>
</tr>
<tr>
<td>11.</td>
<td>5.6130</td>
<td>2 +</td>
</tr>
<tr>
<td>12.</td>
<td>5.9500</td>
<td>4 +</td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 6.999 MeV. Level density was calculated, using the Gilbert-Cameron formula. The level-density parameters were obtained from a cumulative plot of observed levels.\(^1\).

MT=16 \((n,2n)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)
Below 11 MeV, the imaginary potential strength of the neutron spherical optical potential was modified from that in ref.\(^1\) to be \(W = 1.09 + 0.55 \times 10^{-E} (\text{MeV})\).

MT=22 \((n,n)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)
Optical potential for alpha-particles was determined, using the dispersion theory.\(^7\)

MT=28 \((n,np)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)

MT=102 Capture
Calculated with the statistical-model code CASTHY \(^4\) and the direct-semidirect-model code HIKARI \(^8\). The statistical-model calculations were normalized to 0.6 mb at 0.5 MeV.

MT=103 \((n,p)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)
The imaginary potential strength of the proton spherical optical model was modified from that in ref.\(^1\) to be \(W = 11.0 \text{ MeV} \) between 11 and 20 MeV and \(W = 8.8 + 0.2 \times 10^{-E} (\text{MeV})\) below 11 MeV.

MT=107 \((n,a)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)
Optical potential for alpha-particles was determined, using the dispersion theory.\(^7\)

MT=111 \((n,2p)\) cross sections
Calculated by the statistical model, using the GNASH code.\(^1,6\)

MT=251 Mu-bar
Calculated with statistical-model code CASTHY \(^1,4\).

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the statistical-model code CASTHY \(^1,4\).

MT=16, 22, 28
Isotropic in the laboratory system.

MT=51-69
Incoherent sum of the statistical model and coupled-channel model calculations.\(^1\) Calculated with CASTHY and ECIS.

MT=91
Isotropic in the center-of-mass system converted to the distribution in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
Calculated by using the GNASH code.\(^1,6\)
MF=12 Gamma-ray Multiplicities
MT=51-69,102,107
Calculated by using the GNASH code.1,6/

MF=13 Gamma-ray Production Cross Sections
MT=3
Calculated by the statistical model and coupled-channel model, using the GNASH code /6/ and the ECIS /5/ code. Branching ratios for transitions between discrete levels were taken from ref. /9/. Gamma-ray transition strength in the continuum was calculated by the Brink-Axel giant resonance model for E1 transition and by the Weisskopf single-particle model for E2 and M1 transition.1/

MF=14 Gamma-ray Angular Distributions
MT=3,51-69,102,107
Isotropic distribution was assumed.

MF=15 Gamma-ray Spectra
MT=3,102,107
Calculated with the GNASH code.1,6/

References
MAT number = 3151

15-P - 31 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
 MT=451 Descriptive data and dictionary

MF=2
 MT=151 Resonance parameters:
 Resolved resonances for MLBW Formula : 1.0E-5 eV - 500 keV
 Parameters are taken from BNL 325 4th edition/1/, and
 R.L.Macklin et al./2/.
 Cross sections calculated with these parameters are to
 be corrected by adding MF=3, MT=1,2 and 102 data.

 Calculated 2200-m/s cross sections and resonance integrals
 2200-m/sec Res. Integ. Ref.
 elastic 3.134 b - /1/
 capture 0.166 b 0.081 b /1/
 total 3.300 b -

MF=3 Neutron Cross Sections
Below 500 keV
 Background cross section.
 MT=1,2 0.07029 b
 MT=251 Mu-bar=0.0217

Above 500 keV
 MT=1,2,4,51-58,91,102 Total, Elastic, Inelastic and Capture
 Calculated with CASTHY code/3/, considering the
 competition with the threshold reaction channels.
 Optical potential parameters of C.Y.Fu/4/ are adjusted
 to reproduce the following experimental data:
 MT=1 total NESTOR data (many authors)
 MT=2 elastic -
 MT=4 inelastic -
 The spherical optical potential parameters:
 \(V=43.0 \) \(V_{so}=5.37 \) (MeV)
 \(W_s=9.13 \) \(W_u=0.0 \) (MeV)
 \(r=r_{so}=1.26 \) \(r_{s}=1.39 \) (fm)
 \(a=a_{so}=0.76 \) \(b=0.40 \) (fm)

MT=102 capture data are normalized to 1.8 mb at 500 keV
based on (7 mb at 30 keV) by R.L.Macklin et al./5/.

The discrete level scheme taken from Ref./6/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g.s.)</td>
<td>0.0</td>
<td>1/2 -</td>
</tr>
<tr>
<td>1</td>
<td>1.266</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>2.234</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>3.134</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>3.295</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5</td>
<td>3.415</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>3.506</td>
<td>3/2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 4.0 MeV. The level
density parameters of Asano et al. /7/ are used.

MT=16(n,2n), 22(n,n'α), 28(n,n'p), 103(n,p), 107(n,α)

Based on the statistical model calculations with GNASH code /8/, without the precompound reaction correction. Transmission coefficients for proton and alpha particle are calculated by using the OMP of Becchetti-Greenlees /9/ and Huizenga-Igo/10/, respectively. In the cases of MT=103 and 107, the experimental data were also considered together with the calculations.

Level density parameters are based on built-in values.

MT=251 Mu-bar

Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Calculated with optical model (CASTHY).

MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)

MT=16, 22, 28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91, 103, 107 Evaporation spectra.

References
6) Lederer, C.M. et al.: Table of Isotopes, 7th Edit.
7) Asano et al.: private communication.
MAT number = 3160

16-S - 0 Fuji E.C. Eval-May87 H.Nakamura
 Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)
87-07 Compiled by T.Fukahori (JAERI).
88-02 Modifications on (n,p) and inelastic scattering cross
 sections of S-32. Direct inelastic components from DWBA
 calculations were added to the compound components so as
 to reproduce DDX data of OKTAVIAN (OSA. 1986).
88-08 Modified due to correcting S-32 data by T.Fukahori (JAERI)

Natural sulphur data constructed from S-isotopes.

MF=1 General Information
 MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
 MT=151 Resolved Resonances
 Resonance region : 1.0E-5 eV - 1.57 MeV
 The multilevel Breit-Wigner formula was used. Parameters
 were adopted from the following sources:
 S-32 : -10 keV - 1.57 MeV, R = 3.92 fm
 S-33 : -7.1 - 280 keV, R = 3.85 fm
 S-34 : -10 - 480 keV, R = 3.60 fm

 Calculated 2200-m/s Cross Sections and Res. Integrals.
 2200-m/s Res. Integ.
 Elastic 1.024 b -
 Capture 0.514 b 0.2432 b
 Total 1.548 b -

MF=3 Neutron Cross Sections
 Below 1.57 MeV, background cross sections consisting of
 (n,p) and (n, alpha) cross sections were given.

 MT=1 TOTAL
 For energies 10 - 20 MeV, fine resolution data of
 Cierjackst+1/ were adopted. In the range of 1.57 - 10 MeV,
 the weighted sum of isotopic data were taken. The isotopic
 calculations were performed by using CASTHY code/2/.

 MT=2 ELASTIC SCATTERING
 Given as total minus other cross sections.
 MT=4 TOTAL INELASTIC SCATTERING
 Sum of MT=51-73, 91
 MT=16,22,28,103,107
 The weighted sum of isotopes was adopted. The cross
 sections of isotopes were calculated using GNASH code/3/.
 MT=51-73,91 INELASTIC SCATTERING
 Isotopic data were obtained from the CASTHY/2/
 calculation. Isotopic levels were sorted with energies.

 Optical potential parameters used in the calculation are
 as follows:
 \[V = 38.0, \quad R_0 = 1.26, \quad A_0 = 0.76 \]
 \[W_s = 9.13, \quad R_s = 1.39, \quad A_s = 0.40 \]
\(V_{so} = 5.37, \quad R_{so} = 1.26, \quad A_{so} = 0.76 \)

energies in MeV unit, lengths in fm unit.

MT=102 CAPTURE
Above 1.57 MeV, the CASTHY/2/ calculation was adopted.
MT=103(N,P), 107(N,ALPHA)
For S-32 the evaluation was made on the basis of
experimental data. For S-33,34,36, the GNASH/3/
calculation was adopted.
MT=251 MU-BAR
Calculated with CASTHY/2/.

MF=4 ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=2.51-73
Optical and statistical-model calculations.
MT=16,22,28.91
Assumed to be isotropic in the laboratory system.

MF=5 ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=16,22,28.91
Calculated with GNASH/3/.

REFERENCES
1) Cierjacks, S. et al.: KFK-1000 (1968)
MAT number = 3161

16-S - 32 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-03 Newly Evaluated by H.Nakamura (Fuji Electric Co Ltd.)
88-08 The following quantities were modified by H.Nakamura:
(n,p) cross section, inelastic scattering cross
sections and angular distributions of the first, third
and continuum levels.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance Parameters:
Resolved resonances for MLBW formula: 1.0E-5 eV - 1500 keV
Parameters are taken from BNL 325 4th edition/1/, and
some parameters are assumed to fit the measured data.
Cross sections calculated with these parameters are to be
corrected by adding MF=3, MT=1, 2 and 102 data.

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>0.963 b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>0.528 b</td>
<td>0.250 b</td>
<td>/1/</td>
</tr>
<tr>
<td>total</td>
<td>1.499 b</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 1500keV
Background data for
MT=107 0.007 b, based on 2200-m/s data of Ref./1/.
MT=251 Mu-bar=0.0210.

Above 1500keV
MT=1 2 4 51-56 91 102 Total, Elastic, Inelastic and
Capture calculated with CASTHY code /2/, considering the
competition with the threshold reaction channels.
Optical potential parameters of C.Y.Fu/3/ are adjusted
to reproduce the following experimental data:
MT=1 total -
MT=2 elastic G.A.Petitt et al./4/, A.Virdis/5/.
MT=4 inelastic -
The spherical optical potential parameters:
V=38.0 Vso=5.37 (MeV)
Ws=9.13 Wv =0.0 (MeV)
r =rso=1.26 rs=1.39 (fm)
a=aso =0.76 b =0.40(fm)
MT=102 Capture data are normalized to the experimental
data of A.Lindholm et al. at 3 - 6 MeV/6/.

MT=51 53 Direct Interaction
Calculated by using DWBA calculation, are added to the
compound components, respectively.

MT=2 4
Modified after the above direct component addition.

The discrete level scheme taken from Ref./7/:
No.	Energy(MeV)	Spin-Parity
1 | 2.230 | 2+
2 | 3.779 | 0+
3 | 4.282 | 2+
4 | 4.459 | 4+
5 | 4.695 | 1+
6 | 5.006 | 3−

Continuum levels assumed above 5.4 MeV. The level density parameters of Asano et al. /8/ are used.

MT=16(n,2n), 22(n,n′a), 28(n,n′p), 103(n,p), 107(n,a)
 Based on the statistical model calculations with GNASH code/9/, without the precompound reaction correction.
 Transmission coefficients for proton and alpha particles are calculated by using the OMP of Becchetti–Greenlees /10/ and Huizenga-Igo /11/, respectively.
 Level density parameters are based on built-in values.

MT=103 (n,p) cross section
 Adjusted to reproduce R. Ricamo data above 14 MeV /12/.
 MT=4, 91
 Modified so as to compensate for the (n,p) adjustment.

MT=251 Mu-bar
 Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons
 MT=2 Calculated with optical model (CASTHY).
 MT=51–91 Calculated with Hauser–Feshbach formula (CASTHY).
 MT=16, 22, 28 Isotropic in the laboratory system.

MT=53 Direct Components
 Calculated using DWBA calculation, are added to reproduce DDX data of OKTAVIAN /13/.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91, 103, 107 Evaporation spectra.

References
7) Leder, C.M. et al.: Table of Isotopes, 7th Ed.
8) Asano et al.: private communication.
13) INDC(JPN)-10, OSA (1986)
MAT number = 3162

15-S - 33 Fuji E.C. Eval-May87 H.Nakamura
 Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
 MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters:
 Resolved resonances for MLBW formula: 1.0E-5 eV - 260 keV
 Parameters are taken from BNL325 4th edition/1/, and
 C.Wagemans and H.Weigmann/2/.
 Cross sections calculated with these parameters are to
 be corrected adding MF=3, MT=1, 2 and 102 data.

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.84 b</td>
<td>-</td>
<td>/1/</td>
</tr>
<tr>
<td>capture</td>
<td>0.35 b</td>
<td>0.164 b</td>
<td>/1/</td>
</tr>
<tr>
<td>total</td>
<td>3.36 b</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 260 keV
 Background cross sections are given for MT=1:
 MT=1 0.171b : 0.002(n,p) + 0.169(n,a) b
 MT=103 (n,p) 0.0016 b, based on 2200-m/s data /1/.
 MT=107 (n,a) 0.169 b, same as the above.
 MT=251 Mu-bar = 0.0210

Above 260 keV.
 MT=1,2,4,51-57,91,102
 Total, Elastic, Inelastic and Capture cross sections
 calculated with CASTHY code /3/, considering the
 competition with the threshold reaction channels.
 Optical potential parameters of C.Y.Fu/4/ are adjusted
 to reproduce the following experimental data:
 MT=1 total -
 MT=2 elastic cross sections of S-32.
 MT=4 inelastic -
 The spherical optical potential parameters :
 \[V = 38.0 \quad V_{so} = 5.37 \quad (MeV) \]
 \[W_s = 9.13 \quad W_v = 0.0 \quad (MeV) \]
 \[r = r_{so} = 1.26 \quad r_s = 1.39 \quad (fm) \]
 \[a = a_{so} = 0.76 \quad b = 0.40 \quad (fm) \]

 MT=102 Capture data are normalized to 0.5 mb at 260 keV
 based on S-32 capture cross sections.
 The discrete level scheme taken from Ref./5/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g.s.)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>3/2</td>
</tr>
<tr>
<td>1</td>
<td>0.8404</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>1.966</td>
<td>5/2</td>
</tr>
<tr>
<td>3</td>
<td>2.313</td>
<td>3/2</td>
</tr>
<tr>
<td>4</td>
<td>2.866</td>
<td>5/2</td>
</tr>
<tr>
<td>5</td>
<td>2.934</td>
<td>7/2</td>
</tr>
<tr>
<td>6</td>
<td>2.969</td>
<td>7/2</td>
</tr>
</tbody>
</table>
Continuum levels are assumed above 3.6MeV. The level density parameters of Asano et al./6/ are used.

MT=16(n,2n), 22(n,n'a), 28(n,n'p), 103(n,p), 107(n,a)

Based on the statistical model calculations with GNASH code /7/, without the precompound reaction correction. Transmission coefficients for proton and alpha particles are calculated by using the OMP of Becchetti-Greenlees/8/ and Huizenga-Igo/9/, respectively.

Level density parameters are based on built-in values.

MT=251 Mu-bar
Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY).
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)
MT=16,22,28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,103,107 Evaporation spectra.

References
5) Ledrer, C.M. et al.: Table of Isotopes, 7th Edit.
6) Asano et al.: private communication.
MAT number = 3163

16-S-34 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters:
Resolved resonances for MLBW formula: 1.0E-5 eV - 480 keV
Parameters are taken from BNL 325 4th edition/1/, and
some parameters are assumed to fit the measured data.
Cross sections calculated with these parameters are to
be corrected by adding MF=3, MT=1, 2 and 102 data.
Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200-m/sec</th>
<th>Res.Integ.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.08 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>0.22 b</td>
<td>0.101 b</td>
</tr>
<tr>
<td>total</td>
<td>2.30 b</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 480keV
No Background cross section.
MT=251 Mu-bar=0.0198

Above 480 keV:
MT=1,2,4,51-55,91,102
Total, Elastic, Inelastic and Capture calculated with
CASTHY code/2/, considering the competition with the
threshold reaction channels.
Optical potential parameters of C.Y.Fu/3/ are adjusted
to reproduce the following experimental data:
MT=1 total -
MT=2 elastic cross sections of S-32
MT=4 inelastic -
The spherical optical potential parameters:
V = 38.0 Vso = 5.37 (MeV)
W_s = 9.13 W_v = 0.0 (MeV)
r = rso = 1.26 rs = 1.39 (fm)
a = aso = 0.76 b = 0.40 (fm)

MT=102 capture data are normalized to 0.3 mb at 480 keV
based on S-32 capture cross section.
The discrete level scheme taken from Ref./4/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g.s.)</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>2.127</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>3.034</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>3.914</td>
<td>0 +</td>
</tr>
<tr>
<td>4</td>
<td>4.072</td>
<td>1 +</td>
</tr>
<tr>
<td>5</td>
<td>4.115</td>
<td>2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 4.5 MeV. The level
density parameters of Asano et al./5/ are used.
MT=16(n,2n), 22(n,n'), 28(n,n'p), 103(n,p), 107(n,a)
Based on the statistical model calculations with GNASH
code./6/, without the precompound reaction correction.
Transmission coefficients for proton and alpha particle are calculated by using the OMP of Becchetti-Greenlees/7/ and Huizenga-Igo/8/, respectively.

Level density parameters are based on built-in values.

MT=251 Mu-bar
Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY).
MT=91-91 Calculated with Hauser-Feshbach formula (CASTHY)
MT=16,22,28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,103,107 Evaporation spectra.

References
4) Lederer, C.M. et al.; Table of Isotopes. 7th Edit.
5) Asano et al.; private communication.
MAT number = 3164

16-S - 36 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
 MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters: (Not given)

MF=3 Neutron Cross Sections
 Below 1000 keV
 Assumed cross sections, guided by those of S-32
 \((10^{+5})\text{eV} (0.025)\text{eV} (1.0^{+4})\text{eV} (1.0^{+6})\text{eV} \text{INT}
 \)
 MT=2 1.0 b 1.0 b 1.0 b 0.0 b 5
 MT=102 3.5 b 0.15 b 0.001 b 0.00015 b 5
 MT=1 4.5 b 1.15 b 1.001 b 6.000015 b –
 MT=251 Mu-bar=0.0210

 Above 1000 keV
 MT=1, 2, 4, 51-55, 91, 102
 Total, Elastic, Inelastic and Capture
 calculated with CASTHY code /2/, considering the
 competition with the threshold reaction channels.
 Optical potential parameters of C.Y.Fu/3/ are adjusted
 to reproduce the following experimental data:
 MT=1 total –
 MT=2 elastic cross sections of S-32
 MT=4 inelastic –
 The spherical optical potential parameters:
 \(V = 38.0\) \(V_{so} = 5.37\) (MeV)
 \(W_{so} = 9.13\) \(W_{v} = 0.0\) (MeV)
 \(r = r_{so} = 1.26\) \(r_{s} = 1.39\) (fm)
 \(a = a_{so} = 0.76\) \(b = 0.40\) (fm)
 MT=102 Capture data are normalized to 0.15 mb at 1 MeV
 based on S-32 capture cross section.
 The discrete level scheme taken from Ref./4/:
 \(\text{No.} \quad \text{Energy (MeV)} \quad \text{Spin-Parity}\)
 \(\text{(g.s.)}\)
 1 \(3.291\) \(2\) +
 2 \(3.346\) \(0\) +
 3 \(4.192\) \(3\) –
 4 \(4.523\) \(1\) +
 5 \(4.575\) \(2\) +

 Continuum levels assumed above 5.0 MeV. The level
 density parameters of Asano et al./5/ are used.
 MT=16(n,2n), 22(n,n’α), 28(n,n’p), 103(n,p), 107(n,α)
 Based on the statistical model calculations with GNASH
 code /6/, without the precompound reaction correction.
 Transmission coefficients for proton and alpha particle
 are calculated by using the OMP of Becchetti-Greenlees
 /7/ and Huizenga-Igo/8/, respectively.
 Level density parameters are based on built-in values.
 MT=251 Mu-bar
 Calculated with optical model (CASTHY).
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 Calculated with optical model (CASTHY).
 MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)
 MT=16,22,28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91,103,107 Evaporation spectra.

References
4) Lederer, C.M. et al.: Table of Isotopes. 7th Edit.
5) Asano et al.: private communication.
MAT number = 3190

19-K - 0 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)
87-07 Compiled by T.Fukahori (JAERI).

Natural potassium constructed from its isotopes.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved Resonances
 Resonance region: 1.0E-5 eV - 200 keV
 The multilevel Breit-Wigner formula was used. Parameters
 were adopted from the following sources.
 K-39 : -4.0 - 200 keV, R = 1.80 fm
 K-41 : -6.6 - 125 keV, R = 2.00 fm

 Calculated 2200-m/s Cross Sections and Res. Integrals.
 2200-m/s Res. Integ.
 Elastic 2.096 b ~
 Capture 2.058 b 1.118 b
 Total 4.159 b ~

MF=3 Neutron Cross Sections
 Below 200 keV, background cross sections consisting of
 elastic, capture, (n,p) and (n, alpha) cross sections
 were given.

MT=1 TOTAL
 For energies 0.2 - 20 MeV, the weighted sum of isotopes
 data was taken. The isotopic calculations were performed
 by using CASTHY code/1/.
MT=2 ELASTIC SCATTERING
 Given as total minus other cross sections.
MT=4 TOTAL INELASTIC SCATTERING
 Sum of MT=51-61. 91
MT=16,22,28,103,107
 The weighted sum of isotopes was adopted. The cross
 sections of isotopes were calculated using GNASH code/2/.
MT=51-61,91 INELASTIC SCATTERING
 Isotopic data were obtained from the CASTHY/1/
 calculation. Isotopic levels were sorted with energies.

Optical potential parameters used in the calculation are
as follows:
 V = 46.72, R0 = 1.26, A0 = 0.76
 Ws = 9.13, Rs = 1.38, As = 0.40
 Vso = 5.37, Rs0 = 1.26, Aso = 0.76
 energies in MeV unit, lengths in fm unit.

MT=102 CAPTURE
 Above 200 keV, the CASTHY/1/ calculation was adopted.
MT=103(N,P), 107(N,ALPHA)
Above 200 keV, based on calculations using the GNASH/2/ code.
MT=251 MU-BAR
 Calculated with CASTHY/1/.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2,51-61
 Optical and statistical-model calculations.
 MT=16,22,28,91
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91
 Calculated with GNASH/2/.

REFERENCES
MAT number = 3191

19-K - 39 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters:
Resolved resonances for MLBW formula: 1.0E-5 eV - 200 keV
Parameters are taken from BNL 325 4th edition/1/, and
some parameters are assumed to fit the measured data.
Cross sections calculated with those parameters are to
be corrected by adding MF=3, MT=1, 2 and 102 data.
Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/sec</th>
<th>Res.Integ.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.06 b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>2.10 b</td>
<td>1.1 b</td>
<td>/1/</td>
</tr>
<tr>
<td>total</td>
<td>4.16 b</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 200 keV
Background data for MT=1: (MT=107)-cross sections.
MT=107 (n,a)=0.04 b (10**-5 eV), 0.0043 b (2200 m/s)/1/.
INT=5.
MT=251 Mu-bar=0.0173

Above 200 keV
MT=1,2,4,51-54,91,102 total, elastic, inelastic and capture
Calculated with CASTHY code /2/, considering the
competition with the threshold reaction channels.
Optical potential parameters of C.Y.Fu/3/ are used.
The spherical optical potential parameters:
V = 46.72 Vso= 5.37 (MeV)
Wv = 9.13 Wv = 0.0 (MeV)
r =rso= 1.26 rs = 1.39 (fm)
a =aso= 0.76 b = 0.40 (fm)

MT=102 Capture data are normalized to 4.2 mb at 200 keV.
The discrete level scheme taken from Ref./4/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3/2 +</td>
</tr>
<tr>
<td>1</td>
<td>2.523</td>
<td>1/2 +</td>
</tr>
<tr>
<td>2</td>
<td>2.814</td>
<td>7/2 -</td>
</tr>
<tr>
<td>3</td>
<td>3.019</td>
<td>3/2 -</td>
</tr>
<tr>
<td>4</td>
<td>3.598</td>
<td>9/2 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 3.8 MeV. The level
density parameters of Asano et al./5/ are used.

200 keV - 1.0 MeV
MT=107 (n,a)-cross section = 2.6*10**-5 b (constant):
Assumed from the calculated value at 1.0 MeV.

Above 1.0 MeV
MT=16,22,28,103,107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Based on the statistical model calculations with GNASH
code/6/, without the precompound reaction correction.
Transmission coefficients for proton and alpha particle
are calculated by using the OMP of Becchetti-Greenlees
/7/ and Huizenga-Igo/8/, respectively.
Level density parameters are based on built-in values.
At the energy range of 4 - 20 MeV, (n,p) cross section
was based on the experimental data/9-11/.
MT=251 Mu-bar
Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY).
MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY)
MT=16,22,28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,103,107 Evaporation spectra.

References
4) Lederer, C.M. et al.: Table of Isotopes, 7th Edit.
5) Asano et al.: private communication.
7) Becchetti, Jr. and Greenlees, G.W.: Polarization Phenomena
 15, 200 (1960).
MAT number = 3192

19-K-40 Fuji E.C. Eval-May87 H. Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H. Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters: (Not given)

MF=3 Neutron Cross Sections
Below 30 keV
Assumed or interpolated cross sections, guided by those of K-39:

\[\text{(10\times 10)} \quad \text{(2200m/s)} \quad \text{(5.10\times 10)} \quad \text{(3.10\times 4)} \quad \text{INT} \]

MT=2
\[\begin{array}{cccccc}
1.0 & b & 1.0 & b & 1.0 & b \\
1.85 & b & 5 & & & \\
\end{array} \]

MT=102
\[\begin{array}{cccccc}
1509 & 0 & b & 30.0 & b & /1/ \\
0.2 & b & 0.023 & b & 5 & \\
\end{array} \]

MT=103
\[\begin{array}{cccccc}
370 & 0 & b & 4.4 & b & /1/ \\
0.012 & b & 0.012 & b & 5 & \\
\end{array} \]

MT=107
\[\begin{array}{cccccc}
2.2 & b & 0.39 & b & /1/ \\
0.04 & b & 0.015 & b & 5 & \\
\end{array} \]

MT=1
\[\begin{array}{cccccc}
1882 & 2 & b & 35.79 & b & 1.252 & b \\
1.9 & b & - & & & \\
\end{array} \]

MT=251 Mu-bar=0.0168

30 keV - 1.0 MeV

MT=1,2,4,102: Calculated with CASTHY code /2/.
MT=103: 0.012 b, guided by measurements of H. Weigmann/3/.

Above 30 keV

MT=1,2,4,51-91,102
Total, Elastic, Inelastic and Capture calculation with
CASTHY code /2/, considering the competition with the
threshold reaction channels.

Optical potential parameters of C.Y. Fu/3/ are used.
The spherical optical potential parameters:

\[V = 46.72 \quad V_{so} = 5.37 \quad (\text{MeV}) \]
\[W_s = 9.13 \quad W_v = 0.0 \quad (\text{MeV}) \]
\[r = r_{so} = 1.26 \quad r_s = 1.39 \quad (\text{fm}) \]
\[a = a_{so} = 0.76 \quad b = 0.40 \quad (\text{fm}) \]

MT=102 capture data are normalized to 4.2 mb at 200 keV.
The discrete level scheme taken from Ref. /4/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0.0296</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0.800</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.892</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1.644</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1.969</td>
<td>2</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 2.1 MeV. The level
density parameters of Asano et al./5/ are used.

MT=16(n,n 2n), 22(n,n a), 28(n,n'p), 103(n,p), 107(n,a)
Based on the statistical model calculations with GNASH
code /6/, without the precompound reaction correction.
Transmission coefficients for proton and alpha particle
are calculated by using the OMP of Becchetti-Greenlees
/7/ and Huizenga-Igo/8/, respectively.
Level density parameters are based on built-in values.

MT=251 Mu-bar
Calculated with optical model (CASTHY).
MF=4 Angular Distributions of Secondary Neutrons
 MT=2 Calculated with optical model (CASTHY).
 MT=51-91 Calculated with Hauser-Feshbach formula (CASTHY).
 MT=16,22,28 isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91,103,107 Evaporation spectra.

References
5) Lederer, C.M. et al.: Table of Isotopes. 7th Edit.
6) Asano et al.: private communication.
8) Becchetti, Jr. and Greenlees, G.W.: Polarization Phenomena
MAT number = 3193

19-K - 41 Fuji E.C. Eval-May87 H.Nakamura
Dist-Sep89

HISTORY
87-05 Newly Evaluated by H.Nakamura (Fuji Electric Co., Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance parameters:
Resolved resonances for MLBW formula: 1.0E-5 eV - 125 keV
Parameters are taken from BNL 325 4th edition /1/, and
some parameters are assumed to fit the measured data.
Cross sections calculated with these parameters are to
be corrected by adding MF=3, MT=1, 2 and 102 data.
Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.57 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>1.46 b</td>
<td>1.58 b /1/</td>
</tr>
<tr>
<td>total</td>
<td>4.03 b</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 125 keV
MT=251 Mu-bar= 0.0164

Above 125 keV.
MT=1, 2, 4, 51, 91, 102
Total. Elastic, Inelastic and Capture calculated with
CASTHY code /2/, considering the competition with the
threshold reaction channels.
Optical potential parameters of C.Y.Fu /3/ are used.
The spherical optical potential parameters:
V = 46.72 (MeV)
Wv = 9.13 (MeV)
We= 0.0 (MeV)
r = rso= 1.26 (fm)
a = aso= 0.76 (fm)
b = 0.40 (fm)

MT=102 Capture data are normalized to the experimental
data of 15 mb at 150 keV /4/.
The discrete level scheme taken from Ref. /5/:
No. | Energy(MeV) | Spin-Parity |
g.s.) | | |
1 | 0.9804 | 1/2 + |
2 | 1.294 | 7/2 - |
Continuum levels assumed above 1.5 MeV. The level
density parameters of Asano et al. /6/ are used.
MT=16(n,2n), 22(n,n'), 28(n,n'p), 103(n,p), 107(n,a)

Based on the statistical model calculations with GNASH
code /7/, without the precompound reaction correction.
Transmission coefficients for proton and alpha particle
are calculated by using the OMP of Becchetti-Greenlees
/8/ and Huizenga-Igo/9/, respectively.
Level density parameters are based on built-in values.
(n,2n), (n,p) and (n,a) cross sections were normalized
to the experimental data of Adams+/10/ for (n,2n), and of
Bass+/11/ for (n,p) and (n,a).
MT=251 Mu-bar
Calculated with optical model (CASTHY).

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model (CASTHY).
MT=51-81 Calculated with Hauser–Feshbach formula (CASTHY)
MT=16,22,28 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91,103,107 Evaporation spectra.

References
5) Lederer, C.M. et al.: Table of Isotopes, 7th Ed.
6) Asano et al.: private communication
MAT number = 3200

20-Ca 0 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
Dist-Sep89

History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
87-03 Compiled by T.Asami (NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy
region from 1.0E-5 eV to 500 keV.
The data were constructed from the evaluated resonance
parameters for each Ca isotope except for Ca-46, considering
their abundances in the Ca element/1/.

2200 m/s cross section(b) res. integral(b)
elastic 3.019
capture 0.4358 0.2282
total 3.455

MF=3 Neutron Cross Sections
Below 500 keV, background cross section was given.
The total, elastic scattering and capture cross sections of
Ca-42 in the energies of 300 to 500 keV and of Ca-43 in the
energies of 40 to 500 keV, multiplied by their abundances,
were given as the background cross sections for MT=1, 2 and
102, respectively.
Above 500 keV, the total and partial cross sections were given
pointwise.
All the cross-section data except for the total ones above 500
keV were constructed from the evaluated ones for five stable
isotopes of Ca except for Ca-46, considering their abundances
in the Ca element/1/. The data of Ca-46 were ignored because of
its very low abundance in the Ca element (0.004 %).

MT=1 Total
The data in the energies above 500 keV were evaluated based on
mainly the experimental ones of/2, 3/ by following their fine
structures.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-88, 91 Inelastic scattering
The data for each level were constructed from the evaluated ones
for the Ca isotopes as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Ca-40</th>
<th>Ca-42</th>
<th>Ca-43</th>
<th>Ca-44</th>
<th>Ca-48</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>51</td>
<td>0.3730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.5930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.9900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>
2 of Natural Calcium

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1.525</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1.837</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1.860</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1.931</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.2831</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>2.424</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>2.600</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>2.752</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3.0443</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>3.188</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3.200</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>3.3013</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>3.3079</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>3.352</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>3.3572</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>3.445</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3.737</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>3.832</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>3.904</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>4.492</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.503</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>4.507</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.612</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5.249</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5.370</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>5.627</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>6.285</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>6.585</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>6.614</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>6.885</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>8.910</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>9.327</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>7.401</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>4.000</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MT=16, 22, 28, 102, 103, 107, 111 (n,2n), (n,na), (n,np).
capture, (n,p), (n,a) and (n,2p)
Constructed from the evaluated data for five Ca isotopes
except for Ca-46, in considering their abundances in the
element Ca.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/4/.

MT=51-88, 91
Calculated with the CASTHY code/4/.

MT=16, 22, 28
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/5/.

MF=12 Photon Production Multiplicities
MT=102, 107
Calculated with the GNASH code/5/.

MF=13 Photon Production Cross Sections
MT=3
 Calculated with the GNASH code/5/.

MF=14 Photon Angular Distributions
MT=3, 102, 107
 Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MT=3, 102, 107
 Calculated with the GNASH code/5/.

References
MAT number = 3201

20-Ca 40 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
 Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
87-03 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 500 keV. Parameters were taken from the recommended data of BNL/1/ and the data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.

The scattering radius was assumed to be 3.6 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.022</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.408</td>
<td>0.2125</td>
</tr>
<tr>
<td>total</td>
<td>3.430</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 500 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula.
Above 500 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with CASTHY /2/. The optical potential parameters used are:

\[V = 49.68 \quad \text{(MeV)} \]
\[W_s = 7.76 - 0.5 \times E_n \quad \text{(MeV)} \]
\[r = 1.17, \quad r_s = 1.09, \quad r_{so} = 1.17 \quad \text{(fm)} \]
\[a = 0.6, \quad a_{so} = 0.6, \quad b = 0.69 \quad \text{(fm)} \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-60, 91 inelastic scattering
Calculated with the CASTHY code/2/, taking account of the contribution from the competing processes. The direct component was calculated with the DWUCK/3/.
The level data used in the above two calculations were taken from ref./4/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
<th>Beta-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>3.352</td>
<td>0+</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.737</td>
<td>3-</td>
<td>0.29</td>
</tr>
<tr>
<td>53</td>
<td>3.904</td>
<td>2+</td>
<td>0.12</td>
</tr>
<tr>
<td>54</td>
<td>4.492</td>
<td>5-</td>
<td>0.19</td>
</tr>
</tbody>
</table>
2 of Calcium-40

Levels above 8.0 MeV were assumed to be overlapping.

MT=16 (n,2n)
 Taken from the JENDL-2 data, which were evaluated based on
 the experimental data of Arnold/5/.

MT=22, 28, 103, 107, 111 (n,na), (n,np), (n,p), (n,a), (n,2p)
 Calculated with the GNASH code/6/ using the above optical
 model parameters
 The (n,p) cross sections were normalized so as to fit
 to the experimental data of Urech at 5.95 MeV/7/.
 The (n,a) cross sections were normalized to the experimental
 data of Barnes/8/ at 14.1 MeV.

MT=102 Capture
 Calculated with the CASTHY code/4/ and normalized to 1.8 mb
 at 30 keV.

MT=251 Mu-bar
 Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
 Calculated with the CASTHY code/2/.

MT=61-60
 Calculated with the CASTHY code/2/ and the DWUCK code/3/.

MT=81
 Calculated with the CASTHY code/2/.

MT=16, 22, 28
 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
 Calculated with the GNASH code/6/.

MF=12 Photon Production Multiplicities

MT=102, 107
 Calculated with the GNASH code/6/.

MF=13 Photon Production Cross Sections

MT=3
 Calculated with the GNASH code/6/.

MF=14 Photon Angular Distributions

MT=3, 102, 107
 Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra

MT=3, 102, 107
 Calculated with the GNASH code/6/.

References
4) ENSDF (Evaluated Nuclear Structure Data File)
5) Arnold D.W.: Taken from EXFOR (1965).
MAT number = 3202

20-Ca-42 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.) Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
87-03 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved Resonance Parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 300 keV.
Parameters were taken from the recommended data of BNL/1/ and the data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.
The scattering radius was assumed to be 3.6 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Res. Integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>1.222</td>
</tr>
<tr>
<td>Capture</td>
<td>0.683</td>
</tr>
<tr>
<td>Total</td>
<td>1.905</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 300 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula.
Above 300 keV, the total and partial cross sections were given pointwise.

MT=1 Total Optical and statistical model calculation was made with the CASTHY code/2/. The optical potential parameters used are:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>49.68</td>
</tr>
<tr>
<td>(V_{so})</td>
<td>7.12 (MeV)</td>
</tr>
<tr>
<td>(W_{s})</td>
<td>7.76 - 0.5*En.</td>
</tr>
<tr>
<td>(W_{v})</td>
<td>0</td>
</tr>
<tr>
<td>(r)</td>
<td>1.17</td>
</tr>
<tr>
<td>(r_{so})</td>
<td>1.17 (fm)</td>
</tr>
<tr>
<td>(a)</td>
<td>0.6</td>
</tr>
<tr>
<td>(a_{so})</td>
<td>0.6</td>
</tr>
<tr>
<td>(b)</td>
<td>0.69</td>
</tr>
</tbody>
</table>

MT=2 Elastic scattering Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-56, 91 Inelastic scattering Calculated with CASTHY/2/, taking account of the contribution from the competing processes.
The level data used in the above calculations were taken from ref.3/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>51</td>
<td>1.525</td>
<td>2+</td>
</tr>
<tr>
<td>52</td>
<td>1.837</td>
<td>0+</td>
</tr>
<tr>
<td>53</td>
<td>2.424</td>
<td>2+</td>
</tr>
<tr>
<td>54</td>
<td>2.752</td>
<td>4+</td>
</tr>
<tr>
<td>55</td>
<td>3.19</td>
<td>6+</td>
</tr>
</tbody>
</table>
56 3.445
Levels above 7.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 \((n,2n), (n,na), (n,np), (n,p), (n,a) \)
Calculated with the GNASH code/4/ using the above optical
model parameters.
The \((n,np)\) cross sections were normalized to 180 mb at
14.5 MeV.

MT=102 Capture
Calculated with the CASTHY code/2/ and normalized to 12.6 mb
at 45 keV.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.
MT=51-56
Calculated with the CASTHY code/2/.
MT=91
Calculated with the CASTHY code/2/.
MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/4/.

References
3) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3203

20-Ca-43 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
87-03 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-6 eV to 40 keV.
Parameters were taken from the recommended data of BNL1/1/ and the data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.
The scattering radius was assumed to be 3.6 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

- Elastic cross section (b) = 4.160
- Capture cross section (b) = 11.66
- Total cross section (b) = 15.82
- Res. integral (b) = 5.708

MF=3 Neutron Cross Sections
Below 40 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula.
Above 40 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/2/.
The optical potential parameters used are:

- \(V = 49.68 \) (MeV)
- \(V_{so} = 7.12 \) (MeV)
- \(W_{s} = 7.76 - 0.5 \cdot E_{n} \) (MeV)
- \(W_{v} = 0 \) (MeV)
- \(r = 1.17 \) (fm)
- \(r_{so} = 1.09 \) (fm)
- \(a = 0.6 \) (fm)
- \(a_{so} = 0.6 \) (fm)
- \(b = 0.69 \) (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-55 Inelastic scattering
Calculated with CASTHY /2/, taking account of the contribution from the competing processes.
The level data used in the above calculations were taken from ref./3/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>7/2-</td>
</tr>
<tr>
<td>51</td>
<td>0.373</td>
<td>5/2-</td>
</tr>
<tr>
<td>52</td>
<td>0.583</td>
<td>3/2-</td>
</tr>
<tr>
<td>53</td>
<td>0.980</td>
<td>3/2+</td>
</tr>
<tr>
<td>54</td>
<td>1.395</td>
<td>5/2+</td>
</tr>
<tr>
<td>55</td>
<td>1.931</td>
<td>5/2-</td>
</tr>
</tbody>
</table>
Levels above 5.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
 Calculated with the GNASH code/4/ using the above optical model parameters
MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 22 mb at 45 keV.
MT=251 Mu-bar
 Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code/2/.
MT=51-55
 Calculated with the CASTHY code/2/.
MT=91
 Calculated with the CASTHY code/2/.
MT=16, 22, 28
 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
 Calculated with the GNASH code/4/.

References
3) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3204

20-Ca- 44 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
 Dist-Sep89

History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
87-03 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 500 keV.
Parameters were taken from the recommended data of BNL/1/ and
the data for a negative resonance were added so as to reproduce
the recommended thermal cross sections for capture and scatter-
ing/1/.
The scattering radius was assumed to be 3.6 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th></th>
<th>2200 m/cecross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.320</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.888</td>
<td>0.4254</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>4.208</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 500 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated resolv-
ed resonance parameters with MLBW formula.
Above 500 keV, the total and partial cross sections were given
pointwise.
MT=1 total
Optical and statistical model calculation was made with
the CASTHY code/2/ . The optical potential parameters used are:

\[\begin{align*}
V &= 49.68, \\
V_{so} &= 7.12 \text{ (MeV)} \\
W_{s} &= 7.76 - 0.5 \times En, \\
W_{v} &= 0 \text{ (MeV)} \\
\rho &= 1.17, \quad r_{s} = 1.08, \quad r_{so} = 1.17 \text{ (fm)} \\
\alpha &= 0.6, \quad a_{so} = 0.6, \quad b = 0.68 \text{ (fm)}
\end{align*} \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.
MT=4, 51-59, 91 Inelastic scattering
Calculated with CASTHY /2/, taking account of the contribution
from the competing processes. The direct component was
calculated with the DWUCK code/3/.
The level data used in the above two calculations were taken
from ref./4/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1.20</td>
<td>2+</td>
</tr>
<tr>
<td>52</td>
<td>1.86</td>
<td>0+</td>
</tr>
<tr>
<td>53</td>
<td>2.2831</td>
<td>4+</td>
</tr>
<tr>
<td>54</td>
<td>2.60</td>
<td>2+</td>
</tr>
</tbody>
</table>
55 3.0443 4+
56 3.20 6+
57 3.3013 2+
58 3.3078 3−
59 3.3572 4+

Levels above 4.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/5/ using the above optical model parameters.
The (n,p) and (n,a) cross sections were normalized to 42 mb and 28.6 mb at 14.5 MeV, respectively.

MT=102 Capture
Calculated with the CASTHY code/2/ and normalized to 7.1 mb at 45 keV.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.

MT=51–59
Calculated with the CASTHY code/2/ and the DWUCK code/3/.

MT=91
Calculated with the CASTHY code/2/.

MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/5/.

References
4) ENDF(Evaluated Nuclear Structure Data File)
MAT number = 3205

20-Ca- 46 Mitsui E.S.Eval-Apr80 M.Hatchya
Dist-Feb84

History
80-04 New evaluation was made by M.Hatchya (Mitsui).
83-11 Ang. dist. was modified.
84-02 Comment was added.
88-10 Unchanged from JENDL-2.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 No resonance parameters

2200-m/sec cross sections and calculated resonance integrals

<table>
<thead>
<tr>
<th>2200-m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.900 b</td>
</tr>
<tr>
<td>capture</td>
<td>0.7400 b</td>
</tr>
<tr>
<td>total</td>
<td>3.640 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Thermal region was assumed below 1.0 keV. The capture and elastic scattering cross sections were assumed to be 0.74 barns /1/ and 2.9 barns at 0.0253 eV, respectively. The total cross section was calculated as a sum of these two. Above 1.0 keV, data were evaluated as follows.

MT=1 Total cross section
The optical model calculation with CASTHY /2/ was adopted.

Optical potential parameters were taken from Ref. /3/.
V = 46.72 (MeV),
Ws = 9.13 (MeV),
Vso= 5.37 (MeV),
r0 = rso = 1.26 (fm),
rs = 1.39 (fm),
a = aso= 0.76 (fm),
b = 0.40 (fm).

MT=2 Elastic scattering cross section
Derived by subtracting partial cross sections from the total cross section.

MT=4.51-53.91 Inelastic scattering cross sections
Calculated with optical and statistical model code CASTHY /2/.

Level scheme

Level scheme was taken from Table of Isotopes /4/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>1.347</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>3.024</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>3.613</td>
<td>3 -</td>
</tr>
</tbody>
</table>
Levels above 4.463 MeV were assumed to be overlapping.

Level density parameters (Gilbert and Cameron /5/)

<table>
<thead>
<tr>
<th>isotope</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (1/MeV)</td>
<td>7.135</td>
<td>7.075</td>
</tr>
<tr>
<td>S-C(1/SQRT(MeV))</td>
<td>3.03</td>
<td>3.08</td>
</tr>
<tr>
<td>Delta(MeV)</td>
<td>3.37</td>
<td>1.83</td>
</tr>
<tr>
<td>Ex (MeV)</td>
<td>9.131</td>
<td>7.522</td>
</tr>
</tbody>
</table>

MT=16 (n,2n) cross section
Based on available data.

MT=102 Capture cross section
Calculated with CASTHY /2/.

MT=103,107 (n,p) and (n,alpha) cross sections
Statistical and pre-equilibrium model calculations using
the optical potential parameters and the level density
parameters given above. Fitted to available data.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51–53.91
Optical model calculation
MT=16 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.91 Evaporation spectra.

References
3) Fu C.Y.: Atomic Data and Nuclear Data Table 17, 127 (1976).
4) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th Ed.,
MAT number = 3206

20-Ca- 48 DEC Eval-Mar87 M.Hatchya(Data Eng. Co.)
Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
87-03 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E+5 eV to 500 keV.
Parameters were taken from the recommended data of BNL/1/ and the data for a negative resonance were added so as to reproduce the recommended thermal cross sections for capture and scattering/1/.
The scattering radius was assumed to be 3.6 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th></th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.717</td>
</tr>
<tr>
<td>capture</td>
<td>1.092</td>
</tr>
<tr>
<td>total</td>
<td>4.809</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 500 keV, zero background cross section was given and all the cross-section data are reproduced from the evaluated resolved resonance parameters with MLBW formula. Above 500 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/2/. The optical potential parameters used are:

\[V = 49.68, \quad V_{so} = 7.12 \text{ (MeV)} \]
\[W_s = 7.76 - 0.5 \cdot E_n, \quad W_v = 0 \text{ (MeV)} \]
\[r = 1.17, \quad r_s = 1.09, \quad r_{so} = 1.17 \text{ (fm)} \]
\[a = 0.6, \quad a_{so} = 0.6, \quad b = 0.69 \text{ (fm)} \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-58, 91 Inelastic scattering
Calculated with CASTHY /2/, taking account of the contribution from the competing processes.
The level data used in the above calculations were taken from ref./3/ as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>51</td>
<td>3.832</td>
<td>2+</td>
</tr>
<tr>
<td>52</td>
<td>4.503</td>
<td>4+</td>
</tr>
<tr>
<td>53</td>
<td>4.507</td>
<td>3-</td>
</tr>
<tr>
<td>54</td>
<td>4.612</td>
<td>3+</td>
</tr>
<tr>
<td>55</td>
<td>5.37</td>
<td>3-</td>
</tr>
</tbody>
</table>
Levels above 8.0 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/4/ using the above optical model parameters.
The (n,p) cross sections were normalized to the experimental data of Tiwari et al./5/ at 14.5 MeV.
MT=102 Capture
Calculated with the CASTHY code/2/ and normalized to 1.05 mb at 30 keV.
MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/2/.
MT=51-58
Calculated with the CASTHY code/2/.
MT=91
Calculated with the CASTHY code/2/.
MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/4/.

References
3) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3211

21-Sc- 45 KHI Eval-Aug88 T.Watanabe
Dist-Sep89

History
88-08 JENDL-2 modified by T.Watanabe
(Kawasaki Heavy Industries, Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2
MT=151 Resonance Parameters
Resolved resonances for MLBW formula:
Parameters were evaluated based on experimental data
/1/, /2/, /3/ and modified to reproduce experimental
total cross sections. Negative energy levels were added
to reproduce the total and capture cross sections/4/
at thermal and the total cross section /5/ at 2 keV.

Calculated 2200 m/s cross sections and resonance integrals
2200 m/sec res. integ.
elastic 22.5 b -
capture 27.1 b 11.9 b
total 49.7 b -

MF=3 Neutron Cross Sections
Above 100 keV
MT=1,2,4,51-74,91,102 Total, elastic, inelastic and capture
Calculated with optical and statistical model.
Direct inelastic reaction cross sections were evaluated
with DWBA /6/ and added to compound processes.

The spherical optical potential parameters were evaluated
to reproduce total experimental cross sections
/7/, /8/, /9/.

V = 56.2 - 0.3244•En MeV r0 = 1.155 fm a0 = 0.666 fm
Ws = 8.638-0.003093•En MeV rs = 1.473 fm b = 0.262 fm
Vso=5.254 MeV rso=1.003 fm aso=0.485 fm

Statistical model calculation with CASTHY code /10/ was
performed. MT=102 capture cross section was normalized
to the experimental data of Kenney+ /2/, 34.4 mb, at
0.1 MeV.

The level scheme taken from ref./11/:
11 1.43367 9/2+
12 1.55647 3/2−
13 1.66231 9/2− 0.0843
14 1.80047 5/2+

Continuum levels assumed above 1.9 MeV.
Level density parameters were evaluated using D0, and
level data /4/., /11/.

<table>
<thead>
<tr>
<th>a</th>
<th>T</th>
<th>Ex</th>
<th>sig-2(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Sc-45</td>
<td>7.855</td>
<td>1.282</td>
<td>10.08</td>
</tr>
<tr>
<td>21-Sc-46</td>
<td>7.231</td>
<td>1.268</td>
<td>7.328</td>
</tr>
</tbody>
</table>

MT=16 (n,2n)
The JENDL-2 data were modified by using experimental
data /12/.

MT=103 (n,p)
Taken from compilation by Alley and Lessler /13/.

MT=107 (n, alpha)
Same as MT=103, but slightly modified to reproduce /12/
experimental data.

MT=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Calculated with optical model.

MT=51-91 Calculated with Hauser-Feshbach formula added with
direct reaction.

MT=16 Isotropic in the laboratory system

MF=5 Energy Distributions of Secondary Neutrons
Calculated with SINCROS /14/.

References
 (1973).
MAT number = 3220

22-Ti- 0 KUR Eval-Sep88 K.Kobayashi(KUR), H.Hashikura(TOK)
 Dist-Sep89

History
88-09 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 ev to 100 keV.
Parameters were constructed with the evaluated data for
Ti-46, -47, -48, -49 and -50 of Ti stable isotopes, considering
their abundances in the Ti element. The abundance data were
taken from ref./1/.

<table>
<thead>
<tr>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>4.087</td>
</tr>
<tr>
<td>capture</td>
<td>6.092</td>
</tr>
<tr>
<td>total</td>
<td>10.18</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 100 keV, no background cross section was given.
Above 100 keV, the total and partial cross sections were given
pointwise.
All the cross-section data were deduced from the evaluated
ones for five stable isotopes of Ti considering their
abundances in the Ti element, except for the total cross sections
in the energies above 100 keV.

MT=1 Total
The data in the energies above 100 keV were evaluated based on
several experimental ones/2/-/4/, following fine structures
in the cross sections. The data in the other energy range were
constructed with the evaluated ones for five isotopes of Ti.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-90, 91 Inelastic scattering
The data were constructed from the evaluated ones for each Ti
isotope. The isotopic data were calculated with the CASTHY code
/5/, including both the effects of the direct process and the
competing reactions. The direct process was calculated based on
the DWBA method.
The discrete levels were lumped as given below:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Ti-46</th>
<th>Ti-47</th>
<th>Ti-48</th>
<th>Ti-49</th>
<th>Ti-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.1807</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.889</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.984</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>55</td>
<td>1.550</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1.555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>57</td>
<td>1.585</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1.723</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
2 of Natural Titanium

59 1.782
60 1.794 53
61 2.010 52
62 2.185 54
63 2.295 52
64 2.421 53
65 2.506 55
66 2.525 55
67 2.611 53
68 2.675 52
69 2.793 56
70 2.982 54
71 2.999 54
72 3.059 55
73 3.168 56
74 3.175 56
75 3.21 53
76 3.224 55-56
77 3.236 57
78 3.260 57
79 3.299 58
80 3.332 57-59
81 3.428 58
82 3.438 59
83 3.508 60
84 3.618 61
85 3.703 62-63
86 3.741 64-65
87 3.853 66
88 3.87 54
89 4.036 67

The threshold for the continuum of inelastic scattering was set to be 2.85 MeV.

MT=16 (n,2n)
 Evaluated based on experimental data.
MT=22 (n,na)
 Calculated with the GNASH code/6/.
MT=28 (n,np)
 Calculated with the GNASH code/6/.
MT=102 Capture
 Composed from the isotopic data calculated with the CASTHY code/5/.
MT=103 (n,p)
 Composed from the isotopic data.
MT=107 (n,a)
 Composed from the isotopic data.
MT=251 Mu-bar
 Calculated based on optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code/5/.
MT=51-89, 91
 Constructed from the isotopic data.
 The direct interaction was considered for MT=52,53,56,61,63,
 64,67,68,70,72,80,84,87,89.
MT=16, 22, 28
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Constructed from the isotopic data.

MF=12 Photon Production Multiplicities
MT=102
Composed from the isotopic data calculated with the GNASH code/6/.

MF=13 Photon Production Cross Sections
MT=3
Calculated with the GNASH code/6/., and above 2.745 MeV
replaced with the measurements of Morgan et al./7/.

MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MT=3
Calculated with the GNASH code/6/.
MT=102
Calculated with the GNASH code/6/ except for thermal.
At thermal, based on the measurements of Maerker/8/.

References
MAT number = 3221

22-Ti- 46 KUR Eval-Sep88 K.Kobayashi(KUR), H.Hashikura(TOK)
Dist-Sep89

History
88-09 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 180 keV.
Parameters were taken from ref./1/, for positive resonances.
Parameters for negative resonance were obtained so that the
reproduced cross sections for both scattering and capture gave
the 2200 m/s values of 2.78±0.24 and 0.59±0.18 barns, respectivley/1/.
The scattering radius was assumed to be 4.5 Fermi instead of
3.5 Fermi in ref./1/.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.75</td>
</tr>
<tr>
<td>capture</td>
<td>0.596</td>
</tr>
<tr>
<td>total</td>
<td>3.34</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 180 keV, no background cross section was given.
Above 180 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
Optical and statistical model calculation was made with
the CASTHY code/2/. The optical potential parameters used are:
V = 50.75 - 0.120*En, Vso = 4.72 (MeV)
W0 = 10.9 - 0.234*en, Wv = 0.0 (MeV)
r = 1.26, rs = 1.02, rso = 1.16 (fm)
a = 0.52, aso = 0.52, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-58. 91 Inelastic scattering
Calculated with the CASTHY code/2/, taking account of the
contribution from the competing processes.
The contributions from the direct process for inelastic
scattering were calculated with the DWUCK code/3/.
The deformation parameters used in the calculation were
assumed in referring the data from the Ti-46(p,p') reaction
/4/, as shown in table below.
The level data in the above two calculations were taken from
ref./5/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
<th>Beta-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0+</td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>0.889</td>
<td>2+</td>
<td>0.29</td>
</tr>
<tr>
<td>52</td>
<td>2.010</td>
<td>4+</td>
<td>0.16</td>
</tr>
<tr>
<td>MT</td>
<td>Level</td>
<td>Spin</td>
<td>Width</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>53</td>
<td>2.611</td>
<td>0+</td>
<td>0.04</td>
</tr>
<tr>
<td>54</td>
<td>2.962</td>
<td>2+</td>
<td>0.053</td>
</tr>
<tr>
<td>55</td>
<td>3.059</td>
<td>3−</td>
<td>0.16</td>
</tr>
<tr>
<td>56</td>
<td>3.168</td>
<td>1−</td>
<td>−</td>
</tr>
<tr>
<td>57</td>
<td>3.236</td>
<td>2+</td>
<td>−</td>
</tr>
<tr>
<td>58</td>
<td>3.299</td>
<td>6+</td>
<td>−</td>
</tr>
<tr>
<td>59</td>
<td>3.438</td>
<td>3−</td>
<td>−</td>
</tr>
</tbody>
</table>

Levels above 3.5 MeV were assumed to be overlapping.

MT=16 (n,2n)
Evaluated based on the experimental data.

MT=22 (n,na)
Calculated without GNASH code/6/.

MT=28 (n,np)
Calculated with GNASH code/6/.

MT=102
Capture
Calculated with the CASTHY code/2/ and normalized to 26.9 mb at 30 keV.

MT=103 (n,p)
Evaluated based on the experimental data.

MT=107 (n,a)
Calculated with GNASH code/6/.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the CASTHY code/2/.

MT=51-59, 91
Calculated with the CASTHY code/2/.
The direct interaction was considered for MT=51-55.

MT=16, 22, 28
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
Calculated with the GNASH code/6/.

References
5) Evaluated Nuclear Structure Data File (ENSDF).
MAT number = 3222

22-Ti- 47 KUR Eval-Sep88 K.Kobayashi(KUR), H.Hashikura(TOK)
Dist-Sep89

History
88-08 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 100 keV.
Parameters were taken from ref. 1/ for positive resonances.
Parameters for negative resonance were obtained so that the reproduced cross sections for both scattering and capture gave the 2200 m/s values of 3.1+-0.2 and 1.7+-0.2 barns, respectively
The scattering radius was assumed to be 4.5 Fermi instead of 3.6 Fermi in ref. 1/.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2200 m/s Cross Section (b)</th>
<th>Res. Integral (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>Capture</td>
<td>1.70</td>
<td>1.44</td>
</tr>
<tr>
<td>Total</td>
<td>4.80</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 100 keV, no background cross section was given.
Above 100 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/2/. The optical potential parameters used are:
V = 50.75 - 0.120*En, Vso = 4.72 (MeV)
Ws = 10.9 - 0.234*En, Wv = 0.0 (MeV)
r = 1.26, rs = 1.02, rso = 1.16 (fm)
a = 0.52, aso = 0.52, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-56, 91 Inelastic scattering
Calculated with the CASTHY code/2/, taking account of the contribution from the competing processes.
The contribution from the direct process for inelastic scattering was ignored.
The level data in the above calculations were taken from ref. 3/ as follows:

<table>
<thead>
<tr>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>5-</td>
</tr>
<tr>
<td>51</td>
<td>7-</td>
</tr>
<tr>
<td>52</td>
<td>3-</td>
</tr>
<tr>
<td>53</td>
<td>1-</td>
</tr>
<tr>
<td>54</td>
<td>3-</td>
</tr>
<tr>
<td>55</td>
<td>3-</td>
</tr>
<tr>
<td>56</td>
<td>1-</td>
</tr>
</tbody>
</table>
Levels above 2.85 MeV were assumed to be overlapping.

MT=18 (n,2n)
 Calculated with the GNASH code/4/.

MT=22 (n,na)
 Calculated with the GNASH code/4/.

MT=28 (n,np)
 Evaluated based on the experimental data.

MT=102 Capture
 Calculated with the CASTHY code/2/ and normalized to 65.5 mb
 at 30 keV.

MT=103 (n,p)
 Evaluated based on the experimental data.

MT=107 (n,a)
 Calculated with the GNASH code/4/.

MT=251 Mu-bar
 Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
 Calculated with the CASTHY code/2/.

MT=51-56, 91
 Calculated with the CASTHY code/2/.

MT=16, 22, 28
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
 Calculated with the GNASH code/4/.

References
1) Mughabghab S.F. et al. : "Neutron Cross Sections", Vol. 1,
3) Evaluated Nuclear Structure Data File (ENSDF).
MAT number = 3223

22-Ti-48 KUR
Eval-Sep88 K.Kobayashi(KUR), H.Hashikura(TOK)
Dist-Sep88

History
88-09 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 100 keV.
Parameters were taken from ref./1/, for positive resonances.
Parameters for negative resonance were obtained so that the
reproduced cross sections for both scattering and capture gave
the 2200 m/s values of 4.61+0.2 and 7.84+0.25 barns, respec-
tively/1/.
The scattering radius was assumed to be 4.2 Fermi instead of
3.9 Fermi in ref./1/.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th>elastic</th>
<th>capture</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200 m/s cross section(b)</td>
<td>res. integral(b)</td>
<td></td>
</tr>
<tr>
<td>4.61</td>
<td>7.84</td>
<td>12.45</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 100 keV, no background cross section was given.
Above 100 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/2/. The optical potential parameters used are:
\[V = 50.75 - 0.120\times E_n, \quad V_{so} = 4.72 \quad (\text{MeV}) \]
\[W_s = 10.9 - 0.234\times E_n, \quad W_v = 0.0 \quad (\text{MeV}) \]
\[r = 1.26, \quad r_s = 1.02, \quad r_{so} = 1.16 \quad (\text{fm}) \]
\[a = 0.52, \quad a_{so} = 0.52, \quad b = 0.40 \quad (\text{fm}) \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4. 51-67. 91 Inelastic scattering
Calculated with the CASTHY code/2/, taking account of the
contribution from the competing processes.
The contributions from the direct process for inelastic
scattering were calculated with DWUCK code/3/.
The deformation parameters used in the calculation were
assumed in referring the data from the Ti-48(a,a') reaction
/4/, as shown in table below.
The level data in the above two calculations were taken from
ref./5/ as follows:

<table>
<thead>
<tr>
<th>g.s.</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
<th>Beta-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.984</td>
<td>2+</td>
<td>0.21</td>
</tr>
<tr>
<td>52</td>
<td>2.295</td>
<td>4+</td>
<td>0.05</td>
</tr>
<tr>
<td>53</td>
<td>2.421</td>
<td>2+</td>
<td>0.058</td>
</tr>
<tr>
<td>Level</td>
<td>Energy (MeV)</td>
<td>Spin</td>
<td>Width</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>54</td>
<td>2.999</td>
<td>0+</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>3.224</td>
<td>3+</td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>3.239</td>
<td>4+</td>
<td>0.082</td>
</tr>
<tr>
<td>57</td>
<td>3.332</td>
<td>6+</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>3.359</td>
<td>3−</td>
<td>0.079</td>
</tr>
<tr>
<td>59</td>
<td>3.373</td>
<td>2+</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>3.508</td>
<td>6+</td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td>3.618</td>
<td>2+</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>3.703</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>63</td>
<td>3.711</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>3.741</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>65</td>
<td>3.783</td>
<td>3−</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>3.853</td>
<td>3−</td>
<td>-</td>
</tr>
<tr>
<td>67</td>
<td>4.036</td>
<td>2+</td>
<td>-</td>
</tr>
</tbody>
</table>

Levels above 4.1 MeV were assumed to be overlapping.

MT=16 \((n,2n)\)
- Calculated with the GNASH code/6/.

MT=22 \((n,na)\)
- Calculated with the GNASH code/6/.

MT=28 \((n,np)\)
- Calculated with the GNASH code/6/.

MT=102
- Capture
 - Calculated with the CASTHY code/2/ and normalized to 4.3 mb at 20 keV.

MT=103 \((n,p)\)
- Evaluated based on the experimental data.

MT=107 \((n,a)\)
- Evaluated based on the experimental data.

MT=251
- Mu-bar
 - Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
- Calculated with the CASTHY code/2/.

MT=51-67, 91
- Calculated with the CASTHY code/2/.

MT=16, 22, 28
- Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
- Calculated with the GNASH code/6/.

References
5) Evaluated Nuclear Structure Data File (ENSDF).
MAT number = 3224

22-Ti- 49 KUR Eval-Sep88 K.Kobayashi(KUR).H.Hashikura(TOK) Dist-Sep89

History
88-09 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 100 keV.
Parameters were taken from ref./1/, for positive resonances.
Parameters for negative resonance were obtained so that the reproduced cross sections for both scattering and capture gave the 2200 m/s values of 0.7+-0.3 and 2.2+-0.3 barns, respectively/1/.
The scattering radius was assumed to be 4.5 Fermi instead of 4.0 Fermi in ref./1/.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

2200 m/s cross section(b) res. integral(b)
elastic 0.69
capture 2.21 1.06
total 2.80

MF=3 Neutron Cross Sections
Below 100 keV, no background cross section was given.
Above 100 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/2/.
The optical potential parameters used are:
V = 50.75 - 0.120*En, Vso = 4.72 (MeV)
Ws = 10.9 - 0.234*En, Wv = 0.0 (MeV)
r = 1.26, rs = 1.02, rso = 1.16 (fm)
a = 0.52, aso = 0.52, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-56, 91 Inelastic scattering
Calculated with the CASTHY code/2/, taking account of the contribution from the competing processes.
The contribution from the direct process for inelastic scattering was ignored.
The level data in the above calculations were taken from ref./3/ as follows:

<table>
<thead>
<tr>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s. 0.0</td>
<td>5-</td>
</tr>
<tr>
<td>51 0.160</td>
<td>7-</td>
</tr>
<tr>
<td>52 1.550</td>
<td>3-</td>
</tr>
<tr>
<td>53 1.794</td>
<td>1-</td>
</tr>
<tr>
<td>54 2.165</td>
<td>3-</td>
</tr>
<tr>
<td>55 2.526</td>
<td>3-</td>
</tr>
<tr>
<td>56 2.793</td>
<td>1-</td>
</tr>
</tbody>
</table>
Levels above 2.85 MeV were assumed to be overlapping.

MT=16 \ (n,2n)
Calculated with the GNASH code/4/.

MT=22 \ (n,na)
Calculated with the GNASH code/4/.

MT=28 \ (n,np)
Evaluated based on the experimental data.

MT=102 \ Capture
Calculated with the CASTHY code/2/ and normalized to 22.5 mb at 30 keV.

MT=103 \ (n,p)
Evaluated based on the experimental data.

MT=107 \ (n,a)
Calculated with the GNASH code/4/.

MT=251 \ Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the CASTHY code/2/.

MT=51-58, 91
Calculated with the CASTHY code/2/.

MT=16, 22, 28
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91
Calculated with the GNASH code/4/.

References
3) Evaluated Nuclear Structure Data File (ENSDF).
MAT number = 3225

22-Ti- 50 KUR Eval-Sep88 K.Kobayashi(KUR),Hashikura(TOK)
Dist-Sep88

History
88-09 Compiled by T.Asami(NEDAC)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 200 keV.
Parameters were taken from ref./1/, for positive resonances.
Parameters for negative resonance were obtained so that the
reproduced cross sections for both scattering and capture gave
the 2200 m/s value of 3.74±0.3 and 0.179±0.003 barns, respec-
tively/1/.
The scattering radius was assumed to be 4.5 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.18</td>
<td>0.086</td>
</tr>
<tr>
<td>total</td>
<td>3.88</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 180 keV, no background cross section was given.
Above 180 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
Optical and statistical model calculation was made with
CASTHY code/2/. The optical potential parameters used are:
V = 50.75 - 0.120*En, Vs= 4.72 (MeV)
Wv = 10.9 - 0.234*En, Wv= 0.0 (MeV)
r = 1.26, rs = 1.02, rs= 1.16 (fm)
a = 0.52, aso = 0.52, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-59, 91 Inelastic scattering
Calculated with the CASTHY code/2/, taking account of the
contribution from the competing processes.
The contributions from the direct process for inelastic
scattering were calculated with DWUCK code/3/.
The deformation parameters used in the calculation were
assumed in referring the data on the Ti-50(p,p') reaction
/4/, as shown in table below.
The level data in the above two calculations were taken from
ref./5/ as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
<th>Beta-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0+</td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>0.889</td>
<td>2+</td>
<td>0.29</td>
</tr>
<tr>
<td>52</td>
<td>2.010</td>
<td>4+</td>
<td>0.16</td>
</tr>
<tr>
<td>53</td>
<td>2.611</td>
<td>0+</td>
<td>0.04</td>
</tr>
<tr>
<td>54</td>
<td>2.962</td>
<td>2+</td>
<td>0.053</td>
</tr>
</tbody>
</table>
Levels above 3.5 MeV were assumed to be overlapping.

<table>
<thead>
<tr>
<th>MT</th>
<th>Energy (MeV)</th>
<th>Level</th>
<th>Width (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>3.059</td>
<td>3-</td>
<td>0.16</td>
</tr>
<tr>
<td>56</td>
<td>3.168</td>
<td>1-</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>3.236</td>
<td>2+</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>3.299</td>
<td>6+</td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>3.435</td>
<td>3-</td>
<td>-</td>
</tr>
</tbody>
</table>

MT=16 (n,2n)
Evaluating based on the experimental data.

MT=22 (n,na)
Calculated with the GNASH code/6/.

MT=28 (n,np)
Calculated with the GNASH code/6/.

MT=102 Capture
Calculated with the CASTHY code/2/ and normalized to 2.3 mb at 25 keV.

MT=103 (n,p)
Evaluating based on the experimental data.

MT=107 (n,a)
Calculated with the GNASH code/6/.

MT=251 Mu-bar
Calculated based on optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the CASTHY code/2/.

MT=51-59, 91
Calculated with the CASTHY code/2/.

Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28
Calculated with the GNASH code/6/.

References
5) Evaluated Nuclear Structure Data File (ENSDF).
MAT number = 3231

23-V - 51 KHI Eval-Aug88 T.Watanabe
 Dist-Sep89

History
88-08 JENDL-2 modified by T.Watanabe
(Kawasaki Heavy Industries, Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 MT=151 Resonance Parameters

Resolved resonances for MLBW formula:
Parameters were evaluated based on experimental data
/1/.,/2/.,/3/.,/4/ and modified to reproduce experimental
total cross sections. Negative energy levels were added
to reproduce 2200 m/s total and capture cross sections.

Calculated 2200 m/s cross sections and resonance integrals

- 2200 m/sec res. integ.
 elastic 4.8 b -
 capture 4.9 b 2.6 b
 total 9.7 b -

MF=3 MT=1,2,4,51-74,91,102 Neutron Cross Sections

Total, elastic, inelastic and capture cross sections
were calculated with optical and statistical model.
Direct inelastic reaction cross sections were evaluated
with DWBA method /5/ and added to compound processes.

The spherical optical potential parameters were evaluated
to reproduce experimental total cross sections
/6/.,/7/.,/8/.
V = 50.71-0.4793•En MeV r0= 1.227 fm a0= 0.663 fm
W0= 5.307-0.1911•En MeV rs= 1.370 fm b = 0.394 fm
Vso= 6.560 MeV rso=0.046 fm aso=0.535 fm

Statistical model calculation with CASTHY code /9/ was
performed. MT=102 capture cross section was normalized
to the experimental data of Dudey+ /10/ at 0.5 MeV
2.63 mb.

The level scheme taken from ref./11/:

<table>
<thead>
<tr>
<th>no.</th>
<th>energy(MeV)</th>
<th>spin-parity</th>
<th>beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>7/2−</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.320853</td>
<td>5/2−</td>
<td>0.0809</td>
</tr>
<tr>
<td>2</td>
<td>0.32866</td>
<td>3/2−</td>
<td>0.0494</td>
</tr>
<tr>
<td>3</td>
<td>1.60894</td>
<td>11/2−</td>
<td>0.0875</td>
</tr>
<tr>
<td>4</td>
<td>1.81308</td>
<td>9/2−</td>
<td>0.0674</td>
</tr>
<tr>
<td>5</td>
<td>2.41078</td>
<td>3/2−</td>
<td>0.0427</td>
</tr>
<tr>
<td>6</td>
<td>2.5474</td>
<td>1/2+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.67743</td>
<td>3/2+</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.69963</td>
<td>15/2−</td>
<td>0.0472</td>
</tr>
<tr>
<td>9</td>
<td>2.79</td>
<td>9/2−</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.08382</td>
<td>5/2−</td>
<td></td>
</tr>
</tbody>
</table>
Continuum levels assumed above 3.28 MeV
Level density parameters were evaluated using D0, and
level data /3/.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23-V-51</td>
<td>23-V-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>3.1951</td>
<td>3/2-</td>
<td>3/2-</td>
</tr>
</tbody>
</table>
| 3.2148 | 3.26404 | 5/2- | | 0.0494

MT=1 Total
100 keV - 2 MeV based on the experimental data /7/, /8/
above 2 MeV calculated

MT=1 Elastic scattering
Obtained by subtracting the sum of absorption and
inelastic scattering from total cross section.

MT=16 (n, 2n)
Guided by experimental data /12/, /13/.

MT=22, 28, 104, 105
Adopted JENDL-2 evaluated data /14/.

MT=103 (n, p)
Guided by experimental data /15/, /16/.

MT=107 (n, alpha)
Guided by experimental data /14/, /17/, /18/, /19/.

MT=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Calculated with optical model.
MT=51-91 Calculated with Hauser-Feshbach formula and DWBA
MT=16, 22, 28
Isotropic in the laboratory system

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with SINCROS /20/.

References
3) Mughabghab S.F et al.: "Neutron Cross Sections Vol.1 Part A"
MAT number = 3240

24–Cr 0 NEDAC Eval-Mar87 T. Asami NEDAC Dist-Sep89

History
87–03 New evaluation was made to give a full revision for JENDL-2 data.
89–08 MF/MT=15/102 modified.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E–5 eV to 300 keV.
The data were constructed from the evaluated resonance parameters for each Cr isotope, considering their
abundances in the Cr element/1/.

<table>
<thead>
<tr>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>3.38</td>
</tr>
<tr>
<td>capture</td>
<td>3.07</td>
</tr>
<tr>
<td>total</td>
<td>6.45</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 300 keV, background cross section was given.
As the evaluated data on the resonance parameters of Cr–53 were given below 120 keV, the cross sections of Cr–53 for
total, elastic scattering and capture in this energy range, multiplied by its abundance, are provided as the background
cross sections for MT=1, 2 and 102, respectively.
Above 300 keV, the total and partial cross sections were given pointwise.
All the cross-section data were deduced from the evaluated ones for four stable isotopes of Cr considering their
abundances in the Cr element/1/, except for the total cross sections in the energies above 300 keV.

MT=1 Total
The data in the energies above 300 keV were evaluated based on the experimental ones of/2–/4/.
The data in ref. /2/ were used to follow the fine structures and those in refs. /3/ and /4/ were used for the normalization of the above data and for the evaluation in high energy region.
The data in the other energy range were constructed from the evaluated ones for four isotopes of Cr.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51–90, 91 inelastic scattering
The data for each level were constructed from the evaluations for each Cr isotope as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Cr–50</th>
<th>Cr–52</th>
<th>Cr–53</th>
<th>Cr–54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Natural Chromium

<table>
<thead>
<tr>
<th>g.s.</th>
<th>0.0</th>
<th>51</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.5640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.7833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.8349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.0063</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.2895</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>56</td>
<td>1.4341</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1.5366</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>58</td>
<td>1.8237</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>59</td>
<td>1.8814</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.9736</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>61</td>
<td>2.1724</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>62</td>
<td>2.2330</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>63</td>
<td>2.3208</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>64</td>
<td>2.3696</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2.4531</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>66</td>
<td>2.6195</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>67</td>
<td>2.6470</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>2.6570</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>69</td>
<td>2.7677</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>70</td>
<td>2.7720</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>71</td>
<td>2.8266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>2.8294</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>73</td>
<td>2.9245</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>2.9648</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.9930</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>76</td>
<td>3.0739</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>3.1138</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>78</td>
<td>3.1600</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>79</td>
<td>3.1611</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>3.1617</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>81</td>
<td>3.3247</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>82</td>
<td>3.4152</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>83</td>
<td>3.4722</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>84</td>
<td>3.6158</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>85</td>
<td>3.7000</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>86</td>
<td>3.7717</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>87</td>
<td>3.9460</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>88</td>
<td>4.0154</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>89</td>
<td>4.5630</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>90</td>
<td>4.6270</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>91</td>
<td>3.0500</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

MT=16 (n,2n)
- Constructed from the evaluated data for four Cr isotopes so as to reproduce the experimental data of Frehaut/5/.

MT=22 (n,na)
- Constructed from the evaluated data for four Cr isotopes.

MT=28 (n,np)
- Constructed from the evaluated data for four Cr isotopes.

MT=102 Capture
- Calculated with the CASTHY code/6/ and normalized to 10 mb at 50 keV.

MT=103 (n,p)
- Constructed from the evaluated data for four Cr isotopes.

MT=107 (n,a)
- Constructed from the evaluated data for four Cr isotopes.
so as to reproduce the experimental data of Paulsen/7/.

MT=251 Mu-bar
 Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2
 Calculated with the CASTHY code/6/.
 MT=51-90, 91
 Calculated with the CASTHY code.
 MT=16, 22, 28
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/8/.

MF=12 Photon Production Multiplicities
 MT=102
 Calculated with the GNASH code/8/.

MF=13 Photon Production Cross Sections
 MT=3
 Evaluated based on the experimental data of Morgan/9/.
 Below 4.75 MeV, the fine structures in inelastic scattering
 were considered.

MF=14 Photon Angular Distributions
 MT=3, 102
 Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
 MT=3
 Calculated with the GNASH code/8/.
 MT=102
 Calculated with the GNASH code/8/ and modified by using
 the gamma-ray intensity data in ENSDF/10/ below thermal
 energy.

References
10) Evaluated Nuclear Structural Data File.
MAT number = 3241

24-Cr 50 NEDAC Eval-Mar87 T.Asami(NEDAC) Dist-Sep89

History
87-03 New evaluation was made to give a full revision for JENDL-2 data.
88-12 MF/MT=3/107 modified.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 300 keV.
Evaluated based on the experimental data of Stieglitz+71/1/., Beer+74/2/., Allen+77/3/., Kenny+77/4/ and Brusegan+86/5/.
Effective scattering radius = 5.0 fm/6/.

Calculated 2200 m/s cross sections and resonance integral.

<table>
<thead>
<tr>
<th>Energy</th>
<th>Cross Section (b)</th>
<th>Resonance Integral (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>15.9</td>
<td>7.41</td>
</tr>
<tr>
<td>total</td>
<td>18.2</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 300 keV, zero background cross section was given.
Above 300 keV, the total and partial cross sections were
given pointwise.

MT=1 Total
Optical and statistical model calculation was made with the CASTHY code/7/.
The optical potential parameters used are:
V = 46.78 - 0.262*En, Vso = 7.0 (MeV)
Ws = 4.87 + 0.352*En, Wv = 0 (MeV)
r = 1.30, rs = 1.40, rso = 1.30 (fm)
a = 0.55, aso = 0.48, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-55, 91 Inelastic scattering
Calculated with the CASTHY code/7/., taking account of the contribution from the competing processes and using the
discrete level data/8/ shown below.
The contributions from the direct process for inelastic scattering were calculated with the DWUCK code/9/.
The deformation parameters used in the calculation were assumed based on Peterson's data/10/.

<table>
<thead>
<tr>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.7833</td>
</tr>
<tr>
<td>2</td>
<td>1.8814</td>
</tr>
<tr>
<td>3</td>
<td>2.9245</td>
</tr>
<tr>
<td>4</td>
<td>3.1611</td>
</tr>
<tr>
<td>5</td>
<td>3.1641</td>
</tr>
</tbody>
</table>
Levels above 4.066 MeV were assumed to be overlapping.

The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the elemental data, as follows:

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy(MeV)</th>
<th>Lumping of level</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.7833</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1.8814</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>2.9245</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>3.1811</td>
<td>4-5</td>
</tr>
<tr>
<td>55</td>
<td>3.3247</td>
<td>6</td>
</tr>
<tr>
<td>91</td>
<td>3.5946</td>
<td>over 7</td>
</tr>
</tbody>
</table>

MT=16
(n,2n)
Evaluated mainly based on the experimental data of Bormann /11/.

MT=22
(n,na)
Calculated with the GNASH code/12/.

MT=28
(n,np)
Calculated with the GNASH code/12/.

MT=102
Capture
Calculated with the CASTHY code/7/ and normalized at 50 keV to so as to reproduce the element data of 10 mb.

MT=103
(n,p)
Calculated with the GNASH code/12/.

MT=107
(n,a)
Calculated with the GNASH code/12/ and normalized at 14.8 MeV in referring to Grimes's data/13/. The data near the threshold were modified in referring to the experimental data for the element Cr(n,alpha)/14/.

MT=251
Mu-bar
Calculated with optical model.

MF=4
Angular Distributions of Secondary Neutrons

MT=2
Elastic scattering
Calculated with the CASTHY code/7/.

MT=51-55
Inelastic scattering
Calculated with the CASTHY code/7/ and the DWUCK code/9/.

MT=91
Inelastic scattering
Calculated with the CASTHY code/7/.

MT=16, 22, 28
(n,2n), (n,na), (n,np)
Assumed to be isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28, 91
 Calculated with the GNASH code/12/.

References
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of
 Structural Materials for FBR, 1977 Geel Meeting, p.447,
6) Mughabghab S.F. et al. : "Neutron Cross Sections", Vol.1,
8) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
MAT number = 3242

24-Cr 52 NEDAC Eval-Mar87 T. Asami (NEDAC)
 Dist-Sep89

History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.
88-12 MF/MT=3/107 modified.

MF=1 General information
 MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 300 keV.
 Evaluated mainly based on the experimental data of Stieglitz+
 71/1/, Beer+74/2/, Allen+77/3/, Kenny+77/4/, Agrawal+84/5/ and
 Brusogian+86/6/
 Effective scattering radius = 5.2 fm /7/
 calculated 2200 m/s cross sections and resonance integral
 2200 m/s cross section(b) res. integral(b)
 elastic 2.96
 capture 0.76 0.46
 total 3.72

MF=3 Neutron Cross Sections
 Below 300 keV, zero background cross section was given.
 Above 300 keV, the total and partial cross sections were given
 pointwise.

MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/8/. The optical potential parameters used are:
 \[V = 46.78 - 0.262 En, \quad V_{so} = 7.0 \quad (\text{MeV}) \]
 \[W_s = 4.87 + 0.352 En, \quad W_v = 0 \quad (\text{MeV}) \]
 \[r = 1.30, \quad r_{so} = 1.40, \quad r_{so} = 1.30 \quad (\text{fm}) \]
 \[a = 0.55, \quad a_{so} = 0.48, \quad b = 0.40 \quad (\text{fm}) \]

MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.

mt=4, 51-66, 91 inelastic scattering
 Calculated with the CASTHY code/8/, taking account of the
 contribution from the competing processes and using the
 discrete level data/9/ shown below.
 The contributions from the direct process for inelastic scatter-
 ing were calculated with the DWUCK code/10/. The deformation
 parameters used in the calculation were assumed based on a
 weak coupling model.

<table>
<thead>
<tr>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s. 0.0</td>
<td>0+</td>
</tr>
<tr>
<td>1 1.4341</td>
<td>2+</td>
</tr>
<tr>
<td>2 2.3686</td>
<td>4+</td>
</tr>
<tr>
<td>3 2.6470</td>
<td>0+</td>
</tr>
</tbody>
</table>
2 of Chromium-52

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy (MeV)</th>
<th>Lumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1.4341</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>2.3896</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>2.6470</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>2.7677</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>2.9648</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>3.1138</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>3.1617</td>
<td>7</td>
</tr>
<tr>
<td>58</td>
<td>3.4152</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>3.4722</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>3.8158</td>
<td>10</td>
</tr>
<tr>
<td>61</td>
<td>3.7000</td>
<td>11</td>
</tr>
<tr>
<td>62</td>
<td>3.7717</td>
<td>12</td>
</tr>
<tr>
<td>63</td>
<td>3.9460</td>
<td>13-14</td>
</tr>
<tr>
<td>64</td>
<td>4.0154</td>
<td>15-16</td>
</tr>
<tr>
<td>65</td>
<td>4.5630</td>
<td>17</td>
</tr>
<tr>
<td>66</td>
<td>4.6270</td>
<td>18</td>
</tr>
<tr>
<td>67</td>
<td>4.7060</td>
<td>over 19</td>
</tr>
</tbody>
</table>

Levels above 4.816 MeV were assumed to be overlapping. The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:

MT=16 (n,2n)
Adopted were the evaluated data in JENDL-2 which have been evaluated based on the experimental data of Wenusch+62/11/, Bornman+68/12/, Maslov+72/13/, Qaim72/14/, Sailer+77/15/ and Ghoraifi+87/16/.

MT=22 (n,na)
Calculated with the GNASH code/17/ and normalized.

MT=28 (n,np)
Calculated with the GNASH code/17/ and normalized.

MT=102 Capture
Calculated with the CASTHY code/8/ and normalized to 28.5 mb at 50 keV so as to reproduce the element data of 10 mb
MT=103 (n,p)
Calculated with the GNASH code/17/ and normalized at 14.8 MeV
to the recommended value of Forrest/18/.

MT=107 (n,a)
Calculated with the GNASH code/17/ and normalized at 14.8 MeV
to the average values of the experimental data/19/,/20/.
The data were modified near the threshold in referring to the
the experimental data of Paulsen/21/ for the element
Cr(n,α).

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
 Calculated with the CASTHY code/8/.
MT=51-66 Inelastic scattering
 Calculated with the CASTHY code/8/ and the DWUCK code/10/.

MF=91 Inelastic scattering
 Calculated with the CASTHY code/8/.

MT=16, 22, 28 (n,2n), (n,α), (n,np)
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/17/.

References
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of
7) Mughabghab S.F. et al. : "Neutron Cross Sections", Vol.1,
9) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
MAT number = 3243

24-Cr 53 NEDAC Eval-Mar87 T.Asami(NEDAC)
 Dist-Sep89

History
87-03 New evaluation was made to give a full revision for
 JENDL-2 data.
88-12 MF/MT=3/107 modified.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
 Resolved parameters for MLBW formula were given in
 the energy region from 1.0E-5 eV to 120 keV.
 Evaluated based on the experimental data of Stieglitz+71/1/,
 Beer+74/2/, Allen+77/3/, Kenny+77/4/, Brusegan+86/5/ and
 Mueller+71/6/.
 Effective scattering radius = 5.4 fm/7/.

Calculated 2200 m/s cross sections and resonance integral.
 2200 m/s cross section(b) res. integral(b)
 elastic 7.78
 capture 18.2 8.61
 total 25.9

MF=3 Neutron Cross Sections
 Below 120 keV, no background cross section was given.
 Above 120 keV, the total and partial cross sections were given
 pointwise.

MT=1 Total
 Optical and statistical model calculation was made with
 the CASTHY code/8/. The optical potential parameters used are:
 V = 46.78 - 0.262*En, Vso = 7.0 (MeV)
 Ws = 4.87 + 0.352*En, Wv = 0 (MeV)
 r = 1.30, rs = 1.40, rso = 1.30 (fm)
 a = 0.55, aso = 0.48, b = 0.40 (fm)

MT=2 Elastic scattering
 Obtained by subtracting the sum of the partial cross sections
 from the total cross section.

MT=4, 51-63, 91 Inelastic scattering
 Calculated with the CASTHY code/8/, taking account of the con-
 tribute from the competing processes and using the discrete
 level data/9/ shown below.
 The contributions from the direct process for inelastic scat-
 tering were calculated with the DWUCK code/10/. The deformation
 parameters used in the calculation were assumed based on a
 weak coupling model.

<table>
<thead>
<tr>
<th>Level energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>3/2-</td>
</tr>
<tr>
<td>1</td>
<td>1/2-</td>
</tr>
<tr>
<td>2</td>
<td>5/2-</td>
</tr>
<tr>
<td>3</td>
<td>7/2-</td>
</tr>
<tr>
<td>4</td>
<td>7/2-</td>
</tr>
</tbody>
</table>
Levels above 3.435 MeV were assumed to be overlapping. The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy(MeV)</th>
<th>Lumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.5640</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1.0063</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>1.2895</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>1.5366</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>1.9736</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>2.1724</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>2.2330</td>
<td>7</td>
</tr>
<tr>
<td>58</td>
<td>2.3208</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>2.4531</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>2.6570</td>
<td>10-13</td>
</tr>
<tr>
<td>61</td>
<td>2.7720</td>
<td>14</td>
</tr>
<tr>
<td>62</td>
<td>2.8266</td>
<td>15</td>
</tr>
<tr>
<td>63</td>
<td>2.9930</td>
<td>16</td>
</tr>
<tr>
<td>61</td>
<td>2.9930</td>
<td>over 17</td>
</tr>
</tbody>
</table>

MT=16
(n,2n)
Calculated with the GNASH code/11/.

MT=22
(n,na)
Calculated with the GNASH code/11/ and normalized.

MT=28
(n,np)
Calculated with the GNASH code/11/ and normalized.

MT=102
Capture
Calculated with the CASTHY code/7/ and normalized at 50 keV to reproduce the element data of 10 mb.

MT=103
(n,p)
Below 9 MeV, evaluated based on the experimental data of Smith/12/.
Above 9 MeV, calculated with the GNASH code/12/ and normalized so as to be connected with the Smith's experimental data/12/.

MT=107
(n,a)
Calculated with the GNASH code/12/ and normalized at 14.7 MeV to Dolija's experimental data/13/. The data near threshold were modified in referring to the experimental data for the element
Cr(n,α)/14/.
MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with the CASTHY code/8/.
MT=51-63 Inelastic scattering
Calculated with the CASTHY code/8/ and the DWUCK code/10/.
MT=91 inelastic scattering
Calculated with the CASTHY code/8/.
MT=16, 22, 28 (n,2n), (n,na), (n,np)
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/11/.

References
9) Data taken from ENSDF(Evaluated Nuclear Structure Data File).
MAT number = 3244

24-Cr 54 NEDAC Eval-Mar87 T. Asami(NEDAC)
 Dist-Sep89

History
87-03 New evaluation was made to give a full revision for
JENDL-2 data.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 300 keV.
Evaluated based on the experimental data of Stieglitz+71/1/.
Beer+74/2/., Allen+77/3/., Kenny+77/4/ and Brusegan+85/5/.
Effective scattering radius = 5.3 fm/6/.

Calculated 2200 m/s cross sections and resonance integral.

2200 m/s cross section(b) res. integral(b)
elastic 2.54
capture 0.36
 0.18
 total 2.90

MF=3 Neutron Cross Sections
Below 300 keV, no background cross section was given.
Above 300 keV, the total and partial cross sections were given
pointwise.

MT=1 Total
Optical and statistical model calculation was made with
the CASTHY code/7/.. The optical potential parameters used are:
V = 46.78 - 0.262*En. Vso = 7.0 (MeV)
Ws = 4.87 + 0.352*En. Wv = 0 (MeV)
r = 1.30, rs = 1.40, rso = 1.30 (fm)
a = 0.55, aso = 0.48, b = 0.40 (fm)

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-60, 91 Inelastic scattering
Calculated with the CASTHY code/7/., taking account of the con-
tribution from the competing processes and using the discrete
level data/8/ shown below.
The contributions from the direct process for inelastic scat-
tering was calculated with the DWUCK code/9/.. The deformation
parameters used in the calculation were assumed based on a
weak coupling model.

<table>
<thead>
<tr>
<th>g.s.</th>
<th>0.0</th>
<th>0+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8349</td>
<td>2+</td>
</tr>
<tr>
<td>2</td>
<td>1.8237</td>
<td>4+</td>
</tr>
<tr>
<td>3</td>
<td>2.6195</td>
<td>2+</td>
</tr>
<tr>
<td>4</td>
<td>2.8294</td>
<td>0+</td>
</tr>
<tr>
<td>5</td>
<td>3.0739</td>
<td>2+</td>
</tr>
<tr>
<td>6</td>
<td>3.1600</td>
<td>2+</td>
</tr>
<tr>
<td>7</td>
<td>3.2225</td>
<td>6+</td>
</tr>
</tbody>
</table>
Levels above 4.088 MeV were assumed to be overlapping.
The calculated data for the inelastic scattering were finally
lumped for the convenience on the construction of the element
data, as follows:

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy (MeV)</th>
<th>Lumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.8349</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1.8237</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>2.6195</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>2.8294</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>3.0739</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>3.1600</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>3.2225</td>
<td>7</td>
</tr>
<tr>
<td>58</td>
<td>3.3920</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>3.4366</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>3.4660</td>
<td>10</td>
</tr>
<tr>
<td>91</td>
<td>3.5140</td>
<td>over 11</td>
</tr>
</tbody>
</table>

MT=16 (n,2n)
Calculated with the GNASH code/10/.

MT=22 (n,na)
Calculated with the GNASH code/10/ and normalized.

MT=28 (n,np)
Calculated with the GNASH code/10/ and normalized.

MT=102 Capture
Calculated with the CASTHY code/7/ and normalized at 50 keV
so as to reproduce the element data of 10 mb.

MT=103 (n,p)
Calculated with the GNASH code/10/ and normalized at 14.7 MeV
to an average value of the experimental data/11/-/13/.

MT=107 (n,a)
Calculated with the GNASH code/10/ and normalized at 14.8 MeV
to an average value of the experimental data/12/-/14/.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Elastic scattering
Calculated with the CASTHY code/7/.

MT=51-60 Inelastic scattering
Calculated with the CASTHY code/7/ and the DWUCK code/9/.

MT=91 Inelastic scattering
Calculated with the CASTHY code/7/.
MT=18, 22, 28 (n,2n), (n,na), (n,np)
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/10/.

References
3) Allen B.J. and Musgrove A.R.de L. : Neutron Data of
 Structural Materials for FBR, 1977 Geel Meeting, p.447,
6) Mughabghab S.F. et al. : "Neutron Cross Sections ", Vol.1,
8) Data taken from ENSDF (Evaluated Nuclear Structure Data File).
11) Valkonen M. : Taken from EXFOR (1976).
MAT number = 3251

25-Mn 55 JAERI.MAP1 Eval-Mar87 K.Shibata,T.Hojuyama
Dist-Sep89

History
87-03 Resonance parameters were evaluated by T.Hojuyama (MAP1).
Multistep Hauser-Feshbach calculations were performed
by K.Shibata (JAERI).
88-01 Compiled by K.Shibata (JAERI).
88-03 Covariance data added

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
The parameters of the lowest four resonances were taken
from the work of Macklin /1/. Others were taken from the
compilation of Mughabghab et al./2/ except that the
parameters of two negative resonances were adjusted so as
to fit to experimental thermal cross sections.
Resonance region : 1.0E-5 eV to 100 keV.
Scattering radius: 5.15 fm
Calculated 2200-m/s cross sections and res. integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>2.167 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>13.413 b</td>
<td>11.79 b</td>
</tr>
<tr>
<td>total</td>
<td>15.579 b</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total
Below 100 keV : No background
Above 100 keV : Based on the experimental data /3,4,5/.

MT=2 Elastic scattering
(Total) - (Nonelastic cross section)

MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 102, 103, 104, 105, 106 and 107

MT=4, 51-79, 91 Inelastic scattering
Statistical-model calculations were performed using the
TNG code /6/. The precompound process was considered
above 5 MeV. The calculated cross section of MT=51
was multiplied by a factor of 1.2.
For the levels of MT=51, 52, 57, 61, 64, 65, 67, 70,
the direct process components were taken into account
by the DWBA calculations.
The optical potential parameters used are as follows /7/
(in the units of MeV and fm):

\[\begin{align*}
V &= 49.747 - 0.4295E - 0.0003E^2 - 2 \quad r_0 = 1.287 \quad a_0 = 0.56 \\
W_s &= 11.2 - 0.09E \quad r_s = 1.345 \quad a_s = 0.47 \\
V_{so} &= 0.2 \quad r_{so} = 1.120 \quad a_{so} = 0.47
\end{align*} \]

The level scheme was taken from Ref. /8/.

No.	Energy(MeV)	Spin-Parity
g.s. | 0.0 | 5/2 - |
1. | 0.126 | 7/2 - |
2. | 0.984 | 9/2 - |
3. | 1.290 | 1/2 - |
4. | 1.292 | 11/2 - |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>1.283</td>
</tr>
<tr>
<td>6.</td>
<td>1.528</td>
</tr>
<tr>
<td>7.</td>
<td>1.884</td>
</tr>
<tr>
<td>8.</td>
<td>2.015</td>
</tr>
<tr>
<td>9.</td>
<td>2.198</td>
</tr>
<tr>
<td>10.</td>
<td>2.215</td>
</tr>
<tr>
<td>11.</td>
<td>2.252</td>
</tr>
<tr>
<td>12.</td>
<td>2.267</td>
</tr>
<tr>
<td>13.</td>
<td>2.312</td>
</tr>
<tr>
<td>14.</td>
<td>2.366</td>
</tr>
<tr>
<td>15.</td>
<td>2.398</td>
</tr>
<tr>
<td>16.</td>
<td>2.427</td>
</tr>
<tr>
<td>17.</td>
<td>2.563</td>
</tr>
<tr>
<td>18.</td>
<td>2.727</td>
</tr>
<tr>
<td>19.</td>
<td>2.753</td>
</tr>
<tr>
<td>20.</td>
<td>2.822</td>
</tr>
<tr>
<td>21.</td>
<td>2.824</td>
</tr>
<tr>
<td>22.</td>
<td>2.873</td>
</tr>
<tr>
<td>23.</td>
<td>2.954</td>
</tr>
<tr>
<td>24.</td>
<td>2.976</td>
</tr>
<tr>
<td>25.</td>
<td>2.992</td>
</tr>
<tr>
<td>26.</td>
<td>3.006</td>
</tr>
<tr>
<td>27.</td>
<td>3.036</td>
</tr>
<tr>
<td>28.</td>
<td>3.038</td>
</tr>
<tr>
<td>29.</td>
<td>3.040</td>
</tr>
</tbody>
</table>

Levels above 3.046 MeV were assumed to be overlapping.

MT=16, 22, 28, 103, 107 (n,2n), (n,n'a), (n,n'p), (n,p) and (n,a) cross sections
Calculated with TNG.
Global optical-potential parameters were employed for protons and alpha-particles /9,10/.

MT=102 Radiative capture cross section
Below 100 keV: Resonance parameters given (no background)
Above 100 keV: Based on the experimental data /11/-/15/.

MT=104 (n,d) cross section
The excitation function of the (n,p) cross section calculated with TNG was used for the (n,d) reaction by shifting the threshold energy. The cross sections were normalized to the experimental datum at 14.1 MeV /16/.

MT=105 (n,t) cross section
The excitation function of the (n,p) cross section calculated with TNG was used for the (n,t) reaction by shifting the threshold energy. The cross sections were normalized to the experimental datum at 14.7 MeV /17/.

MT=106 (n,He-3) cross section
Based on the experimental data /18,19/.

MT=251 Mu-bar
Calculated from File-4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-79
Optical and statistical-model calculations
The components of the direct process were added to
the levels of MT=51, 52, 57, 61, 64, 65, 67, 70 by the DWBA
calculations.
MT=16, 22, 28, 91
Assumed to be isotropic in the laboratory system

MF=5
Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with TNG.

MF=12
Photon Production Multiplicities
MT=4, 16, 22, 28, 102, 103, 107
Calculated with TNG.
For MT=102, modified by using gamma-ray intensity data
in ENSDF below thermal energy.

MF=14
Photon Angular Distributions
MT=4, 16, 22, 28, 102, 103, 107
Assumed to be isotropic.

MF=15
Photon Energy Distributions
MT=4, 16, 22, 28, 102, 103, 107
Calculated with TNG.
For MT=102, modified by using gamma-ray intensity data
in ENSDF below thermal energy.

MF=33
Covariance Data
MT=1, 2, 3, 4, 16, 22, 28, 51-79, 91, 102, 103, 104, 105, 106, 107
Estimated from experimental data.

References
3) Cierjacks, S., Forti, P., Kopsch, D., Kropp, L., Nebe, J.
and Unseld, H.: "High Resolution Total Cross Sections
for Na, Cl, K, V, Mn and Co between 0.5 and 30 MeV",
4) Pineo, W.F.E., Divadeenam, M., Bilpuch, E.G., Seth, K.K.
6) Fu, C.Y.: "A Consistent Nuclear Model for Compound and
Precompound Reactions with Conservation of Angular
8) Zhou Enchen, Huo Junde, Zhou Chunmei, Lu Xiane and
C18, 2079 (1978).
12) Dovbenko, A.G., Kolesov, V.E., Koroleva, V.P., Tolstikov,
13) Menlove, H.O., Coop, K.L., Grench, H.A. and Sher, R.
MAT number = 3260

26-Fe 0 JNDC Eval-Mar87 S. Iijima, H. Yamakoshi Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

Natural iron data constructed from Fe isotopes.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region = 1.0E-5 eV to 250.0 keV
The multilevel Breit-Wigner formula was used. Parameters
were adopted from the following sources.
Fe-54: Pandey+/1/ for 0 - 680 keV, R=5.6 fm
Fe-56: Perey+/2/ for -2.0 - 400 keV, R=5.4 fm from fit-
ting to total cross section below 60 keV.
Parameters of the 1.15 keV resonance were
taken from the result of the NEANDC task
force +3/.
Fe-57: Allen+/4/ for s-wave resonances, and Beer+/5/
for p-wave resonances in 0 - 185 keV.
Fe-58: Mughabghab+/6/.
For Fe-56, a negative level was added at -3.75 keV with
neutron width of 100 eV and gamma width of 1.0 eV. Neutron
width of 27.67-keV resonance was taken as 1420 eV.

Calculated 2200-m/s cross sections and res. integrals.
2200-m/s res. integ.
elastic 11.36 b -
capture 2.56 b 1.340 b
total 13.92 b -

MF=3 Neutron Cross Sections
Below 250 keV, background cross sections were given.

MT=1 Total
For energies 250 keV - 20 MeV, fine resolution data were
taken by eye-guide using interactive display of NDES (Neutron
Data Evaluation System) developed by T. Nakagawa at
the Nuclear Data Center, JAERI. Below 4 MeV, data of
Carlson+7/ were adopted. Above 4 MeV, data of Cierjacks+
78/ were adopted.

MT=2 Elastic scattering
Given as total minus nonelastic cross sections

MT=3 Nonelastic
Sum of MT=4,16,22,28,102,103,107
MT=16,22,28,103
Calculated using GNASH +9/.

MT=4,51-75,81 Inelastic scattering
Isotopic data were obtained from the CASTHY+10/ and GNASH
calculations. Isotopic levels were grouped into 25
levels of natural element. The contributions from the
direct process were included in the levels of MT=55, 58, 61, 63, 64, 65, 70, 73, 74.
Optical potential parameters used in the calculation are as follows:

\[
\begin{align*}
V &= 46.0 - 0.25 \times E \\
W_s &= 14.0 - 0.2 \times E \\
r_0 &= 1.286, \quad a_0 = 0.620 \\
r_s &= 1.390, \quad a_s = 0.700 \\
V_{so} &= 8.0, \quad r_{so} = 1.07, \quad a_{so} = 0.620 \\
\end{align*}
\]

Energies in MeV unit, lengths in fm unit.

MT=102 Capture
Background cross section was given below 250 keV.
Above 250 keV, the CASTHY calculation was adopted.

MT=107 (n, alpha)
For Fe-56, the evaluation was made on the basis of experimental data. For Fe-54, 57, 58, the GNASH calculation was adopted.

MT=251 Mu-bar
Calculated with CASTHY /10/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-75
Optical and statistical-model calculations.
The C.C. calculations were added to the levels of MT=55, 58, 61, 63, 64, 65, 70, 73, 74.
MT=16, 22, 28, 91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with GNASH.

MF=12 Photon Multiplicities
MT=3, 51, 52, 102
Multiplicities were calculated using GNASH.
For MT=102, modified by using gamma-ray intensity data in ENSDF below thermal energy.

MF=14 Photon Angular Distributions
MT=3, 51, 52, 102
Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=3.102
Below 600 keV, based on the data of Igashira et al. /11/.
Above 600 keV, calculated with GNASH.
For MT=102, modified by using gamma-ray intensity data in ENSDF below thermal energy.

References
MAT number = 3261

26-Fe-54 JNDC Eval-Mar87 S.Iijima, H.Yamakoshi Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region = 1.0E-5 eV to 250.0 keV
The multilevel Breit-Wigner formula was used. Parameters were adopted mainly from Pandey+/1/ by assuming the average radiative width to be 2.5 eV /2/. R=5.6 fm was taken from Ref. /3/.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>0.4929 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>2.156 b</td>
<td>1.33 b</td>
</tr>
<tr>
<td>total</td>
<td>2.649 b</td>
<td>-</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 250 keV, background cross sections were given for the total and elastic scattering cross sections on the upper side of the first resonance. Above 250 keV, the cross sections were evaluated as follows.

MT=1 Total
Spherical optical model calculation was made by using code CASTHY /4/. Optical potential parameters are as follows:
V = 46.0--0.2500E , r0=1.286, a0=0.620
Ws = 14.00--0.2000E , rs=1.390, as=0.700
Vso= 6.00 , rso=1.070, aso=0.620
(energies in MeV, lengths in fm)

MT=2 Elastic scattering
Given as total minus other cross sections

MT=3 Nonelastic
Sum of MT=4,16,22,28,102,103,107.

MT=16,22,28 (n,2n), (n,n'), (n,n''p)
Calculated using the GNASH code /5/.

MT=4,51-69,91 Inelastic scattering
Below 7 MeV, the cross sections were calculated using CASTHY with width fluctuation corrections.
Above 7 MeV, the GNASH calculation was performed.
For MT=51,52,53,54,59,68, the direct process component was considered by the C.C. theory.

Level scheme is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>1.4082</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>2.5382</td>
<td>4 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.5613</td>
<td>0 +</td>
</tr>
</tbody>
</table>
4. 2.9499 6 +
5. 2.9580 2 +
6. 3.1661 2 +
7. 3.2952 4 +
8. 3.3450 3 −
9. 3.8338 4 +
10. 4.0330 4 +
11. 4.0472 4 +
12. 4.0720 3 +
13. 4.2632 4 +
14. 4.2961 0 +
15. 4.5980 2 +
16. 4.6550 2 +
17. 4.7000 3 +
18. 4.7800 3 −
19. 4.9490 4 +

Continuum levels were assumed above 5.145 MeV.

MT=102 Capture
 CASTHY calculation was adopted.

MT=103 (n,p)
 Below 2.5 MeV, based on the data of Paulsen and Widera/6/.
 Between 2.5 and 10 MeV, based on the data of Smith and
 Meadows/7/.
 Above 10 MeV, calculated with GNASH.

MT=107 (n,α)
 GNASH calculation multiplied by 0.94.

MT=251 Mu-bar
 Calculated with CASTHY/4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-69
 Optical and statistical-model calculation.
 For MT=51,52,53,54,59,68, the direct-process component
 was taken into account by the C.C. theory.

MT=16.22,28,91
 Assumed to be isotropic in the laboratory system.

MF=6 Energy Distributions of Secondary Neutrons
MT=16.22,28,91
 Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays
MT=16.22,28,91,102,103,107
 Multiplicities were calculated with GNASH.

MT=51-69
 Transition probability arrays

MF=14 Photon Angular Distributions
MT=16.22,28,51-69,91,102,103,107
 Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=16.22,28,91,102,103,107
 Calculated with GNASH.

References
MAT number = 3262

26-Fe- 56 JNDC Eval-Mar87 S.Iijima, H. Yamakoshi
Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region = 1.0E-5 eV to 250.0 keV
The multilevel Breit-Wigner formula was used. Parameters
were adopted from the experimental data by Perey /1/.
R=6.5 fm was selected to reproduce the 24-keV window cross
section. Neutron width of 27.67-keV resonance was taken as
1420 eV. The parameters of the 1.15-keV resonance were
taken from the result of the NEANDC task force /2/.

Calculated 2200-m/s cross sections and res. integrals.
2200-m/s Res. Integ.
elastic 12.46 b –
capture 2.813 b 1.448 b
total 15.27 b –

MF=3 Neutron Cross Sections
Below 250 keV, background cross sections were given
for the total and elastic scattering cross sections.
Above 250 keV, cross sections were evaluated as follows.
MT=1 Total
Spherical optical model calculation was made by using
CASTHY code /3/. Parameters are as follows,
V = 46.0-0.25E , r0=1.286, a0=0.620
Ws = 14.0-0.20E , rs=1.390, as=0.700
Vso= 6.0 , rs0=1.07, aso=0.620
(energies in MeV, lengths in fm).

MT=2 Elastic scattering
Given as total minus nonelastic cross sections.

MT=3 Noneelastic
Sum of MT=4.16, 22, 28, 102, 103, 107.

MT=16, 22, 28 (n, 2n), (n, n'), (n, n')p
Calculated with GNASH /4/.

MT=4.51-77, 91 Inelastic scattering
The CASTHY and GNASH calculations were adopted for
neutron energies below and above 7 MeV, respectively.
The direct-process component was considered for MT=51, 52, 53, 54, 77 by the C.C. theory.

The level scheme is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>0.8468</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>2.0851</td>
<td>4 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.6576</td>
<td>2 +</td>
</tr>
<tr>
<td>4.</td>
<td>2.9417</td>
<td>0 +</td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 4.701 MeV.

MT=102 Capture
Below 250 keV, no background.
The CASTHY calculation was adopted

MT=103 (n,p)
Below 7 MeV, based on the data of Smith and Meadows/5/.
7 - 13 MeV, taken from JENDL-2.
13 - 16 MeV, based on the data of Ikeda et al./6/.
16 - 20 MeV, taken from JENDL-2.

MT=107 (n, alpha)
Based on experimental data.

MT=251 Mu-bar
Calculated with CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2.51-77
Optical and statistical-model calculations were adopted.
The C.C. calculations were added to the levels of MT=51,52,53,54,77.

MT=16,22,28,91
Assumed to be isotropic the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,22,28,91
Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays

MT=16,22,28,91,102,103,107
Multiplicities were calculated with GNASH.

MF=14 Photon Angular Distributions

MT=16,22,28,51-77,91,102,103,107
Assumed to be isotropic.
MF=15 Photon Energy Distributions
 MT=16, 22, 28, 91, 102, 103, 107
 Calculated with GNASH.

References
1) Perey F. G. et al.: Proc. Specialist Meeting on Neutron Data
 of Structural Materials for Fast Reactors, Geel. (1977),
 p. 530.
MAT number = 3263

26-Fe 57 JNDC Eval-Mar87 S. Iijima, H. Yamakoshi Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region = 1.0E-6 eV to 200.0 keV
The multilevel Breit-Wigner formula was used. Parameters were adopted from Allen+/1/ for s-wave resonances, and Beer+/2/ for p-wave resonances in 0 - 185 keV.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th>2200-m/s</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>0.2021 b</td>
</tr>
<tr>
<td>capture</td>
<td>2.462 b</td>
</tr>
<tr>
<td>total</td>
<td>2.664 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 200 keV, background cross section was given for the total and capture cross sections.
Above 200 keV, the data were evaluated as follows.

MT=1 Total
Spherical optical model calculation was made with CASTHY code /3/.
Parameters are as follows:

\[
\begin{align*}
V &= 46.0-0.25\cdot E \\
W_s &= 14.08-0.20\cdot E \\
V_{so} &= 6.00 \quad (r_0=1.286, a_0=0.620) \\
\end{align*}
\]

MT=2 Elastic scattering
Given as total minus nonelastic cross sections

MT=3 Nonelastic
Sum of MT=4.16, 22, 28, 102, 103, 107.

MT=16, 22, 28, 103, 107 \((n,2n), (n,n'), (n,n'), (n,p), (n,a)\)
Calculated with GNASH /4/.

MT=4.51-71, 81 Inelastic scattering
The CASTHY and GNASH calculations were adopted for neutron energies below and above 7 MeV, respectively.
The level scheme used is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>1/2 -</td>
</tr>
<tr>
<td>1.</td>
<td>0.0144</td>
<td>3/2 -</td>
</tr>
<tr>
<td>2.</td>
<td>0.1365</td>
<td>5/2 -</td>
</tr>
<tr>
<td>3.</td>
<td>0.3668</td>
<td>3/2 -</td>
</tr>
<tr>
<td>4.</td>
<td>0.7084</td>
<td>5/2 -</td>
</tr>
<tr>
<td>5.</td>
<td>1.0072</td>
<td>7/2 -</td>
</tr>
<tr>
<td>6.</td>
<td>1.1978</td>
<td>9/2 -</td>
</tr>
<tr>
<td>7.</td>
<td>1.2654</td>
<td>1/2 -</td>
</tr>
<tr>
<td>8.</td>
<td>1.3562</td>
<td>7/2 -</td>
</tr>
<tr>
<td>9.</td>
<td>1.6273</td>
<td>3/2 -</td>
</tr>
</tbody>
</table>
10. 1.7254 3/2 -
11. 1.9893 9/2 -
12. 1.9910 1/2 -
13. 2.1180 5/2 -
14. 2.2189 5/2 +
15. 2.3300 1/2 -
16. 2.3560 11/2 -
17. 2.4560 9/2 +
18. 2.5053 5/2 +
19. 2.5643 3/2 -
20. 2.6000 5/2 +
21. 2.6974 1/2 -

Continuum levels were assumed above 2.76 MeV.

MT=102 Capture
 Calculated with CASTHY.

MT=251 Mu-bar
 Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-71
 CASTHY calculation

MT=16,22,28,91
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91
 Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays
MT=16,22,28,91,102,103,107
 Multiplicities were calculated with GNASH.

MF=14 Photon Angular Distributions
MT=16,22,28,51-71,91,102,103,107
 Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=16,22,28,91,102,103,107
 Calculated with GNASH.

References
MAT number = 3264

26-Fe-58 JNDC Eval-Mar87 S.Iijima, H. Yamakoshi Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MT=1 General Information
MT=451 Descriptive data and dictionary

MT=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region = 1.0E-5 eV to 350.0 keV
The multilevel Breit-Wigner formula was used. Parameters were adopted from the recommended values by Mughabghab et al. /1/.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>4.433 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>1.272 b</td>
<td>1.57 b</td>
</tr>
<tr>
<td>total</td>
<td>5.705 b</td>
<td></td>
</tr>
</tbody>
</table>

MT=3 Neutron Cross Sections
Below 350 keV, no background cross sections were given. Above 350 keV, the data were evaluated as follows.

MT=1.4.51-62.91, 102 Total, Inelastic and Capture
Calculated with optical and statistical model code CASTHY /2/. Optical potential parameters are as follows:
\[V = 46.0-0.25\times En \text{ (MeV)} \]
\[W_s = 14.0-0.2\times En \text{ (MeV)} \]
\[V_{so} = 6.0 \text{ (MeV)} \]
\[R = 1.286 \text{ (fm)} \]
\[a_0 = 0.62 \text{ (fm)} \]
\[R_{so} = 1.390 \text{ (fm)} \]
\[a_{so} = 0.62 \text{ (fm)} \]

The level scheme used is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.8108</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.6747</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>2.0765</td>
<td>4 +</td>
</tr>
<tr>
<td>4</td>
<td>2.1339</td>
<td>3 +</td>
</tr>
<tr>
<td>5</td>
<td>2.2581</td>
<td>0 +</td>
</tr>
<tr>
<td>6</td>
<td>2.6004</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>2.7819</td>
<td>1 +</td>
</tr>
<tr>
<td>8</td>
<td>2.8764</td>
<td>2 +</td>
</tr>
<tr>
<td>9</td>
<td>3.0840</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>3.1330</td>
<td>4 +</td>
</tr>
<tr>
<td>11</td>
<td>3.2330</td>
<td>2 +</td>
</tr>
<tr>
<td>12</td>
<td>3.2440</td>
<td>0 +</td>
</tr>
</tbody>
</table>

Levels above 3.389 MeV were assumed to be overlapping. The capture cross section was normalized to 3 mb at 700 keV.

MT=2 Elastic
Total cross section – reaction cross section
MT=3 Nonelastic
 Sum of MT=4,16,22,28,102,103,107.
 MT=16,22,28,103,107 (n,2n),(n,n'a),(n,n'p),(n,p),(n,a)
 Calculated with GNASH /3/.
 MT=251 Mu-bar
 Calculated with CASTHY /2/.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2.51-02
 CASTHY calculation
 MT=16,22,28,91
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,22,28,91
 Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays
 MT=16,22,28,91,102,103,107
 Multiplicities were calculated with GNASH.

MF=14 Photon Angular Distributions
 Assumed to be isotropic.

MF=15 Photon Energy Distributions
 MT=16,22,28,91,102,103,107
 Calculated with GNASH.

References
MAT number = 3271

27-Co 59 KHI Eval-Aug88 T.Watanabe
Dist-Sep89

History
88-08 Newly evaluated by T.Watanabe
(Kawasaki Heavy Industries, Ltd.)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2
MT=151 Resonance Parameters
Resolved resonances for MLBW formula:
Parameters were evaluated based on experimental data
/1/,/2/,/3/ and modified to reproduce experimental
total cross sections. Negative energy levels were added
to reproduce 2200 m/s total and capture cross sections.

Calculated 2200 m/s cross sections and resonance integrals
2200 m/sec res. integ.
elastic 6.0 b
capture 37.18 b 75.6 b
total 43.19 b

MF=3 Neutron Cross Sections
MT=1,2,4,51-74,91,102
Total, elastic, inelastic and capture cross sections
were calculated with optical and statistical model.
Yamamuro's evaluation was adopted for direct inelastic
cross section /4/.

The spherical optical potential parameters were evaluated
to reproduce experimental total cross sections /5/,/6/.
V = 49.65 - 0.114*En MeV r0= 1.241 fm a0= 0.533 fm
Ws= 8.625-0.05305*En MeV rs= 1.421 fm b0= 0.292 fm
Vso= 7.724 MeV rso=1.151 fm aso=0.7 fm

Statistical model calculation with CASTHY code /7/ was
performed. MT=102 capture cross section was guided by
using experimental data /2/,/10/ above 100 keV.
The direct inelastic cross sections were adjusted so
as to fit to the experimental data /17/,/18/.

The level scheme taken from ref./8/:

<table>
<thead>
<tr>
<th>no.</th>
<th>energy(MeV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>7/2-</td>
</tr>
<tr>
<td>1</td>
<td>1.099262</td>
<td>3/2-</td>
</tr>
<tr>
<td>2</td>
<td>1.1905</td>
<td>9/2-</td>
</tr>
<tr>
<td>3</td>
<td>1.291611</td>
<td>3/2-</td>
</tr>
<tr>
<td>4</td>
<td>1.434263</td>
<td>1/2-</td>
</tr>
<tr>
<td>5</td>
<td>1.4595</td>
<td>11/2-</td>
</tr>
<tr>
<td>6</td>
<td>1.48161</td>
<td>5/2-</td>
</tr>
<tr>
<td>7</td>
<td>1.7447</td>
<td>7/2-</td>
</tr>
<tr>
<td>8</td>
<td>2.0672</td>
<td>7/2-</td>
</tr>
<tr>
<td>9</td>
<td>2.0883</td>
<td>5/2-</td>
</tr>
<tr>
<td>10</td>
<td>2.1528</td>
<td>7/2-</td>
</tr>
</tbody>
</table>
Continuum levels assumed above 2.54 MeV
Level density parameters were evaluated using D0, and
level data /3/., /8/.

11	2.183	7/2-	
12	2.205	5/2-	
13	2.3971	9/2-	direct
14	2.479	5/2-	

MT=1 Total
100 keV – 4 MeV Based on experimental data /5/., /19/.
above 4 MeV Calculated

MT=2 Elastic scattering
Obtained by subtracting the sum of absorption and
inelastic scattering from total cross section.

MT=16 \((n,2n) \)
Guided by experimental data /9/., /10/., /11/., /12/ and
Yamamuro’s theoretical calculations /4/.

MT=103 \((n,p) \)
Guided by experimental data /13/., /14/., /19/., /20/.

MT=107 \((n,\alpha) \)
JENDL-2 data were adopted with slight modification
based on Evain’s evaluation /15/ and experimental
data /9/., /21/.

MT=22, 28, 51-64, 91, 104 \((n,\alpha,\alpha,\alpha) \)
Yamamuro’s evaluation was adopted /4/.

MT=251 Mu-bar
Calculated from the data in MF=4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Optical model calculation.
MT=51-64 Yamamuro’s evaluation was adopted.
MT=16.22.28.91 Isotropic in lab. system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.22.28.91 Yamamuro’s evaluation was adopted.

References
4) Yamamuro N.: Private communication.
19) Harvey J.A.: Taken from EXFOR (1986).
MAT number = 3280

28-Ni- 0 NAIG Eval-Mar 87 S. Iijima
dist-Sep 89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 557 keV

- Calculated 2200 m/s values and resonance integrals (barn):

<table>
<thead>
<tr>
<th>m/s value</th>
<th>res.int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>22.241</td>
</tr>
<tr>
<td>elastic</td>
<td>17.859</td>
</tr>
<tr>
<td>capture</td>
<td>4.383</td>
</tr>
<tr>
<td></td>
<td>2.143</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Background cross sections (BGCS) applied to resonance region.
MT=1, 2, 102

Cross sections above resonance region evaluated as follows:

MT=1: Total cross section
Based on the high-resolution data of Larson+/1/.

MT=2: Elastic scattering
(Total) - (Nonelastic cross sections).

MT=3: Nonelastic cross section
Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 105, 106, 107, 111.

MT=16, 17, 22, 28, 103, 104, 105, 106, 107, 111: (n, 2n), (n, 3n),
(n, n'), (n, n'), (n, p), (n, d), (n, t), (n, He-3), (n, a), (n, 2p)
Constructed from isotopic data.

MT=4, 51-70, 91: Inelastic scattering
Isotopic levels were grouped into 20 levels of natural element.
The contributions from the direct process were
taken into account for the levels of MT=56, 59, 60,
61, 62, 63, 69, 70.

MT=102: Capture
Calculated with the statistical model code CASTHY /2/.

MT=251: Mu-bar
Calculated with CASTHY /2/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2: Calculated with optical model.
MT=16, 17, 22, 28, 91: Isotropic in laboratory system.
MT=51-70: Calculated with CASTHY. The direct process
was considered for MT=56, 59, 60, 61, 62, 63, 69, 70.
MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,22,28,91 : Constructed from isotopic data.

MF=12 Photon Multiplicities and Transition Probability Arrays
 MT=102 : Multiplicities calculated with GNASH/3/ for Ni-58.60.
 Modified by using the measurements/5/ below thermal energy.

MF=13 Photon Production Cross Sections
 MT=3 : Calculated with GNASH for Ni-58.60.

MF=14 Photon Angular Distributions
 MT=3.102 : Isotropic

MF=15 Photon Energy Distributions
 MT=3.102 : Calculated with GNASH
 Experimental data of Igashira et al. /4/ included.
 For MT=102, modified by using the measurements/5/ below thermal energy.

References
MAT number = 3281

28-Ni-58 NA16 Eval-Mar87 S. Iijima Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 420 keV
Evaluation based on the following data.

s-wave resonance parameters from Syme+1/
p-wave resonance parameters from JENDL-2 and Syme+1/
Two negative resonances due to Peres+1/2 with modification:
E = -50 keV \(\text{gamma-n} = 28.0 \text{ keV} \) \(\text{gamma-g} = 0.0 \)
E = -6.5 keV \(\text{gamma-n} = 1400 \text{ eV} \) \(\text{gamma-g} = 2.31 \text{ eV} \)
Scattering radius: 6.0 fm

Calculated 2200 m/s values and resonance integrals (barn):

<table>
<thead>
<tr>
<th>Value</th>
<th>res. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>30.754</td>
</tr>
<tr>
<td>elastic</td>
<td>26.251</td>
</tr>
<tr>
<td>capture</td>
<td>4.503</td>
</tr>
<tr>
<td></td>
<td>2.161</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Background cross sections (BGCS) applied to resonance region.
MT=1,102

Cross sections above 420 keV evaluated as follows:

MT=1: Total cross section
Between 420 keV to 677 keV, high-resolution experimental data were adopted.
Calculated with optical model from 677 keV to 20 MeV.
Potential parameters obtained by fitting nat-Ni data /3/:
\(V = 51.33 - 0.331 \times E_n \), \(W_s = 8.068 + 0.112 \times E_n \), \(V_{so} = 7.0 \) (MeV)
\(r_0 = r_{so} = 1.24 \)
\(r_s = 1.40 \) (fm)
\(a_0 = a_{so} = 0.541 \)
\(a_s = 0.4 \) (fm)

MT=2: Elastic scattering
(Total) - (Nonelastic cross sections).

MT=2: Nonelastic cross section
Sum of MT=4,16,22,28,102,103,104,105,106,107,111.

MT=16,28,103 (n,2n), (n,n'), (n,p)
Based on experimental data.

MT=22,104,105,106,107,111 (n,n'), (n,d), (n,t), (n,He-3),
(n,a), (n,7p)
The cross sections were calculated using the PEGASUS code /4/ and normalized to experimental data.

MT=4,51-65,91 Inelastic scattering
The CASTHY /5/ and GNASH /6/ calculations were adopted
for neutron energies below and above 7 MeV, respectively.
The direct process was taken into account for MT=51, 52,
53, 55, 65. For the level of MT=65, only the direct
process was considered.
The level scheme used is given as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>1.4545</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>2.4591</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>2.7755</td>
<td>2 +</td>
</tr>
<tr>
<td>4</td>
<td>2.9018</td>
<td>1 +</td>
</tr>
<tr>
<td>5</td>
<td>2.9424</td>
<td>0 +</td>
</tr>
<tr>
<td>6</td>
<td>3.0376</td>
<td>2 +</td>
</tr>
<tr>
<td>7</td>
<td>3.2634</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>3.4203</td>
<td>3 +</td>
</tr>
<tr>
<td>9</td>
<td>3.5240</td>
<td>4 +</td>
</tr>
<tr>
<td>10</td>
<td>3.5309</td>
<td>0 +</td>
</tr>
<tr>
<td>11</td>
<td>3.5934</td>
<td>1 +</td>
</tr>
<tr>
<td>12</td>
<td>3.6200</td>
<td>4 +</td>
</tr>
<tr>
<td>13</td>
<td>3.7744</td>
<td>3 +</td>
</tr>
<tr>
<td>14</td>
<td>3.8983</td>
<td>2 +</td>
</tr>
<tr>
<td>15</td>
<td>4.4753</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 3.932 MeV.

MT=102 Capture
Calculated with CASTHY.

MT=251 : Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 : Calculated with optical model.
MT=16, 22, 28 : Isotropic in the laboratory system.
MT=51-64 : Calculated with CASTHY. Direct process
included in MT=51, 52, 53, 55
MT=65 : C.C. calculation
MT=91 : Isotropic in the laboratory system

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28 : Calculated with PEGASUS
MT=91 : Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays
MT=16, 22, 28, 91 : Multiplicities calculated with GNASH.
 102, 103, 107
MT=51-65 : Transition probability arrays

MF=14 Photon Angular Distributions
MT=16, 22, 28, 51-65, 91, 102, 103, 107 : Isotropic

MF=15 Photon Energy Distributions
MT=16, 22, 28, 91, 102, 103, 107 : Calculated with GNASH

References
1) Syme D.B. et al.: Neutron Data of Structural Materials for
MAT number = 3282

28-Ni-60 NAG Eval-Mar87 S.lajima
Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K.Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 456 keV
Evaluation based on the following data.
Resonance parameters from Percey+/1/
Two negative resonances due to Percey+/2/ with
modification:
E = -5.0 keV gamma-n = 12.8 keV gamma-g = 0.0 eV
E = -656 eV gamma-n = 6.0 eV gamma-g = 6.0 eV

Calculated 2200 m/s values and resonance integrals (barn):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>4.316</td>
</tr>
<tr>
<td>elastic</td>
<td>1.416</td>
</tr>
<tr>
<td>capture</td>
<td>2.900</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
No background cross sections for MT=1, 2, 102.

Cross sections above 456 keV evaluated as follows:

MT=1: Total cross section
Calculated with optical model.
Potential parameters obtained by fitting nat-Ni data /3/:
V = 61.33 - 0.331 E + 0.068 + 0.112 E , Vso=7.0 (MeV)
r0=rso=1.24 , rs=1.40
a0=asc=0.541 , as=0.4

MT=2: Elastic scattering
(Total) - (Nonelastic cross sections).

MT=3: Nonelastic cross section
Sum of MT=4.16, 22, 28, 102, 103, 104, 105, 106, 107, 111.

MT=16 (n.2n)
Calculated with GNASH /4/.

MT=103 (n,n')
Most of data were taken from JENDL-2.

MT=22, 28, 104, 105, 106, 107, 111: (n,n'), (n,n'), (n,d),
(n,t), (n,He-3), (n,a), (n,2p)
The cross sections were calculated with PEGASUS /5/ and normalized to experimental data.

MT=4.52-61.91: Inelastic scattering
The CASTHY /6/ and GNASH /4/ calculations were adopted for neutron energies below and above 7 MeV, respectively.
The contribution from the direct process was included for
MT=51, 52, 53, 54, 61. For the level of MT=61, only the
direct process was considered.
The level scheme used is as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>1.3325</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>2.1588</td>
<td>2 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.2849</td>
<td>0 +</td>
</tr>
<tr>
<td>4.</td>
<td>2.5058</td>
<td>4 +</td>
</tr>
<tr>
<td>5.</td>
<td>2.6260</td>
<td>3 +</td>
</tr>
<tr>
<td>6.</td>
<td>3.1198</td>
<td>4 +</td>
</tr>
<tr>
<td>7.</td>
<td>3.1240</td>
<td>2 +</td>
</tr>
<tr>
<td>8.</td>
<td>3.1661</td>
<td>3 +</td>
</tr>
<tr>
<td>9.</td>
<td>3.1941</td>
<td>1 +</td>
</tr>
<tr>
<td>10.</td>
<td>3.2696</td>
<td>2 +</td>
</tr>
<tr>
<td>11.</td>
<td>4.0397</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 3.318 MeV.

MT=102 : Capture
 Calculated with CASTHY.

MT=251 : Mu-bar
 Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2 : Calculated with optical model.
 MT=16, 22, 28, 91 : isotropic in the laboratory system.
 MT=51-60 : Calculated with CASTHY. Direct process
 included in MT=51, 52, 53, 54
 MT=61 : C.C. calculation.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16, 22, 28 : Calculated with PEGASUS.
 MT=91 : Calculated with GNASH.

MF=12 Photon Multiplicities and Transition Probability Arrays
 MT=16, 22, 28, 91,
 102, 103, 107 : Multiplicities calculated with GNASH.
 MT=51-65 : Transition probability arrays

MF=14 Photon Angular Distributions
 MT=16, 22, 28, 91, 102, 103, 107 : Isotropic

MF=15 Photon Energy Distributions
 MT=16, 22, 28, 91, 102, 103, 107 : Calculated with GNASH

References
MAT number = 3283

28-Ni-61 NAI G Eval-Mar87 S. Iijima
Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 57.0 keV
Parameters were taken from JENDL-2 except that the neutron width of 64.07 keV s-wave resonance was changed from 54.0 eV to 535 eV /1/.
Scattering radius: 6.4 fm

Calculated 2200 m/s values and resonance integrals (barn):

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>res.int</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>11.239</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>8.731</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>2.509</td>
<td>2.439</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Background cross sections (BGCS) applied to resonance region.
MT=1, 2, 102

Cross sections above 57.0 keV evaluated as follows:

MT=1: Total cross section
High-resolution experimental data were adopted between 57 keV and 74.6 keV. Above 74.6 keV up to 20 MeV, the optical-model calculation was performed.
Potential parameters obtained by fitting nat-Ni data /2/:
V = 51.33 - 0.331*En . Ws = 8.068 + 0.112*En . Vso = 7.0 (MeV)
r0 = rs0 = 1.24 . rs = 1.40 (fm)
a0 = as0 = 0.541 . as = 0.4 (fm)

MT=2: Elastic scattering
(Total) - (Nonelastic cross sections).

MT=3: Nonelastic cross section
Sum of MT=4, 16, 22, 28, 102, 103, 104, 105, 106, 107, 111.

MT=16, 22, 28, 103, 104, 105, 106, 107, 111 (n, 2n), (n, n', a), (n, n', p), (n, p), (n, d), (n, t), (n, He-3), (n, a), (n, 2p)
Calculated with PEGASUS /3/.

MT=4, 51-70, 91, 102: Inelastic scattering and capture
Calculated with the statistical model code CASTHY /4/.
The level scheme used is given as follows:

No Energy(MeV) Spin-Parity
 g.s 0.0 3/2 -
 1. 0.0674 5/2 -
 2. 0.2830 1/2 -
 3. 0.6560 3/2 -
 4. 0.9088 5/2 -
 5. 1.0150 7/2 -
<table>
<thead>
<tr>
<th>Level (MeV)</th>
<th>Spin</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00</td>
<td>3/2</td>
<td>-</td>
</tr>
<tr>
<td>6.1323</td>
<td>5/2</td>
<td>-</td>
</tr>
<tr>
<td>6.1857</td>
<td>3/2</td>
<td>-</td>
</tr>
<tr>
<td>6.4580</td>
<td>7/2</td>
<td>-</td>
</tr>
<tr>
<td>6.6100</td>
<td>5/2</td>
<td>-</td>
</tr>
<tr>
<td>6.7288</td>
<td>3/2</td>
<td>-</td>
</tr>
<tr>
<td>6.8080</td>
<td>7/2</td>
<td>-</td>
</tr>
<tr>
<td>6.9780</td>
<td>9/2</td>
<td>+</td>
</tr>
<tr>
<td>9.9970</td>
<td>3/2</td>
<td>-</td>
</tr>
<tr>
<td>2.0030</td>
<td>7/2</td>
<td>-</td>
</tr>
<tr>
<td>2.0190</td>
<td>7/2</td>
<td>-</td>
</tr>
<tr>
<td>2.1140</td>
<td>9/2</td>
<td>+</td>
</tr>
<tr>
<td>2.1230</td>
<td>1/2</td>
<td>-</td>
</tr>
<tr>
<td>2.4100</td>
<td>5/2</td>
<td>-</td>
</tr>
<tr>
<td>2.4660</td>
<td>7/2</td>
<td>-</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 2.528 MeV.

MT=251 : Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 : Calculated with optical model.
MT=16,22,28,91 : Isotropic in the laboratory system.
MT=51–70 : 90 degree symmetric in the center-of-mass system, calculated with CASTHY.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91 : Calculated with PEGASUS.

References
MAT number = 3284

28-Ni 62 NAIG Eval-Mar87 S.ijima
Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 557 keV
Parameters were taken from JENDL-2.
Scattering radius: 6.7 fm

| Calculated 2200 m/s values and resonance integrals (barn): |
|---------------------------------|-----|-----|
| total | 23.704 | - |
| elastic | 9.505 | - |
| capture | 14.199 | 6.908 |

MF=3 Neutron Cross Sections
Background cross sections (BGCS) applied to resonance region.
MT=1, 2, 102

Cross sections above 557 keV evaluated as follows:

MT=1 Total cross section
High-resolution experimental data were adopted between 557 keV and 670 keV. Above 670 keV up to 20 MeV, the optical-model calculation was performed.
Potential parameters obtained by fitting nat-Ni data /1/:
V = 81.33 - 0.331 x En , Ws = 8.068 + 0.112 x En , Vso = 7.0 (MeV)
r0 = rs = 1.24 , rs = 1.40 (fm)
a0 = as = 0.541 , as = 0.4 (fm)

MT=2 Elastic scattering
(Total) - (Nonelastic cross section).

MT=3 Nonelastic cross section
Sum of MT=4, 16, 22, 28, 102, 103, 104, 105, 106, 107, 111.

MT=16, 22, 28, 103, 104, 105, 106, 111 (n, 2n), (n, n'), (n, n'), (n, p), (n, d), (n, t), (n, He-3), (n, 2p)
Calculated with PEGASUS /2/.

MT=4, 51-71, 91, 102 Inelastic scattering and capture
Calculated with the statistical-model code CASTHY /3/.
The level scheme used is given as follows:
No Energy (MeV) Spin-Parity
 g.s 0 0 +
 1. 1.1729 2 +
 2. 2.0486 0 +
 3. 2.3018 2 +
 4. 2.3364 4 +
 5. 2.8912 0 +
 6. 3.0582 2 +
 7. 3.1580 2 +
8. 3.1785 4 +
9. 3.2577 2 +
10. 3.2620 4 +
11. 3.2689 2 +
12. 3.2774 4 +
13. 3.3703 1 +
14. 3.4620 4 +
15. 3.4860 0 +
16. 3.5185 2 +
17. 3.5229 3 +
18. 3.7570 3 −
19. 3.8493 1 +
20. 3.8530 2 +
21. 3.8600 2 +

Continuum levels assumed above 3.967 MeV.

MT=107 : (n,a)
Based on experimental data.
MT=251 : Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 : Calculated with optical model.
MT=16,22,28,91: isotropic in the laboratory system.
MT=51-71 : 90 degree symmetric in the center-of-mass system,
calculated with CASTHY.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,22,28,91 : Calculated with PEGASUS.

References
MAT number = 3285

28-Ni-64 NAIG Eval-Mar87 S. Iijima Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1, MT=451 Comments and dictionary

MF=2, MT=151 Resolved resonance parameters: 1.0E-5 eV - 553 keV
Parameters were taken from JENDL-2.
Scattering radius: 6.4 fm

Calculated 2200 m/s values and resonance integrals (barn):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2200 m/s value</th>
<th>res. int</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>1.515</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>1.480</td>
<td>0.820</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Background cross sections (BCCS) applied to resonance region.
MT=1, 2, 102

Cross sections above 553 keV evaluated as follows:

MT=1: Total cross section
High-resolution experimental data were adopted between 553 keV and 698 keV. Above 698 keV up to 20 MeV, the optical-model calculation was performed.
Potential parameters obtained by fitting nat-Ni data /1/:
\[V = 0.33 - 0.331 \times E_n + 0.112 \times E_n \] (MeV)
\[r_0 = r_{so} = 1.24 \] (fm)
\[a_0 = a_{so} = 0.641 \] (fm)

MT=2: Elastic scattering
(Total) - (Nonelastic cross section).

MT=3: Nonelastic cross section
Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 105, 106, 107, 111.

MT=16, 17, 22, 28, 103, 104, 105, 106, 111: (n, 2n), (n, 3n), (n, n', a), (n, n', p), (n, p), (n, d), (n, t), (n, He-3), (n, 2p)
Calculated with PEGASUS /2/.

MT=4, 51-70, 91, 102: Inelastic scattering and capture
Calculated with the statistical model code CASTHY /3/.
The level scheme used is given as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1.</td>
<td>1.3459</td>
<td>2 +</td>
</tr>
<tr>
<td>2.</td>
<td>2.2750</td>
<td>0 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.6080</td>
<td>4 +</td>
</tr>
<tr>
<td>4.</td>
<td>2.7500</td>
<td>2 +</td>
</tr>
<tr>
<td>5.</td>
<td>2.8650</td>
<td>0 +</td>
</tr>
<tr>
<td>6.</td>
<td>2.8850</td>
<td>2 +</td>
</tr>
<tr>
<td>7.</td>
<td>2.9710</td>
<td>2 +</td>
</tr>
</tbody>
</table>
8. 3.0280 0 +
9. 3.1650 4 +
10. 3.2730 2 +
11. 3.3930 3 +
12. 3.4590 1 +
13. 3.4830 4 +
14. 3.5600 3 −
15. 3.6470 2 +
16. 3.7480 4 +
17. 3.7850 1 +
18. 3.8080 3 +
19. 3.8480 5 −
20. 3.9650 4 +

Continuum levels assumed above 4.084 MeV.

MT=107 : (n,a)
Based on experimental data.
MT=251 : Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 : Calculated with optical model.
MT=16,17,22,28,91: Isotropic in the laboratory system.
MT=51–70 : 90 degree symmetric in the center-of-mass system,
calculated with CASTHY.

MF=5 Energy Distributions of Secondary Neutrons
•MT=16,17,22,28,91 : Calculated with PEGASUS.

References
MAT number = 3290

29-Cu 0 NAIG, MAP1 Eval-Mar87 N. Yamamuro, T. Kawakita Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Parameters of each isotope were mainly taken from the work of Mughabghab et al. /1/
Resonance region: 1.0E-5 eV to 153 keV.
Scattering radius: 6.70 fm for Cu-63 and Cu-65
Calculated 2200-m/s cross sections and res. integrals

2200-m/s res. integ.
elastic 7.868 b
capture 3.785 b
11.653 b

MF=3 Neutron Cross Sections
MT=1 Total
Below 153 keV: No background
153 keV to 3 MeV: Based on the experimental data of
3 MeV to 20 MeV: Optical-model calculation using
CASTHY /4/
The optical potential parameters used are as follows /5/ (in the units of MeV and fm):
V = 51.725 - 0.447E r0 = 1.221 a0 = 0.883
Ws = 8.44 + 0.055E rs = 1.223 as = 0.507
Vso = 8.0 rsso = 1.221 aso = 0.883

MT=2 Elastic scattering
(Total) - (Reaction cross section)

MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 32, 102, 103, 104 and 107

MT=4, 51-87, 91 Inelastic scattering
Statistical model calculations were made with CASTHY /4/ below 3 MeV by taking account of competing processes, and with GNASH /6/ above 3 MeV including pre-equilibrium effects. The direct process components were considered for 10 discrete levels.

MT=16, 22, 28, 32, 103, 104 (n, 2n), (n, n'), (n, n'p), (n, n'd), (n, p)
(n, d) cross sections
Calculated with GNASH /6/.
Optical potential parameters for proton, alpha-particle and deuteron were as follows /7, 8, 9/.

Proton
V = 59.11 - 0.55E r0 = 1.25 a0 = 0.65
Ws = 10.4 rs = 1.25 as = 0.47
Vso = 7.5 rso = 1.25 aso = 0.47

Alpha-particle
V = 164.7 r0 = 1.442 a0 = 0.52
\[W_v = 22.4 \]
\[r_v = 1.442 \quad a_v = 0.52 \]
\[r_c = 1.32 \]

Deuteron
\[V = 106.69 \]
\[W_s = 13.92 \]
\[V_{so} = 7.0 \]
\[a_0 = 0.88 \]
\[a_s = 0.704 \]
\[a_{so} = 0.5 \]
\[r_{so} = 0.75 \]
\[r_c = 1.3 \]

MT=107 \((n, a) \) cross section
Calculated cross sections of Cu-63 were normalized to the experimental data /10/ at 10 MeV. Above 12 MeV, the excitation function follows the data of Paulsen /11/. For Cu-65, the GNASH calculation was employed.

MT=102 Radiative capture cross section
Calculated with CASTHY.

MT=251 Mu-bar
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51–87
Calculated with CASTHY for equilibrium process
The components of the direct process were added to 10 levels by using the DWUCK code /12/.

MT=16, 22, 28, 32, 91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 32, 91
Calculated with GNASH.

MF=12 Photon Production Multiplicities
MT=102
Calculated with GNASH.
At thermal energy, modified by using the measurements/13/ and gamma-ray intensity data in ENSDF.

MF=13 Photon Production Cross Sections
MT=3
Calculated with GNASH.

MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=3, 102
Calculated with GNASH.
At thermal energy, modified by using the measurements/13/ and gamma-ray intensity data in ENSDF.

References
 Neutron-Induced Cross Sections for Cu-63,65 from 1 to 20 MeV
6) Young, P.G. and Arthur, E.D.: "GNASH, A Preequilibrium,
 Statistical Nuclear-Model Code for Calculation of Cross
 76, 30 (1980).
MAT number = 3291

29–Cu- 63 NAIG.MAPI Eval–Mar87 N.Yamamuro.T.Kawakita
Dist-Sep89

History
87–03 Evaluation was performed for JENDL-3.
87–05 Compiled by K.Shibata.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Parameters were mainly taken from the work of Mughabghob et al. /1/
Resonance region: 1.0E–5 eV to 153 keV.
Scattering radius: 6.70 fm
Calculated 2200–m/s cross sections and res. integrals
2200–m/s res. integ.
elastic 5.102 b
capture 4.506 b 4.972 b
total 9.608 b

MF=3 Neutron Cross Sections
MT=1 Total
Below 153 keV: No background
153 keV to 3 MeV: Based on the experimental data of
natural element /2,3/
3 MeV to 20 MeV: Optical–model calculation using
CASTHY /4/
The optical potential parameters used are as follows /5/ (in the units of MeV and fm):
V = 51.725 − 0.447+E r0 = 1.221 a0 = 0.683
Ws = 8.44 + 0.065+E rs = 1.223 as = 0.507
Vso = 8.0 rs0 = 1.221 as0 = 0.683

MT=2 Elastic scattering
(Total) – (Reaction cross section)

MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 32, 102, 103, 104 and 107

MT=4, 51–67, 91 Inelastic scattering
Statistical model calculations were made with CASTHY /4/
below 3 MeV by taking account of competing processes,
and with GNASH /6/ above 3 MeV including pre-equilibrium
effects. The direct–process components were considered
for the levels of MT=51–54, 65, 91 by the DWBA
calculations.
The level scheme was taken from Ref. /7/.

No. Energy(MeV) Spin–Parity
 g.s. 0.0 3/2 −
 1. 0.6697 1/2 −
 2. 0.9821 5/2 −
 3. 1.3270 7/2 −
 4. 1.4126 5/2 −
 5. 1.5470 3/2 −
 6. 1.8610 7/2 −
 7. 2.0110 3/2 −
 8. 2.0620 1/2 −
Levels above 2.54 MeV were assumed to be overlapping.

MT=16, 22, 28, 32, 103, 104 (n,2n), (n,n'a), (n,n'p), (n,n'd), (n,p) (n,d) cross sections
Calculated with GNASH/6/.
Optical potential parameters for proton, alpha–particle and deuteron were as follows /8,9,10/.

Proton
\[V = 59.11 - 0.55 \times E \]
\[r_0 = 1.25 \quad a_0 = 0.65 \]
\[W_s = 10.4 \quad r_s = 1.25 \quad a_s = 0.47 \]
\[V_o = 7.5 \quad r_s = 1.25 \quad a_o = 0.47 \]

Alpha–particle
\[V = 164.7 \]
\[r_0 = 1.442 \quad a_0 = 0.52 \]
\[W_v = 22.4 \quad r_v = 1.442 \quad a_v = 0.52 \]
\[r_c = 1.30 \]

Deuteron
\[V = 106.69 \]
\[r_0 = 1.05 \quad a_0 = 0.86 \]
\[W_s = 13.92 \quad r_s = 1.43 \quad a_s = 0.704 \]
\[V_o = 7.0 \quad r_s = 0.75 \quad a_o = 0.5 \]
\[r_c = 1.3 \]

MT=107 (n,a) cross section
Calculated cross sections were normalized to the experimental data /11/ at 10 MeV. Above 12 MeV, the excitation function follows the data of Paulsen /12/.

MT=102 Radiative capture cross section
Calculated with CASTHY. A value of 0.002 was employed for the gamma–ray strength function for s-wave neutrons.

MT=251 Mu–bar
Calculated with CASTHY

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51–67
Calculated with CASTHY for equilibrium process.
The components of the direct process were added to the levels of MT=51–54, 65 by using the DWUCK code /13/.

MT=16, 22, 28, 32, 91
Assumed to be isotropic in the laboratory system

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 32, 91
Calculated with GNASH.
MF=12 Photon Production Multiplicities
 MT=16,22,28,32,51-67,91,102,103,104,107
 Calculated with GNASH.

MF=14 Photon Angular Distributions
 MT=16,22,28,32,51-67,91,102,103,104,107
 Assumed to be isotropic.

MF=15 Photon Energy Distributions
 MT=16,22,28,32,91,102,103,104,107
 Calculated with GNASH.

References
12) Paulsen, A.: Nucleonik, 10, 91 (1967)
MAT number = 3292

29-Cu 65 NAI5, MAP1 Eval-Mar87 N.Yamamuro, T.Kawakita
 Dist-Sep89

History
87-03 Evaluation was performed for JENDL-3.
87-05 Compiled by K. Shibata (JAERI).

MF=1 General Information
 MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
 MT=151 Resolved resonance parameters for MLBW formula
Parameters were mainly taken from the work of Mughabghab et al. /1/
Resonance region: 1.0E-5 eV to 153 keV.
Scattering radius: 6.70 fm
Calculated 2200-m/s cross sections and res. integrals
2200-m/s res. integ.
elastic 14.074 b -
capture 2.168 b 2.210 b
total 16.242 b -

MF=3 Neutron Cross Sections
 MT=1 Total
Below 153 keV : No background
153 keV to 3 MeV: Based on the experimental data of natural element /2,3/.
3 MeV to 20 MeV: Optical-model calculation using CASTHY /4/.
The optical potential parameters used are as follows /5/ (in the units of MeV and fm):
V = 51.725 - 0.447*E r0 = 1.221 a0 = 0.683
Ws = 8.44 + 0.055*E rs = 1.223 as = 0.507
Vso = 8.0 rso = 1.221 aso = 0.683

MT=2 Elastic scattering
(Total) - (Reaction cross section)

MT=3 Non elastic
Sum of MT=4, 16, 22, 28, 32, 102, 103, 104 and 107
MT=4.51-70,91 Inelastic scattering
Statistical model calculations were made with CASTHY /4/ below 3 MeV by taking account of competing processes,
and with GNASH /6/ above 3 MeV including preequilibrium effects. The direct-process component was considered for the levels of MT=51-54, 64, 91 by the DWBA calculations.
The level scheme was taken from Ref. /7/.

No. Energy(MeV) Spin-Parity
 g.s. 0.0 3/2 -
 1. 0.7706 1/2 -
 2. 1.1160 5/2 -
 3. 1.4820 7/2 -
 4. 1.6230 5/2 -
 5. 1.7250 3/2 -
 6. 2.0840 7/2 -
 7. 2.1070 5/2 -
 8. 2.2130 1/2 -
 9. 2.2780 7/2 -

1 of Copper-65
10. 2.3290 3/2 -
11. 2.4070 9/2 -
12. 2.5260 9/2 +
13. 2.5530 5/2 -
14. 2.5840 7/2 +
15. 2.5930 1/2 -
16. 2.6440 9/2 -
17. 2.6500 5/2 -
18. 2.6550 5/2 -
19. 2.6680 5/2 -
20. 2.7530 9/2 +

Levels above 2.80 MeV were assumed to be overlapping.

MT=16,22,28,32,103,104,107 (n,2n),(n,n'p),(n,n'p),(n,n'd),(n,p)
(n,d) and (n,a) cross sections
Calculated with GNASH/5/.
Optical potential parameters for proton, alpha-particles
and deuteron were as follows /8,9,10/.

Proton
V = 59.11 - 0.55/E
Wv = 10.4
Vso= 7.5
\[\begin{align*}
 r_0 &= 1.25 & a_0 &= 0.65 \\
 r_s &= 1.25 & a_s &= 0.47
\end{align*} \]

Alpha-particle
V = 164.7
Wv = 22.4
Vso= 7.5
\[\begin{align*}
 r_0 &= 1.442 & a_0 &= 0.52 \\
 r_v &= 1.442 & a_v &= 0.52
\end{align*} \]

Deuteron
V = 106.69
Wv = 13.92
Vso= 7.0
\[\begin{align*}
 r_0 &= 1.05 & a_0 &= 0.86 \\
 r_s &= 1.43 & a_s &= 0.704
\end{align*} \]

MT=102 Radiative capture cross section
Calculated with CASTHY. A value of 0.001 was employed
for the gamma-ray strength function for s-wave neutrons.

MT=251 Mu-bar
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-70
Calculated with CASTHY for equilibrium process.
The components of the direct process were added to
the levels of MT=51-54,64 by using the DWUCK code /11/.

MT=16, 22, 28, 32, 91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 32, 91
Calculated with GNASH.

MF=12 Photon Production Multiplicities
MT=16,22,28,32,51-70,91,102,103,104,107
Calculated with GNASH.
MF=14 Photon Angular Distributions
MT=16, 22, 28, 32, 51-70, 91, 102, 103, 104, 107
Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=16, 22, 28, 32, 91, 102, 103, 104, 107
Calculated with GNASH.

References
MAT_number = 3400

40-Zr- 0 MAPI Eval-Nov88 M.Sasaki (MAPI)
Dist-Sep89

History
88-11 Compiled by T.Asami (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in the energy region from 1.0E-5 eV to 100 keV.
The abundance data were taken from ref./1/ to be
0.5145, 0.1122, 0.1715, 0.1738 and 0.0280 for Zr-90, -91,
-92, -94 and -96, respectively.
2200 m/s cross section(b) res. integral(b)
elastic 6.43
capture 0.186 1.19
total 6.618

MF=3 Neutron Cross Sections
Below 100 keV, no background cross section was given.
Above 100 keV, the total and partial cross sections were given pointwise.

MT=1 Total
Based on experimental data.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-89, 91 Inelastic scattering
The data were constructed from the statistical-model/2/
calculations for each isotope.
The data for some levels were lumped as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>Zr-90</th>
<th>Zr-91</th>
<th>Zr-92</th>
<th>Zr-94</th>
<th>Zr-96</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.918</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.935</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1.205</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.300</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>56</td>
<td>1.467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>57</td>
<td>1.469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1.496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>59</td>
<td>1.590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1.780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1.781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>63</td>
<td>1.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1.882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>65</td>
<td>1.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>2.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>2.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The threshold for the inelastic scattering to the continuum was set to be 2.329 MeV for convenience of the file making.

MT=16, 22, 28, 102, 103 and 107 (n,2n), (n,na), (n,np), (n,\gamma), (n,p) and (n,a)
Construct from the statistical-model calculations for each isotope.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Construct from the statistical-model/2/ calculations for each isotope.

MT=51-89, 91 Inelastic scattering
Construct from the statistical-model/2/ calculations for each isotope.

MT=16, 22, 28 (n,2n), (n,na), (n,np)
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Construct from the statistical-model/2/ calculations for each isotope.

MF=12 Photon Production Multiplicities
MT=102
Construct from the statistical-model/2/ calculations for each isotope.

MF=13 Photon Production Cross Sections
MT=3
Construct from the statistical-model/2/ calculations for each isotope.
MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MF=3
Constructed from the statistical-model/2/ calculations for each isotope.
MT=102
Constructed from the statistical-model/2/ calculations for each isotope.
Below thermal energy, modified by using the measurements of Sushkov/3/.

References
3) Sushkov, P.A. et al: LJAF-644 (1981); Taken from EXFOR.
MAT number = 3401

40-Zr 90 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved resonance parameters

Resolved resonance region (MLBW formula) : below 171 keV
Resonance energies and neutron widths were taken from Musgrove
et al./3/ . Radiative capture widths were derived from capture
areas measured by Boldeman et al./4/ . The parameters of the
first resonance were slightly adjusted so as to reproduce the
capture cross section of 0.011 ± 0.005 barns and elastic
scattering of 5.3 ± 0.3 barns at 0.0253 eV./5/ .
Average capture width = 0.190 ± 0.110 eV for s-wave res.
0.270 ± 0.120 eV for p-wave res.
0.280 ± 0.120 eV for d-wave res.
The effective scattering radius was adopted from Ref./5/.
No unresolved resonance region

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>5.511</td>
</tr>
<tr>
<td>elastic</td>
<td>5.465</td>
</tr>
<tr>
<td>capture</td>
<td>0.04584</td>
</tr>
<tr>
<td></td>
<td>0.196</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 171 keV, resonance parameters were given.
Above 171 keV, the spherical optical and statistical model
calculation was performed with CASTHY/6/ , by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/7/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Ijima and Kawai/8/ to reproduce a systematic
trend of the total cross section. The OMP's for charged
particles are as follows:
Proton = Perey/9/
Alpha = Huizenga and Igo/10/
Deuteron = Lohr and Haeberli/11/
Helium-3 and triton = Becchetti and Greenlees/12/

Parameters for the composite level density formula of Giurbart
and Cameron/13/ were evaluated by Ijima et al./14/ . More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar
/15/.

MT = 1 Total
Spherical optical model calculation was adopted.
MT = 2 Elastic scattering
 Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
 Spherical optical and statistical model calculation was
 adopted. The level scheme was taken from Ref./16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>1.7607</td>
<td>0 +</td>
</tr>
<tr>
<td>2</td>
<td>2.1865</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>2.3191</td>
<td>5 -</td>
</tr>
<tr>
<td>4</td>
<td>2.7388</td>
<td>4 -</td>
</tr>
<tr>
<td>5</td>
<td>2.7479</td>
<td>3 -</td>
</tr>
<tr>
<td>6</td>
<td>3.0772</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>3.3087</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>3.4483</td>
<td>6 +</td>
</tr>
<tr>
<td>9</td>
<td>3.5894</td>
<td>8 +</td>
</tr>
<tr>
<td>10</td>
<td>3.8430</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>3.9760</td>
<td>5 -</td>
</tr>
<tr>
<td>12</td>
<td>4.1250</td>
<td>0 +</td>
</tr>
<tr>
<td>13</td>
<td>4.2324</td>
<td>5 -</td>
</tr>
<tr>
<td>14</td>
<td>4.2380</td>
<td>2 +</td>
</tr>
</tbody>
</table>

Levels above 4.28 MeV were assumed to be overlapping.

MT = 102 Capture
 Spherical optical and statistical model calculation with
 CASTHY/6/ was adopted. Direct and semi-direct capture cross
 sections were estimated according to the procedure of Benzi
 and Refojo/17/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (1.407E-05) was adjusted to
reproduce the capture cross section of 7.5 milli-barns at 100
keV measured by Musgrove et al./18/

MT = 16 (n,2n) Cross Section
MT = 22 (n,n') Cross Section
MT = 28 (n,n') Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =106 (n,He3) Cross Section
MT =107 (n,alpha) Cross Section
MT =111 (n,2p) Cross Section
 These reaction cross sections were calculated with the
 preequilibrium and multi-step evaporation model code
 PEGASUS/7/.

The Kalbach's constant K (=301.6) was estimated by the
formula derived from Kikuchi-Kawai's formalism/19/ and level
density parameters.

Finally, (n,p) and (n,alpha) cross sections were normalized to
the following values at 14.5 MeV:
 (n,p) 40.00 mb (recommended by Forrest/20/)
 (n,alpha) 10.00 mb (recommended by Forrest/20/)
The (n,2n) cross section was determined by eye-guiding of the
data measured by Pavlik et al.21, Zhao et al.22, and others.

MT = 251 Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelas-
tic levels, and in the laboratory system for MT=91. They were
calculated with CASTHY/8/. For other reactions, isotropic
distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with
PEGASUS/7/ for inelastic scattering from overlapping levels
and for other neutron emitting reactions.

| Table 1 Neutron Optical Potential Parameters |
| --- | --- | --- |
| Depth (MeV) | Radius(fm) | Diffuseness(fm) |
| V = 46.0–0.25E | R0 = 5.893 | a0 = 0.62 |
| Ws = 7.0 | Rs = 6.393 | as = 0.35 |
| Wso= 7.0 | Rso= 5.893 | aso= 0.62 |

| Table 2 Level Density Parameters |
| --- | --- | --- | --- | --- |
| Nuclide | SYST a/(MeV) | T(MeV) | C/(MeV) | EX(MeV) | Pairing |
| 38-Sr- 86 | 1.170E+01 8.900E-01 5.328E-01 8.599E+00 2.700E+00 |
| 38-Sr- 87 | 1.030E+01 8.610E-01 1.186E+00 5.838E+00 1.240E+00 |
| 38-Sr- 88 | 9.160E+00 7.510E-01 8.288E-02 4.550E+00 2.170E+00 |
| 38-Sr- 89 | 9.380E+00 8.200E-01 6.043E-01 4.642E+00 1.240E+00 |
| 39-Y - 87 | 1.388E+01 7.471E-01 2.541E+00 6.730E+00 1.460E+00 |
| 39-Y - 88 | 1.109E+01 7.450E-01 3.738E+00 3.570E+00 0.0 |
| 39-Y - 90 | 1.027E+01 6.770E-01 1.716E+00 2.209E+00 0.0 |
| 40-Zr- 88 | 1.404E+01 7.386E-01 4.932E-01 7.870E+00 2.660E+00 |
| 40-Zr- 89 | 1.095E+01 8.260E-01 1.379E+00 5.864E+00 1.200E+00 |
| 40-Zr- 90 | 9.152E+00 8.222E-01 1.526E-01 5.383E+00 2.130E+00 |
| 40-Zr- 91 | 1.036E+01 8.000E-01 7.822E-01 5.057E+00 1.200E+00 |

SYST: *= LDP's were determined form systematics.

Spin cutoff params were calculated as 0.146*SQRT(a)*A**(2/3).
In the CASTHY calculation, spin cutoff factors at 0 MeV were
assumed to be 10.12 for Zr- 80 and 12.04 for Zr- 91.

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic
5) Mughabghab, S.F., et al.: "Neutron Cross Sections", Vol.1,
 (1983).
12) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization
 Phenomena in Nuclear Reactions (eds) H.H. Barshad
 and W. Haeberli), p. 682, The university of Wisconsin
 (1965).
 Reactions", North Holland (1968).
MAT number = 3402

40-Zr- 91 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 30.16 keV
For JENDL-2, resonance energies recommended by Mughabghab et al. /3/ were adopted. Neutron and radiative capture widths were obtained by averaging the data of Musgrove et al. /4/ and of Brussgan et al. /5/. For the levels above 20 keV, capture areas by Boldeman et al. /6/ were also taken into account.
Parameters of a negative resonance were adopted from Ref./3/.
The effective scattering radius was also taken from Ref./3/.
Assumed capture width = 0.120 eV for s-wave res.
0.240 eV for p-wave res.
For JENDL-3, thus evaluated parameters were modified by taking account of the evaluation by Coceva/7/. After modification, radiative widths were determined so as to reproduce capture areas of JENDL-2.
Unresolved resonance region : 30.16 keV – 100 keV
The neutron strength functions, S0, S1 and S2 were calculated with optical model code CASTHY/8/. The observed level spacing was determined to reproduce the capture cross section calculated with CASTHY. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.420E-4, S1 = 5.700E-4, S2 = 0.360E-4, GG = 0.205 eV
Do = 660.4 eV, R = 6.821 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>11.83</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>10.59</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>1.247</td>
<td>6.95</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY/8/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS/9/ standing on a preequilibrium and multi-step evaporation model. The OMP’s for neutron given in Table 1 were determined by Iijima and Kawai/10/ to reproduce a systematic trend of the total cross section. The OMP’s for charged particles are as follows:
Proton = Perey/11/
Alpha = Huizenga and Igo/12/
Deuteron = Lohr and Haeberli/13/
Helium-3 and triton = Becchetti and Greenlees/14/
Parameters for the composite level density formula of Girbert and Cameron/15/ were evaluated by Iijima et al./16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppenlaar /17/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./18/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>1.2048</td>
<td>1/2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.4663</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>1.8818</td>
<td>7/2 +</td>
</tr>
<tr>
<td>4</td>
<td>2.0414</td>
<td>3/2 +</td>
</tr>
<tr>
<td>5</td>
<td>2.1315</td>
<td>9/2 +</td>
</tr>
<tr>
<td>6</td>
<td>2.1701</td>
<td>11/2 -</td>
</tr>
<tr>
<td>7</td>
<td>2.1890</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>2.2005</td>
<td>7/2 +</td>
</tr>
<tr>
<td>9</td>
<td>2.2610</td>
<td>13/2 -</td>
</tr>
<tr>
<td>10</td>
<td>2.2890</td>
<td>15/2 -</td>
</tr>
<tr>
<td>11</td>
<td>2.3270</td>
<td>11/2 -</td>
</tr>
</tbody>
</table>

Levels above 2.358 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/19/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (3.199E-04) was adjusted to reproduce the capture cross section of 25 milli-barns at 100 keV measured by Musgrove et al./20/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 32 (n,n'd) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =106 (n,He3) Cross Section
MT =107 (n,alpha) Cross Section
These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code
PEAGASUS/9/.

The Kalbach's constant $K (=268.1)$ was estimated by the formula derived from Kikuchi-Kawai's formalism/21/ and level density parameters.

Finally, (n,p) and (n,α) cross sections were normalized to the following values at 14.5 MeV:

- (n,p): 29.00 mb (recommendation by Forrest/22/)
- (n,α): 8.51 mb (systematics of by Forrest/22/)

$MT = 251$ Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for $MT=2$ and discrete inelastic levels, and in the laboratory system for $MT=91$. They were calculated with CASTHY/8/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/9/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius (fm)</th>
<th>Diffuseness (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = 48.0 - 0.25E$</td>
<td>$R_0 = 5.893$</td>
<td>$a_0 = 0.62$</td>
</tr>
<tr>
<td>$W_s = 7.0$</td>
<td>$R_s = 6.393$</td>
<td>$a_s = 0.35$</td>
</tr>
<tr>
<td>$W_{so} = 7.0$</td>
<td>$R_{so} = 5.893$</td>
<td>$a_{so} = 0.02$</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>a (MeV)</th>
<th>T (MeV)</th>
<th>C (MeV)</th>
<th>E_X (MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-Sr- 87</td>
<td>1.030E+01</td>
<td>8.610E-01</td>
<td>1.186E+00</td>
<td>5.938E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>38-Sr- 88</td>
<td>9.160E+00</td>
<td>7.510E-01</td>
<td>8.288E-02</td>
<td>4.550E+00</td>
<td>2.170E+00</td>
</tr>
<tr>
<td>38-Sr- 89</td>
<td>9.380E+00</td>
<td>8.200E-01</td>
<td>5.043E-01</td>
<td>4.642E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>38-Sr- 90</td>
<td>9.940E+00</td>
<td>8.530E-01</td>
<td>3.795E-01</td>
<td>6.252E+00</td>
<td>1.960E+00</td>
</tr>
<tr>
<td>39-Y - 88</td>
<td>1.109E+01</td>
<td>7.450E-01</td>
<td>3.738E+00</td>
<td>3.570E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>39-Y - 90</td>
<td>1.027E+01</td>
<td>6.770E-01</td>
<td>1.716E+00</td>
<td>2.209E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>40-Zr- 89</td>
<td>1.095E+01</td>
<td>8.260E-01</td>
<td>1.379E+00</td>
<td>5.864E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr- 90</td>
<td>9.152E+00</td>
<td>8.222E-01</td>
<td>1.526E+00</td>
<td>5.383E+00</td>
<td>2.130E+00</td>
</tr>
<tr>
<td>40-Zr- 91</td>
<td>1.036E+01</td>
<td>8.000E-01</td>
<td>7.822E-01</td>
<td>5.057E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr- 92</td>
<td>1.088E+01</td>
<td>8.192E-01</td>
<td>5.122E-01</td>
<td>6.429E+00</td>
<td>1.920E+00</td>
</tr>
</tbody>
</table>

Spin cutoff params were calculated as $0.146 \cdot \text{SQRT}(a) \cdot A^{-(2/3)}$. In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 12.04 for Zr-91 and 6.937 for Zr-92.
References
MAT number = 3403

40-Zr-92 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below /1/ keV
Evaluation was based on the measured data by Boldeman et al. /3/.
Parameters of a negative resonance and the effective scattering radius were adopted from Ref. /4/.
Assumed capture width = 0.180 eV for s-wave res.
= 0.270 eV for p-wave res.

Unresolved resonance region: 71 keV - 100 keV
The neutron strength functions S0 and S1 were based on the compilation of Mughabghab et al. /4/.
S2 was calculated with optical model code CASTHY/5/.
The observed excitation spacing was determined to reproduce the capture cross section calculated with CASTHY.
The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 80 keV:
S0 = 0.500E-4, S1 = 7.000E-4, S2 = 0.380E-4, GG(S) = 0.140 eV
GG(P)=0.36 eV, Do = 3229 eV, R = 5.964 fm

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th>Total</th>
<th>Elastic</th>
<th>Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.087</td>
<td>4.869</td>
<td>0.2175</td>
</tr>
<tr>
<td>5.087</td>
<td>-</td>
<td>0.702</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY/5/,
by taking account of competing reactions, of which cross sections were calculated with PEGASUS/6/ standing on a pre-equilibrium and multi-step evaporation model.
The OMP's for neutron given in Table 1 were determined by Iijima and Kawai/7/ to reproduce a systematic trend of the total cross section.
The OMP's for charged particles are as follows:
Proton = Perey/8/
Alpha = Huzenga and Igo/9/
Deuteron = Lohr and Haebeli/10/
Helium-3 and triton = Becchetti and Greenlees/11/

Parameters for the composite level density formula of Girber and Cameron/12/ were evaluated by Iijima et al. /13/.
More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar.

MT = 1 Total
 Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
 Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
 Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./15/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.9345</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.3630</td>
<td>0 +</td>
</tr>
<tr>
<td>3</td>
<td>1.4956</td>
<td>4 +</td>
</tr>
<tr>
<td>4</td>
<td>1.8473</td>
<td>2 +</td>
</tr>
<tr>
<td>5</td>
<td>2.0669</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>2.3399</td>
<td>3 -</td>
</tr>
<tr>
<td>7</td>
<td>2.3950</td>
<td>4 +</td>
</tr>
<tr>
<td>8</td>
<td>2.4790</td>
<td>5 -</td>
</tr>
<tr>
<td>9</td>
<td>2.7400</td>
<td>4 -</td>
</tr>
<tr>
<td>10</td>
<td>2.8120</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>2.8570</td>
<td>4 +</td>
</tr>
<tr>
<td>12</td>
<td>2.8900</td>
<td>3 +</td>
</tr>
<tr>
<td>13</td>
<td>2.9000</td>
<td>0 +</td>
</tr>
<tr>
<td>14</td>
<td>2.9540</td>
<td>6 +</td>
</tr>
<tr>
<td>15</td>
<td>3.0340</td>
<td>3 -</td>
</tr>
<tr>
<td>16</td>
<td>3.0490</td>
<td>2 +</td>
</tr>
</tbody>
</table>

Levels above 3.11 MeV were assumed to be overlapping.

MT = 102 Capture
 Spherical optical and statistical model calculation with CASTHY/5/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/16/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (8.993E-05) was adjusted to reproduce the capture cross section of 30 milli-barns at 100 keV measured by Musgrove et al./17/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n') Cross Section
MT = 28 (n,n') Cross Section
MT = 32 (n,n'd) Cross Section
MT = 33 (n,n't) Cross Section
MT = 103 (n,p) Cross Section
MT = 104 (n,d) Cross Section
MT = 105 (n,t) Cross Section
MT = 107 (n, alpha) Cross Section

These reaction cross sections were calculated with the equilibrium and multi-step evaporation model code PEGASUS/6/.
The Kalbach's constant K (=163.7) was estimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density parameters.

Finally, (n,p) and (n,α) cross sections were normalized to the following values at 14.5 MeV:

(n,p) 22.00 mb (measured by Ikeda et al. /19/)
(n,α) 9.50 mb (mean value of data measured by Qaim et al. /20/ and Bayhurs et al. /21/)

The (n,p) and (n,d) cross sections were increased by factor of 2 to fit the data of Ikeda et al. /19/.

MT = 251 Mu-bar
Calculated with CASTHY/5/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=01. They were calculated with CASTHY/5/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/6/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0-0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 5.893</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-Sr- 88</td>
<td>9.160E+00</td>
<td>7.510E-01</td>
<td>8.288E-02</td>
<td>4.550E+00</td>
<td>2.170E+00</td>
</tr>
<tr>
<td>38-Sr- 89</td>
<td>9.380E+00</td>
<td>8.200E-01</td>
<td>5.043E-01</td>
<td>4.842E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>38-Sr- 90</td>
<td>9.940E+00</td>
<td>8.530E-01</td>
<td>3.795E-01</td>
<td>6.252E+00</td>
<td>1.960E+00</td>
</tr>
<tr>
<td>38-Sr- 91</td>
<td>1.090E+01</td>
<td>8.100E-01</td>
<td>1.103E+00</td>
<td>5.625E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>39-Y - 90</td>
<td>1.027E+01</td>
<td>6.770E-01</td>
<td>1.716E+00</td>
<td>2.209E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>39-Y - 91</td>
<td>1.050E+01</td>
<td>7.400E-01</td>
<td>8.362E-01</td>
<td>3.521E+00</td>
<td>7.200E-01</td>
</tr>
<tr>
<td>39-Y - 92</td>
<td>1.012E+01</td>
<td>7.629E-01</td>
<td>2.480E+00</td>
<td>3.191E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>40-Zr- 90</td>
<td>9.152E+00</td>
<td>8.222E-01</td>
<td>1.526E-01</td>
<td>5.383E+00</td>
<td>2.130E+00</td>
</tr>
<tr>
<td>40-Zr- 91</td>
<td>1.036E+01</td>
<td>8.000E-01</td>
<td>7.822E-01</td>
<td>5.057E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr- 92</td>
<td>1.088E+01</td>
<td>8.192E-01</td>
<td>5.122E-01</td>
<td>6.429E+00</td>
<td>1.920E+00</td>
</tr>
<tr>
<td>40-Zr- 93</td>
<td>1.298E+01</td>
<td>7.000E-01</td>
<td>1.273E+00</td>
<td>5.183E+00</td>
<td>1.200E+00</td>
</tr>
</tbody>
</table>

Spin cutoff params were calculated as 0.148*SORT(a)·A**(2/3).
In the CASTHY calculation, spin cutoff factors at 0 MeV were
assumed to be 6.937 for Zr-92 and 6.100 for Zr-93.

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic
4) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
 (1983).
11) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization
 Phenomena in Nuclear Reactions ((eds) H.H. Barshall and
 (1971).
 (1965).
 Physics and Nucl. data for Reactors, Harwell 1978", 449.
 Reactions", North Holland (1968).
MAT number = 3405

40-Zr-94 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G. /1/
88-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonance region (MLBW formula): below 53.5 keV
Parameters were determined on the basis of measured data by
Boldeman et al./3/ . A negative resonance was added to
reproduce the capture cross section of 0.0499 barn and the
elastic scattering of 6.1 barn at 0.0253 eV /4/.
Assumed capture width = 0.090 eV for s-wave res.
0.175 eV for p-wave res.

Unresolved resonance region: 53.5 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/5/ . The observed level spacing
was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.370E-4, S1 = 5.500E-4, S2 = 0.380E-4, GG = 0.190 eV
Do = 3556. eV, R = 6.704 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>6.202</td>
</tr>
<tr>
<td>elastic</td>
<td>6.152</td>
</tr>
<tr>
<td>capture</td>
<td>0.04981</td>
</tr>
<tr>
<td></td>
<td>0.321</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model
calculation was performed with CASTHY/5/ , by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/6/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Iijima and Kawai/7/ to reproduce a systematic
trend of the total cross section. The OMP's for charged
particles are as follows:
Proton = Perey/8/.
Alpha = Hutzenga and Igo/9/.
Deuteron = Lohr and Haaberli/10/.
Helium-3 and triton = Becchetti and Greenlees/11/.

Parameters for the composite level density formula of Girbert
and Cameron/12/ were evaluated by Iijima et al./13/ . More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Grupelaar /14/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./15/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.9187</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.3000</td>
<td>0 +</td>
</tr>
<tr>
<td>3</td>
<td>1.4683</td>
<td>4 +</td>
</tr>
<tr>
<td>4</td>
<td>1.6687</td>
<td>2 +</td>
</tr>
<tr>
<td>5</td>
<td>2.0574</td>
<td>3 -</td>
</tr>
<tr>
<td>6</td>
<td>2.1510</td>
<td>2 +</td>
</tr>
<tr>
<td>7</td>
<td>2.3360</td>
<td>4 +</td>
</tr>
<tr>
<td>8</td>
<td>2.3655</td>
<td>2 +</td>
</tr>
<tr>
<td>9</td>
<td>2.6050</td>
<td>5 -</td>
</tr>
<tr>
<td>10</td>
<td>2.8400</td>
<td>1 -</td>
</tr>
</tbody>
</table>

Levels above 2.882 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/5/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Refojo/16/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (4.886E-05) was adjusted to reproduce the capture cross section of 19 milli-barns at 100 keV measured by Musgrove et al./17/.

MT = 16 \((n,2n)\) Cross Section
MT = 17 \((n,3n)\) Cross Section
MT = 22 \((n,n')\) Cross Section
MT = 28 \((n,n)p\) Cross Section
MT = 32 \((n,n)d\) Cross Section
MT =103 \((n,p)\) Cross Section
MT =104 \((n,d)\) Cross Section
MT =105 \((n,t)\) Cross Section
MT =107 \((n,\alpha)\) Cross Section

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/8/.

The Kalbach's constant K (=161.8) was estimated by the formula derived from Kikuchi-Kawai's formalism/18/ and level density parameters.

Finally, \((n,p)\) and \((n,\alpha)\) cross sections were normalized to the following values at 14.5 MeV:
\[(n,p) \quad 10.00 \text{ mb (recommended by Forrest/19/)}\]
(n, alpha) 4.80 mb (measured by Ikeda et al. /20/)

MT = 251 Mu-bar
Calculated with CASTHY/5/.

MF = 4 Angular Distributions of Secondary Neutrons
Legends polynomials coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/5/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/6/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0-0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso= 7.0</td>
<td>Rso= 5.893</td>
<td>aso= 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST</th>
<th>a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-Sr-90</td>
<td>9.940E+00</td>
<td>8.530E-01</td>
<td>3.795E-01</td>
<td>6.252E+00</td>
<td>1.960E+00</td>
<td></td>
</tr>
<tr>
<td>38-Sr-91</td>
<td>1.090E+01</td>
<td>8.100E-01</td>
<td>1.103E+00</td>
<td>5.625E+00</td>
<td>1.240E+00</td>
<td></td>
</tr>
<tr>
<td>38-Sr-92</td>
<td>1.788E+01</td>
<td>7.065E-01</td>
<td>2.515E-01</td>
<td>5.391E+00</td>
<td>2.380E+00</td>
<td></td>
</tr>
<tr>
<td>38-Sr-93</td>
<td>1.386E+01</td>
<td>6.989E-01</td>
<td>1.878E+00</td>
<td>5.664E+00</td>
<td>1.240E+00</td>
<td></td>
</tr>
<tr>
<td>39-Y-92</td>
<td>1.012E+01</td>
<td>7.629E-01</td>
<td>2.480E+00</td>
<td>3.191E+00</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>39-Y-93</td>
<td>1.150E+01</td>
<td>8.053E-01</td>
<td>1.740E+00</td>
<td>5.854E+00</td>
<td>1.120E+00</td>
<td></td>
</tr>
<tr>
<td>39-Y-94</td>
<td>9.149E+00</td>
<td>7.385E-01</td>
<td>1.378E+00</td>
<td>2.222E+00</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>40-Zr-92</td>
<td>1.088E+01</td>
<td>8.192E-01</td>
<td>5.122E-01</td>
<td>6.429E+00</td>
<td>1.920E+00</td>
<td></td>
</tr>
<tr>
<td>40-Zr-93</td>
<td>1.298E+01</td>
<td>7.000E-01</td>
<td>1.273E+00</td>
<td>5.183E+00</td>
<td>1.200E+00</td>
<td></td>
</tr>
<tr>
<td>40-Zr-94</td>
<td>1.275E+01</td>
<td>7.530E-01</td>
<td>4.411E-01</td>
<td>7.019E+00</td>
<td>2.320E+00</td>
<td></td>
</tr>
<tr>
<td>40-Zr-95</td>
<td>1.331E+01</td>
<td>6.070E-01</td>
<td>5.453E-01</td>
<td>3.985E+00</td>
<td>1.200E+00</td>
<td></td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cutoff factors were calculated as 0.148+SQRT(a)*A**(2/3) in the CASTHY calculation. spin cutoff factors at 0 Mev were assumed to be 5.525 for Zr-94 and 5.652 for Zr-95.

References
4) Mughabghab, S.F. et al.: *Neutron Cross Sections, Vol. 1,
MAT number = 3407

40-Zr 96 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G. 1/
89-08 Modification for JENDL-3 was made 2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonance region (MLBW formula) : below 100 keV
Resonance energies and neutron widths were based on the
measured values by Coceva et al. 3/ below 41.5 keV and
those by Musgrove et al. 4/ above 41.5 keV. The neutron
widths of Musgrove et al. were multiplied by a factor of 1.79.
The radiative capture widths were adopted from Brusegan et al.
5/. The parameters of the 301-eV level were taken from
Salah et al. 6/. A negative resonance was adopted on the
basis of recommended parameters in Ref. 7/ by slightly
modifying its radiative capture width so as to reproduce the
capture cross section of 0.0229 ± 0.0010 barns at 0.0253 eV
7/.

Assumed capture width = 0.068 ± 0.010 eV for s-wave res.
0.170 ± 0.130 eV for p-wave res.

No unresolved resonance region

Calculated 2200-m/s cross sections and res. integrals (barns)
2200 m/s res. integ.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>6.154</td>
</tr>
<tr>
<td>elastic</td>
<td>0.131</td>
</tr>
<tr>
<td>capture</td>
<td>0.02280</td>
</tr>
<tr>
<td></td>
<td>5.87</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model
calculation was performed with CASTHY/8/, by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/9/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by lijima and Kawai/10/ to reproduce a systematic
trend of the total cross section. The OMP's for charged
particles are as follows:

Proton = Parey/11/
Alpha = Huizenga and Igo/12/
Deuteron = Lohr and Haeberli/13/
Helium-3 and triton = Becchetti and Greenlees/14/

Parameters for the composite level density formula of Girbert
and Cameron/15/ were evaluated by lijima et al./16/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar
/17/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref. /18/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>1.5940</td>
<td>0 +</td>
</tr>
<tr>
<td>2</td>
<td>1.7580</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>1.9050</td>
<td>3 -</td>
</tr>
<tr>
<td>4</td>
<td>2.2100</td>
<td>3 -</td>
</tr>
<tr>
<td>5</td>
<td>2.4400</td>
<td>1 -</td>
</tr>
<tr>
<td>6</td>
<td>2.8400</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Levels above 2.936 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/19/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (0.8245E-4) was adjusted to reproduce the capture cross section of 7 milli-barns at 200 keV measured by Lyon et al./20/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 103 (n,p) Cross Section
MT = 104 (n,d) Cross Section
MT = 105 (n,t) Cross Section
MT = 107 (n,alpha) Cross Section

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/9/.

The Kalbach's constant K (203.6) was estimated by the formula derived from Kikuchi-Kawai's formalism/21/ and level density parameters.

Finally, (n,2n), (n,p) and (n,alpha) cross sections were normalized to the following values at 14.5 MeV:

(n,2n) 1500 mb (measured by Ikeda et al./22/)
(n,p) 3.79 mb (systematics of Forrest/23/)
(n,alpha) 3.00 mb (recommended by Forrest/23/)

MT = 251 Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons

Energy distributions of secondary neutrons were calculated with PEGASUS/9/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>V = 46.0-0.25E</th>
<th>Ws = 7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius(fm)</td>
<td>R₀ = 5.893</td>
<td>a₀ = 0.02</td>
</tr>
<tr>
<td>Rs = 6.393</td>
<td>a₀ = 0.35</td>
<td></td>
</tr>
<tr>
<td>Rso = 5.893</td>
<td>a₀ = 0.62</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST</th>
<th>a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-Sr-</td>
<td>92</td>
<td>1.288E+01 7.065E-01</td>
<td>2.515E-01 6.391E+00</td>
<td>2.360E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-Sr-</td>
<td>93</td>
<td>1.368E+01 6.989E-01</td>
<td>1.878E+00 5.684E+00</td>
<td>1.240E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-Sr-</td>
<td>94</td>
<td>1.485E+01 6.915E-01</td>
<td>4.495E-01 7.333E+00</td>
<td>2.530E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-Sr-</td>
<td>95</td>
<td>1.586E+01 6.842E-01</td>
<td>4.531E+00 6.411E+00</td>
<td>1.240E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-Y -</td>
<td>93</td>
<td>1.150E+01 8.053E-01</td>
<td>1.740E+00 5.854E+00</td>
<td>1.120E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-Y -</td>
<td>94</td>
<td>9.149E+00 7.385E-01</td>
<td>1.378E+00 2.222E+00</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-Y -</td>
<td>95</td>
<td>1.070E+01 8.306E-01</td>
<td>1.082E+00 5.839E+00</td>
<td>1.290E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-Y -</td>
<td>96</td>
<td>1.603E+01 6.771E-01</td>
<td>2.794E+01 5.117E+00</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr-</td>
<td>94</td>
<td>1.275E+01 7.530E-01</td>
<td>4.411E-01 7.019E+00</td>
<td>2.320E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr-</td>
<td>95</td>
<td>1.331E+01 6.070E-01</td>
<td>5.453E-01 3.985E+00</td>
<td>1.200E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr-</td>
<td>96</td>
<td>1.320E+01 7.000E-01</td>
<td>2.235E-01 6.589E+00</td>
<td>2.490E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr-</td>
<td>97</td>
<td>1.259E+01 5.580E-01</td>
<td>2.497E-01 3.084E+00</td>
<td>1.200E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cutoff params were calculated as 0.146*SQRT(a)*A**2/3). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 3.791 for Zr- 96 and 5 for Zr- 97.

References
 (1983).
14) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization
 Phenomena in Nuclear Reactions (eds) H.H. Barshill and
 (1971).
 (1965).
 Reactions", North Holland (1968).
MAT number = 3411

41-Nb- 93 NAIG Eval-Nov88 M.Kawai, N.Yamamuro
Dist-Sep89

History
82-10 Evaluation of resonance parameters for JENDL-2 was made by Kawai.
88-10 Evaluation was performed for JENDL-3.
88-10 Compiled by K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151
Resolved resonances: 1.0E-5 eV - 7 keV
Parameters were taken from JENDL-2.
Scattering radius: 7.10 fm
Calculated 2200-m/s cross sections and res. integrals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>6.322 b</td>
</tr>
<tr>
<td>capture</td>
<td>1.152 b</td>
</tr>
<tr>
<td>total</td>
<td>7.474 b</td>
</tr>
</tbody>
</table>

Unresolved resonances: 7 keV - 100 keV
Determined with the ASREP code/12/ so as to reproduce the evaluated sig-c and sig-t up to 100 keV.

MF=3 Neutron Cross Sections
Slight background correction for sig-t and sig-c between 30 keV and 100 keV.
MT=1 Total
Below 100 keV : Background cross sections given.
100 keV to 20 MeV: Spline-function fitting to the experimental data/1/.

MT=2 Elastic scattering
(Total) - (Reaction cross section)

MT=3 Non elastic
Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 107

MT=4,51-62,91 Inelastic scattering
The inelastic scattering cross sections to discrete levels were calculated with the statistical-model code CASTHY/2/, considering level fluctuation, using modified Walter-Guss potential parameters for neutrons.
The components of the direct process were added to the levels of MT=53,54,56,57,58,60 by using the DWUCK code /3/.
The cross section to continuum was calculated with the the GNASH code /6/ considering pre-equilibrium.

The level scheme is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>9/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0304</td>
<td>1/2 -</td>
</tr>
<tr>
<td>2</td>
<td>0.6850</td>
<td>3/2 -</td>
</tr>
<tr>
<td>3</td>
<td>0.7440</td>
<td>7/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.8087</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.8101</td>
<td>3/2 -</td>
</tr>
</tbody>
</table>
Levels above 1.34 MeV were assumed to be overlapping.

Optical-model parameters are as follows:
\[V = 52.56 - 0.30 \cdot \text{En} \], \[W_s = 3.233 + 0.271 \cdot \text{En} \], \[V_{so} = 6.004 - 0.015 \cdot \text{En} \]
\[V_{sym} = -16.5 \]
\[W_i = -0.963 + 0.153 \cdot \text{En} \], \[W_{so} = 0.291 - 0.018 \cdot \text{En} \]
\[r_0 = 1.229 \]
\[r_s = 1.282 \], \[r_i = 1.42 \], \[r_{so} = 1.103 \]
\[a_0 = 0.686 \], \[b = 0.612 \], \[a = 0.505 \]
\[a_{so} = 0.56 \]

The level density parameters for GNASH and CASTHY calculations are as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>(a)</th>
<th>(\text{Ex})</th>
<th>(T)</th>
<th>(\text{Ds})</th>
<th>(\text{Gamma-g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-94</td>
<td>14.4</td>
<td>4.059</td>
<td>0.719</td>
<td>30.0</td>
<td>0.052</td>
</tr>
<tr>
<td>Nb-93</td>
<td>13.0</td>
<td>5.884</td>
<td>0.834</td>
<td>–</td>
<td>0.170</td>
</tr>
<tr>
<td>Nb-97</td>
<td>11.5</td>
<td>3.254</td>
<td>0.790</td>
<td>–</td>
<td>0.170</td>
</tr>
<tr>
<td>Nb-91</td>
<td>11.0</td>
<td>5.461</td>
<td>0.895</td>
<td>–</td>
<td>0.170</td>
</tr>
<tr>
<td>Zr-93</td>
<td>13.7</td>
<td>5.923</td>
<td>0.781</td>
<td>–</td>
<td>0.140</td>
</tr>
<tr>
<td>Zr-92</td>
<td>11.9</td>
<td>6.284</td>
<td>0.858</td>
<td>–</td>
<td>0.140</td>
</tr>
<tr>
<td>Y-90</td>
<td>11.1</td>
<td>1.441</td>
<td>0.721</td>
<td>1210</td>
<td>0.130</td>
</tr>
<tr>
<td>Y-89</td>
<td>10.7</td>
<td>2.946</td>
<td>0.762</td>
<td>–</td>
<td>0.130</td>
</tr>
</tbody>
</table>

MT=16 \((n,2n)\)

Based on the experimental data/4.5/.

MT=17, 22, 28, 103, 104, 107 \((n,3n),(n,n'a),(n,n'p),(n,p)\)
\((n,d)\) and \((n,a)\) cross sections

Calculated with GNASH/6/.

Optical potential parameters for proton, alpha-particle, and deuteron were taken from the works of Percy/7/, Lemos/8/ and Lohr and Haeverli/9/, respectively.

MT=102 \(\text{Radiative capture cross section}\)
\(1.0 \text{eV} \) to \(100 \text{ keV}\): Resonance parameters given.
\(100 \text{ keV} \) to \(20 \text{ MeV}\): Calculated with the CASTHY code/2/.
\(T\text{-gamma}=0.0109\); determined so as to reproduce \(\text{sig-c}=107\text{mb at 100 keV, measured by Reffo et al.}/11/\)

MT=251 \(\text{Mu-bar}\)

Calculated from File-4.

MF=4 \(\text{Angular Distributions of Secondary Neutrons}\)

MT=2.51-62 \(\text{Calculated with CASTHY for equilibrium process}\)
The components of the direct process were added to the levels of MT=53, 54, 55, 57, 58, 60 by using the DWUCK code/3/.

MT=16, 17, 22, 28 \(\text{Assumed to be isotropic in the laboratory system}\)

MT=91
The Kalbach-Mann systematics/10/ adopted at 14 MeV.

MF=5
Energy Distributions of Secondary Neutrons
MT=16, 17, 22, 28, 91
Calculated with GNASH.

MF=12
Photon Production Multiplicities
MT=16, 17, 22, 28, 52-62, 91, 102, 103, 104, 107
Calculated with GNASH.

MF=14
Photon Angular Distributions
MT=16, 17, 22, 28, 52-62, 91, 102, 103, 104, 107
Assumed to be isotropic.

MF=15
Photon Energy Distributions
MT=16, 17, 22, 28, 91, 102, 103, 104, 107
Calculated with GNASH.

References
MAT number = 3420

42-Mo 0 JNDC, JAERI Eval-Mar89 JNDC FPND W.G., M Mizumoto
 Dist-Oct89

History
84-10 Photon production data were evaluated by M Mizumoto (JAERI).
89-03 Final data for JENDL-3 were compiled from isotope data.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonance region (MLBW formula)
Evaluated by Kikuchi et al. /1/ on the basis of the following experiments.

Mo-92: below 50 keV
 Transmission : Wasson et al. /2/
 Capture : Wasson et al. /2/, Weigmann et al. /3/,
 Musgrove et al. /4/
Mo-94: below 20 keV
 Capture : Weigmann et al. /3/, Musgrove et al. /4/
Mo-95: below 2 keV
 Transmission : Shwe et al. /5/
 Capture : Weigmann et al. /3/
Mo-98: below 19 keV
 Capture : Weigmann et al. /3/, Musgrove et al. /4/
Mo-97: below 1.8 keV
 Transmission : Shwe et al. /5/
 Capture : Weigmann et al. /3/
Mo-98: below 32 keV
 Transmission : Chrien et al. /6/
 Capture : Weigmann et al. /3/, Musgrove et al. /4/
Mo-100: below 26 keV
 Transmission : Weigmann et al. /7/
 Capture : Weigmann et al. /3/, Musgrove et al. /4/

Assumed radiative widths (eV)

\[
\begin{array}{cccc}
 & s\text{-wave} & p\text{-wave} & s\text{-wave} & p\text{-wave} \\
\text{Mo-92} & 0.02 & 0.425 & 0.135 & 0.175 \\
\text{Mo-95} & 0.150 & 0.180 & 0.114 & 0.136 \\
\text{Mo-97} & 0.130 & 0.150 & 0.085 & 0.12 \\
\text{Mo-100} & 0.005 & 0.08 & & \\
\end{array}
\]

Unresolved resonance region: up to 100 keV

The neutron strength functions were calculated with optical model code CASTHY /8/. The level spacing was determined to reproduce the capture cross section calculated with CASTHY. The scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 70 keV:

\[
\begin{array}{cccccc}
 & S_0 & S_1 & S_2 & GG(eV) & Do(eV) & R(fm) \\
\text{Mo-92} & 0.369E-4 & 5.479E-4 & 0.364E-4 & 0.228 & 2252 & 6.746 \\
\text{Mo-94} & 0.369E-4 & 5.479E-4 & 0.365E-4 & 0.230 & 1101 & 6.699 \\
\text{Mo-95} & 0.369E-4 & 5.479E-4 & 0.365E-4 & 0.232 & 76.12 & 6.680 \\
\text{Mo-96} & 0.370E-4 & 5.480E-4 & 0.365E-4 & 0.162 & 93.33 & 6.698 \\
\text{Mo-97} & 0.370E-4 & 5.479E-4 & 0.365E-4 & 0.180 & 58.76 & 6.687 \\
\text{Mo-98} & 0.370E-4 & 5.479E-4 & 0.364E-4 & 0.133 & 785.9 & 6.675 \\
\end{array}
\]
Mo-100 0.370E-4 5.479E-4 0.385E-4 0.085 576.1 6.651

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>8.066</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.483</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>2.58275</td>
<td>25.7</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given. Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY/8/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS/9/ standing on a pre-equilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined by lijima et al./10/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:

Proton = Perey/11/
Alpha = Huizenga and lgo/12/
Deuteron = Lohr and Heeberli/13/
Helium-3 and triton = Becchetti and Greenlee/14/

Parameters for the composite level density formula of Girbert and Cameron/15/ were evaluated by lijima et al./16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. The energy dependence of spin cut-off parameter in the energy range below E-joint (EX) is due to Gruppelaar/17/.

MT = 1 Total

Below 500 keV, spherical optical model calculation was adopted. Above 500 keV, spline-fitting to the data measured by Foster and Glasgow/18/, Lambropoulos et al./19/ and Poenitz and Whalen/20/ was made.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level schemes were taken from Ref./21/ for Mo-92 and -94, and from evaluated by Matsumoto et al./22/ for the other isotopes.

The inelastic scattering cross sections for each isotope were grouped in natural Mo data as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Q(MEV)</th>
<th>MO-92</th>
<th>MO-94</th>
<th>MO-95</th>
<th>MO-96</th>
<th>MO-97</th>
<th>MO-98</th>
<th>MO-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.2039</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.4808</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.5354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.6578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52,53</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.6941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>56</td>
<td>0.7194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>0.7347</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>58</td>
<td>0.7659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>0.7863</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>60</td>
<td>0.8207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MT = 102 Capture

Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Refo/23/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength functions were adjusted to reproduce the capture cross section measured by Musgrove et al./3/.

MT = 16, 17, 22, 28, 32, 103, 104, 105, 106, 107, 111

\((n,2n), (n,3n), (n,\alpha), (n,n') (n,n'), (n,d), (n,t), (n,He3), (n,\alpha)\) and \((n,2p)\) Cross sections

These reaction cross sections were calculated with PEGASUS/8/. The Kaibach's constants were estimated by the formula derived from Kikuchi-Kawai's formalism/24/ and level density parameters. The \((n,p)\) and \((n,\alpha)\) cross sections and \((n,2n)\) cross section of Mo-100 were normalized to the experimental data or systematics at 14.5 MeV. For more details, see comment of each isotope.

MT = 251 Mu-bar

Calculated with CASTHY/8/.
MF = 4 Angular Distributions of Secondary Neutrons
Distributions of elastic and inelastic scattering neutrons were calculated with CASTHY/8. In the case where more than 2 levels were grouped into 1 level, isotropic distribution in the center-of-mass system was assumed. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/9 for inelastic scattering to overlapping levels and for other neutron emitting reactions.

MF = 12 Photon Production Multiplicities
MT = 102 (below 420 keV)
Calculated with CASTHY/8 for each isotope and constructed according to their abundances.

MF = 13 Photon Production Cross Sections
MT = 3 (above 420 keV)
Fitted with the empirical formula by Howerton and Plechaty /25/ based on the experimental data/26/.

MF = 14 Photon Angular Distributions
MT = 3.102
Assumed to be isotropic.

MF = 15 Continuous Photon Energy Spectra
MT = 3
Fitted with the empirical formula by Howerton and Plechaty /25/ based on the experimental data/26/, and compared with experimental data measured by Yamamuro et al./27/.
MT = 102
Calculated with CASTHY/8 for each isotope and constructed according to their abundances.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0-0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso= 7.0</td>
<td>Rso= 5.893</td>
<td>aso= 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>NUCL.</th>
<th>SYST a(keV)</th>
<th>T(MeV)</th>
<th>C(keV)</th>
<th>EX(keV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr</td>
<td>88</td>
<td>1.40e+01 7.38e-01 4.93e-01 7.87e+00 2.66e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>89</td>
<td>1.09e+01 8.20e-01 1.37e+00 5.86e+00 1.20e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>90</td>
<td>9.15e+00 8.22e-01 1.52e+01 5.38e+01 2.13e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>91</td>
<td>1.03e+01 8.00e-01 7.82e+01 5.06e+01 1.20e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>92</td>
<td>1.08e+01 8.19e-01 5.12e+01 6.42e+01 1.82e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>93</td>
<td>1.29e+01 7.44e-01 1.72e+01 5.18e+01 1.20e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>94</td>
<td>1.27e+01 7.53e-01 4.41e-01 7.01e+00 2.32e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>95</td>
<td>1.33e+01 6.07e-01 5.45e-01 3.95e+01 1.20e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr</td>
<td>96</td>
<td>1.32e+01 7.00e-01 2.23e+01 6.58e+00 2.49e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SYST: * = LDP's determined from systematics.
Spin cut-off params were calculated as 0.146*SQRT(a)*A**(2/3).

References
14) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization
21) Ledere, C.M., et al.: "Table of Isotopes, 7th Ed.", Wiley-
MAT number = 3421

42-Mo-92 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
 MT=451 Comments and dictionary

MF = 2 Resonance parameters
 MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula): below 50 keV
 Resonance parameters were evaluated by Kikuchi et al./3/ on
 the basis of the following experiments.
 Transmission: Wasson et al./4/
 Capture: Wasson et al./4/, Weigmann et al./5/,
 Musgrove et al./6/
 Average radiative widths of 0.02 eV for s-wave res. and 0.425
eV for p-wave res were adopted. Scattering radius was taken
from Mughabghab et al./7/.
 Unresolved resonance region: 50 keV - 100 keV
 The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/8/. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY/8/. The effective scattering radius
was obtained from fitting to the calculated total cross
section at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.389E-4, S1 = 5.478E-4, S2 = 0.384 E-4, GG = 0.226 eV
Do = 2252 eV, R = 6.746 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>5.566</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.545</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.02075</td>
<td>0.968</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given. Above 100 keV,
the spherical optical and statistical model calculation was
performed with CASTHY/8/, by taking account of competing
reactions, of which cross sections were calculated with
PEGASUS/9/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by lijima et al./10/ to reproduce a systematic trend
of the total cross section. The OMP's for charged particles are
as follows:

Proton = Perey/11/
Alpha = Huizenga and Igo/12/
Deuteron = Lohr and Haebell/13/
Helium-3 and triton = Becchetti and Greenlee/14/

Parameters for the composite level density formula of Girbert
and Cameron/15/ were evaluated by lijima et al./16/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used in the present calculation. The energy dependence of spin cut-off parameter in the energy range below Ex-joint (EX) is due to Grupelaar/17/.

MT = 1 Total Spherical optical model calculation was adopted.

MT = 2 Elastic scattering Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./18/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>1.5095</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>2.2826</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>2.5197</td>
<td>0 +</td>
</tr>
<tr>
<td>4</td>
<td>2.5270</td>
<td>5 -</td>
</tr>
<tr>
<td>5</td>
<td>2.6130</td>
<td>6 +</td>
</tr>
<tr>
<td>6</td>
<td>2.7600</td>
<td>8 +</td>
</tr>
<tr>
<td>7</td>
<td>2.8497</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Levels above 3.0 MeV were assumed to be overlapping.

MT = 102 Capture Spherical optical and statistical model calculation with CASTHY/8/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/19/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (9.406E-05) was adjusted to reproduce the experimental capture cross section measured by Musgrove et al./5/.

MT = 16 (n,2n) Cross Section
MT = 22 (n,n’a) Cross Section
MT = 28 (n,n’p) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =106 (n,He3) Cross Section
MT =107 (n,alpha) Cross Section
MT =111 (n,2p) Cross Section

These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/9/.

The Kalbach’s constant K (= 251.4) was estimated by the formula derived from Kikuchi-Kawai’s formalism/20/ and level density parameters.

Finally, (n,p) and (n,alpha) cross sections were normalized to the following values at 14.5 MeV:

(n,p) 116 mb (systematics of Forrest/21/)
(n,alpha) 24 mb (measured by Ikeda et al./22/)
The (n,2n) cross section was determined by eye-guiding of the data measured by Bormann et al./23/ and Brolley et al./24/.

MT = 251 Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/9/ for inelastic scattering to overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0-0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 5.893</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>NUCL.</th>
<th>SYST a/(MeV)</th>
<th>T(MeV)</th>
<th>C/(MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr-88</td>
<td>1.404E+01</td>
<td>7.386E-01</td>
<td>4.932E-01</td>
<td>7.870E+00</td>
<td>2.680E+00</td>
</tr>
<tr>
<td>40-Zr-89</td>
<td>1.055E+01</td>
<td>8.260E-01</td>
<td>1.375E+00</td>
<td>5.864E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr-90</td>
<td>9.152E+00</td>
<td>8.222E-01</td>
<td>1.526E+00</td>
<td>5.383E+00</td>
<td>2.130E+00</td>
</tr>
<tr>
<td>40-Zr-91</td>
<td>1.038E+01</td>
<td>8.000E-01</td>
<td>7.822E-01</td>
<td>5.057E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>41-Nb-89</td>
<td>1.420E+01</td>
<td>7.303E-01</td>
<td>2.467E+00</td>
<td>6.611E+00</td>
<td>1.460E+00</td>
</tr>
<tr>
<td>41-Nb-90</td>
<td>1.395E+01</td>
<td>7.222E-01</td>
<td>1.458E+01</td>
<td>4.869E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb-91</td>
<td>9.464E+00</td>
<td>7.143E-01</td>
<td>3.924E+00</td>
<td>3.082E+00</td>
<td>9.300E-01</td>
</tr>
<tr>
<td>41-Nb-92</td>
<td>1.040E+01</td>
<td>8.410E-01</td>
<td>4.607E+00</td>
<td>4.477E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>42-Mo-90</td>
<td>1.436E+01</td>
<td>7.222E-01</td>
<td>4.129E+01</td>
<td>7.834E+00</td>
<td>2.740E+00</td>
</tr>
<tr>
<td>42-Mo-91</td>
<td>1.164E+01</td>
<td>7.820E-01</td>
<td>1.284E+00</td>
<td>5.770E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo-92</td>
<td>1.064E+01</td>
<td>7.770E-01</td>
<td>2.062E+00</td>
<td>5.938E+00</td>
<td>2.210E+00</td>
</tr>
<tr>
<td>42-Mo-93</td>
<td>1.125E+01</td>
<td>7.800E-01</td>
<td>9.792E-01</td>
<td>5.457E+00</td>
<td>1.280E+00</td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cut-off params were calculated as 0.146*SQRT(a)*A**(2/3). In the CASTHY calculation, spin cut-off factors at 0 MeV were assumed to be 13.13 for Mo-92 and 5.000 for Mo-93.

References
MAT number = 3422

42-Mo 94 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 20 keV
Evaluation was made by Kikuchi et al./3/ on the basis of the
following experimental data:
Capture: Weigmann et al./4/, Musgrove et al./5/
Average radiative widths were assumed to be 0.135 eV and 0.175
eV for s-wave and p-wave resonances, respectively.
Unresolved resonance region: 20 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/6/.
The observed level spacing was determined to reproduce the
capture cross section calculated with CASTHY. The
effective scattering radius was obtained from fitting to the
calculated total cross section at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.369E-4, S1 = 5.478E-4, S2 = 0.365 E-4, GG = 0.230 eV
Do = 1.101 eV, R = 8.699 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.998</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.01311</td>
<td>1.40</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV,
the spherical optical and statistical model calculation was
performed with CASTHY/6/, by taking account of competing
reactions, of which cross sections were calculated with
PEGASUS/7/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Iijima et al./8/ to reproduce a systematic trend
of the total cross section. The OMP's for charged particles are
as follows:
Proton = Percy/9/
Alpha = Huizenga and Ligo/10/
Deuteron = Lohr and Haebert/11/
Helium-3 and triton = Becchetti and Greenlee/12/

Parameters for the composite level density formula of Girbert-
Cameron/13/ were evaluated by Iijima et al./14/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. The energy dependence of spin
cut-off parameter in the energy range below E-joint (EX) is due
to Gruppelaar/15/.

MT = 1 Total
 Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
 Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
 Spherical optical and statistical model calculation was
 adopted. The level scheme was taken from Ref./16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.8710</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.5737</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>1.7420</td>
<td>0 +</td>
</tr>
<tr>
<td>4</td>
<td>1.8642</td>
<td>2 +</td>
</tr>
<tr>
<td>5</td>
<td>2.0674</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>2.2940</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>2.3930</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>2.4230</td>
<td>6 +</td>
</tr>
<tr>
<td>9</td>
<td>2.5337</td>
<td>3 -</td>
</tr>
<tr>
<td>10</td>
<td>2.5670</td>
<td>4 +</td>
</tr>
<tr>
<td>11</td>
<td>2.6100</td>
<td>5 -</td>
</tr>
</tbody>
</table>

Levels above 2.74 MeV were assumed to be overlapping.

MT = 102 Capture
 Spherical optical and statistical model calculation with
 CASTHY/6/ was adopted. Direct and semi-direct capture cross
 sections were estimated according to the procedure of Benzi
 and Reffo/17/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (=1.966E-4) was adjusted to
reproduce the experimental capture cross section of 54.5
milli-barns at 100 keV measured by Musgrove et al./5/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n') Cross Section
MT = 28 (n,n'd) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =106 (n,He3) Cross Section
MT =107 (n,alpha) Cross Section
MT =111 (n,2p) Cross Section

These reaction cross sections were calculated with the pre-
equilibrium and multi-step evaporation model code PEGASUS
/7/.

The Kalbach's constant K (= 151.7) was estimated by the
formula derived from Kikuchi-Kawai's formalism/18/ and level
density parameters.

Finally, (n,p) and (n,alpha) cross sections were normalized to
the following values at 14.5 MeV:
\((n,p)\) 55.10 mb (systematics of Forrest/199)
\((n,\alpha)\) 17.50 mb (recommended by Forrest/199)

MT = 251 Mu-bar
Calculated with CASTHY/6/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelas-
tic levels, and in the laboratory system for MT=91. They were
calculated with CASTHY/6/.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with
PEGASUS/7/ for inelastic scattering from overlapping levels
and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0-0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso= 7.0</td>
<td>Rso= 5.893</td>
<td>aso= 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nucl.</th>
<th>SYST a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr 90</td>
<td>9.152E+00</td>
<td>8.222E-01</td>
<td>1.526E-01</td>
<td>5.383E+00</td>
<td>2.130E+00</td>
</tr>
<tr>
<td>40-Zr 91</td>
<td>1.036E+01</td>
<td>8.000E-01</td>
<td>7.822E-01</td>
<td>5.057E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr 92</td>
<td>1.088E+01</td>
<td>8.192E-01</td>
<td>5.122E-01</td>
<td>6.429E+00</td>
<td>1.920E+00</td>
</tr>
<tr>
<td>40-Zr 93</td>
<td>1.298E+01</td>
<td>7.000E-01</td>
<td>1.273E+00</td>
<td>5.183E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>41-Nb 91</td>
<td>9.464E+00</td>
<td>7.143E-01</td>
<td>3.924E-01</td>
<td>3.082E+00</td>
<td>9.300E-01</td>
</tr>
<tr>
<td>41-Nb 92</td>
<td>1.040E+01</td>
<td>8.410E-01</td>
<td>4.607E+00</td>
<td>4.477E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb 93</td>
<td>1.250E+01</td>
<td>7.120E-01</td>
<td>2.205E+00</td>
<td>4.679E+00</td>
<td>7.200E-01</td>
</tr>
<tr>
<td>41-Nb 94</td>
<td>1.281E+01</td>
<td>7.230E-01</td>
<td>7.763E+00</td>
<td>4.250E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>42-Mo 92</td>
<td>1.064E+01</td>
<td>7.770E-01</td>
<td>2.062E-01</td>
<td>5.938E+00</td>
<td>2.210E+00</td>
</tr>
<tr>
<td>42-Mo 93</td>
<td>1.125E+01</td>
<td>7.800E-01</td>
<td>9.792E-01</td>
<td>5.457E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo 94</td>
<td>1.301E+01</td>
<td>6.850E-01</td>
<td>3.417E-01</td>
<td>5.770E+00</td>
<td>2.000E+00</td>
</tr>
<tr>
<td>42-Mo 95</td>
<td>1.380E+01</td>
<td>7.150E-01</td>
<td>1.847E+00</td>
<td>5.835E+00</td>
<td>1.280E+00</td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cut-off params were calculated as 0.146*SQRT(T)*A**(2/3).
In the CASTHY calculation, spin cut-off factors at 0 MeV were
assumed to be 7.761 for Mo-94 and 6.184 for Mo-95.

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic
MAT number = 3423

42-Mo 95 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2 keV
Evaluation was made by Kikuchi et al./3/ on the basis of
the following experimental data.
Transmission : Shwe et al./4/
Capture : Weigmann et al./5/
Assumed Gam-g : 0.150 eV for s-wave and 0.180 eV for
p-wave resonance.
A negative resonance was added at -20 eV. Values of total
spin J were assumed arbitrarily for levels whose J has not
been determined.
Unresolved resonance region : 2 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/6/. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.369E-4, S1 = 5.479E-4, S2 = 0.365 E-4, GG = 0.232 eV
Do = 76.12 eV, R = 6.680 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>19.560</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.566</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>13.99</td>
<td>119</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV,
the spherical optical and statistical model calculation was
performed with CASTHY/6/, by taking account of competing
reactions, of which cross sections were calculated with
PEGASUS/7/, standing on a prequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Iijima et al./8/ to reproduce a systematic trend
of the total cross section. The OMP's for charged particles are
as follows:
Proton = Perey/9/
Alpha = Huizenga and Igo/10/
Deuteron = Lohr and Haeberli/11/
Helium-3 and triton = Becchetti and Greenlees/12/
Parameters for the composite level density formula of Girbert
and Cameron/13/ were evaluated by Iijima et al./14/. More
extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /15/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.2039</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.7658</td>
<td>7/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.7862</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.8206</td>
<td>3/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.9478</td>
<td>9/2 +</td>
</tr>
<tr>
<td>6</td>
<td>1.0391</td>
<td>1/2 +</td>
</tr>
<tr>
<td>7</td>
<td>1.0590</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.0741</td>
<td>7/2 +</td>
</tr>
<tr>
<td>9</td>
<td>1.2225</td>
<td>5/2 +</td>
</tr>
<tr>
<td>10</td>
<td>1.3100</td>
<td>1/2 +</td>
</tr>
<tr>
<td>11</td>
<td>1.3760</td>
<td>3/2 +</td>
</tr>
<tr>
<td>12</td>
<td>1.4330</td>
<td>5/2 +</td>
</tr>
<tr>
<td>13</td>
<td>1.5410</td>
<td>11/2 +</td>
</tr>
<tr>
<td>14</td>
<td>1.5528</td>
<td>9/2 +</td>
</tr>
<tr>
<td>15</td>
<td>1.6202</td>
<td>3/2 +</td>
</tr>
<tr>
<td>16</td>
<td>1.6700</td>
<td>5/2 +</td>
</tr>
<tr>
<td>17</td>
<td>1.6830</td>
<td>9/2 +</td>
</tr>
<tr>
<td>18</td>
<td>1.7070</td>
<td>1/2 +</td>
</tr>
<tr>
<td>19</td>
<td>1.9380</td>
<td>11/2 -</td>
</tr>
</tbody>
</table>

Levels above 2.0 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/6/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/17/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (2.976E-03) was adjusted to reproduce the experimental capture cross section of 0.4 barn at 30 keV measured by Musgrove et al./18/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n'a) Cross Section
MT = 28 (n,n'p) Cross Section
MT = 32 (n,n'd) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT = 106 (n,He3) Cross Section
MT = 107 (n,alpha) Cross Section

These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/7/.

The Kalbach's constant $K (= 142.6$) was estimated by the formula derived from Kikuchi-Kawai's formalism/19/ and level density parameters.

Finally, (n,p) and (n,alpha) cross sections were normalized to the following values at 14.5 MeV:

\[
\begin{align*}
(n,p) & \quad 38.00 \text{ mb (recommended by Forrest/20/)} \\
(n,\alpha) & \quad 13.50 \text{ mb (recommended by Forrest/20/)}
\end{align*}
\]

MT = 251 Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/7/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 4.60 - 0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 5.893</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>a (MeV)</th>
<th>T (MeV)</th>
<th>C (MeV)</th>
<th>EX (MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr-91</td>
<td>1.036E+01</td>
<td>8.000E-01</td>
<td>7.822E-01</td>
<td>5.057E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr-92</td>
<td>1.088E+01</td>
<td>8.192E-01</td>
<td>5.122E-01</td>
<td>6.429E+00</td>
<td>1.920E+00</td>
</tr>
<tr>
<td>40-Zr-93</td>
<td>1.298E+01</td>
<td>7.000E-01</td>
<td>1.273E+00</td>
<td>5.183E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr-94</td>
<td>1.275E+01</td>
<td>7.530E-01</td>
<td>4.411E-01</td>
<td>7.019E+00</td>
<td>2.320E+00</td>
</tr>
<tr>
<td>41-Nb-92</td>
<td>1.040E+01</td>
<td>8.410E-01</td>
<td>4.607E+00</td>
<td>4.477E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb-93</td>
<td>1.250E+01</td>
<td>7.120E-01</td>
<td>2.205E+00</td>
<td>4.629E+00</td>
<td>7.200E-01</td>
</tr>
<tr>
<td>41-Nb-94</td>
<td>1.281E+01</td>
<td>7.230E-01</td>
<td>7.783E+00</td>
<td>4.250E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb-95</td>
<td>1.277E+01</td>
<td>7.500E-01</td>
<td>2.121E+00</td>
<td>5.782E+00</td>
<td>1.120E+00</td>
</tr>
<tr>
<td>42-Mo-93</td>
<td>1.125E+01</td>
<td>7.800E-01</td>
<td>9.792E-01</td>
<td>5.457E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo-94</td>
<td>1.301E+01</td>
<td>6.850E-01</td>
<td>3.417E-01</td>
<td>5.770E+00</td>
<td>2.000E+00</td>
</tr>
<tr>
<td>42-Mo-95</td>
<td>1.360E+01</td>
<td>7.150E-01</td>
<td>1.847E+00</td>
<td>5.835E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo-96</td>
<td>1.403E+01</td>
<td>7.410E-01</td>
<td>6.991E-01</td>
<td>7.645E+00</td>
<td>2.400E+00</td>
</tr>
</tbody>
</table>
Spin cut-off params were calculated as $0.146 \cdot \text{SORT}(a) \cdot a^{\cdot(2/3)}$.

In the CASTHY calculation, spin cut-off factors at 0 MeV were assumed to be 6.184 for Mo-95 and 7.696 for Mo-96.

References
MAT number = 3424

42-Mo- 96 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 19 keV
Evaluation was made by Kikuchi et al./3/
Capture: Weigmann et al./4/, Muagrove et al./5/
Average radiative widths were assumed to be 0.114 eV and 0.136
eV for s-wave and p-wave resonances, respectively.
Unresolved resonance region: 19 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/6/. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.370E-4, S1 = 5.480E-4, S2 = 0.365E-4, GG = 0.162 eV
Do = 93.33 eV, R = 6.698 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>5.322</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>4.727</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.5954</td>
<td>17.5</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV,
the spherical optical and statistical model calculation was
performed with CASTHY/6/, by taking account of competing
reactions, of which cross sections were calculated with
PEGASUS/7/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Iijima et al./8/ to reproduce a systematic trend
of the total cross section. The OMP's for charged particles are
as follows:
Proton = Perey/9/
Alpha = Huizenga and Igo/10/
Deuteron = Lohr and Haebel/11/
Helium-3 and triton = Becchetti and Greenlees/12/
Parameters for the composite level density formula of Girbert
and Cameron/13/ were evaluated by Iijima et al./14/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar
/15/.
MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as \((\text{total} - \text{sum of partial cross sections})\).

MT = 4, 51 ~ 91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.7783</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>1.1479</td>
<td>0 +</td>
</tr>
<tr>
<td>3</td>
<td>1.4978</td>
<td>2 +</td>
</tr>
<tr>
<td>4</td>
<td>1.6260</td>
<td>2 +</td>
</tr>
<tr>
<td>5</td>
<td>1.6280</td>
<td>4 +</td>
</tr>
<tr>
<td>6</td>
<td>1.8695</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>1.9783</td>
<td>3 +</td>
</tr>
<tr>
<td>8</td>
<td>2.0956</td>
<td>2 +</td>
</tr>
<tr>
<td>9</td>
<td>2.2193</td>
<td>4 +</td>
</tr>
<tr>
<td>10</td>
<td>2.2345</td>
<td>3 -</td>
</tr>
<tr>
<td>11</td>
<td>2.4262</td>
<td>3 +</td>
</tr>
<tr>
<td>12</td>
<td>2.4384</td>
<td>5 +</td>
</tr>
<tr>
<td>13</td>
<td>2.4406</td>
<td>6 +</td>
</tr>
<tr>
<td>14</td>
<td>2.4807</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Levels above 2.5 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with
CASTHY/6/ was adopted. Direct and semi-direct capture cross
sections were estimated according to the procedure of Benzi
and Reffo/17/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function \((1.623\times10^{-4})\) was adjusted to
reproduce the experimental capture cross section
measured by Musgrove et al./5/.

MT = 16 \((n,2n)\) Cross Section
MT = 17 \((n,3n)\) Cross Section
MT = 22 \((n,n'\alpha)\) Cross Section
MT = 28 \((n,n'p)\) Cross Section
MT = 32 \((n,n'd)\) Cross Section
MT = 103 \((n,p)\) Cross Section
MT = 104 \((n,d)\) Cross Section
MT = 105 \((n,t)\) Cross Section
MT = 107 \((n,\alpha)\) Cross Section

These reaction cross sections were calculated with the
pre-equilibrium and multi-step evaporation model code
PEGASUS/7/.

The Kalbach's constant \(K = 116.4\) was estimated by the
formula derived from Kikuchi-Kawai's formalism/18/ and level
density parameters.

Finally, \((n,p)\) and \((n,\alpha)\) cross sections were normalized to
the following values at 14.5 MeV:
(n,p) \quad 23.00 \text{ mb (measured by Ikeda et al./19/)}
(n,\alpha) \quad 10.00 \text{ mb (recommended by Forrest/20/)}

MT = 251 \text{ Mu-bar}
Calculated with CASTHY/6/.

MF = 4 \text{ Angular Distributions of Secondary Neutrons}
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were
calculated with CASTHY/8/.

MF = 5 \text{ Energy Distributions of Secondary Neutrons}
Energy distributions of secondary neutrons were calculated with
PEGASUS/// for inelastic scattering from overlapping levels
and for other neutron emitting reactions.

Table 1 \text{ Neutron Optical Potential Parameters}

| Depth (MeV) | \begin{array}{c}
V = 46.0-0.25E \\
Ws = 7.0 \\
Wso = 7.0
\end{array} | \begin{array}{c}
\text{Radius(fm)} \\
R0 = 5.893 \\
Rs = 6.393 \\
Rso = 5.893
\end{array} | \begin{array}{c}
\text{Diffuseness(fm)} \\
as0 = 0.62 \\
as = 0.35 \\
as0 = 0.62
\end{array} |

Table 2 \text{ Level Density Parameters}

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr- 92</td>
<td>1.088E+01 8.192E-01 5.122E-01 6.429E+00 1.920E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr- 93</td>
<td>1.298E+01 7.000E-01 1.273E+00 5.183E+00 1.200E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr- 94</td>
<td>1.275E+01 7.530E-01 4.411E-01 7.019E+00 2.320E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-Zr- 95</td>
<td>1.331E+01 6.070E-01 5.453E-01 3.985E+00 1.200E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-Nb- 93</td>
<td>1.250E+01 7.120E-01 2.205E+00 4.629E+00 7.200E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-Nb- 94</td>
<td>1.281E+01 7.230E-01 7.763E+00 4.250E+00 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-Nb- 95</td>
<td>1.277E+01 7.500E-01 2.121E+00 5.782E+00 1.120E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-Nb- 96</td>
<td>1.331E+01 5.880E-01 3.406E+00 2.530E+00 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-Mo- 94</td>
<td>1.301E+01 6.850E-01 3.417E-01 5.770E+00 2.000E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-Mo- 95</td>
<td>1.360E+01 7.150E-01 1.847E+00 5.835E+00 1.280E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-Mo- 96</td>
<td>1.403E+01 7.410E-01 6.991E-01 7.645E+00 2.400E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-Mo- 97</td>
<td>1.517E+01 6.800E-01 2.789E+00 6.036E+00 1.280E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spin cut-off params were calculated as 0.146*SORT(a)*A**(2/3).
In the CASTHY calculation, spin cut-off factors at 0 MeV were
assumed to be 7.698 for Mo-96 and 7.075 for Mo-97.

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic
 and Technology, Mito, p. 560 (1986).
MAT number = 3425

42-Mo 97 JNDC Eval-Aug89 JNDC FP Nuclear Data W G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G. /1/
89-08 Modification for JENDL-3 was made /2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 1.8 keV
Evaluation was made by Kikuchi et al. /3/ on the basis of the following experimental data.
Transmission : Shwe et al. /4/
Capture : Weigmann et al. /5/
Assumed Gamma-g : 0.130 eV for s-wave and 0.150 eV for p-wave resonances.
A negative resonance added at -20 eV. Values of total spin J were assumed arbitrarily for levels whose J has not been determined.
Unresolved resonance region : 1.8 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated with optical model code CASTHY /6/. The observed level spacing was determined to reproduce the capture cross section calculated with CASTHY. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.370E-4, S1 = 5.479E-4, S2 = 0.365E-4, GG = 0.180 eV
Do = 58.76 eV, R = 6.887 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>7.957</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>5.857</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>2.100</td>
<td>17.1</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY /6/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS /7/ standing on a pre-equilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined by Lijima et al. /8/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:
Proton = Perey /9/
Alpha = Huijenga and Igo /10/
Deuteron = Lohr and Haaberli /11/
Helium-3 and triton = Becchetti and Greenless /12/
Parameters for the composite level density formula of Girbert and Cameron /13/ were evaluated by Lijima et al. /14/. More
extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /15/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.4809</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.6579</td>
<td>7/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.6796</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.7195</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.7211</td>
<td>3/2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.8882</td>
<td>1/2 +</td>
</tr>
<tr>
<td>7</td>
<td>1.0245</td>
<td>7/2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.0828</td>
<td>3/2 +</td>
</tr>
<tr>
<td>9</td>
<td>1.1167</td>
<td>9/2 +</td>
</tr>
<tr>
<td>10</td>
<td>1.1486</td>
<td>7/2 ~</td>
</tr>
<tr>
<td>11</td>
<td>1.2586</td>
<td>7/2 +</td>
</tr>
<tr>
<td>12</td>
<td>1.2730</td>
<td>3/2 +</td>
</tr>
<tr>
<td>13</td>
<td>1.2840</td>
<td>13/2 +</td>
</tr>
<tr>
<td>14</td>
<td>1.2846</td>
<td>3/2 +</td>
</tr>
<tr>
<td>15</td>
<td>1.4095</td>
<td>11/2 +</td>
</tr>
<tr>
<td>16</td>
<td>1.4373</td>
<td>11/2 -</td>
</tr>
<tr>
<td>17</td>
<td>1.4470</td>
<td>3/2 +</td>
</tr>
<tr>
<td>18</td>
<td>1.5156</td>
<td>9/2 +</td>
</tr>
<tr>
<td>19</td>
<td>1.5452</td>
<td>5/2 -</td>
</tr>
<tr>
<td>20</td>
<td>1.5651</td>
<td>3/2 +</td>
</tr>
</tbody>
</table>

Levels above 1.58 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/6/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/17/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (2.976E-03) was adjusted to reproduce the experimental capture cross section measured by Musgrove et al./18/.

MT = 16 \((n,2n)\) Cross Section
MT = 17 \((n,3n)\) Cross Section
MT = 22 \((n,n'\alpha)\) Cross Section
MT = 28 \((n,n'p)\) Cross Section
MT = 32 \((n,n'd)\) Cross Section
MT = 103 \((n,p)\) Cross Section
MT = 104 \((n,d)\) Cross Section
MT = 105 (n,t) Cross Section
MT = 106 (n,He3) Cross Section
MT = 107 (n,α) Cross Section
These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/7/1.

The Kalbach’s constant K (= 103.4) was estimated by the formula derived from Kikuchi-Kawai’s formalism/19/ and level density parameters.

Finally, (n,p) and (n,α) cross sections were normalized to the following values at 14.5 MeV:
(n,p) 17.00 mb (measured by Ikeda et al. /20/)
(n,α) 7.50 mb (recommended by Forrest /21/)

MT = 251 Mu-bar
Calculated with CASTHY/6/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/6/.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/7/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.0–0.25E</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso= 7.0</td>
<td>Rso = 5.893</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr - 93</td>
<td>1.298E+01</td>
<td>7.00E-01</td>
<td>1.273E+00</td>
<td>6.183E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr - 94</td>
<td>1.275E+01</td>
<td>7.530E-01</td>
<td>4.411E-01</td>
<td>7.018E+00</td>
<td>2.320E+00</td>
</tr>
<tr>
<td>40-Zr - 95</td>
<td>1.331E+01</td>
<td>6.070E-01</td>
<td>5.453E-01</td>
<td>3.985E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr - 96</td>
<td>1.320E+01</td>
<td>7.000E-01</td>
<td>2.235E-01</td>
<td>6.589E+00</td>
<td>2.490E+00</td>
</tr>
<tr>
<td>41-Nb - 94</td>
<td>1.281E+01</td>
<td>7.230E-01</td>
<td>7.763E+00</td>
<td>4.250E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb - 95</td>
<td>1.277E+01</td>
<td>7.500E-01</td>
<td>2.121E+00</td>
<td>5.782E+00</td>
<td>1.120E+00</td>
</tr>
<tr>
<td>41-Nb - 96</td>
<td>1.331E+01</td>
<td>5.880E-01</td>
<td>3.400E+00</td>
<td>2.530E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb - 97</td>
<td>1.337E+01</td>
<td>6.710E-01</td>
<td>9.771E-01</td>
<td>5.026E+00</td>
<td>1.290E+00</td>
</tr>
<tr>
<td>42-Mo - 95</td>
<td>1.360E+01</td>
<td>7.150E-01</td>
<td>1.847E+00</td>
<td>5.835E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo - 96</td>
<td>1.403E+01</td>
<td>7.410E-01</td>
<td>6.891E-01</td>
<td>7.845E+00</td>
<td>2.400E+00</td>
</tr>
<tr>
<td>42-Mo - 97</td>
<td>1.517E+01</td>
<td>6.800E-01</td>
<td>2.789E+00</td>
<td>6.036E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo - 98</td>
<td>1.594E+01</td>
<td>6.900E-01</td>
<td>7.358E-01</td>
<td>7.888E+00</td>
<td>2.570E+00</td>
</tr>
</tbody>
</table>
Spin cutoff params were calculated as \(0.146 \cdot \text{SORT}(a) \cdot A^{-(2/3)}\). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 7.075 for Mo-97 and 5.291 for Mo-98.

References

MAT number = 3426

42-Mo-98 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G.1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 32 keV
Evaluation was made by Kikuchi et al./3/ on the basis of the
following experimental data.
Transmission : Chrien et al./4/
Capture : Weigmann et al./5/, Musgrove et al./6/
Assumed gamma-g : 0.085 eV for s-wave and 0.12 eV for
p-wave resonances.
A negative resonance was added at -980 eV.
Unresolved resonance region : 32 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/7/. The observed level spacing
was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius
was obtained from fitting to the calculated total cross section
at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.370E-4, S1 = 5.479E-4, S2 = 0.364E-4, GG = 0.133 eV
Do = 765.9 eV, R = 6.675 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>5.772</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.642</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.1300</td>
<td>6.58</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV,
the spherical optical and statistical model calculation was
performed with CASTHY/7/, by taking account of competing
reactions, of which cross sections were calculated with
PEGASUS/8/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
determined by Iijima et al./9/ to reproduce a systematic trend
of the total cross section. The OMP's for charged particles are
as follows:
Proton = Perey/10/
Alpha = Huizenga and Igo/11/
Deuteron = Lohr and Haeberli/12/
Helium-3 and triton = Becchetti and Greenlees/13/
Parameters for the composite level density formula of Girbert
and Cameron/14/ were evaluated by Iijima et al./15/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used.
in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /16/.

\[MT = 1 \quad \text{Total} \]
Spherical optical model calculation was adopted.

\[MT = 2 \quad \text{Elastic scattering} \]
Calculated as (total – sum of partial cross sections).

\[MT = 4, 51 – 91 \quad \text{Inelastic scattering} \]
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./17/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7349</td>
<td>0 +</td>
</tr>
<tr>
<td>2</td>
<td>0.7674</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>1.4323</td>
<td>2 +</td>
</tr>
<tr>
<td>4</td>
<td>1.5101</td>
<td>4 +</td>
</tr>
<tr>
<td>5</td>
<td>1.7585</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>1.8809</td>
<td>3 +</td>
</tr>
<tr>
<td>7</td>
<td>1.9650</td>
<td>0 +</td>
</tr>
<tr>
<td>8</td>
<td>1.9855</td>
<td>1 +</td>
</tr>
<tr>
<td>9</td>
<td>2.0176</td>
<td>3 –</td>
</tr>
<tr>
<td>10</td>
<td>2.1049</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>2.2069</td>
<td>2 +</td>
</tr>
<tr>
<td>12</td>
<td>2.2240</td>
<td>7 +</td>
</tr>
<tr>
<td>13</td>
<td>2.3334</td>
<td>2 +</td>
</tr>
<tr>
<td>14</td>
<td>2.3437</td>
<td>6 +</td>
</tr>
<tr>
<td>15</td>
<td>2.4198</td>
<td>3 –</td>
</tr>
<tr>
<td>16</td>
<td>2.4500</td>
<td>4 +</td>
</tr>
<tr>
<td>17</td>
<td>2.4854</td>
<td>3 +</td>
</tr>
<tr>
<td>18</td>
<td>2.5063</td>
<td>3 –</td>
</tr>
</tbody>
</table>

Levels above 2.53 MeV were assumed to be overlapping.

\[MT = 102 \quad \text{Capture} \]
Spherical optical and statistical model calculation with CASTHY/7/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/18/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (1.623E-04) was adjusted to reproduce the capture cross section measured by Musgrove et al./8/.

\[MT = 18 \quad \text{(n,2n) Cross Section} \]
\[MT = 17 \quad \text{(n,3n) Cross Section} \]
\[MT = 22 \quad \text{(n,n'α) Cross Section} \]
\[MT = 28 \quad \text{(n,n'p) Cross Section} \]
\[MT = 32 \quad \text{(n,n'd) Cross Section} \]
\[MT = 103 \quad \text{(n,p) Cross Section} \]
\[MT = 104 \quad \text{(n,d) Cross Section} \]
\[MT = 105 \quad \text{(n,t) Cross Section} \]
\[MT = 107 \quad \text{(n,α) Cross Section} \]
These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code
PEGASUS/8/.

The Kalbach's constant \(K = 77.4 \) was estimated by the formula derived from Kikuchi-Kawai's formalism/19/ and level density parameters.

Finally, \((n,p)\) and \((n,\alpha)\) cross sections were normalized to the following values at 14.5 MeV:
\[
\begin{align*}
(n,p) & \quad 5.80 \text{ mb (measured by Ikeda et al./20/)} \\
(n,\alpha) & \quad 5.70 \text{ mb (measured by Ikeda et al./20/)}
\end{align*}
\]

MT = 251 Mu-bar
Calculated with CASTHY/7/.

\(MF = 4 \) Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=81. They were calculated with CASTHY/7/.

\(MF = 5 \) Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/8/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = 46.0 - 0.25E)</td>
<td>R0 = 5.893</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 7.0</td>
<td>Rs = 6.393</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 5.893</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>(a(/MeV))</th>
<th>(T(MeV))</th>
<th>(C(/MeV))</th>
<th>(EX(MeV))</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr- 94</td>
<td>1.275E+01</td>
<td>7.530E-01</td>
<td>4.411E-01</td>
<td>7.019E+00</td>
<td>2.370E+00</td>
</tr>
<tr>
<td>40-Zr- 95</td>
<td>1.331E+01</td>
<td>6.070E-01</td>
<td>5.453E-01</td>
<td>3.986E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr- 96</td>
<td>1.320E+01</td>
<td>7.000E-01</td>
<td>2.235E-01</td>
<td>6.589E+00</td>
<td>2.480E+00</td>
</tr>
<tr>
<td>40-Zr- 97</td>
<td>1.259E+01</td>
<td>5.590E-01</td>
<td>2.497E-01</td>
<td>3.084E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>41-Nb- 95</td>
<td>1.277E+01</td>
<td>7.500E-01</td>
<td>2.121E+00</td>
<td>5.782E+00</td>
<td>1.120E+00</td>
</tr>
<tr>
<td>41-Nb- 96</td>
<td>1.331E+01</td>
<td>5.880E-01</td>
<td>3.406E+00</td>
<td>2.530E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb- 97</td>
<td>1.337E+01</td>
<td>6.710E-01</td>
<td>9.771E+01</td>
<td>5.026E+00</td>
<td>1.290E+00</td>
</tr>
<tr>
<td>41-Nb- 98</td>
<td>1.380E+01</td>
<td>5.110E-01</td>
<td>2.350E+00</td>
<td>1.731E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>42-Mo- 96</td>
<td>1.403E+01</td>
<td>7.410E-01</td>
<td>6.981E-01</td>
<td>7.645E+00</td>
<td>2.400E+00</td>
</tr>
<tr>
<td>42-Mo- 97</td>
<td>1.517E+01</td>
<td>6.200E-01</td>
<td>2.769E+00</td>
<td>6.036E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo- 98</td>
<td>1.594E+01</td>
<td>6.900E-01</td>
<td>7.358E-01</td>
<td>7.888E+00</td>
<td>2.570E+00</td>
</tr>
<tr>
<td>42-Mo- 99</td>
<td>1.774E+01</td>
<td>6.200E-01</td>
<td>4.294E+00</td>
<td>6.058E+00</td>
<td>1.280E+00</td>
</tr>
</tbody>
</table>

Spin cutoff params were calculated as \(0.146 \times \text{SORT}(a) \times A^{-(2/3)} \). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 5.291 for Mo- 98 and 2.875 for Mo- 99.
References

MAT number = 3428

42-Mo-100 JNDC Eval-Aug89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-08 Modification for JENDL-3 was made/2/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 26 keV
Evaluation was made by Kikuchi et al./3/ on the basis of the following experimental data.
Transmission: Weigmann et al./4/
Capture: Weigmann et al./5/, Musgrove et al./6/
Assumed gamma-g: 0.065 eV for s-wave and 0.08 eV for p-wave resonances.
A negative resonance was added at -172 eV.
Unresolved resonance region: 26 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated with optical model code CASTHY/7/.
The observed level spacing was determined to reproduce the capture cross section calculated with CASTHY.
The effect scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 50 keV:
S0 = 0.370E-4, S1 = 5.479E-4, S2 = 0.385E-4, GG = 0.085 eV
D0 = 578.1 eV, R = 6.651 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (barns)</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.499</td>
<td></td>
</tr>
<tr>
<td>Elastic</td>
<td>5.300</td>
<td></td>
</tr>
<tr>
<td>Capture</td>
<td>0.1990</td>
<td>3.91</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given. Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY/7/, by taking account of competing reactions, of which cross sections were calculated with PEGASUS/8/ standing on a pre-equilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined by Iijima et al./9/ to reproduce a systematic trend of the total cross section. The OMP's for charged particles are as follows:

Proton = Percy/10/
Alpha = Huizenga and Ligo/11/
Deuteron = Lohr and Heuberli/12/
Helium-3 and triton = Becchetti and Greenlees/13/

Parameters for the composite level density formula of Girbert and Cameron/14/ were evaluated by Iijima et al./15/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used...
in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar /16/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./17/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.5356</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.6944</td>
<td>0 +</td>
</tr>
<tr>
<td>3</td>
<td>1.0637</td>
<td>2 +</td>
</tr>
<tr>
<td>4</td>
<td>1.1361</td>
<td>4 +</td>
</tr>
<tr>
<td>5</td>
<td>1.4633</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>1.7657</td>
<td>1 +</td>
</tr>
<tr>
<td>7</td>
<td>1.7704</td>
<td>3 +</td>
</tr>
<tr>
<td>8</td>
<td>1.9081</td>
<td>3 -</td>
</tr>
<tr>
<td>9</td>
<td>2.0330</td>
<td>0 +</td>
</tr>
<tr>
<td>10</td>
<td>2.0400</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>2.1014</td>
<td>4 +</td>
</tr>
<tr>
<td>12</td>
<td>2.3400</td>
<td>2 +</td>
</tr>
<tr>
<td>13</td>
<td>2.4156</td>
<td>3 -</td>
</tr>
<tr>
<td>14</td>
<td>2.4700</td>
<td>4 +</td>
</tr>
<tr>
<td>15</td>
<td>2.5632</td>
<td>3 +</td>
</tr>
<tr>
<td>16</td>
<td>2.5900</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Levels above 2.62 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASTHY/7/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/18/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (1.432E-04) was adjusted to reproduce the capture cross section measured by Musgrove et al./8/.

MT = 16 (n,2n) Cross Section
MT = 17 (n,3n) Cross Section
MT = 22 (n,n') Cross Section
MT = 28 (n,n') Cross Section
MT = 32 (n,n'd) Cross Section
MT =103 (n,p) Cross Section
MT =104 (n,d) Cross Section
MT =105 (n,t) Cross Section
MT =107 (n, alpha) Cross Section
These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/8/.
The Kalbach's constant $K = 50.6$ was estimated by the formula derived from Kikuchi-Kawai's formalism/19/ and level density parameters.

Finally, $(n,2n)$, (n,p) and (n,α) cross sections were normalized to the following values at 14.5 MeV:

- $(n,2n)$: 1540 mb (measured by Ikeda et al./20/)
- (n,p): 2.50 mb (recommended by Forrest/21/)
- (n,α): 2.80 mb (measured by Ikeda et al./20/)

$MT = 251$ Mu-bar
Calculated with CASTHY/73/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for $MT=2$ and discrete inelastic levels, and in the laboratory system for $MT=91$. They were calculated with CASTHY/73/.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/8/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = 48.0-0.25E$</td>
<td>$R_0 = 5.893$</td>
<td>$a_0 = 0.62$</td>
</tr>
<tr>
<td>$W_s = 7.0$</td>
<td>$R_s = 6.393$</td>
<td>$a_s = 0.35$</td>
</tr>
<tr>
<td>$W_{so} = 7.0$</td>
<td>$R_{so} = 5.893$</td>
<td>$a_{so} = 0.62$</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST a/(MeV)</th>
<th>T(MeV)</th>
<th>C(MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Zr-96</td>
<td>1.320E+01</td>
<td>7.000E-01</td>
<td>2.235E-01</td>
<td>6.589E+00</td>
<td>2.490E+00</td>
</tr>
<tr>
<td>40-Zr-97</td>
<td>1.259E+01</td>
<td>5.590E-01</td>
<td>2.497E-01</td>
<td>3.084E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>40-Zr-98</td>
<td>1.725E+01</td>
<td>6.633E-01</td>
<td>1.790E+00</td>
<td>7.555E+00</td>
<td>2.140E+00</td>
</tr>
<tr>
<td>40-Zr-99</td>
<td>1.831E+01</td>
<td>6.566E-01</td>
<td>1.170E+01</td>
<td>6.957E+00</td>
<td>1.200E+00</td>
</tr>
<tr>
<td>41-Nb-97</td>
<td>1.337E+01</td>
<td>6.710E-01</td>
<td>9.771E-01</td>
<td>5.026E+00</td>
<td>1.290E+00</td>
</tr>
<tr>
<td>41-Nb-98</td>
<td>1.380E+01</td>
<td>5.110E-01</td>
<td>2.350E+00</td>
<td>1.731E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>41-Nb-99</td>
<td>1.742E+01</td>
<td>6.568E-01</td>
<td>1.085E+01</td>
<td>6.300E+00</td>
<td>9.400E-01</td>
</tr>
<tr>
<td>41-Nb-100</td>
<td>1.850E+01</td>
<td>6.500E-01</td>
<td>7.329E+01</td>
<td>5.699E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>42-Mo-98</td>
<td>1.594E+01</td>
<td>6.900E-01</td>
<td>7.358E+01</td>
<td>7.888E+00</td>
<td>2.570E+00</td>
</tr>
<tr>
<td>42-Mo-99</td>
<td>1.774E+01</td>
<td>6.200E-01</td>
<td>4.294E+00</td>
<td>6.058E+00</td>
<td>1.280E+00</td>
</tr>
<tr>
<td>42-Mo-100</td>
<td>1.780E+01</td>
<td>6.000E-01</td>
<td>6.702E+01</td>
<td>8.645E+00</td>
<td>2.220E+00</td>
</tr>
<tr>
<td>42-Mo-101</td>
<td>2.085E+01</td>
<td>5.650E-01</td>
<td>7.153E+00</td>
<td>6.092E+00</td>
<td>1.280E+00</td>
</tr>
</tbody>
</table>

SYST: = LDP's were determined from systematics.

Spin cutoff params were calculated as $0.146\cdot\sqrt{a(a)}\cdot A^{(2/3)}$. In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 5.125 for Mo-100 and 5.000 for Mo-101.
References

MAT number = 3470

47-Ag 0 JAERI Eval-Mar87 Liu T.J., T.Nakagawa, K. Shibata Dist-Sep89

History
87-03 New evaluation for JENDL-3
87-07 Compiled by K. Shibata

MF=1 General Information
 MT=451 Comments and dictionary.

MF=2 Resonance Parameters
 MT=161 Resolved and unresolved resonance parameters
 This file was made of Ag-107 and Ag-109 data.
 Resolved resonance parameters (below 7.0095 keV)
 Resolved resonance parameters (below 7.0095 keV) are the same
 as those of JENDL-2, which were made by Nakajima /1/ on the
 basis of experimental data by Moxon and Rae /2/, Garg et
 al. /3/, Asghar et al. /4/, Pattenden /5/, Muradian and Adamchuk
 /6/, de Barros et al. /7/, Pattenden and Jolly /8/, Macklin /9/
 and Mizumoto et al. /10/. There are no new experimental data
 available since then.
 Unresolved resonance parameters (7.0095 - 100 keV)
 The parameters were determined with the code ASREP /11/ to
 reproduce the capture and total cross sections, which were
 based on experimental data /12,13/ and adjusted for
 consistence between the data of the natural element and its
 isotopes.
 Calculated 2200-m/s cross sections and res. integrals (barns):
 2200 m/s res. integ.
 total 68.81 -
 elastic 5.19 -
 capture 63.62 762.30

MF=3 Neutron Cross Sections

MT=1,102 Total, capture
 Below 100 keV, resonance parameters were given. No background
 cross sections are adopted. Above 100 keV, cross sections were
 evaluated on the basis of experimental data and theoretical
 calculations. The main data were taken from the works of
 Poenitz and Whalen /12/, Foster and Glasgow /14/ for total
 cross section and Mizumoto et al. /13/, Poenitz/15/ for capture
 cross section. The data were fitted with spline function
 /16/, and were adjusted for consistence between the natural
 element and its isotopes.
 MT=2 Elastic
 Elastic = Total - Nonelastic
 MT=3 Nonelastic
 Sum of MT=4,16,17,22,28,102,103,107
 MT=4 Total inelastic
 Sum of MT=51-80.91
 MT=16,17,22,28,51-80,91,103,107 \{n,2n\},\{n,3n\},\{n,na\},\{n,np\},
 inelastic,\{n,p\},\{n,a\}
 They were made of Ag-107 and Ag-109 data. For these two
 isotopes, the cross sections were calculated with the multistep
Hauser-Feshbach code TNG /17, 18/. At first, the optical model and level density parameters were taken from the works of Smith et al. /19/ and Iijima et al. /20/, respectively and then they were adjusted to reproduce available experimental data.

The optical model parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Depth (MeV)</th>
<th>Radius (fm)</th>
<th>Diffuseness (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>V = 48.25–0.3E</td>
<td>r0 = 1.249</td>
<td>a0 = 0.603</td>
</tr>
<tr>
<td></td>
<td>Ws = 8.501–0.15E</td>
<td>rs = 1.270</td>
<td>as = 0.575</td>
</tr>
<tr>
<td></td>
<td>Vso = 6.0</td>
<td>rso = 1.249</td>
<td>aso = 0.603</td>
</tr>
<tr>
<td>Proton</td>
<td>V = 66.061–0.550E</td>
<td>r0 = 1.350</td>
<td>a0 = 0.650</td>
</tr>
<tr>
<td></td>
<td>Ws = 12.50–0.10E</td>
<td>rs = 1.250</td>
<td>as = 0.470</td>
</tr>
<tr>
<td></td>
<td>rc = 1.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>V = 193.0–0.15E</td>
<td>r0 = 1.370</td>
<td>a0 = 0.560</td>
</tr>
<tr>
<td></td>
<td>Ws = 21.00–0.25E</td>
<td>rs = 1.370</td>
<td>as = 0.560</td>
</tr>
<tr>
<td></td>
<td>rc = 1.370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The level density parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Ecut (MeV)</th>
<th>Ejo (MeV)</th>
<th>T (MeV)</th>
<th>a (1/MeV)</th>
<th>C (MeV)</th>
<th>Cspin</th>
<th>Epair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-103</td>
<td>0.000</td>
<td>5.409</td>
<td>0.655</td>
<td>15.50</td>
<td>3.884</td>
<td>49.725</td>
<td>0.94</td>
</tr>
<tr>
<td>Rh-104</td>
<td>0.230</td>
<td>4.351</td>
<td>0.650</td>
<td>15.45</td>
<td>17.72</td>
<td>49.820</td>
<td>0.00</td>
</tr>
<tr>
<td>Rh-105</td>
<td>0.770</td>
<td>5.700</td>
<td>0.630</td>
<td>16.80</td>
<td>4.000</td>
<td>54.591</td>
<td>1.24</td>
</tr>
<tr>
<td>Rh-106</td>
<td>0.150</td>
<td>3.869</td>
<td>0.575</td>
<td>17.50</td>
<td>17.18</td>
<td>57.230</td>
<td>0.00</td>
</tr>
<tr>
<td>Pd-106</td>
<td>2.380</td>
<td>8.000</td>
<td>0.666</td>
<td>18.17</td>
<td>9.20</td>
<td>56.147</td>
<td>2.59</td>
</tr>
<tr>
<td>Pd-107</td>
<td>0.700</td>
<td>7.693</td>
<td>0.769</td>
<td>14.98</td>
<td>8.956</td>
<td>49.293</td>
<td>1.35</td>
</tr>
<tr>
<td>Pd-108</td>
<td>1.900</td>
<td>7.957</td>
<td>0.846</td>
<td>17.80</td>
<td>0.884</td>
<td>59.265</td>
<td>2.60</td>
</tr>
<tr>
<td>Pd-109</td>
<td>0.360</td>
<td>7.380</td>
<td>0.887</td>
<td>17.50</td>
<td>9.479</td>
<td>58.301</td>
<td>1.35</td>
</tr>
<tr>
<td>Ag-105</td>
<td>1.800</td>
<td>5.230</td>
<td>0.690</td>
<td>18.57</td>
<td>2.750</td>
<td>60.343</td>
<td>0.94</td>
</tr>
<tr>
<td>Ag-106</td>
<td>0.400</td>
<td>3.549</td>
<td>0.563</td>
<td>17.16</td>
<td>12.92</td>
<td>56.110</td>
<td>0.00</td>
</tr>
<tr>
<td>Ag-107</td>
<td>1.420</td>
<td>5.918</td>
<td>0.693</td>
<td>14.55</td>
<td>2.412</td>
<td>47.878</td>
<td>1.24</td>
</tr>
<tr>
<td>Ag-108</td>
<td>0.270</td>
<td>3.014</td>
<td>0.576</td>
<td>15.04</td>
<td>6.004</td>
<td>49.799</td>
<td>0.00</td>
</tr>
<tr>
<td>Ag-109</td>
<td>1.180</td>
<td>6.112</td>
<td>0.705</td>
<td>14.50</td>
<td>2.666</td>
<td>48.305</td>
<td>1.25</td>
</tr>
<tr>
<td>Ag-110</td>
<td>0.320</td>
<td>3.150</td>
<td>0.454</td>
<td>17.01</td>
<td>2.513</td>
<td>57.015</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The level scheme is given as follows:

Ag-107:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>1/2 –</td>
</tr>
<tr>
<td>1</td>
<td>0.0930</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.1200</td>
<td>(9/2)+</td>
</tr>
<tr>
<td>3</td>
<td>0.3250</td>
<td>3/2 –</td>
</tr>
<tr>
<td>4</td>
<td>0.4230</td>
<td>5/2 –</td>
</tr>
<tr>
<td>5</td>
<td>0.7730</td>
<td>(11/2)+</td>
</tr>
<tr>
<td>6</td>
<td>0.7870</td>
<td>3/2 –</td>
</tr>
<tr>
<td>7</td>
<td>0.9220</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.9500</td>
<td>5/2 –</td>
</tr>
<tr>
<td>9</td>
<td>0.9730</td>
<td>(7/2)-</td>
</tr>
<tr>
<td>10</td>
<td>0.9910</td>
<td>(13/2)+</td>
</tr>
<tr>
<td>11</td>
<td>1.0610</td>
<td>(3/2)-</td>
</tr>
<tr>
<td>12</td>
<td>1.1420</td>
<td>1/2 +</td>
</tr>
<tr>
<td>13</td>
<td>1.1470</td>
<td>7/2 –</td>
</tr>
<tr>
<td>14</td>
<td>1.2230</td>
<td>5/2 +</td>
</tr>
<tr>
<td>15</td>
<td>1.2590</td>
<td>(3/2)+</td>
</tr>
</tbody>
</table>
3 of Natural Silver

Ag-109:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1.3260</td>
<td>(3/2)+</td>
</tr>
</tbody>
</table>

MT=251
Calculated from MF=4, MT=2.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code [21].
MT=51-80
Calculated with TNG.
MT=16,17,22,28,91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28,91
Calculated with TNG.

MF=12,14,15 Gamma-Production Data
MT=4,16,17,22,28,102,103,107
Calculated with TNG.

REFERENCES

1) Nakajima, Y., To be published.
5) Pattenden N.J., ibid., 532.
6) Muradjan, G.V., Adamchuk, Ju. V., Jaderno-Fizicheskie Issledovanija, 6, 64 (1968).
11) Kikuchi Y., Private Communication.
14) Foster, Jr., D.G., and Glasgow, D.W., Phys. Rev., C3,
576 (1971).
MAT number = 3471

47-Ag-107 JAERI Eval-Mar87 Liu T.J., T.Nakagawa, K.Shibata
Dist-Sep89

History
87-03 New evaluation for JENDL-3
87-07 Compiled by K.Shibata

MF=1 General Information
 MT=451 Comments and dictionary

MF=2 Resonance Parameters
 MT=151
 Resolved resonance parameters (below 7.0095 keV)
 Resolved resonance parameters (below 7.0095 keV) are the same
 as those of JENDL-2, which were made by Nakajima /1/ on the
 basis of experimental data by Moxon and Rae /2/, Garg et
 al. /3/, Ashgar et al. /4/, Muradjian and Adamchuk /5/, de
 Barros et al. /6/, Pattenden and Jolly /7/, Macklin /8/ and
 Mizumoto et al. /9/. There are no new experimental data
 available since then.

Unresolved resonance parameters (7.0095 - 100 keV)
 The parameters were determined with the ASREP code /10/ to
 reproduce the capture and total cross sections, which were
 based on experimental data /11, 12/ and adjusted for
 consistency between the data of the natural element and its
 isotopes. The typical parameters are:

S0 = (0.344-0.516)E-4, S1 = (3.5-4.5)E-4, S2 = 0.53E-4,
D-obs = (18.5-22.8) eV, R = 6.54 fm

Calculated 2200-m/s cross sections and res. integrals (barns):

 2200 m/s res. integ.
 total 46.29
 elastic 7.66
 capture 38.62 103.24

MF=3 Neutron Cross Sections

MT=1,102 Total, capture
 Below 100 keV, resonance parameters were given. No background
 cross sections are adopted. Above 100 keV, cross sections were
 evaluated on the basis of experimental data and theoretical
 calculations. The main data were taken from the works of
 Dukerevich et al. /13/, Smith et al. /14/ for total cross
 section and Mizumoto et al. /12/, Macklin et al. /15/ for
 capture cross section. The data were fitted with spline function
 /16/, and were adjusted for consistency between the natural
 element and its isotopes.

MT=2 Elastic
 Elastic = Total - Nonelastic

MT=3 Nonelastic
 Sum of MT=1,17,16,28,102,103,107

MT=4 Total inelastic
 Sum of MT=51-66,91
 MT=16,17,22,28,51-66,91,103,107 (n,2n),(n,3n),(n,na),(n,np),
 inelastic, (n,p), (n,a)
For these reactions the cross sections were calculated with the multi-step Hauser-Feshbach code TNG /17, 18/. At first, the optical model and level density parameters were taken from the works of Smith et al./19/ and Iijima et al. /20/, respectively and then they were adjusted to reproduce the available experimental data.

The optical model parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>V = 48.25-0.3E</td>
<td>r0 = 1.249</td>
<td>a0 = 0.603</td>
</tr>
<tr>
<td></td>
<td>Ws = 8.501-0.15E</td>
<td>rs = 1.270</td>
<td>as = 0.575</td>
</tr>
<tr>
<td></td>
<td>Vso= 6.000</td>
<td>rs= 1.240</td>
<td>aso= 0.603</td>
</tr>
<tr>
<td>Proton</td>
<td>V = 66.061-0.550E</td>
<td>r0 = 1.150</td>
<td>a0 = 0.650</td>
</tr>
<tr>
<td></td>
<td>Ws = 12.50-0.10E</td>
<td>rs = 1.250</td>
<td>as = 0.470</td>
</tr>
<tr>
<td></td>
<td>rc = 1.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>V = 193.0-0.15E</td>
<td>r0 = 1.370</td>
<td>a0 = 0.560</td>
</tr>
<tr>
<td></td>
<td>Ws = 21.00+0.25E</td>
<td>rs = 1.370</td>
<td>as = 0.560</td>
</tr>
<tr>
<td></td>
<td>rc = 1.370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The level density parameters are:

<table>
<thead>
<tr>
<th>Ecut(MeV)</th>
<th>Ejo(MeV)</th>
<th>T(MeV)</th>
<th>a(1/MeV)</th>
<th>C(MeV)</th>
<th>Cspin</th>
<th>Epair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-103</td>
<td>0.995</td>
<td>5.409</td>
<td>0.665</td>
<td>15.50</td>
<td>3.884</td>
<td>49.725</td>
</tr>
<tr>
<td>Rh-104</td>
<td>0.230</td>
<td>4.351</td>
<td>0.665</td>
<td>15.43</td>
<td>17.72</td>
<td>49.820</td>
</tr>
<tr>
<td>Pd-106</td>
<td>2.380</td>
<td>8.004</td>
<td>0.666</td>
<td>17.17</td>
<td>0.920</td>
<td>56.147</td>
</tr>
<tr>
<td>Pd-107</td>
<td>0.700</td>
<td>7.693</td>
<td>0.760</td>
<td>14.98</td>
<td>6.956</td>
<td>49.283</td>
</tr>
<tr>
<td>Ag-105</td>
<td>1.230</td>
<td>5.830</td>
<td>0.609</td>
<td>18.57</td>
<td>2.750</td>
<td>60.343</td>
</tr>
<tr>
<td>Ag-106</td>
<td>0.400</td>
<td>3.549</td>
<td>0.563</td>
<td>17.16</td>
<td>12.92</td>
<td>56.110</td>
</tr>
<tr>
<td>Ag-107</td>
<td>1.420</td>
<td>5.918</td>
<td>0.693</td>
<td>14.55</td>
<td>2.412</td>
<td>47.878</td>
</tr>
<tr>
<td>Ag-108</td>
<td>0.270</td>
<td>3.014</td>
<td>0.576</td>
<td>15.04</td>
<td>6.004</td>
<td>49.799</td>
</tr>
</tbody>
</table>

The level scheme is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>0.0</td>
<td>1/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0930</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.1260</td>
<td>(9/2)+</td>
</tr>
<tr>
<td>3</td>
<td>0.3250</td>
<td>3/2 -</td>
</tr>
<tr>
<td>4</td>
<td>0.4230</td>
<td>5/2 -</td>
</tr>
<tr>
<td>5</td>
<td>0.7730</td>
<td>(11/2)+</td>
</tr>
<tr>
<td>6</td>
<td>0.7870</td>
<td>3/2 -</td>
</tr>
<tr>
<td>7</td>
<td>0.9220</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.9500</td>
<td>5/2 -</td>
</tr>
<tr>
<td>9</td>
<td>0.9730</td>
<td>(7/2)-</td>
</tr>
<tr>
<td>10</td>
<td>0.9910</td>
<td>(13/2)+</td>
</tr>
<tr>
<td>11</td>
<td>1.0610</td>
<td>(1/2 -)</td>
</tr>
<tr>
<td>12</td>
<td>1.1420</td>
<td>1/2 +</td>
</tr>
<tr>
<td>13</td>
<td>1.1470</td>
<td>7/2 -</td>
</tr>
<tr>
<td>14</td>
<td>1.2230</td>
<td>5/2 +</td>
</tr>
<tr>
<td>15</td>
<td>1.2590</td>
<td>(3/2)+</td>
</tr>
<tr>
<td>16</td>
<td>1.3260</td>
<td>(3/2)+</td>
</tr>
</tbody>
</table>

Continuum levels were assumed above 1.42 MeV.

MT=251
Calculated from MF=4, MT=2.
MF=4 Angular Distributions of Secondary Neutrons
MT=2
 Calculated with the CASTHY code /21/.
MT=51-66
 Calculated with the TNG code.
MT=16,17,22,28,91
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28,91
 Calculated with TNG.

MF=12,14,15 Gamma-Production Data
MT=4,16,17,22,28,102,103,107
 Calculated with TNG.

REFERENCES

1) Nakajima, Y., To be published.
5) Muradjan, G.V., Adamchuk, Ju. V., Jaderno-Fizicheskie Issledovanija, 6, 64 (1968).
10) Kikuchi, Y., Private Communication.
MAT number = 3472

47-Ag-109 JAERI Eval-Mar87 Liu T.J., T.Nakagawa, K.Shibata Dist-Sep89

History
87-03 New evaluation for JENDL-3
87-07 Compiled by K. Shibata

MF=1 General Information
MT=451 Comments and dictionary.

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonance parameters (below 7.0095 keV)
Resolved resonance parameters (below 7.0095 keV) are the same as those of JENDL-2, which were made by Nakajima /1/ on the basis of experimental data by Moxon and Rae /2/, Garg et al. /3/, Asghar et al. /4/, Pattenden /5/, Muradjan and Adamchuk /6/, de Barros et al. /7/, Pattenden and Jolly /8/, Macklin /9/ and Mizumoto et al. /10/. There are no new experimental data available since then.

Unresolved resonance parameters (7.0095 - 100 keV)
The parameters were determined with code ASREP /11/ to reproduce the capture and total cross sections, which were based on experimental data /12-13/ and adjusted for consistency between the data of the natural element and its isotopes.
The typical parameters are:
S0 = (0.315-0.540)E-4, S1 = (3.61-4.34)E-4, S2 = 0.53E-4,
D-obs = (17.5-20.2)E0, R = 6.18 fm

Calculated 2200-m/s cross sections and res. integrals (barns):
2200 m/s res. integ.
total 93.04
elastic 2.51
capture 90.53 1471.7

MF=3 Neutron Cross Sections

MT=1,102 Total, capture
Below 100 keV, resonance parameters were given. No background cross sections are adopted. Above 100 keV, cross sections were evaluated on the basis of experimental data and theoretical calculations. The main data were taken from the works of Mizumoto et al. /13/, Macklin et al. /14/ for capture cross section. The data were fitted with spline function /15/, and were adjusted for consistency between the natural element and its isotopes.

MT=2 Elastic
Elastic = Total - Nonelastic

MT=3 Nonelastic
Sum of MT=4,16,17,22,28,102,103,107

MT=4 Total inelastic
Sum of MT=51-84,91

MT=16,17,22,28,51-64,91,103,107 (n,2n),(n,3n),(n,na),(n,np),
inelastic,(n,p),(n,a)
For these reactions the cross sections were calculated with the multistep Hauser-Feshbach code TNG /16,17/. At first, the optical model and level density parameters were taken from the works of Smith et al. /18/ and Iijima et al. /19/, respectively and then they were adjusted to reproduce the available experimental data.

The optical model parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRON</td>
<td>V = 48.25-0.3E</td>
<td>r0 = 1.249</td>
<td>a0 = 0.603</td>
</tr>
<tr>
<td></td>
<td>Ws = 8.501-0.15E</td>
<td>rs = 1.270</td>
<td>as = 0.575</td>
</tr>
<tr>
<td></td>
<td>Vso = 6.0</td>
<td>rso = 1.249</td>
<td>aso = 0.603</td>
</tr>
<tr>
<td>PROTON</td>
<td>V = 66.061-0.550E</td>
<td>r0 = 1.150</td>
<td>a0 = 0.650</td>
</tr>
<tr>
<td></td>
<td>Ws = 12.500-0.10E</td>
<td>rs = 1.250</td>
<td>as = 0.470</td>
</tr>
<tr>
<td></td>
<td>rc = 1.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>V = 193.0-0.15E</td>
<td>r0 = 1.370</td>
<td>a0 = 0.560</td>
</tr>
<tr>
<td></td>
<td>Ws = 21.000+0.25E</td>
<td>rs = 1.370</td>
<td>as = 0.560</td>
</tr>
<tr>
<td></td>
<td>rc = 1.370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The level density parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Ecut(MeV)</th>
<th>Ejo(MeV)</th>
<th>T(MeV)</th>
<th>a(1/MeV)</th>
<th>C(MeV)</th>
<th>Cspin</th>
<th>Epair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-105</td>
<td>0.770</td>
<td>5.700</td>
<td>0.630</td>
<td>16.80</td>
<td>4.000</td>
<td>54.561</td>
<td>1.24</td>
</tr>
<tr>
<td>Rh-106</td>
<td>0.150</td>
<td>3.869</td>
<td>0.575</td>
<td>17.50</td>
<td>17.18</td>
<td>57.230</td>
<td>0.00</td>
</tr>
<tr>
<td>Pd-108</td>
<td>1.900</td>
<td>7.957</td>
<td>0.648</td>
<td>17.90</td>
<td>0.884</td>
<td>59.268</td>
<td>2.60</td>
</tr>
<tr>
<td>Pd-109</td>
<td>0.360</td>
<td>7.380</td>
<td>0.687</td>
<td>17.50</td>
<td>9.479</td>
<td>58.301</td>
<td>1.35</td>
</tr>
<tr>
<td>Ag-107</td>
<td>1.470</td>
<td>5.918</td>
<td>0.693</td>
<td>14.55</td>
<td>2.412</td>
<td>47.378</td>
<td>1.24</td>
</tr>
<tr>
<td>Ag-108</td>
<td>0.270</td>
<td>3.014</td>
<td>0.576</td>
<td>15.04</td>
<td>6.004</td>
<td>49.799</td>
<td>0.00</td>
</tr>
<tr>
<td>Ag-109</td>
<td>1.180</td>
<td>6.112</td>
<td>0.705</td>
<td>14.50</td>
<td>2.686</td>
<td>48.306</td>
<td>1.25</td>
</tr>
<tr>
<td>Ag-110</td>
<td>0.320</td>
<td>3.150</td>
<td>0.454</td>
<td>17.01</td>
<td>2.513</td>
<td>57.015</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The level scheme used is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>0.0680</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.1330</td>
<td>9/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.3110</td>
<td>3/2 -</td>
</tr>
<tr>
<td>4</td>
<td>0.4150</td>
<td>5/2 -</td>
</tr>
<tr>
<td>5</td>
<td>0.7020</td>
<td>3/2 -</td>
</tr>
<tr>
<td>6</td>
<td>0.7070</td>
<td>3/2 +</td>
</tr>
<tr>
<td>7</td>
<td>0.7240</td>
<td>(3/2)+</td>
</tr>
<tr>
<td>8</td>
<td>0.7360</td>
<td>5/2 +</td>
</tr>
<tr>
<td>9</td>
<td>0.8630</td>
<td>5/2 -</td>
</tr>
<tr>
<td>10</td>
<td>0.8700</td>
<td>(5/2)+</td>
</tr>
<tr>
<td>11</td>
<td>0.9110</td>
<td>7/2 +</td>
</tr>
<tr>
<td>12</td>
<td>0.9120</td>
<td>7/2 -</td>
</tr>
<tr>
<td>13</td>
<td>1.0910</td>
<td>9/2 -</td>
</tr>
<tr>
<td>14</td>
<td>1.0990</td>
<td>(5/2 +)</td>
</tr>
</tbody>
</table>

Continuum levels were assumed above 1.18 MeV.

MT=251
Calculated from MF=4, MT=2.

MF=4 Angular Distributions of Secondary neutrons
MT=2
Calculated with the CASTHY code /20/.
MT=51-64
Calculated with TNG.
MT=16,17,22,28,91
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28,91
Calculated with TNG.

MF=12,14,15 Gamma-Production Data
MT=4,16,17,22,28,102,103,107
Calculated with TNG.

REFERENCES

1) Nakajima, Y., To be published.
5) Pattenden N.J., ibid., 532.
6) Muradjan, G.V., Adamchuk, Ju. V., Jaderno-Fizicheskie Issledovanija, 6, 64(1968).
11) Kikuchi, Y., Private Communication.
MAT number = 3480

48-Cd- 0 JNDC Eval-Mar89 JNDC FP ND W.G., N.Yamamuro Dist-Oct89

History
89-03 Evaluation of Cd isotopes for JENDL-3 was made by JNDC FP Nuclear Data W.G./1/, and data for natural Cd were constructed from them by T.Nakagawa (JAERI).
89-03 Photon production data were calculated by N.Yamamuro (Data Engineering)

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
 Resolved resonance region (MLBW formula)
 Evaluation was made on the basis of the following data for each isotope.
Cd-106 : below 0.7 keV
 Mughabghab et al./2/
 Assumed capture width = 0.153 eV
Cd-108 : below 0.38 keV
 Anufriev et al./3/
 Assumed capture width = 0.110 eV
Cd-110 : below 7.0 keV
 Liou et al./4/, Musgrove et al./5/, Alfimenkov et al./6/.
 Assumed capture width = 0.102 eV
Cd-112 : below 7.0 keV
 Liou et al./4/, Musgrove et al./5/.
 Assumed capture width = 0.1 ev/4/ below 2.0 keV, and
 0.077 ev above 2.0 keV for s-wave res.
 0.095 ev/5/ for p-wave res.
Cd-113 : below 2.0 keV
 Liou et al./4/.
 Assumed capture width = 0.101 ev/4/
Cd-114 : below 8.0 keV
 Liou et al./1/, Musgrove et al./5/.
 Assumed capture width = 0.11 ev /4/ below 2.0 keV, and
 0.053 ev above 2.0 keV for s-wave res.
 0.082 ev/5/ for p-wave res.
Cd-116 : below 9.0 keV
 Liou et al./4/, Musgrove et al./5/.
 Assumed capture width = 0.047 ev for s-wave res. and
 0.085 ev for p-wave res/5/.

In order to reproduce well measured total cross sections, effective scattering radius of 5.42 fm was assumed for the all isotopes.

Unresolved resonance region : up to 100 keV
The neutron strength functions for L=0 and 1 were taken from Mughabghab et al./2/, and those for L=2 were calculated with optical model code CASTHY/7/. Average radiative capture widths were also taken from Ref./2/. The observed level spacings were determined to reproduce the capture cross sections calculated with CASTHY for Cd-110, Cd-112, Cd-113, Cd-114 and Cd-116, and the capture cross sections determined
from experimental data for the other isotopes. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV. Finally, background cross section was given to the capture to reproduce the experimental data/8.9/

Unresolved resonance parameters (at 70 keV)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>(\langle eV \rangle)</th>
<th>(\langle eV \rangle)</th>
<th>D-obs</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd-106</td>
<td>1.00E-4</td>
<td>5.00E-4</td>
<td>9.7E-4</td>
<td>0.155</td>
<td>0.175</td>
<td>131</td>
<td>4.70</td>
</tr>
<tr>
<td>Cd-108</td>
<td>1.20E-4</td>
<td>4.80E-4</td>
<td>9.5E-4</td>
<td>0.105</td>
<td>0.125</td>
<td>147</td>
<td>4.59</td>
</tr>
<tr>
<td>Cd-110</td>
<td>0.44E-4</td>
<td>3.00E-4</td>
<td>9.3E-4</td>
<td>0.071</td>
<td>0.080</td>
<td>155</td>
<td>6.25</td>
</tr>
<tr>
<td>Cd-111</td>
<td>0.80E-4</td>
<td>3.00E-4</td>
<td>9.2E-4</td>
<td>0.096</td>
<td>0.096</td>
<td>22</td>
<td>5.78</td>
</tr>
<tr>
<td>Cd-112</td>
<td>0.50E-4</td>
<td>4.40E-4</td>
<td>9.1E-4</td>
<td>0.071</td>
<td>0.080</td>
<td>212</td>
<td>5.44</td>
</tr>
<tr>
<td>Cd-113</td>
<td>0.31E-4</td>
<td>2.20E-4</td>
<td>9.0E-4</td>
<td>0.160</td>
<td>0.160</td>
<td>27</td>
<td>6.74</td>
</tr>
<tr>
<td>Cd-114</td>
<td>0.64E-4</td>
<td>3.50E-4</td>
<td>8.9E-4</td>
<td>0.053</td>
<td>0.070</td>
<td>155</td>
<td>5.80</td>
</tr>
<tr>
<td>Cd-116</td>
<td>0.16E-4</td>
<td>2.80E-4</td>
<td>8.7E-4</td>
<td>0.047</td>
<td>0.070</td>
<td>432</td>
<td>6.49</td>
</tr>
</tbody>
</table>

Calculated 2200-m/s cross sections and res. integrals (barns)

2200 m/s res. integ.

total	2536	--
elastic	8.27	--
capture	2528	67.9

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given. Above 100 keV, the spherical optical and statistical model calculation was performed with CASTHY/7/, by taking account of competing reactions. of which cross sections were calculated with PEGASUS/10/ standing on a preequilibrium and multi-step evaporation model. The OMP's for neutron given in Table 1 were determined to reproduce the Cd-111 total cross section. The OMP's for charged particles are as follows:

- Proton = Perey/11/
- Alpha = Huizenga and Igo/12/
- Deuteron = Lohr and Haeberli/13/
- Helium-3 and triton = Becchetti and Greenlees/14/

Parameters for the composite level density formula of Girbert and Cameron/15/ were evaluated by Ilijima et al./16/. More extensive determination and modification were made in the present work. Table 2 shows the level density parameters used in the present calculation. Energy dependence of spin cut-off parameter in the energy range below E-joint is due to Gruppelaar/17/.

MT = 1 Total

Spherical optical model calculation was adopted. In the energy region from 100 keV to 2.5 MeV, cross section was determined from the data measured by Whalen et al./18/, Green et al./19/ and Poenitz and Whalen/20/.

MT = 2 Elastic scattering

Calculated as (total - sum of partial cross sections).

MT = 3 Non-elastic scattering

Sum of partial cross sections except MT=2.
MT = 4, 51 - 91 Inelastic scattering

Spherical optical and statistical model calculation was adopted. The level schemes were taken from Ref./21/ for Cd-108 and 108, Ref./22/ for Cd-110, 111, 112 1nd 113, and Ref./23/ for Cd-114 and 116. The inelastic scattering cross sections were grouped as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>-0(MEV)</th>
<th>106</th>
<th>108</th>
<th>110</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>-0.2454</td>
<td>-</td>
<td>-</td>
<td>51</td>
<td>-</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>-0.2986</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52,53</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>-0.3419</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52,53</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>-0.4166</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>54,55</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>-0.5131</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-0.5583</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>57</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>-0.6174</td>
<td>51</td>
<td>51</td>
<td>-</td>
<td>55</td>
<td>51</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>-0.6577</td>
<td>-</td>
<td>-</td>
<td>51</td>
<td>56</td>
<td>-</td>
<td>58,59</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>-0.754</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>-0.8553</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td>-0.8836</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>-0.9884</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62,63</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>-1.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>-1.1261</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65</td>
<td>-1.3142</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>-1.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61</td>
<td>-</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>67</td>
<td>-1.2093</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>52,53</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>-1.223</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td>-1.283</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>-1.3052</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>-</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>71</td>
<td>-1.361</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>-1.3839</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73</td>
<td>-1.4317</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55,56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>-1.4732</td>
<td>52</td>
<td>52</td>
<td>52,53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>-1.5424</td>
<td>53</td>
<td>53,54</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>-1.7318</td>
<td>-</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>57,58</td>
<td>54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77</td>
<td>-1.7833</td>
<td>-</td>
<td>56,57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>-1.971</td>
<td>55,56</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79</td>
<td>-1.971</td>
<td>-</td>
<td>58</td>
<td>58,59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>-2.0788</td>
<td>54</td>
<td>-</td>
<td>59,60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>-2.1627</td>
<td>57,58</td>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>82</td>
<td>-2.22</td>
<td>55,57</td>
<td>59</td>
<td>62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>83</td>
<td>-2.355</td>
<td>58</td>
<td>60</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>-2.4641</td>
<td>59,61</td>
<td>61</td>
<td>64,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>-2.538</td>
<td>-</td>
<td>62</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>-2.5612</td>
<td>-</td>
<td>63,69</td>
<td>67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>87</td>
<td>-2.7864</td>
<td>-</td>
<td>70</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>88</td>
<td>-2.868</td>
<td>-</td>
<td>69</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>89</td>
<td>-2.9266</td>
<td>71</td>
<td>71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91</td>
<td>-1.1948</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>-</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

MT = 102 Capture

Spherical optical and statistical model calculation with CASTHY/1/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reifo/24/ and normalized to 1 milli-barn at 14 MeV. The gamma-ray strength functions were adjusted to reproduce the following capture cross sections.

- Nuclide cross section(b) strength function
Cd-106 0.34 at 70 keV 14.2E-4
Cd-108 0.23 at 70 keV 8.63E-4
Cd-110 0.245 at 30 keV 4.65E-4
Cd-111 0.9 at 30 keV 68.8E-4
Cd-112 0.22 at 30 keV 4.04E-4
Cd-113 0.72 at 30 keV 46.5E-4
Cd-114 0.15 at 30 keV 2.50E-4
Cd-116 0.09 at 30 keV 1.35E-4

At the energies from 9 keV to 10 MeV, the cross section was modified to well reproduce the data measured by Kompe/8/ and Poenitz/9/.

MT = 16, 17, 22, 28, 32, 103, 104, 105, 106, 107, 111
(n,2n), (n,3n), (n,n′a), (n,n′p), (n,n′d), (n,p), (n,d),
(n,t), (n,He3), (n,α) and (n,2p) Cross Sections
These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/10/. The Kalbach’s constants were estimated by the formula derived from Kikuchi-Kawai’s formalism/25/ and level density parameters. The (n,2n), (n,p) and (n,α) cross sections were normalized to the following values (mb) at 14.5 MeV:

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>(n,2n)/26</th>
<th>(n,p)/27</th>
<th>(n,α)/26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd-106</td>
<td>900</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>Cd-108</td>
<td>1000</td>
<td>57.6</td>
<td>12.1</td>
</tr>
<tr>
<td>Cd-110</td>
<td>1170</td>
<td>29.7</td>
<td>6.34</td>
</tr>
<tr>
<td>Cd-111</td>
<td>(1582)</td>
<td>50</td>
<td>4.52</td>
</tr>
<tr>
<td>Cd-112</td>
<td>(1583)</td>
<td>16</td>
<td>3.1</td>
</tr>
<tr>
<td>Cd-113</td>
<td>(1632)</td>
<td>19.9</td>
<td>2.23</td>
</tr>
<tr>
<td>Cd-114</td>
<td>(1631)</td>
<td>10</td>
<td>0.7</td>
</tr>
<tr>
<td>Cd-116</td>
<td>(1632)</td>
<td>2.8</td>
<td>(0.108)</td>
</tr>
</tbody>
</table>

Values in () were calculated ones (not normalized).

MT = 251 Mu-bar
Calculated with CASTHY/7/.

MT = 4 Angular Distributions of Secondary Neutrons
Distributions of elastic and inelastic scattering neutrons were calculated with CASTHY/7/. In the case where more than 2 levels were grouped into 1 level, isotropic distribution in the center-of-mass system was assumed. For other reactions, isotropic distributions in the laboratory system were assumed.

MT = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/10/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

MT = 12 Photon Production Multiplicities
MT = 3 (above 100 keV), and 102 (below 100 keV)
Calculated with GNASH/28/ modified by Yamamura/29/.

MT = 14 Photon Angular Distributions
MT = 3, 102
Isotropic distributions were assumed.

MT = 15 Photon Energy Distributions
MT = 3, 102
Calculated with GNASH/28/ modified by Yamamuro/29/

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 50.01-0.5528E</td>
<td>R0 = 5.972</td>
<td>a0 = 0.56</td>
</tr>
<tr>
<td>Ws = 8.185</td>
<td>Rs = 0.594</td>
<td>as = 0.44</td>
</tr>
<tr>
<td>Wso = 5.261</td>
<td>Rso = 5.87</td>
<td>aso = 0.267</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters of Cd Isotopes

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST a(MeV)</th>
<th>T(MeV)</th>
<th>C/(MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-Cd-104</td>
<td>* 1.643E+01 6.403E-01 3.532E-01 7.266E+00</td>
<td>2.650E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-105</td>
<td>1.600E+01 6.350E-01 4.000E+00 6.612E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-106</td>
<td>1.468E+01 6.950E-01 5.785E-01 7.078E+00</td>
<td>2.300E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-107</td>
<td>1.647E+01 6.740E-01 4.374E+00 6.626E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-108</td>
<td>1.541E+01 6.900E-01 5.114E+00 7.655E+00</td>
<td>2.600E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-109</td>
<td>1.812E+01 6.120E-01 3.856E+00 6.132E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-110</td>
<td>1.780E+01 6.300E-01 5.212E+00 7.482E+00</td>
<td>2.610E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-111</td>
<td>1.874E+01 5.930E-01 3.762E+00 6.000E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-112</td>
<td>1.797E+01 6.190E-01 6.327E-01 7.351E+00</td>
<td>2.500E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-113</td>
<td>1.973E+01 5.760E-01 4.397E+00 6.018E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-114</td>
<td>1.910E+01 6.010E-01 5.651E-01 7.611E+00</td>
<td>2.600E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-115</td>
<td>2.072E+01 5.570E-01 4.805E+00 5.966E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-116</td>
<td>1.990E+01 5.750E-01 6.265E+01 7.206E+00</td>
<td>2.510E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-Cd-117</td>
<td>2.107E+01 5.820E-01 6.164E+00 6.181E+00</td>
<td>1.360E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYST: * = LDP’s were determined from systematics.

References
MAT number = 3510

51-Sb 0 JNDC Eval-Mar89 JNDC FP Nuclear Data W.G.
 Dist-Oct89

History
89-03 Data were constructed with those for Sb-121 and Sb-123 which
were evaluated by JNDC FP Nuclear Data W.G./1/.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance parameters (MLBW formula)
1) Sb-121 : below 2 keV
 Evaluation was made on the basis of data measured by
 Okubo/2/, Okubo et al./3/, Bolotin and Chrien/4/,
 Wynchank et al./5/, Muradjan et al./6/ and Adamchuk et
 al./7/. Angular momentum I and spin J were based on the
 data by Belyaev et al./8/, Baht et al./9/ and Cauvin et
 al./10/. The average radiative capture width of 0.089 eV
 was assumed.

2) Sb-123 : below 2.5 keV
 Evaluation was made on the basis of the data measured by
 Okubo/2/, Okubo et al./11/, Stolvy and Harvey/12/,
 Bolotin and Chrien/4/, Wynchank et al./5/, Muradjan et
 al./6/ and Adamchuk et al./7/. Angular momentum I and
 spin J were based on the data by Baht et al./9/ and
 Cauvin et al./10/. The average radiative capture width of
 0.098 eV was assumed.

Unresolved resonance region : up to 100 keV
 The neutron strength functions, S0, S1 and S2 were calculated
 with optical model code CASTHY/13/. The observed level
 spacing was determined to reproduce the capture cross section
 calculated with CASTHY. The effective scattering radius was
 obtained from fitting to the calculated total cross section at
 100 keV.

Calculated 2200-m/s cross sections and res. integrais (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>8.943</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>3.722</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>5.221</td>
<td>175</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model
calculation was performed with CASTHY/13/, by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/14/ standing on a pre-equilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
adopted from lijiima and Kawai/15/ by modifying radius parameter
of the spin-orbit term. The OMP's for charged particles are as
follows:
 Proton = Perey/16/
 Alpha = Huizenga and Igo/17/
 Deuteron = Lohr and Haebeler/18/
Helium-3 and triton = Becchetti and Greenlees/19/
Parameters for the composite level density formula of Girbert
and Cameron/20/ were evaluated by Iijima et al./21/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar
/22/.

MT = 1 Total
Spherical optical model calculation was adopted in the energy
ranges below 500 keV and above 11.5 MeV. Between 500 keV and
11.5 MeV, spline fitting to the experimental data /23,24/
was performed.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was
adopted. The level scheme was taken from Ref./25/.

<table>
<thead>
<tr>
<th>No.</th>
<th>MT</th>
<th>Energy(MeV)</th>
<th>J-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>5/2 +</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>0.0371</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>0.5078</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>0.5731</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>0.9470</td>
<td>9/2 +</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>1.0240</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>1.0355</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
<td>1.1383</td>
<td>11/2 +</td>
</tr>
<tr>
<td>8</td>
<td>63</td>
<td>1.1447</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>

Overlapping levels were assumed above 1.15 MeV for Sb-121
and above 1.18 MeV for Sb-123. In the data file, Q-values
of levels were slightly shifted to be consistent with their
threshold energies.

MT = 102 Capture
Spherical optical and statistical model calculation with
CASTHY/13/ was adopted. Direct and semi-direct capture cross
sections were estimated according to the procedure of Benzi
and Reffo/26/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength functions were adjusted to reproduce
the capture cross sections.

<table>
<thead>
<tr>
<th>No.</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb-121</td>
<td>0.55 barn</td>
</tr>
<tr>
<td>Sb-123</td>
<td>0.34 barn</td>
</tr>
</tbody>
</table>

MT = 16, 17, 22, 28, 32, 33, 103, 104, 105, 107
\((n,2n), (n,3n), (n,n'\alpha), (n,n'p), (n,n'd), (n,n't),
(n,p), (n,d), (n,t) and (n,\alpha)\) Cross Sections
These reaction cross sections were calculated with the
pre-equilibrium and multi-step evaporation model code
PEGASUS/14/.
The Kalbach’s constants were estimated by the formula derived from Kikuchi-Kawai’s formalism/27/ and level density parameters.

\[\text{Sb-121: 145.3, Sb-123: 174.0} \]

Finally, the \((n,2n)\), \((n,p)\) and \((n,\alpha)\) cross sections were modified as follows.

\[\begin{align*}
\text{Sb-121:} \\
(n,2n) & \quad \text{based on experimental data by Bormann et al./28/} \\
(n,\alpha) & \quad \text{normalized to 4.51 mb/29/ at 14.5 MeV.} \\
\text{Sb-123:} \\
(n,p) & \quad \text{normalized to 4.70 mb/29/ at 14.5 MeV.} \\
(n,\alpha) & \quad \text{normalized to 2.53 mb/29/ at 14.5 MeV.} \\
\end{align*} \]

MT = 251 Mu-bar
Calculated with CASTHY/13/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/13/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/14/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 47.64−0.473E</td>
<td>R0 = 6.256</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 9.744</td>
<td>Rs = 6.469</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 6.241</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST a(MeV)</th>
<th>T(MeV)</th>
<th>C(MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-In-117</td>
<td>1.678E+01</td>
<td>6.010E-01</td>
<td>2.387E+00</td>
<td>5.208E+00</td>
<td>1.150E+00</td>
</tr>
<tr>
<td>49-In-118</td>
<td>1.804E+01</td>
<td>6.064E-01</td>
<td>3.111E+01</td>
<td>4.636E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>49-In-119</td>
<td>1.940E+01</td>
<td>5.340E-01</td>
<td>2.195E+00</td>
<td>4.999E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>49-In-120</td>
<td>1.757E+01</td>
<td>6.018E-01</td>
<td>2.330E+01</td>
<td>4.366E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>49-In-121</td>
<td>1.601E+01</td>
<td>6.060E-01</td>
<td>1.119E+00</td>
<td>5.277E+00</td>
<td>1.430E+00</td>
</tr>
<tr>
<td>49-In-122</td>
<td>1.707E+01</td>
<td>5.968E-01</td>
<td>1.737E+01</td>
<td>4.092E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>50-Sn-118</td>
<td>1.633E+01</td>
<td>6.140E-01</td>
<td>3.341E+01</td>
<td>6.448E+00</td>
<td>2.340E+00</td>
</tr>
<tr>
<td>50-Sn-119</td>
<td>1.635E+01</td>
<td>5.999E-01</td>
<td>1.772E+00</td>
<td>5.050E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>50-Sn-120</td>
<td>1.595E+01</td>
<td>6.540E-01</td>
<td>4.691E+01</td>
<td>7.083E+00</td>
<td>2.430E+00</td>
</tr>
<tr>
<td>50-Sn-121</td>
<td>1.630E+01</td>
<td>6.100E-01</td>
<td>2.010E+00</td>
<td>5.217E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>50-Sn-122</td>
<td>1.434E+01</td>
<td>7.060E-01</td>
<td>3.423E+01</td>
<td>7.416E+00</td>
<td>2.620E+00</td>
</tr>
<tr>
<td>50-Sn-123</td>
<td>1.509E+01</td>
<td>6.870E-01</td>
<td>3.062E+00</td>
<td>6.032E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>51-Sb-119</td>
<td>1.858E+01</td>
<td>6.040E-01</td>
<td>5.801E+00</td>
<td>5.944E+00</td>
<td>1.150E+00</td>
</tr>
<tr>
<td>51-Sb-120</td>
<td>1.834E+01</td>
<td>6.016E-01</td>
<td>3.366E+01</td>
<td>4.659E+00</td>
<td>0.0</td>
</tr>
</tbody>
</table>
4 of Natural Antimony

51–Sb–121 \(1.730E+01\) \(5.740E-01\) \(1.715E+00\) \(5.022E+00\) \(1.240E+00\)
51–Sb–122 \(1.772E+01\) \(5.500E-01\) \(1.346E+01\) \(3.517E+00\) \(0.0\)
51–Sb–123 \(1.585E+01\) \(6.213E-01\) \(1.285E+00\) \(5.469E+00\) \(1.430E+00\)
51–Sb–124 \(1.699E+01\) \(5.600E-01\) \(1.090E+01\) \(3.433E+00\) \(0.0\)

SYST: * = LDP's were determined from systematics.

References
MAT number = 3511

51-Sb-121 JNDC Eval-Mar89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-03 Modification was made/2/. and stored in JENDL-3.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2 keV
Evaluation was made on the basis of the data measured by
Ohkubo et al./3,4/., Bolotin and Chrien/5/., Wynchank et
al./6/., Muradian et al./7/., and Adamchuk et al./8/.
Angular momentum I and spin J were based on the data by
Belyaev et al./9/., Bait et al./10/., and Caulin et al./11/.
The average radiative capture width of 0.089 eV was assumed.

Unresolved resonance region : 2 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/12/.. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.300E-4, S1 = 2.700E-4, S2 = 0.760E-4. Gg = 0.100 eV
Do = 10.51 eV. R = 5.837 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th>m/s</th>
<th>total</th>
<th>elastic</th>
<th>capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200</td>
<td>9.582</td>
<td>3.590</td>
<td>5.891</td>
</tr>
<tr>
<td>res. integ.</td>
<td>-</td>
<td>-</td>
<td>215</td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model
calculation was performed with CASTHY/12/, by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/13/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in Table 1 were
taken from Iijima and Kawai/14/ and rao was modified to
reproduce the measured total cross sections. The OMP's for
charged particles are as follows:
Proton = Perey/15/
Alpha = Huizenga and Igo/16/
Deuteron = Lohr and Haeberli/17/
Helium-3 and triton = Becchetti and Greenlees/18/

Parameters for the composite level density formula of Girbert
and Cameron/19/ were evaluated by Iijima et al./20/.
More extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppelaar /21/.

\[MT = 1 \text{ Total} \]
Spherical optical model calculation was adopted.

\[MT = 2 \text{ Elastic scattering} \]
Calculated as (total – sum of partial cross sections).

\[MT = 4, 51 - 91 \text{ Inelastic scattering} \]
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref. /22/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0371</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.5076</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.5731</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.9470</td>
<td>9/2 +</td>
</tr>
<tr>
<td>5</td>
<td>1.0240</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>1.0355</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>1.1393</td>
<td>11/2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.1447</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>

Levels above 1.15 MeV were assumed to be overlapping.

\[MT = 102 \text{ Capture} \]
Spherical optical and statistical model calculation with CASTHY/12/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/23/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function (49.8E-4) was adjusted to reproduce the capture cross section of 550 milli-barns at 30 keV which was derived from natural Sb data/24/ and CFRMF activation rate measurement (Sb-121/Sb-123=1.8)/25/.

\[MT = 16 \text{ (n,2n) Cross Section} \]
\[MT = 17 \text{ (n,3n) Cross Section} \]
\[MT = 22 \text{ (n,n'alpha) Cross Section} \]
\[MT = 28 \text{ (n,n'p) Cross Section} \]
\[MT = 32 \text{ (n,n'd) Cross Section} \]
\[MT = 33 \text{ (n,n't) Cross Section} \]
\[MT = 103 \text{ (n,p) Cross Section} \]
\[MT = 104 \text{ (n,d) Cross Section} \]
\[MT = 105 \text{ (n,t) Cross Section} \]
\[MT = 107 \text{ (n,alpha) Cross Section} \]

These reaction cross sections were calculated with the preequilibrium and multi-step evaporation model code PEGASUS/13/.

The Kalbach's constant K (=145.3) was estimated by the formula derived from Kikuchi-Kawai's formalism/26/ and level density parameters.

Finally, the (n, alpha) cross sections were normalized to the following values at 4.5 MeV:
\[(n,\alpha) \quad 4.51 \text{ mb (systematics of Forrest/27/)} \]
The (n,2n) cross section was determined by eye-guiding of the data measured by Bormann/28/.

MT = 251 Mu-bar
Calculated with CASTHY/12/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete elastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/12/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with PEGASUS/13/ for inelastic scattering from overlapping levels and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 47.64 - 0.473E</td>
<td>R0 = 6.256</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 9.744</td>
<td>Rs = 6.469</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 6.241</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST a/(MeV)</th>
<th>T(MeV)</th>
<th>C/(MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-In-117</td>
<td>1.678E+01</td>
<td>6.010E-01</td>
<td>2.387E+00</td>
<td>5.208E+00</td>
<td>1.150E+00</td>
</tr>
<tr>
<td>49-In-118</td>
<td>1.804E+01</td>
<td>6.084E-01</td>
<td>3.111E+01</td>
<td>4.636E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>49-In-119</td>
<td>1.940E+01</td>
<td>5.340E-01</td>
<td>2.195E+00</td>
<td>4.999E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>49-In-120</td>
<td>1.757E+01</td>
<td>6.016E-01</td>
<td>2.330E+01</td>
<td>4.366E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>50-Sn-118</td>
<td>1.633E+01</td>
<td>6.140E-01</td>
<td>3.341E+01</td>
<td>6.448E+00</td>
<td>2.340E+00</td>
</tr>
<tr>
<td>50-Sn-119</td>
<td>1.635E+01</td>
<td>5.990E-01</td>
<td>1.772E+00</td>
<td>5.050E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>50-Sn-120</td>
<td>1.595E+01</td>
<td>6.540E-01</td>
<td>4.691E-01</td>
<td>7.083E+00</td>
<td>2.430E+00</td>
</tr>
<tr>
<td>50-Sn-121</td>
<td>1.630E+01</td>
<td>6.100E-01</td>
<td>2.010E+00</td>
<td>5.217E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>51-Sb-119</td>
<td>1.858E+01</td>
<td>6.040E-01</td>
<td>5.801E+00</td>
<td>5.944E+00</td>
<td>1.150E+00</td>
</tr>
<tr>
<td>51-Sb-120</td>
<td>1.834E+01</td>
<td>6.016E-01</td>
<td>3.366E+01</td>
<td>4.659E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>51-Sb-121</td>
<td>1.730E+01</td>
<td>5.740E-01</td>
<td>1.715E+00</td>
<td>5.022E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>51-Sb-122</td>
<td>1.772E+01</td>
<td>5.500E-01</td>
<td>1.346E+01</td>
<td>3.517E+00</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cutoff params were calculated as 0.148*SQRT(a)*A**(2/3). In the CASTHY calculation, spin cutoff factors at 0 MeV were assumed to be 9.25 for Sb-121 and 6.0 for Sb-122.

References
MAT number = 3512

51-Sb-123 JNDC Eval-Mar89 JNDC FP Nuclear Data W.G. Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./ 1/
89-03 Modification was made and stored in JENDL-3.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.5 keV
Evaluation was made on the basis of the data measured by
Ohkubo/2/, Ohkubo et al./3/, Stolvy and Harvey/4/, Bolotin and
Chrien/5/, Wynchank et al./6/, Muradjan et al./7/ and Adamchuk
et al./8/. Angular momentum l and spin J were based on the
data by Baht et al./9/ and Cauvin et al./10/. The average
radiative capture width of 0.098 eV was assumed.

Unresolved resonance region : 2.5 keV - 100 keV
The neutron strength functions, S0, S1 and S2 were calculated
with optical model code CASTHY/11/. The observed level
spacing was determined to reproduce the capture cross section
calculated with CASTHY. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 0.250E-4, S1 = 2.700E-4, S2 = 0.760E-4, GG = 0.100 eV
Do = 23.28 eV, R = 5.856 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

2200 m/s res. integ.
Novel total 8.086
Novel elastic 3.899
Novel capture 4.187 123

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.
Above 100 keV, the spherical optical and statistical model
calculation was performed with CASTHY/11/, by taking account of
competing reactions, of which cross sections were calculated
with PEGASUS/12/ standing on a preequilibrium and multi-step
evaporation model. The OMP's for neutron given in in Table 1
were taken from Iijima and Kawal/13/ and rso was modified to
reproduce the measured total cross sections. The OMP's for
charged particles are as follows:

Proton = Perse/14/
Alpha = Huizenga and lgo/15/
Deuteron = Lohr and Haebeli/16/
Helium-3 and triton = Becchetti and Greenlees/17/

Parameters for the composite level density formula of Girbert
and Cameron/18/ were evaluated by Iijima et al./19/. More
extensive determination and modification were made in the
present work. Table 2 shows the level density parameters used
in the present calculation. Energy dependence of spin cut-off
parameter in the energy range below E-joint is due to Gruppe-laar /20/.

MT = 1 Total
Spherical optical model calculation was adopted.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51 - 91 Inelastic scattering
Spherical optical and statistical model calculation was adopted. The level scheme was taken from Ref./21/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>7/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.1603</td>
<td>5/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.5421</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.7125</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>1.0302</td>
<td>9/2 +</td>
</tr>
<tr>
<td>5</td>
<td>1.0886</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>

Levels above 1.18 MeV were assumed to be overlapping.

MT = 102 Capture
Spherical optical and statistical model calculation with CASHTY/11/ was adopted. Direct and semi-direct capture cross sections were estimated according to the procedure of Benzi and Reffo/22/ and normalized to 1 milli-barn at 14 MeV.

The gamma-ray strength function \((25.7E-4) \) was adjusted to reproduce the capture cross section of 340 milli-barns at 30 keV which was derived from natural Sb data /23/ and CFRMF activation rate measurement (Sb-121/Sb-123=1.6) /24/.

MT = 16 \((n,2n)\) Cross Section
MT = 17 \((n,3n)\) Cross Section
MT = 22 \((n,n'\alpha)\) Cross Section
MT = 28 \((n,n'p)\) Cross Section
MT = 32 \((n,n'd)\) Cross Section
MT = 33 \((n,n't)\) Cross Section
MT =103 \((n,p)\) Cross Section
MT =104 \((n,d)\) Cross Section
MT =105 \((n,t)\) Cross Section
MT =107 \((n,\alpha)\) Cross Section
These reaction cross sections were calculated with the pre-equilibrium and multi-step evaporation model code PEGASUS/12/.

The Kalbach's constant \(K (=1/4) \) was estimated by the formula derived from Kikuchi-Kawai's formalism/25/ and level density parameters.

Finally, the \((n,p)\) and \((n,\alpha)\) cross sections were normalized to the following values at 14.5 MeV:

\[(n,p) \quad 4.70 \text{ mb (recommended by Forrest/26/)} \]
\[(n,\alpha) \quad 2.53 \text{ mb (systematics of Forrest/26/)} \]

MT = 251 Mu-bar
Calculated with CASTHY/11/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are
given in the center-of-mass system for MT=2 and discrete inelas-
tic levels, and in the laboratory system for MT=81. They were
calculated with CASTHY/11/. For other reactions, isotropic
distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with
PEGASUS/12/ for inelastic scattering from overlapping levels
and for other neutron emitting reactions.

Table 1 Neutron Optical Potential Parameters

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 47.64-0.473E</td>
<td>R0 = 6.256</td>
<td>a0 = 0.62</td>
</tr>
<tr>
<td>Ws = 9.744</td>
<td>Rs = 6.469</td>
<td>as = 0.35</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rsso = 6.241</td>
<td>aso = 0.62</td>
</tr>
</tbody>
</table>

Table 2 Level Density Parameters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>SYST a(/MeV)</th>
<th>T(MeV)</th>
<th>C(/MeV)</th>
<th>EX(MeV)</th>
<th>Pairing</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-In-119</td>
<td>1.940E+01</td>
<td>5.340E-01</td>
<td>2.195E+00</td>
<td>4.999E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>49-In-120</td>
<td>1.757E+01</td>
<td>6.016E-01</td>
<td>2.330E+00</td>
<td>4.366E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>49-In-121</td>
<td>1.601E+01</td>
<td>6.060E-01</td>
<td>1.119E+00</td>
<td>5.277E+00</td>
<td>1.430E+00</td>
</tr>
<tr>
<td>49-In-122</td>
<td>1.707E+01</td>
<td>5.968E-01</td>
<td>1.737E+00</td>
<td>4.092E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>50-Sn-120</td>
<td>1.595E+01</td>
<td>6.540E-01</td>
<td>4.691E+00</td>
<td>7.083E+00</td>
<td>2.430E+00</td>
</tr>
<tr>
<td>50-Sn-121</td>
<td>1.630E+01</td>
<td>6.100E-01</td>
<td>2.010E+00</td>
<td>5.217E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>50-Sn-122</td>
<td>1.434E+01</td>
<td>7.000E-01</td>
<td>3.423E+00</td>
<td>7.416E+00</td>
<td>2.620E+00</td>
</tr>
<tr>
<td>50-Sn-123</td>
<td>1.508E+01</td>
<td>6.870E-01</td>
<td>3.062E+00</td>
<td>6.032E+00</td>
<td>1.190E+00</td>
</tr>
<tr>
<td>51-Sb-121</td>
<td>1.730E+01</td>
<td>5.740E-01</td>
<td>1.715E+00</td>
<td>5.022E+00</td>
<td>1.240E+00</td>
</tr>
<tr>
<td>51-Sb-122</td>
<td>1.772E+01</td>
<td>5.500E-01</td>
<td>1.346E+00</td>
<td>3.517E+00</td>
<td>0.0</td>
</tr>
<tr>
<td>51-Sb-123</td>
<td>1.585E+01</td>
<td>6.213E-01</td>
<td>1.285E+00</td>
<td>5.469E+00</td>
<td>1.430E+00</td>
</tr>
<tr>
<td>51-Sb-124</td>
<td>1.694E+01</td>
<td>5.600E-01</td>
<td>1.090E+00</td>
<td>3.433E+00</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SYST: * = LDP's were determined from systematics.

Spin cutoff params were calculated as 0.146+SQRT(a)*A**(2/3).
In the CASTHY calculation, spin cutoff factors at 0 MeV were
assumed to be 6.4 for Sb-123 and 5.0 for Sb-124.

References
1) Aoki, T. et al.: Proc. Int. Conf. on Nuclear Data for Basic
7) Muradjan, G.V. et al.: Jaderno-Fizicheskie Issledovanija, 6,
 64 (1968).
MAT number = 3630

63-Eu 0 JAERI, JNDC Eval-Mar89 T. Asami, JNDC FP ND W.G. Dist-Oct89

History

89-03 Evaluation for each isotope was made by T. Asami (JAERI) and JNDC FP Nuclear Data W.G. Data for natural Eu were constructed from the isotope data by T. Asami and T. Nakagawa (JAERI).

MF = 1 General information

MT=451 Comments and dictionary

MF = 2 Resonance parameters

MT=151 Resolved and unresolved resonance parameters

Resolved resonance region (MLBW formula)

Evaluation for each isotope was made by Kikuchi /1/.

1) Eu-151: below 98.7 eV

Parameters were mainly based on the data of Rahn et al. /2/, and for the lowest 2 levels, the data of Tassan et al. /3/. The capture width of 0.093 eV /2/ was assumed for the levels whose radiative capture width was not measured. A negative resonance was added so as to reproduce the capture cross section of 9200 barns at 0.0253 eV/4/.

2) Eu-153: below 97.2 eV

Neutron widths were obtained from the data of Rahn et al. /2/ and Anufriev et al. /5/. Radiative capture widths were adopted from the data of Rahn et al. The parameters of 1.73-, 2.46-, 3.29- and 3.94-eV levels were taken from Maghabghab /6/ so as to reproduce the capture resonance integral of 1420 barns/6/. A negative resonance was added so as to reproduce the capture cross section of 390 barns and the elastic scattering of 8.0 ± 0.2 barns at 0.0253 eV/4/.

Unresolved resonance region: up to 100 keV

The parameters were adjusted to reproduce the capture cross sections. The effective scattering radius was obtained from fitting to the calculated total cross section at 100 keV.

Typical values of the parameters at 70 keV:

1) Eu-151

S0 = 3.699E-4, S1 = 0.100E-4, S2 = 3.000E-4, GG = 0.091 eV

Do = 0.408 eV, R = 6.870 fm.

2) Eu-153

S0 = 2.602E-4, S1 = 1.394E-4, S2 = 2.946E-4, GG = 0.094 eV

Do = 1.489 eV, R = 6.421 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>4606</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>5.248</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>4601</td>
<td>2210</td>
</tr>
<tr>
<td>(n, alpha)</td>
<td>4.637E-06</td>
<td></td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections

Below 100 keV, resonance parameters were given.
MT = 1 Total
Below 10 MeV, calculated with the CASTHY code/7/. The optical potential parameters listed in Table 1 used. Above 10 MeV, cross section was determined from the data of Foster and Glasgow/8/ for natural Eu.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51–71, 91 Inelastic scattering
Calculated with the CASTHY code/7/. The level scheme used in the calculations was taken from Ref./9/

No	MT	energy(MeV)	J-parity		No	MT	energy(MeV)	J-parity
----	----	-------------	----------					
gs	0.0	5/2+		gs	0.0	5/2+		
1	51	0.02150	7/2+	1	52	0.0834	7/2+	
2	58	0.19620	11/2-	2	53	0.09974	5/2-	
3	59	0.19650	3/2+	3	54	0.1032	3/2+	
4	61	0.2432	7/2-	4	55	0.1516	7/2-	
5	62	0.2604	5/2+	5	56	0.1729	5/2+	
6	64	0.3070	7/2+	6	57	0.1931	9/2+	
7	65	0.3075	5/2-	7	60	0.2353	9/2-	
8	68	0.3498	9/2-	8	63	0.2697	7/2+	
9	69	0.3536	7/2-	9	66	0.3219	11/2-	
10	71	0.4160	7/2+	10	67	0.3251	11/2-	
	91	0.4200		11	70	0.3964	9/2+	

Q-values of excited levels were shifted a little so as to be consistent with threshold energies.

MT = 102 Capture
Calculated from Eu-151 and -153 capture cross sections. The Eu-151 capture cross section below 2 MeV was determined by eye-guiding the data measured by Macklin and Young/10/, and above 2 MeV, JENDL-2 data calculated with CASTHY was normalized to Macklin and Young at 2 MeV. For Eu-153, evaluation for JENDL-2 was adopted. Direct and semi-direct capture cross sections were added, which were estimated according to the procedure of Benzi and Reffo/11/ and normalized to 1 milli-barn at 14 MeV.

MT-16, 17, 22, 28, 103, 107 (n,2n), (n,3n), (n,na), (n,np), (n,p) and (n,a) cross sections
Calculated with the GNASH code/12/ using the optical model parameters in Table 2, which were determined so as to reproduce well the total cross section measured by Foster and Glasgow/8/ for natural Eu. The level scheme data were taken from Ref./9/. The calculated (n,2n) and (n,3n) cross sections were modified on the basis of the experimental data of Fehaut et al./13/ and Bayhurst/14/ respectively.

The (n,alpha) cross section in the resonance region was calculated from resonance parameters, by assuming a mean alpha width of 9.0E-11 eV for Eu-151 and 2.0E-10 eV for Eu-153 so as
to reproduce the thermal cross section. The cross section was averaged in suitable energy intervals. Above the resolved resonance region, the cross section was connected smoothly to the GNASH calculation.

MT = 251 Mu-bar
Calculated with CASTHY/7/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/7/. For other reactions, the isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with GNASH/12/.

MF = 12 Photon Production Multiplicities
MT=102, 107 (below 21.6437 keV)
Calculated with GNASH code/12/.

MF = 13 Photon Production Cross Sections
MT=3 (above 21.6437 keV)
Calculated with GNASH code/12/.

MF = 14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic.

MF = 15 Continuous Photon Energy Spectra
MT=3, 102, 107
Calculated with GNASH code/12/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)
\[
\begin{align*}
V &= 43.71 - 0.0566 \ast En, & V_{so} &= 7.9 & \text{(MeV)} \\
Ws &= 7.696, & W_v &= 0.07 & \text{(MeV)} \\
r &= 1.270, & r_{so} &= 1.280 & \text{(fm)} \\
a &= 0.60, & b &= 0.45, & a_{so} &= 0.60 & \text{(fm)} \\
\end{align*}
\]

Table 2 Neutron Optical Potential Parameters (for GNASH)
\[
\begin{align*}
V &= 43.71 - 0.05655 \ast En, & V_{so} &= 0.0 & \text{(MeV)} \\
Ws &= 7.696, & W_v &= 0.0 & \text{(MeV)} \\
r &= 1.272, & r_{so} &= 1.270 & \text{(fm)} \\
a &= 0.48, & b &= 0.45, & a_{so} &= 0.48 & \text{(fm)} \\
\end{align*}
\]

References
9) ENSDF: Evaluated Nuclear Structure Data File (June 1987).
MAT number = 3631

63-Eu-151 JAERI, JNDC Eval-Mar89 T. Asami, JNDC FP ND W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-03 Evaluation for JENDL-3 was made by T. Asami (JAERI) and JNDC
FP Nuclear Data W.G.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 0.0982 keV
Evaluation was made by Kikuchi /2/. Parameters were adopted
mainly from the data measured by Rahn et al./3/. For the
lowest 2 levels, the data of Tassan et al./4/ were adopted.
The average capture width of 0.093 eV /3/ was assumed for the
levels whose radiative capture width was not measured. A
negative resonance was added at -0.00381 eV so as to reproduce
the capture cross section of 9200 -+ 100 barns at 0.0253
eV/5/.

Unresolved resonance region: 0.0982 keV - 100 keV
The neutron strength functions S0, S1, S2 were based on the
compilation of Mughabghab/6/. The observed level spacing was
adjusted to reproduce the capture cross section measured by
Macklin and Young/7/. The effective scattering radius was
obtained from fitting to the calculated total cross section at
100 keV.

Typical values of the parameters at 70 keV:
S0 = 3.659E-4, S1 = 0.100E-4, S2 = 3.000E-4, GG = 0.091 eV
Do = 0.408 eV, R = 6.870 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>9201</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>3.207</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>9198</td>
<td>3070</td>
</tr>
<tr>
<td>(n, alpha)</td>
<td>8.806E-06</td>
<td></td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.

MT = 1 Total
Below 10 MeV, calculated with the CASTHY code/8/. The optical
potential parameters listed in Table 1 used. Above 10 MeV,
determined from the data of Foster and Glasgow/9/ for
natural Eu.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).

MT = 4, 51-60, 91 Inelastic scattering
Calculated with the CASTHY code/8/. The level scheme used in
the calculations was taken from Ref./10/
<table>
<thead>
<tr>
<th>No</th>
<th>Level</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>5/2+</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.02150</td>
<td>7/2+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.19620</td>
<td>11/2−</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.19650</td>
<td>3/2+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2432</td>
<td>7/2−</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2604</td>
<td>5/2+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3070</td>
<td>7/2+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.3075</td>
<td>5/2+</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.3488</td>
<td>9/2−</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.3536</td>
<td>7/2−</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.4160</td>
<td>7/2+</td>
<td></td>
</tr>
</tbody>
</table>

Levels above 0.420 MeV were assumed to be overlapping.

MT = 102 Capture
Below 2 MeV, cross section was determined by eye-guiding the data measured by Macklin and Young/7/. Above 2 MeV, JENDL-2 data calculated with CASTHY was normalized to Macklin and Young at 2 MeV. Direct and semi-direct capture cross sections were added, which were estimated according to the procedure of Benzi and Reffo/11/ and normalized to 1 milli-barn at 14 MeV.

MT=16, 17, 22, 28, 103, 107 (n,2n), (n,3n), (n,na), (n,np), (n,p) and (n,a) cross sections
Calculated with the GNASH code/12/ using the optical model parameters in Table 2, which were determined so as to reproduce well the total cross section measured by Foster and Glasgow/9/ for natural Eu. The level scheme data were taken from Ref/10/. The calculated (n,2n) and (n,3n) cross sections were modified on the basis of the experimental data of Frehaut et al./13/ and Bayhurt/14/, respectively.

The (n,alpha) cross section in the resonance region was calculated from resonance parameters, by assuming a mean alpha width of 9.0E−11 eV so as to reproduce the thermal cross section/6/. The cross section was averaged in suitable energy intervals. Above 98.2 eV, the cross section was connected smoothly to the GNASH calculation.

MT = 251 Mu-bar
Calculated with CASTHY/8/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/8/. For other reactions, the isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with GNASH/12/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)
\[
V = 43.71 - 0.0566 \times \text{En.} \quad V_{so} = 7.9 \quad \text{(MeV)} \\
W_s = 7.696 \quad W_v = 0.0 \quad \text{(MeV)} \\
r = 1.270 \quad r_s = 1.440 \quad r_{so} = 1.280 \quad \text{(fm)} \\
a = 0.60 \quad b = 0.45 \quad a_{so} = 0.60 \quad \text{(fm)}
\]

Table 2 Neutron Optical Potential Parameters (for GNASH)

\[
V = 43.71 - 0.05655 \times \text{En.} \quad V_{so} = 0.0 \quad \text{(MeV)} \\
W_s = 7.696 \quad W_v = 0.0 \quad \text{(MeV)} \\
r = 1.272 \quad r_s = 1.440 \quad r_{so} = 1.270 \quad \text{(fm)} \\
a = 0.48 \quad b = 0.45 \quad a_{so} = 0.48 \quad \text{(fm)}
\]

References
10) ENDF: Evaluated Nuclear Structure Data File (June 1987).
MAT number = 3533

63-Eu-153 JENDL Eval-Mar89 T. Asami, JNDC FP ND W.G.
Dist-Oct89

History
84-10 Evaluation for JENDL-2 was made by JNDC FPND W.G./1/
89-03 Evaluation for JENDL-3 was made by T. Asami (JAERI) and
JNDC FP Nuclear Data W.G.

MF = 1 General information
MT=451 Comments and dictionary

MF = 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Evaluation was made by Kikuchi /2/. Neutron widths were
obtained by averaging the data of Rahn et al. /3/ and Anufriev
e t al. /4/. Radiative capture widths were adopted from the
data measured by Rahn et al. The parameters of 1.73, 2.46,
3.29 and 3.94-eV levels were taken from Mughabghab /5/ so as
to reproduce the capture resonance integral of 1420 ± 100
barns recommended in Ref. /5/. A negative resonance was added
at -0.5 eV so as to reproduce the capture cross section of 390
± 20 barns and the elastic scattering of 8.0 ± 0.2 barns at
0.0253 eV /6/.

Unresolved resonance region: 0.0972 keV - 100 keV
Initial values of neutron strength functions were the same as
JENDL-2 calculated with optical and statistical model code
CASTHY /7/. They were adjusted to the capture cross section
calculated with CASTHY for JENDL-2 which was in good agreement
with experimental data by Macklin and Young /8/. The
observed level spacing was determined to reproduce the
capture cross section at 30 keV. The effective scattering
radius was obtained from fitting to the calculated total cross
section at 100 keV.

Typical values of the parameters at 70 keV:
S0 = 2.602E-4, S1 = 1.394E-4, S2 = 2.946E-4, GG = 0.094 eV
Do = 1.489 eV, R = 6.421 fm.

Calculated 2200-m/s cross sections and res. integrals (barns)

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>399.2</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>7.118</td>
<td>-</td>
</tr>
<tr>
<td>capture (n, alpha)</td>
<td>392.1</td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td>8.187E-07</td>
<td></td>
</tr>
</tbody>
</table>

MF = 3 Neutron cross sections
Below 100 keV, resonance parameters were given.

MT = 1 Total
Below 10 MeV, calculated with the CASTHY code /7/. The optical
potential parameters listed in Table 1 used. Above 10 MeV,
determined from the data of Foster and Glasgow /9/ for
natural Eu.

MT = 2 Elastic scattering
Calculated as (total - sum of partial cross sections).
MT = 4.51 - 91 Inelastic scattering
Calculated with the CASTHY code/7/. The level scheme used in
the calculations was taken from Ref./10/

<table>
<thead>
<tr>
<th>No</th>
<th>level energy(MeV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2+</td>
</tr>
<tr>
<td>1</td>
<td>0.0834</td>
<td>7/2+</td>
</tr>
<tr>
<td>2</td>
<td>0.0974</td>
<td>5/2-</td>
</tr>
<tr>
<td>3</td>
<td>0.1032</td>
<td>3/2+</td>
</tr>
<tr>
<td>4</td>
<td>0.1516</td>
<td>7/2-</td>
</tr>
<tr>
<td>5</td>
<td>0.1729</td>
<td>5/2+</td>
</tr>
<tr>
<td>6</td>
<td>0.1931</td>
<td>9/2+</td>
</tr>
<tr>
<td>7</td>
<td>0.2353</td>
<td>9/2-</td>
</tr>
<tr>
<td>8</td>
<td>0.2687</td>
<td>7/2+</td>
</tr>
<tr>
<td>9</td>
<td>0.3219</td>
<td>11/2-</td>
</tr>
<tr>
<td>10</td>
<td>0.3251</td>
<td>11/2+</td>
</tr>
<tr>
<td>11</td>
<td>0.3964</td>
<td>9/2+</td>
</tr>
</tbody>
</table>

Levels above 0.400 MeV were assumed to be overlapping.

MT = 102 Capture
Calculation for JENDL-2 with CASTHY/7/ was adopted. The
following potential parameters were determined by Iijima et
al./11/ to reproduce a systematic trend of the total cross
section.

<table>
<thead>
<tr>
<th>Depth (MeV)</th>
<th>Radius(fm)</th>
<th>Diffuseness(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 49.61</td>
<td>R0 = 6.7926</td>
<td>a0 = 0.6</td>
</tr>
<tr>
<td>Ws = 10.595</td>
<td>Rs = 7.6483</td>
<td>as = 0.45</td>
</tr>
<tr>
<td>Wso = 7.0</td>
<td>Rso = 8.8461</td>
<td>aso = 0.6</td>
</tr>
</tbody>
</table>

Parameters for the composite level density formula of Girbert-
Cameron were evaluated as follows/12/. The coefficient of
spin cut-off parameter C1 was taken as 0.146. The energy
dependence of spin cut-off parameter in the energy range below
E-joint is due to Gruppelear /13/.

<table>
<thead>
<tr>
<th>Eu-153</th>
<th>Eu-154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairing energy (MeV)</td>
<td>1.100</td>
</tr>
<tr>
<td>a (1/MeV)</td>
<td>27.860</td>
</tr>
<tr>
<td>Spin cut-off param.</td>
<td>19.567</td>
</tr>
<tr>
<td>Nuclear temp. (MeV)</td>
<td>0.455</td>
</tr>
<tr>
<td>C (1/MeV)</td>
<td>13.410</td>
</tr>
<tr>
<td>E-joint (MeV)</td>
<td>5.399</td>
</tr>
</tbody>
</table>

The gamma-ray strength function (= 809.E-4) was adjusted to
reproduce the experimental capture cross section of 880 milli-
barns at 250 keV measured by Macklin and Young/8/. Direct
and semi-direct capture cross sections were estimated
according to the procedure of Benzi and Reffo/14/ and
normalized to 1 milli-barn at 14 MeV.

MT=16, 17, 22, 28, 103, 107 (n,2n), (n,3n), (n,nα), (n,np),
(n,p) and (n,a) cross sections
Calculated with the GNASH code/15/ using the optical model
parameters in Table 2, which were determined so as to
reproduce well the total cross section measured by Foster and Glasgow/9/ for natural Eu. The level scheme data were taken from Ref/10/. The calculated (n,p) cross section was normalized at 14.5 MeV to an average value of the experimental data around 14.5 MeV/16,17,18,19/.

The (n, alpha) cross section in the resonance region was calculated from resonance parameters, by assuming a mean alpha width of 2.0E-10 eV so as to reproduce the thermal cross section/5/. The cross section was averaged in suitable energy intervals. Above 97.2 eV, the cross section was connected smoothly to the GNASH calculation.

MT = 251 Mu-bar
Calculated with CASTHY/7/.

MF = 4 Angular Distributions of Secondary Neutrons
Legendre polynomial coefficients for angular distributions are given in the center-of-mass system for MT=2 and discrete inelastic levels, and in the laboratory system for MT=91. They were calculated with CASTHY/7/. For other reactions, isotropic distributions in the laboratory system were assumed.

MF = 5 Energy Distributions of Secondary Neutrons
Energy distributions of secondary neutrons were calculated with GNASH/15/.

Table 1 Neutron Optical Potential Parameters (for CASTHY)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>43.71 - 0.0566·En.</td>
</tr>
<tr>
<td>V_{so}</td>
<td>7.9 (MeV)</td>
</tr>
<tr>
<td>W_0</td>
<td>7.696</td>
</tr>
<tr>
<td>W_v</td>
<td>0.0 (MeV)</td>
</tr>
<tr>
<td>r</td>
<td>1.270</td>
</tr>
<tr>
<td>r_s</td>
<td>1.440</td>
</tr>
<tr>
<td>r_{so}</td>
<td>1.280 (fm)</td>
</tr>
<tr>
<td>a</td>
<td>0.60</td>
</tr>
<tr>
<td>b</td>
<td>0.45</td>
</tr>
<tr>
<td>a_{so}</td>
<td>0.80 (fm)</td>
</tr>
</tbody>
</table>

Table 2 Neutron Optical Potential Parameters (for GNASH)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>43.71 - 0.05655·En.</td>
</tr>
<tr>
<td>V_{so}</td>
<td>0.0 (MeV)</td>
</tr>
<tr>
<td>W_0</td>
<td>7.696</td>
</tr>
<tr>
<td>W_v</td>
<td>0.0 (MeV)</td>
</tr>
<tr>
<td>r</td>
<td>1.272</td>
</tr>
<tr>
<td>r_s</td>
<td>1.440</td>
</tr>
<tr>
<td>r_{so}</td>
<td>1.270 (fm)</td>
</tr>
<tr>
<td>a</td>
<td>0.48</td>
</tr>
<tr>
<td>b</td>
<td>0.45</td>
</tr>
<tr>
<td>a_{so}</td>
<td>0.48 (fm)</td>
</tr>
</tbody>
</table>

References
10) ENSDF: Evaluated Nuclear Structure Data File (June 1987).
(1983).
MAT number = 3720

72-Hf 0 NA1G+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K. Hida, T. Yoshida (NA1G) and K. Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resonance region: 1.0E-5 eV to 50 keV
Resolved resonances for MLSW formula
Made up of isotopic files.
Unresolved resonances
Made up of isotopic files.

2200 m/sec cross sections and calculated res. integrals,
2200 m/sec res. integ.
total 114.9 b -
elastic 9.9 b -
capture 105.0 b 1995.7 b

MF=3 Neutron Cross Sections
Below 50 keV:
No background was given.
Above 50 keV:
MT=1 Total
50 keV - 110 keV: Made up of isotopic files.
110 keV - 7.5 MeV: Spline-function fitting to the experimental
data/1/-/3/.
7.5 MeV - 20 MeV: Made up of isotopic files.
MT=2 Elastic
Obtained by subtracting a sum of partial reaction cross sections
from the total cross section.
MT=3 Nonelastic
Sum of MT=4, 16, 17, 102, 103, 107.
MT=4 Total inelastic
Sum of MT=51-79, 91.
MT=51-79, 91 Inelastic
Made up of isotopic files.
The discrete levels were lumped.
MT=16,17,102,103,107 (n,2n),(n,3n),(n,γ),(n,p),(n,α)
Made up of isotopic files.
MT=251 Mu-bar
Calculated from MF/MT=4/2.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-79,91
Made up of isotopic files.
MT=16,17
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Made up of isotopic files.

MF=12 Photon Production Multiplicities and
MT=3.102
Made up isotopic files.

MF=14 Photon Angular Distributions
MT=3.102
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=3.102
Made up of isotopic files.

References
MAT number = 3721

72-Hf-174 NAI1G+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K.Hida, T.Yoshida
(NAI1G) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonances for MLBW formula
Energy range : 1.0E-5 eV to 220 eV.
Res. energies and Gam-n : BNL-325 /1/.
Gam-gamma : 0.080 eV assumed if unknown.
Radius : 7.5 fm

Unresolved resonances
Energy range : 220 eV to 50 keV.
S0, S1, R and Gam-gamma : Adjusted so that the calculated
total and capture cross sections
were reproduced well.

Results are D-obs = 13.4 eV, S0 = 2.8E-4, S1 = 1.00E-4,
R = 7.9 fm and Gam-gamma = 0.054 eV.

2200 m/sec cross sections and calculated res. integrals.

\begin{tabular}{|c|c|}
\hline
2200 m/sec & res. integ. \\
\hline
\hline
total & 576.4 b \\
elastic & - \\
capture & 561.5 b \\
& 363.8 b \\
\hline
\end{tabular}

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.

Above 50 keV :

MT=1,2,4,51-68,91,102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/. Deformed optical
potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hafnium,
starting with the Haouat potential /4/.

\begin{align*}
V_0 &= 47.05 - 0.3 En, W_s = 3.92 + 0.4 En (En<10), V_{so} = 6.2 (\text{MeV}), \\
&\quad 7.92 (En>10) \\
a_0 &= 0.63, \quad as = 0.52, \quad aso = 0.47 (\text{fm}), \\
r_0 &= 1.24, \quad rs = 1.24, \quad rsO = 1.12 (\text{fm}), \\
Beta-2 &= 0.266, \quad \text{Beta-4} = 0.0.
\end{align*}

The deformation parameter Beta-2 was determined from the
measured E2 transition probability data /5/. The lowest three
levels belonging to the ground state rotational band were
coupled in the calculation. The spherical optical potential
for CASTHY calculation is the same as that of JENDL-2.

\begin{align*}
V_0 &= 38.0, W_s = 8.0 + 0.5 \sqrt{\text{En}}, V_{so} = 7.0 (\text{MeV}), \\
a_0 &= 0.47, \quad as = 0.52, \quad aso = 0.47 (\text{fm}), \\
r_0 &= 1.32, \quad rs = 1.32, \quad rsO = 1.32 (\text{fm}).
\end{align*}

Competing processes (n,2n) and (n,3n) were
calculated with GNASH /6/ and fed to ECIS-CASTHY calculation.
The level fluctuation and interference effects were considered.
Level scheme was taken from Table of isotopes /7/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0910</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.2975</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.6084</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.8282</td>
<td>0 +</td>
</tr>
<tr>
<td>5</td>
<td>0.9002</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>1.0522</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>1.2268</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.3034</td>
<td>3 +</td>
</tr>
<tr>
<td>9</td>
<td>1.3087</td>
<td>2 -</td>
</tr>
<tr>
<td>10</td>
<td>1.3194</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>1.3365</td>
<td>3 +</td>
</tr>
<tr>
<td>12</td>
<td>1.3947</td>
<td>4 +</td>
</tr>
<tr>
<td>13</td>
<td>1.4253</td>
<td>4 -</td>
</tr>
<tr>
<td>14</td>
<td>1.4429</td>
<td>5 -</td>
</tr>
<tr>
<td>15</td>
<td>1.4489</td>
<td>4 +</td>
</tr>
<tr>
<td>16</td>
<td>1.4964</td>
<td>2 +</td>
</tr>
<tr>
<td>17</td>
<td>1.5034</td>
<td>3 +</td>
</tr>
<tr>
<td>18</td>
<td>1.6261</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.6487 MeV.
The level density parameters for Gilbert and Cameron's formula /8/ are the same as those of JENDL-2:
\[
a(1/\text{MeV}) \quad C(1/\text{MeV}) \quad T(\text{MeV}) \quad \text{Ex(MeV)} \quad \text{sigma-}2
\]

\[
\text{Hf-174} \quad 23.09 \quad 2.31 \quad 0.477 \quad 5.01 \quad 7.47
\]

\[
\text{Hf-175} \quad 22.93 \quad 10.0 \quad 0.484 \quad 4.42 \quad 6.00
\]

MT=3 Nonelastic
Sum of MT=4, 16, 17, 102.

Calculated with GNASH /6/. The transmission coefficients for the incident channel were generated with ECIS /4/, while those for the exit channels with ELIESE-3 /9/. The pre-equilibrium parameter F2 was adjusted to reproduce the measured (n,2n) cross section at 14.5 MeV and resulted in F2=5.0.

MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-68, 91
Calculated with ECIS /2/ and CASTHY /3/.

MT=16, 17 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 91
Calculated with GNASH /6/.

MF=12 Photon Production Multiplicities
MT=16, 17, 91, 102
Calculated with GNASH /6/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole
resonance /10/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta /11/.

\[E_{G1} = 15.23, \quad E_{G2} = 12.3, \quad E_p = 5.2 \text{ (MeV)} \]
\[G_{G1} = 4.48, \quad G_{G2} = 2.43, \quad G_p = 2.5 \text{ (MeV)} \]
\[\text{sig-pygmy/sig-GDR} = 0.0245 \]

MT=51-68

Stored under Option-2 (transition probability array). Data were taken from /7/.

MF=14 Photon Angular Distributions

MT=10,17,51-68,91,102

Isotropic.

MF=15 Continuous Photon Energy Spectra

MT=16,17,91,102

Calculated with GNASH /6/.

References
MAT number = 3722

72-Hf-176 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K. Hida, T. Yoshida (NAIG) and K. Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range : 1.0E-5 eV to 700 eV.
Res. energies and Gam-n : BNL-325 /1/.
Gam-gamma : 0.060 eV assumed if unknown.
Radius : 7.6 fm

Unresolved resonances
Energy range : 700 eV to 50 keV.
S0, S1, R and Gam-gamma : Adjusted so that the calculated total and capture cross sections were reproduced well.

Results are D-obs = 55.7 eV, S0 = 2.00E-4, S1 = 1.00E-4, R = 9.1 fm and Gam-gamma = 0.054 eV.

2200 m/sec cross sections and calculated res. integrals.
2200 m/sec res. integ.
total 29.03 b
elastic 5.54 b
capture 23.48 b 894.1 b

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.

Above 50 keV :
MT=1.2.4.5-73.91.102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/. Deformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross section of natural hafnium, starting with the Haouat potential /4/.
V0 = 46.89-0.3*En, Ws = 3.84+0.4*En (En<10), Vso = 6.2 (MeV), 7.84 (En>10)
a0 = 0.63, as = 0.52, aso = 0.47 (fm), r0 = 1.24, rs = 1.24, rs0 = 1.12 (fm).

Beta-2 = 0.276, Beta-4 = 0.0.

The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/. The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.
V0 = 38.0, Ws = 8.0+0.5*SORT(En), Vso = 7.0 (MeV),
a0 = 0.47, as = 0.52, aso = 0.47 (fm), r0 = 1.32, rs = 1.32, rs0 = 1.32 (fm).

Capture cross section was normalized to the measured data of Beer et al. /6/ at 30 keV.
Competing processes (n, 2n), (n, 3n), (n, p), and (n, alpha) were
calculated with GNASH /7/ and fed to ECIS–CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0883</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.2902</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.5970</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.9960</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>1.1499</td>
<td>0 +</td>
</tr>
<tr>
<td>6</td>
<td>1.2266</td>
<td>2 +</td>
</tr>
<tr>
<td>7</td>
<td>1.2477</td>
<td>2 –</td>
</tr>
<tr>
<td>8</td>
<td>1.2932</td>
<td>0 +</td>
</tr>
<tr>
<td>9</td>
<td>1.3133</td>
<td>3 –</td>
</tr>
<tr>
<td>10</td>
<td>1.3413</td>
<td>2 +</td>
</tr>
<tr>
<td>11</td>
<td>1.3794</td>
<td>2 +</td>
</tr>
<tr>
<td>12</td>
<td>1.4046</td>
<td>4 –</td>
</tr>
<tr>
<td>13</td>
<td>1.4458</td>
<td>3 +</td>
</tr>
<tr>
<td>14</td>
<td>1.5777</td>
<td>3 +</td>
</tr>
<tr>
<td>15</td>
<td>1.6434</td>
<td>1 –</td>
</tr>
<tr>
<td>16</td>
<td>1.6723</td>
<td>1 +</td>
</tr>
<tr>
<td>17</td>
<td>1.7048</td>
<td>2 +</td>
</tr>
<tr>
<td>18</td>
<td>1.7102</td>
<td>3 –</td>
</tr>
<tr>
<td>19</td>
<td>1.7221</td>
<td>1 –</td>
</tr>
<tr>
<td>20</td>
<td>1.7675</td>
<td>2 –</td>
</tr>
<tr>
<td>21</td>
<td>1.7861</td>
<td>3 +</td>
</tr>
<tr>
<td>22</td>
<td>1.7937</td>
<td>3 –</td>
</tr>
<tr>
<td>23</td>
<td>1.8190</td>
<td>0 –</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.8400 MeV.

The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.

\[
\begin{array}{cccccc}
\text{Hf-176} & a/(\text{MeV}) & C/(\text{MeV}) & T(\text{MeV}) & E_x(\text{MeV}) & \text{Sigma} \\
22.77 & 2.74 & 0.454 & 4.38 & 6.09 \\
22.61 & 9.06 & 0.486 & 4.38 & 9.45 \\
\end{array}
\]

\[\text{MT}=3 \quad \text{Nonelastic}
\]

\[\text{Sum of MT}=4,16,17,102,103,107.
\]

\[\text{MT}=16,17,103,107 \quad (n,2n), (n,3n), (n,p) \text{ and } (n,\text{alpha})
\]

Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The pre-equilibrium parameter F2 was adjusted to reproduce the measured (n,2n) cross section at 14.5 MeV and resulted in F2=5.0.

\[\text{MT}=251 \quad \text{Mu-bar}
\]

Calculated with ECIS /2/ and CASTHY /3/.

\[\text{MT}=4 \quad \text{Angular Distributions of Secondary Neutrons}
\]

\[\text{MT}=2,31–73.91
\]

Calculated with ECIS /2/ and CASTHY /3/.

\[\text{MT}=10,17
\]

Isotropic in the laboratory system.

\[\text{MT}=5 \quad \text{Energy Distributions of Secondary Neutrons}
\]

\[\text{MT}=16,17,91
\]

Calculated with GNASH /7/.

\[\text{MT}=12 \quad \text{Photon Production Multiplicities}
\]
MT=16, 17, 91, 102, 103, 107
Calculated with GNASH // and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighboring nucleus Ta /12/.

EG1 = 15.23, EG2 = 12.3, Ep = 5.2 (MeV),
GG1 = 4.48, GG2 = 2.43, Gp = 2.5 (MeV),
sig-pygm/sig-GDR = 0.0245.

MT=51-73
Stored under Option-2 (transition probability array). Data were taken from /8/.

MF=14 Photon Angular Distributions
MT=16, 17, 51-68, 91, 102, 103, 107
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=16, 17, 91, 102, 103, 107
Calculated with GNASH //.

References
MAT number = 3723

72-Hf-177 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K.Hida, T.Yoshida
(NAIG) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters

Resolved resonances for MLBW formula
Energy range : 1.0E-5 eV to 250 eV.
Res. energies and Gam-n : BNL-325 /1/.
Gam-gamma : 0.065 eV assumed if unknown.
Radius : 7.0 fm

Unresolved resonances
Energy range : 250 eV to 50 keV.
S0, S1, R and Gam-gamma : Adjusted so that the calculated total
and capture cross sections were reproduced well.

Results are D-obs = 3.58 eV, S0 = 2.50E-4, S1 = 1.00E-4,
R = 7.3 fm and Gam-gamma = 0.065 eV.

2200 m/sec cross sections and calculated res. integrals.

<table>
<thead>
<tr>
<th>2200 m/sec</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>373.7 b</td>
</tr>
<tr>
<td>elastic</td>
<td>0.2 b</td>
</tr>
<tr>
<td>capture</td>
<td>373.5 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.

Above 50 keV :
MT=1,2,4,51-66,91,102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/.
Deformed optical potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hafnium,
starting with the Haouat potential /4/.

\[V0 = 46.82 - 0.3 \times E_n, \quad W_s = 3.81 + 0.4 \times E_n \quad (E_n < 10), \]
\[V_{so} = 6.2 \quad (MeV), \quad (E_n > 10) \]
\[a_0 = 0.63, \quad as = 0.52, \quad a_{so} = 0.47 \quad (fm), \]
\[r_0 = 1.24, \quad rs = 1.24, \quad r_{so} = 1.12 \quad (fm). \]

Beta-2 = 0.273, Beta-4 = 0.0.
The deformation parameter Beta-2 was determined from the
measured E2 transition probability data /5/.
The lowest three levels belonging to the ground state rotational band were
coupled in the calculation. The spherical optical potential for
CASTHY calculation is the same as that of JENDL-2.

\[V0 = 38.0, \quad W_s = 8.0 + 0.5 \times SORT(E_n), \quad W_{so} = 7.0 \quad (MeV), \]
\[a_0 = 0.47, \quad as = 0.52, \quad a_{so} = 0.47 \quad (fm), \]
\[r_0 = 1.32, \quad rs = 1.32, \quad r_{so} = 1.32 \quad (fm). \]

Capture cross section was normalized to the measured data of
Beer et al. /6/ at 30 keV.
Competing processes (n,2n), (n,3n), (n,p), and (n,alpha) were
calculated with GNASHP /7/ and fed to ECIS—CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>7/2 −</td>
</tr>
<tr>
<td>1</td>
<td>0.1130</td>
<td>9/2 −</td>
</tr>
<tr>
<td>2</td>
<td>0.2457</td>
<td>11/2 −</td>
</tr>
<tr>
<td>3</td>
<td>0.3213</td>
<td>9/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.4095</td>
<td>13/2 −</td>
</tr>
<tr>
<td>5</td>
<td>0.4267</td>
<td>11/2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.5081</td>
<td>5/2 −</td>
</tr>
<tr>
<td>7</td>
<td>0.5552</td>
<td>13/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.5913</td>
<td>15/2 −</td>
</tr>
<tr>
<td>9</td>
<td>0.6044</td>
<td>7/2 −</td>
</tr>
<tr>
<td>10</td>
<td>0.7085</td>
<td>15/2 +</td>
</tr>
<tr>
<td>11</td>
<td>0.7459</td>
<td>7/2 +</td>
</tr>
<tr>
<td>12</td>
<td>0.7945</td>
<td>17/2 −</td>
</tr>
<tr>
<td>13</td>
<td>0.8057</td>
<td>3/2 −</td>
</tr>
<tr>
<td>14</td>
<td>0.8474</td>
<td>9/2 +</td>
</tr>
<tr>
<td>15</td>
<td>0.8730</td>
<td>5/2 −</td>
</tr>
<tr>
<td>16</td>
<td>0.8828</td>
<td>17/2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 0.9480 MeV.

The level density parameters for Gilbert and Cameron’s formula /9/ are the same as those of JENDL-2.

<table>
<thead>
<tr>
<th>a(1/MeV)</th>
<th>C(1/MeV)</th>
<th>T(MeV)</th>
<th>Ex(MeV)</th>
<th>sigma−2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf-177</td>
<td>22.61</td>
<td>9.06</td>
<td>0.486</td>
<td>4.38</td>
</tr>
<tr>
<td>Hf-178</td>
<td>22.36</td>
<td>2.22</td>
<td>0.451</td>
<td>4.08</td>
</tr>
</tbody>
</table>

MT=3 Nonelastic
Sum of MT=4,16,17,102,103,107.
MT=16,17,103,107 (n,2n), (n,3n), (n,p) and (n,α) Calculated with GNASHP /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The preequilibrium parameter F2 was F2=5.0.

MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,5,56-66,91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16,17
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Calculated with GNASH /7/.

MF=12 Photon Production Multiplicities
MT=16,17,91,102,103,107
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman−type giant dipole resonance /11/ and the pygmy resonance whose parameter values
were cited from the neighbouring nucleus Ta [12].
EG1 = 15.23, EG2 = 12.3, Ep = 5.2 (MeV),
GG1 = 4.48, GG2 = 2.43, Gp = 2.5 (MeV),
sig-pygmY/sig-GDR = 0.0245.

MT=51-66
Stored under Option-2 (transition probability array). Data were taken from [8].

MF=14 Photon Angular Distributions
MT=16, 17, 51-66, 91, 102, 103, 107
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=16, 17, 91, 102, 103, 107
Calculated with GNASH [7].

References
MAT number = 3724

72-Hf-178 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
 Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K. Hida, T. Yoshida (NAIG) and K. Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range: 0.5 eV to 1.5 keV
Res. energies and Gam-mu: BNL=325 /1/.
Gam-gamma : 0.054 eV assumed if unknown.
Radius : 7.5 fm

Unresolved resonances
Energy range: 1.5 keV to 50 keV.
S0, S1, R and Gam-gamma: Adjusted so that the calculated total and capture cross section were reproduced well.

Results are D-obs = 89.9 eV, S0 = 2.20E-4, S1 = 0.51E-4,
R = 8.5 m and Gam-gamma = 0.054 eV.

2200 m/sec cross sections and calculated res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>88.49 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>4.46 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>84.03 b</td>
<td>1915.8 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 50 keV:
No background was given.
Above 50 keV:

MT=1,2,4,51-71,91,102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/.
Deformed optical potential for ECIS calculation was determined so as to reproduce the experimental total cross section of natural hafnium, starting with the Haouat potential /4/.

V0 = 46.74-0.3*En, Ws = 3.77+0.4*En (En<10), Vso = 6.2 (MeV).
7.77 (En>10)

a0 = 0.63, as = 0.52, aso = 0.47 (fm).
r0 = 1.24, rs = 1.24, rso = 1.12 (fm).

Beta-2 = 0.262, Beta-4 = 0.0.
The deformation parameter Beta-2 was determined from the measured E2 transition probability data /5/.
The lowest three levels belonging to the ground state rotational band were coupled in the calculation. The spherical optical potential for CASTHY calculation is the same as that of JENDL-2.

V0 = 38.0, Ws = 8.0+0.5*SqRT(En), Vso = 7.0 (MeV).
a0 = 0.47, as = 0.52, aso = 0.47 (fm).
r0 = 1.32, rs = 1.32, rso = 1.32 (fm).

Capture cross sections was normalized to the measured data of Beer et al. /6/ at 30 keV.
Competing processes (n,2n), (n,3n), (n,p), and (n, alpha) were
calculated with GNASH /7/ and fed to ECIS--CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0932</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.3056</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.6322</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>1.0585</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>1.1474</td>
<td>8 --</td>
</tr>
<tr>
<td>6</td>
<td>1.1746</td>
<td>2 +</td>
</tr>
<tr>
<td>7</td>
<td>1.1933</td>
<td>0 +</td>
</tr>
<tr>
<td>8</td>
<td>1.2602</td>
<td>2 --</td>
</tr>
<tr>
<td>9</td>
<td>1.2766</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>1.3099</td>
<td>1 --</td>
</tr>
<tr>
<td>11</td>
<td>1.3224</td>
<td>3 --</td>
</tr>
<tr>
<td>12</td>
<td>1.3624</td>
<td>2 --</td>
</tr>
<tr>
<td>13</td>
<td>1.3641</td>
<td>9 --</td>
</tr>
<tr>
<td>14</td>
<td>1.4340</td>
<td>0 +</td>
</tr>
<tr>
<td>15</td>
<td>1.4438</td>
<td>0 +</td>
</tr>
<tr>
<td>16</td>
<td>1.4790</td>
<td>8 --</td>
</tr>
<tr>
<td>17</td>
<td>1.4961</td>
<td>2 +</td>
</tr>
<tr>
<td>18</td>
<td>1.5136</td>
<td>1 --</td>
</tr>
<tr>
<td>19</td>
<td>1.5613</td>
<td>2 +</td>
</tr>
<tr>
<td>20</td>
<td>1.5665</td>
<td>1 --</td>
</tr>
<tr>
<td>21</td>
<td>1.6015</td>
<td>10 --</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.6400 MeV. The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.

$$ a(1/\text{MeV}) \quad C(1/\text{MeV}) \quad T(\text{MeV}) \quad E_{x}(\text{MeV}) \quad \sigma a^{2} $$

<table>
<thead>
<tr>
<th></th>
<th>Hf-178</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT=3</td>
<td>Nonelastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum of MT=4, 16, 17, 102, 103, 107.

MT=16, 17, 103, 107 (n, 2n), (n, 3n), (n, p) and (n, alpha)

Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The nonequilibrium parameter F2 was F2=5.0.

MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-71, 91
Calculated with ECIS /2/ and CASTHY /3/.

MT=16, 17
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 91
Calculated with GNASH /7/.

MF=12 Photon Production Multiplicities
MT=16, 17, 91, 102, 103, 107
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for
most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta /12/.

\[\begin{align*}
E_G1 &= 15.23, \quad E_G2 = 12.3, \quad E_p = 5.2 \text{ (MeV)}, \\
G_G1 &= 4.48, \quad G_G2 = 2.43, \quad G_p = 2.5 \text{ (MeV)}, \\
sig_{pygmy}/\sig_{GDR} &= 0.0245.
\end{align*}\]

MT=51-71
Stored under Option-2 (transition probability array). Data were taken from /8/.

MF=14 Photon Angular Distributions
MT=16,17,51-71,91,102,103,107
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=16,17,91,102,103,107
Calculated with GNAS /7/.

References
MAT number = 3725

72-Hf-179 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata(JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K.Hida, T.Yoshida
(NAIG) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range : 1.0E-5 eV to 250 eV
Res. energies and Gam-n : BNL-325 /1/. If unknown, Gam-n is
calculated from D-obs and S0 given
in /1/.
Gam-gamma : 0.066 eV assumed if unknown.
Radius : 7.8 fm
Unresolved resonances
Energy range : 250 eV to 50 keV.
S0, S1, R and Gam-gamma : Adjusted so that the calculated total
and capture cross sections were
reproduced well.
Results are D-obs = 5.71 eV, S0 = 2.20E-4, S1 = 0.83E-4,
R = 7.7 fm and Gam-gamma = 0.066 eV.

2200 m/sec cross sections and calculated res. integrals.

<table>
<thead>
<tr>
<th>Res.</th>
<th>2200 m/sec</th>
<th>total</th>
<th>49.5 b</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>elastic</td>
<td>6.8 b</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>capture</td>
<td>42.8 b</td>
<td>523.0 b</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 50 keV :
No background was given.
Above 50 keV :
MT=1,2,4,51-62,91,102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/. Deformed optical
potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hafnium,
starting with the Haouat potential /4/.
V0 = 46.66-0.3•En, Ws = 3.73+0.4•En (En<10), Vso = 6.2 (MeV),
7.73 (En>10)
a0 = 0.63, as = 0.52, aso = 0.47 (fm),
r0 = 1.24, rs = 1.24, rso = 1.12 (fm).
Beta-2 = 0.261, Beta-4 = 0.0.
The deformation parameter Beta-2 was determined from the
measured E2 transition probability data /5/. The lowest three
levels belonging to the ground state rotational band were
coupled in the calculation. The spherical optical potential for
CASTHY calculation is the same as that of JENDL-2.
V0 = 38.0, Ws = 8.0-0.5•SQRT(En), Vso = 7.0 (MeV),
a0 = 0.47, as = 0.52, aso = 0.47 (fm),
r0 = 1.32, rs = 1.32, rso = 1.32 (fm).
Capture cross section was normalized to the measured data of
Beer et al. /8/ at 30 keV.
Competing processes (n,2n), (n,3n), (n,p), and (n,α) were calculated with GNASH /7/ and fed to ECIS-CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

No.	Energy (MeV)	Spin-Parity
g.s. | 0.0 | 0/2 +
1 | 0.1227 | 1/2 +
2 | 0.2143 | 7/2 -
3 | 0.2888 | 13/2 +
4 | 0.3377 | 9/2 -
5 | 0.3750 | 1/2 -
6 | 0.4386 | 15/2 +
7 | 0.5184 | 5/2 -
8 | 0.6169 | 7/2 -
9 | 0.6312 | 17/2 +
10 | 0.8483 | 19/2 +
11 | 0.8702 | 7/2 -
12 | 1.0034 | 5/2 +

Continuum levels assumed above 1.0700 MeV.
The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.

MT=3	Nonelastic
Sum of MT=4,16,17,102,103,107.
MT=16,17,103,107 (n,2n), (n,3n), (n,p) and (n,α)
Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The preequilibrium parameter F2 was F2=5.0.

MT=251 Mu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MT=4 Angular Distributions of Secondary Neutrons
MT=2.51-62.91
Calculated with ECIS /2/ and CASTHY /3/.

MT=16,17 Isotropic in the laboratory system.

MT=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Calculated with GNASH /7/.

MT=12 Photon Production Multiplicities
MT=16,17,91,102,103,107
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta /12/.

EG1 = 15.23, EG2 = 12.3, Ep = 5.2 (MeV).
\[GG_1 = 4.48, \quad GG_2 = 2.43, \quad G_p = 2.5 \text{ (MeV)}, \]
\[\text{sig-pygm}/\text{sig-GDR} = 0.0245. \]

MT=51-62
Stored under Option-2 (transition probability array). Data were taken from /8/.

MF=14 Photon Angular Distributions
MT=16,17,51-62,91,102,103,107
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=16,17,91,102,103,107
Calculated with GNASH /7/.

References
MAT number = 3726

72-Hf-180 NAIG+ Eval-Jul89 Hida, Yoshida and Shibata (JAERI)
Dist-Sep89

History
89-07 New evaluation for JENDL-3 was made by K.Hida, T.Yoshida
(NAIG) and K.Shibata (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonances for MLBW formula
Energy range : 1.0E-5 eV to 2.5 keV
Res. energies and Gam-n : BNL-325 /1/. If unknown, Gam-n is
calculated from D-obs and S0, and
in this case, Gam-gamma from
(Gam-n)/(Gam-gamma)/(Gam-total).

Gam-gamma : 0.050 eV assumed if unknown.
Radius : 8.0 fm

Unresolved resonances
Energy range : 2.5 keV to 50 keV
S0, S1,R and Gam-gamma : Adjusted so that the calculated total
and capture cross sections were
reproduced well.

Results are D-obs = 158 eV, S0 = 1.90E-4, S1 = 0.44E-4,
R = 8.5 fm and Gam-gamma = 0.05 eV.

2200 m/sec cross sections and calculated res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>34.2 b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>21.2 b</td>
<td>-</td>
</tr>
<tr>
<td>capture</td>
<td>13.0 b</td>
<td>34.1 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 50 keV :
No background was given.

Above 50 keV :
MT=1,2,4,51-61,91,102 Total, elastic, inelastic and capture
Calculated with ECIS /2/ and CASTHY /3/. Deformed optical
potential for ECIS calculation was determined so as to reproduce
the experimental total cross section of natural hafnium,
starting with the Haouat potential /4/.

V0 = 46.60-0.3*En, Ws = 3.70+0.4*En (En<10), Vso = 6.2 (MeV).
7.70 (En>10)
a0 = 0.63, as = 0.52, aso = 0.47 (fm).
r0 = 1.24, rs = 1.24, rso = 1.12 (fm).
Beta-2 = 0.256, Beta-4 = 0.0.
The deformation parameter Beta-2 was determined from the
measured E2 transition probability data /5/. The lowest three
levels belonging to the ground state rotational band were
coupled in the calculation. The spherical optical potential for
CASTHY calculation is the same as that of JENDL-2.

V0 = 38.0, Ws = 8.0+0.5*SQRT(En), Vso = 7.0 (MeV).
a0 = 0.47, as = 0.52, aso = 0.47 (fm).
r0 = 1.32, rs = 1.32, rso = 1.32 (fm).
Capture cross section was normalized to the measured data of Beer et al. /6/ at 30 keV.
Competing processes (n,2n), (n,3n), (n,p), and (n,\alpha) were calculated with GNASH /7/ and fed to ECIS-CASTHY calculation. The level fluctuation and interference effects were considered. Level scheme was taken from Table of Isotopes /8/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.09332</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.3088</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.6409</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>1.0839</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>1.1416</td>
<td>8 -</td>
</tr>
<tr>
<td>6</td>
<td>1.1832</td>
<td>4 +</td>
</tr>
<tr>
<td>7</td>
<td>1.1997</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.2916</td>
<td>4 +</td>
</tr>
<tr>
<td>9</td>
<td>1.3744</td>
<td>3 -</td>
</tr>
<tr>
<td>10</td>
<td>1.4092</td>
<td>4 +</td>
</tr>
<tr>
<td>11</td>
<td>1.5393</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.6076 MeV.
The level density parameters for Gilbert and Cameron's formula /9/ are the same as those of JENDL-2.

\[
\begin{array}{cccc}
\text{Hf-180} & a(1/\text{MeV}) & C(1/\text{MeV}) & T(\text{MeV}) & \text{Ex}(\text{MeV}) & \sigma\text{meV} \\
21.37 & 2.35 & 0.519 & 5.42 & 7.64 \\
\text{Hf-181} & 21.91 & 6.47 & 0.479 & 4.08 & 4.88 \\
\end{array}
\]

MT=3 Nonelastic
Sum of MT=4,16,17,102,103,107.
MT=16,17,103,107 (n,2n), (n,3n), (n,p), and (n,\alpha)
Calculated with GNASH /7/. The transmission coefficients for the incident channel were generated with ECIS /2/, while those for the exit channels with ELIESE-3 /10/. The pre-equilibrium parameter F2 was F2=5.0.

MT=251 Nu-bar
Calculated with ECIS /2/ and CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-61.91
Calculated with ECIS /2/ and CASTHY /3/.
MT=16,17 isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Calculated with GNASH /7/.

MF=12 Photon Production Multiplicities
MT=16,17,91,102,103,107
Calculated with GNASH /7/ and stored under Option-1 (photon production multiplicities). The photon strength functions for most nuclei were taken from /1/, while those for some hafnium isotopes were determined from capture cross section normalization to the experimental data. The photon profile function is a superposition of the Berman-type giant dipole resonance /11/ and the pygmy resonance whose parameter values were cited from the neighbouring nucleus Ta /12/.

EG1 = 15.23, EG2 = 12.3, Ep = 5.2 (MeV).
GG1 = 4.48, GG2 = 2.43, Gp = 2.5 (MeV),
sig-pygmy/sig-GR = 0.0245.

MT=51–61
Stored under Option-2 (transition probability array). Data were
taken from /8/.

MF=14 Photon Angular Distributions
MT=16,17,51–61,91,102,103,107
Isotropic.

MF=15 Continuous Photon Energy Spectra
MT=16,17,91,102,103,107
Calculated with GNASH /7/.

References
8) Lederer C.M. and Shirley V.S.: Table of Isotopes 7th Edition
 (1979).
MAT number = 3731

73-Ta-181 NAIG Eval-Mar87 N.Yamamuro Dist-Sep89

HISTORY
76-03 The evaluation for JENDL-1 /1/ was made by H.Yamakoshi (Ship Research Institute) and JENDL-1 Compilation Group.
83-03 JENDL-1 data were adopted for JENDL-2 and extended to 20 MeV. MF=5 was revised, and unresolved resonance parameters were added by Y.Kikuchi (JAERI) /2/.
83-11 Comment data were added.
87-03 The evaluation for JENDL-3 was made by N.Yamamuro (NAIG). Resonance parameters were added by new experimental data. Neutron cross sections, except total and elastic scattering cross sections, and energy distributions of secondary neutrons and photons were calculated with GNASH /8/ and CASTHY /7/ codes.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters

Resolved parameters for MLBW formula

The energy region from 1.0E-5eV to 1.0 keV. Parameters were taken from Ref./3,4,5/ for positive resonances, and from ENDF/B-1V for a negative resonance. The radiative width of 0.059eV was assumed for the resonance whose radiative width was unknown.

Unresolved parameters

In the energy range from 1 to 100keV, parameters were determined to reproduce the measured capture cross sections /4,6/. The parameters are as follows:

\[R = 7.8 \text{ fm} \quad D_{obs} = 4.2 \text{ eV} \quad \text{radiative width} = 0.085 \text{ eV} \]
\[S_0 = 1.7E-04 \quad S_1 = 2.0E-05 \quad S_2 = 2.3E-04 \quad N_L = 3 \]

Calculated 2200-m/sec cross sections and resonance integrals

\[
\begin{align*}
\text{2200-m/sec} & \quad \text{res. integ} \\
\text{elastic} & \quad 5.65 \text{ b} \quad - \\
\text{capture} & \quad 20.67 \text{ b} \quad 660.43 \text{ b} \\
\text{total} & \quad 26.32 \text{ b} \quad -
\end{align*}
\]

MF=3 Neutron Cross Sections
MT=1 Total
Evaluated from experimental data.

MT=2 Elastic scattering
(Total cross section) - (reaction cross section)

MT=4.51-64.91 Inelastic scattering
Below 3 MeV, calculated with optical and statistical model code CASTHY /7/, and above 3 MeV calculated with statistical and pre-equilibrium model code GNASH /8/. Wilmore-Hodgson’s optical-model potential parameters /9/ were used, which reproduced the experimental nonelastic cross
sections up to 15 MeV.

\[V = 47.01 - 0.267\times 0.00118 \text{ (MeV)} \]
\[W_s = 0.52 - 0.053\text{ (MeV)} \]
\[r_o = 1.268, \quad a_s = 0.66 \text{ (fm)} \]
\[r_s = 1.241, \quad a_s = 0.48 \text{ (fm)} \]

The level scheme was adopted from Ref. /10/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin–parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>7/2+</td>
</tr>
<tr>
<td>1</td>
<td>0.0062</td>
<td>9/2–</td>
</tr>
<tr>
<td>2</td>
<td>0.136</td>
<td>9/2+</td>
</tr>
<tr>
<td>3</td>
<td>0.159</td>
<td>11/2–</td>
</tr>
<tr>
<td>4</td>
<td>0.301</td>
<td>11/2+</td>
</tr>
<tr>
<td>5</td>
<td>0.338</td>
<td>13/2–</td>
</tr>
<tr>
<td>6</td>
<td>0.482</td>
<td>5/2+</td>
</tr>
<tr>
<td>7</td>
<td>0.495</td>
<td>13/2+</td>
</tr>
<tr>
<td>8</td>
<td>0.543</td>
<td>15/2–</td>
</tr>
<tr>
<td>9</td>
<td>0.615</td>
<td>1/2+</td>
</tr>
<tr>
<td>10</td>
<td>0.619</td>
<td>3/2+</td>
</tr>
<tr>
<td>11</td>
<td>0.717</td>
<td>15/2+</td>
</tr>
<tr>
<td>12</td>
<td>0.773</td>
<td>17/2–</td>
</tr>
<tr>
<td>13</td>
<td>0.965</td>
<td>17/2+</td>
</tr>
<tr>
<td>14</td>
<td>1.028</td>
<td>19/2–</td>
</tr>
</tbody>
</table>

Levels above 1.03 MeV were assumed to overlapping.
Level density parameters used as follows.

<table>
<thead>
<tr>
<th>1/MeV</th>
<th>Pair-E</th>
<th>T(MeV)</th>
<th>E (MeV)</th>
<th>Spin-cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta–178</td>
<td>22.5</td>
<td>0.0</td>
<td>0.54</td>
<td>4.2</td>
</tr>
<tr>
<td>Ta–179</td>
<td>22.0</td>
<td>0.4</td>
<td>0.53</td>
<td>4.2</td>
</tr>
<tr>
<td>Ta–180</td>
<td>22.5</td>
<td>0.0</td>
<td>0.54</td>
<td>4.2</td>
</tr>
<tr>
<td>Ta–181</td>
<td>22.0</td>
<td>0.73</td>
<td>0.52</td>
<td>4.3</td>
</tr>
<tr>
<td>Ta–182</td>
<td>21.8</td>
<td>0.0</td>
<td>0.56</td>
<td>4.3</td>
</tr>
</tbody>
</table>

MT=16 (n, 2n) cross section
Calculated with GNASH /8/.

MT=17 (n, 3n) cross section
Calculated with GNASH /8/.

MT=28 (n, n p) cross section
Calculated with GNASH /8/.

MT=102 Radiative capture cross section
Calculated with CASTHy /7/.

MT=103 (n,p) cross section
Calculated with GNASH /8/.

MT=203 Total Hydrogen Production
Calculated with GNASH /8/.

MT=251 Mu-bar
Calculated with CASTHy /7/.

MF=4 Angular Distributions of Secondary Neutrons
Calculated with CASTHy /7/.

MT=51–64, 91, 16, 17, 28
Isotropic in the center-of-mass system was assumed.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 28, 91
 Calculated with GNASH/8/.

MF=12 Photon Production Multiplicities (option 1)
 MT=51-64, 91, 16, 17, 28, 102, 103
 Calculated with GNASH/8/.

MF=14 Photon Angular Distributions
 Isotropic in the center-of-mass system was assumed.

MF=15 Continuous Photon Energy Spectra
 MT=91, 16, 17, 28, 102, 103
 Calculated with GNASH/8/.

References
5) Tsubone, I., Nakajima, Y. and Kanda, Y.: private communication
6) Yamamoto, N., Saito, K., Emoto, T., Wada, T., Fujita, Y. and
8) Young, P.G. and Arthur, E.D.: "GNASH, Aprequilibrium statistical
 Nuclear-Model Code for Calculation of cross sections and
MAT number = 3740

74-W - 0 KHI, NEDAC Eval-Mar87 T.Watanabe(KHI), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.
89-08 MF/MT=15/102 modified.

MF=1 General Information
MT=451 Descriptive data and dictionary
All the data were constructed with the evaluated ones of W-182, -183, -184 and -186, taking account of their abundances in the W element. The abundance data were taken from ref./1/ to be 0.263, 0.143, 0.3067 and 0.286 for W-182, -183, -184 and -186, respectively. All the data of W-180 were ignored because of its very low abundance.

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were taken from the evaluated data on each stable isotope of tungsten.
The energy region was taken from 1.0E-5 eV to 12 keV.
Calculated 2200 m/sec cross sections and resonance integrals are as follows:

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>4.97</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>18.25</td>
<td>317.5</td>
</tr>
<tr>
<td>total</td>
<td>23.22</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 12 keV, background cross section was given to compensate the cross section of W-183 in the energies of 2.2 to 12 keV.
Above 12 keV, the total and partial cross sections were given pointwise.

MT=1 Total
The data were constructed from the evaluated ones for four W isotopes in taking account of their abundances.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections from the total cross section.

MT=4, 51-90, 91 Inelastic scattering
The data were constructed from the evaluated ones for each W isotope as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy(MeV)</th>
<th>W-182</th>
<th>W-183</th>
<th>W-184</th>
<th>W-186</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>0.0</td>
<td>51</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>51</td>
<td>0.0466</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>52</td>
<td>0.0981</td>
<td></td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>53</td>
<td>0.1001</td>
<td>51</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>54</td>
<td>0.1112</td>
<td></td>
<td>51</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>55</td>
<td>0.1226</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0.2070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>0.2088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.2917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>0.3089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.3095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 of Natural Tungsten

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>0.3294</td>
<td>52</td>
</tr>
<tr>
<td>62</td>
<td>0.3641</td>
<td>52</td>
</tr>
<tr>
<td>63</td>
<td>0.3968</td>
<td>52</td>
</tr>
<tr>
<td>64</td>
<td>0.4171</td>
<td>58</td>
</tr>
<tr>
<td>65</td>
<td>0.4870</td>
<td>59</td>
</tr>
<tr>
<td>66</td>
<td>0.5510</td>
<td>60</td>
</tr>
<tr>
<td>67</td>
<td>0.6805</td>
<td>53</td>
</tr>
<tr>
<td>68</td>
<td>0.7377</td>
<td>53</td>
</tr>
<tr>
<td>69</td>
<td>0.7483</td>
<td>53</td>
</tr>
<tr>
<td>70</td>
<td>0.8088</td>
<td>54</td>
</tr>
<tr>
<td>71</td>
<td>0.8618</td>
<td>55</td>
</tr>
<tr>
<td>72</td>
<td>0.8820</td>
<td>56</td>
</tr>
<tr>
<td>73</td>
<td>1.0023</td>
<td>55</td>
</tr>
<tr>
<td>74</td>
<td>0.9236</td>
<td>57</td>
</tr>
<tr>
<td>75</td>
<td>1.0059</td>
<td>58</td>
</tr>
<tr>
<td>76</td>
<td>1.0070</td>
<td>58</td>
</tr>
<tr>
<td>77</td>
<td>1.0316</td>
<td>59</td>
</tr>
<tr>
<td>78</td>
<td>1.0452</td>
<td>60</td>
</tr>
<tr>
<td>79</td>
<td>1.1214</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>1.1357</td>
<td>54</td>
</tr>
<tr>
<td>81</td>
<td>1.1445</td>
<td>55</td>
</tr>
<tr>
<td>82</td>
<td>1.1500</td>
<td>55</td>
</tr>
<tr>
<td>83</td>
<td>1.2213</td>
<td>56</td>
</tr>
<tr>
<td>84</td>
<td>1.2214</td>
<td>61</td>
</tr>
<tr>
<td>85</td>
<td>1.2840</td>
<td>62</td>
</tr>
<tr>
<td>86</td>
<td>1.2941</td>
<td>62</td>
</tr>
<tr>
<td>87</td>
<td>1.3311</td>
<td>63</td>
</tr>
<tr>
<td>88</td>
<td>1.3221</td>
<td>63</td>
</tr>
<tr>
<td>89</td>
<td>1.4428</td>
<td>58</td>
</tr>
</tbody>
</table>

The threshold for the inelastic scattering to the continuum was set to be 0.68 MeV for convenience of the file making.

MT=16, 22, 28, 102, 103 and 107 (n,2n), (n,na), (n,np), (n,\(\gamma\)), (n,p) and (n,a)

Constructed from the evaluated data for four stable isotopes of W, taking account of their abundances in the W element.

The calculated capture cross section for each W isotope was normalized so as to reproduce the element W data of 72 mb at 500 keV/2/.

MT=251 Mu-bar
Calculated from MF/MT=4/2.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Constructed from the evaluated data for four stable isotopes of W, taking account of their abundances in the W element.

MT=51-90, 91
Constructed from the evaluated data for four stable isotopes of W, taking account of their abundances in the W element.

MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Constructed from the evaluated data for four stable isotopes.
of W, taking account of their abundances in the W element.

MF=12 Photon Production Multiplicities
MT=102
 Calculated with the GNASH code/3/.

MF=13 Photon Production Cross Sections
MT=3
 Calculated with the GNASH code/3/.

MF=14 Photon Angular Distributions
MT=3, 102
 Assumed to be isotropic in the laboratory system.

MF=15 Continuous Photon Energy Spectra
MT=3
 Calculated with the GNASH code/3/.
MT=102
 Calculated with the GNASH code/3/ and modified
 by using the data in ENSDF/4/ at thermal energy.

References
4) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3741

74-W -182 KHI,NEDAC Eval-Mar87 T.Watanabe(KHI), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 12 keV.
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL./4/.
For unknown radiative width, an average value of 53 milli eV
was assumed.
Parameters for negative resonance were selected so that the
2200 m/s cross section for capture reproduced gave a recommend-
ed value of 20.7 barns/4/ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.5 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th>Mode</th>
<th>2200 m/s cross section(b)</th>
<th>res. integral(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>8.84</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>20.7</td>
<td>628.6</td>
</tr>
<tr>
<td>total</td>
<td>29.5</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 12 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated resolv-
ed resonance parameters with MLBW formula.
Above 12 keV, the total and partial cross sections were given
pointwise using the data taken mainly from the theoretical cal-
culations. The total, elastic and inelastic scattering, and
capture cross sections were calculated based on the coupled-
channel model and the spherical optical-statistical model.
The calculations were performed with a combined program of
the CASTHY code/5/ and the ECIS code/6/.
The optical potential parameters used are:
V = 48.83 - 0.0809*En, Vso = 5.6 (MeV)
Ws = 6.73 - 0.0536*En, Wv = 0 (MeV)
\(r = 1.168, rs = 1.288, rsa = 1.592\) (fm)
a = 0.617, aso = 0.664, b = 0.563 (fm)
The deformed potential parameters were taken from the work of
Delaroche/7/.

MT=1 Total
As described above, calculated with the combined program of the
ECIS and CASTHY codes.

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=3, 51-58, 91 Inelastic scattering
Calculated with the combined program of the ECIS/6/ and CASTHY
/5/, taking account of the contribution from the competing processes.
The level data used in the above calculations were taken
from ref. 8 as follows:

<table>
<thead>
<tr>
<th>MT</th>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>1</td>
<td>0.1001</td>
<td>2+</td>
</tr>
<tr>
<td>2</td>
<td>0.3294</td>
<td>4+</td>
</tr>
<tr>
<td>3</td>
<td>0.6805</td>
<td>6+</td>
</tr>
<tr>
<td>4</td>
<td>1.1357</td>
<td>0+</td>
</tr>
<tr>
<td>5</td>
<td>1.4445</td>
<td>8+</td>
</tr>
<tr>
<td>6</td>
<td>1.2214</td>
<td>2+</td>
</tr>
<tr>
<td>7</td>
<td>1.2574</td>
<td>2+</td>
</tr>
<tr>
<td>8</td>
<td>1.2892</td>
<td>2-</td>
</tr>
<tr>
<td>9</td>
<td>1.3311</td>
<td>3+</td>
</tr>
<tr>
<td>10</td>
<td>1.3738</td>
<td>3-</td>
</tr>
<tr>
<td>11</td>
<td>1.4428</td>
<td>4+</td>
</tr>
<tr>
<td>12</td>
<td>1.4675</td>
<td>4-</td>
</tr>
<tr>
<td>13</td>
<td>1.5103</td>
<td>4+</td>
</tr>
<tr>
<td>14</td>
<td>1.5532</td>
<td>4-</td>
</tr>
<tr>
<td>15</td>
<td>1.6213</td>
<td>5-</td>
</tr>
<tr>
<td>16</td>
<td>1.6236</td>
<td>5+</td>
</tr>
<tr>
<td>17</td>
<td>1.6604</td>
<td>5-</td>
</tr>
</tbody>
</table>

Levels above 1.6863 MeV were assumed to be overlapping.

The calculated data for the inelastic scattering were finally
lumped for the convenience on the construction of the element
data, as follows:

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy (MeV)</th>
<th>Lumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.1001</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>0.3294</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>0.6805</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>1.1357</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>1.1445</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>1.2214</td>
<td>6-8</td>
</tr>
<tr>
<td>57</td>
<td>1.3311</td>
<td>9-10</td>
</tr>
<tr>
<td>58</td>
<td>1.4428</td>
<td>11-17</td>
</tr>
</tbody>
</table>

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/9/ including the precompound
effect. Transmission coefficients for neutrons, protons and
alphas were calculated with the ELIESE-3 code/10/ using the
above optical model parameters, the Menet's ones/11/ and the
Huizenga-Igo's/12/. respectively.
Calculated data for the (n,p) cross sections were normalized
to the Qain's experimental data of 5.9 milli barns at 14.7 MeV
/13/.

MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 72 mb
at 500 keV of Gronier et al.'s data/14/.

MT=251 Mu-bar
Calculated with the optical model.

MT=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the CASTHY code/5/.

MT=51-58, 91
Calculated with the combined program of the CASTHY/5/ and ECIS/5/ codes.

MT=16, 22, 28
Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.

References

8) ENSDF (Evaluated Nuclear Structure Data File)
MAT number = 3742

74-W -183 KHI.NEDAC Eval-Mar87 T.Watanabe(KHI), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance parameters
MT=151 Resolved resonance parameters

Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 2.2 keV.
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL/4/.
For unknown radiative width, an average value of 55 milli eV
was assumed.
Parameters for negative resonance were selected so that the
2200 m/s cross section for capture reproduced gave a recommend-
ed value of 10.2 barns/4/ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.3 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

\[
\begin{array}{ll}
\text{elastic} & 2.38 \\
\text{capture} & 10.11 \\
\text{total} & 12.49 \\
\end{array}
\]

MF=3 Neutron Cross Sections
Below 2.2 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated
resonance parameters with MLBW formula.
Above 2.2 keV, the total and partial cross sections were given
pointwise.

MT=1 total
Optical and statistical model calculation was made with
CASTHY code/5/.
The optical potential parameters used are:
\[
\begin{align*}
V &= 48.83 - 0.0809\times E_n, \quad V_{so} = 5.6 \quad (\text{MeV}) \\
W_s &= 6.73 - 0.0536\times E_n, \quad W_v = 0 \quad (\text{MeV}) \\
r &= 1.168, \quad r_s = 1.268, \quad r_{so} = 1.592 \quad (\text{fm}) \\
a &= 0.617, \quad a_{so} = 0.664, \quad b = 0.563 \quad (\text{fm})
\end{align*}
\]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-60, 91 Inelastic scattering
Calculated with CASTHY/5/.
The direct component was calculated with the coupled-channel optical model code ECIS/6/.
The deformed potential parameters used were taken from the
work of Delaroche/7/.
The level data used in the above two calculations were taken
from ref./8/ as follows:

\[
\begin{array}{ccc}
\text{g.s.} & 0.0 & 0^+ \\
1 & 0.0465 & 3^- \\
\end{array}
\]
2 of Tungsten-183

<table>
<thead>
<tr>
<th>Levels above 0.680 MeV were assumed to be overlapping.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy (MeV)</th>
<th>Lumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.0485</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>0.0991</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>0.2070</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>0.2088</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>0.2917</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>0.3089</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>0.3095</td>
<td>7</td>
</tr>
<tr>
<td>58</td>
<td>0.4121</td>
<td>8 - 9</td>
</tr>
<tr>
<td>59</td>
<td>0.4870</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>0.5510</td>
<td>11 - 13</td>
</tr>
</tbody>
</table>

MT=16, 22, 28, 103, 107 \((n,2n), (n,\alpha), (n,np), (n,p), (n,a) \) calculated with the GNASH code/9/ including the precompound effect. Transmission coefficients for neutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menet's ones/11/ and the Huizenga-Igo's/12/ respectively.

Calculated data for the \((n,p) \) cross sections were normalized to the Qaim's experimental data of 4.1 milli barns at 14.7 MeV /13/.

MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 70 mb at 500 keV/14/.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Calculated with the CASTHY code/5/.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.
References

8) ENSDF (Evaluated Nuclear Structure Data File).
MAT number = 3743

74-W -184 KHL,NEDAC Eval-Mar87 T.Watanabe(KHL), T.Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T.Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 12 keV.
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL/4/.
For unknown radiative width, an average value of 57 milli eV
was assumed.
Parameters for negative resonance were selected so that the
2200 m/s cross section for capture reproduced gave a recommend-
ed value of 1.7 barns/4/ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.5 Fermi.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

\begin{array}{ll}
\text{elastic} & 7.35 \\
\text{capture} & 1.70 \\
\text{total} & 9.05 \\
\end{array}

MF=3 Neutron Cross Sections
Below 12 keV, no background cross section was given and all the
cross-section data are reproduced from the evaluated resolved
resonance parameters with MLBW formula.
Above 12 keV, total and the partial cross sections were given
pointwise.

MF=1 Total
Optical and statistical model calculation was made with
CASTHY code/5/. The optical potential parameters used are:
\[V = 48.83 - 0.0809\cdot\text{En}, \quad V_{so} = 5.6 \quad (\text{MeV}) \]
\[W_s = 6.73 - 0.0536\cdot\text{En}, \quad W_{v} = 0 \quad (\text{MeV}) \]
\[r = 1.168, \quad r_s = 1.268, \quad r_{so} = 1.592 \quad (\text{fm}) \]
\[a = 0.617, \quad a_{so} = 0.664, \quad b = 0.563 \quad (\text{fm}) \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4 51-61. 81 inelastic scattering
Calculated with CASTHY code/5/, taking account of the contri-
bution from the competing processes. The direct component was
calculated with the coupled-channel optical model code ECIS/6/.
The deformed potential parameters used were taken from the
work of Delaroche/7/.
The level data used in the above two calculations were taken
from ref./8/ as follows:

\begin{array}{llll}
\text{Level energy (MeV)} & \text{Spin-parity} & \text{g.s.} & 0.0 \\
\end{array}

1 of Tungsten-184
Levels above 1.4739 MeV were assumed to be overlapping.

The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:

<table>
<thead>
<tr>
<th>MT no.</th>
<th>Level energy(MeV)</th>
<th>Lumpings</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0.1112</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>0.3641</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>0.7483</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>0.9033</td>
<td>4</td>
</tr>
<tr>
<td>55</td>
<td>1.0023</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>1.0059</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>1.1214</td>
<td>7-9</td>
</tr>
<tr>
<td>58</td>
<td>1.2213</td>
<td>10</td>
</tr>
<tr>
<td>59</td>
<td>1.2850</td>
<td>11</td>
</tr>
<tr>
<td>60</td>
<td>1.2941</td>
<td>12</td>
</tr>
<tr>
<td>61</td>
<td>1.3221</td>
<td>13-19</td>
</tr>
</tbody>
</table>

MT=16, 22, 28, 103, 107 (n,2n), (n,na), (n,np), (n,p), (n,a)
Calculated with the GNASH code/9/, including the precompound effect. Transmission coefficients for neutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menet’s ones/11/ and the Huizenga-Igo’s/12/, respectively.
Calculated data for the (n,p) cross sections were normalized to the Qaim’s experimental data of 2.9 milli barns at 14.7 MeV /13/.
Calculated data for the (n,np) cross sections were normalized to the Qaim’s experimental data of 0.85 milli barn at 14.7 MeV /13/.

MT=102 Capture
Calculated with the CASTHY code/5/ and normalized to 49 mb at 500 keV/14/.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons

MT=2
Calculated with the CASTHY code/5/.

MT=51–61, 91

Calculated with the combined program of the CASTHY/5/ and ECIS/6/ codes.

MT=16, 22, 28

Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 22, 28, 91

Calculated with the GNASH code/9/.

References
8) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3744

74-W -186 KHI, NEDAC Eval-Mar87 T. Watanabe(KHI), T. Asami(NEDAC)
Dist-Sep89

History
87-03 New evaluation was made for JENDL-3.
87-03 Compiled by T. Asami.

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters
Resolved parameters for MLBW formula were given in
the energy region from 1.0E-5 eV to 12 keV.
Parameters were evaluated in examining both the experimental
data/1/ - /3/ and the recommended data of BNL/4/.
For unknown radiative width, an average value of 60 milli eV
was assumed.
Parameters for negative resonance were selected so that the
2200 m/s cross section for capture reproduced gave a recommend-
ed value of 37.8 barns/4/ and gave a good fit to the experi-
mental data for total cross sections around thermal energies.
The scattering radius was assumed to be 7.64 Fermi/4/.
Calculated 2200 m/sec cross sections and resonance integrals
are as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>0.14</td>
</tr>
<tr>
<td>Capture</td>
<td>37.89</td>
</tr>
<tr>
<td>Total</td>
<td>38.03</td>
</tr>
<tr>
<td>Res. Integral(b)</td>
<td>347.1</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 12 keV, zero background cross section was given and all
the cross-section data are reproduced from the evaluated resolv-
ed resonance parameters with MLBW formula.
Above 12 keV, the total and partial cross sections were given
pointwise.

MT=1 total
Optical and statistical model calculation was made with
CASTHY code/5/.
The optical potential parameters used are:
\[V = 48.83 - 0.0809 \cdot E_n, \quad V_{so} = 5.6 \quad (MeV) \]
\[W_s = 6.73 - 0.0536 \cdot E_n, \quad W_v = 0 \quad (MeV) \]
\[r = 1.168, \quad rs = 1.268, \quad r_{so} = 1.592 \quad (fm) \]
\[a = 0.617, \quadaso = 0.664, \quad b = 0.563 \quad (fm) \]

MT=2 Elastic scattering
Obtained by subtracting the sum of the partial cross sections
from the total cross section.

MT=4, 51-02, 91 Inelastic scattering
Calculated with CASTHY/5/, taking account of the contribu-
tion from the competing processes. The direct component
was calculated with the coupled-channel optical model code ECIS/6/.
The deformed potential parameters used were taken from the
work of Delaroche/7/.
The level data used in the above two calculations were taken
from ref./8/ as follows:
<table>
<thead>
<tr>
<th>Level energy (MeV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>MT no.</td>
<td>Level energy (MeV)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>51</td>
<td>0.1226</td>
</tr>
<tr>
<td>52</td>
<td>0.3968</td>
</tr>
<tr>
<td>53</td>
<td>0.7377</td>
</tr>
<tr>
<td>54</td>
<td>0.8088</td>
</tr>
<tr>
<td>55</td>
<td>0.8618</td>
</tr>
<tr>
<td>56</td>
<td>0.8820</td>
</tr>
<tr>
<td>57</td>
<td>0.9526</td>
</tr>
<tr>
<td>58</td>
<td>1.0070</td>
</tr>
<tr>
<td>59</td>
<td>1.0316</td>
</tr>
<tr>
<td>60</td>
<td>1.0452</td>
</tr>
<tr>
<td>61</td>
<td>1.1500</td>
</tr>
<tr>
<td>62</td>
<td>1.2840</td>
</tr>
</tbody>
</table>

Levels above 1.3925 MeV were assumed to be overlapping.

The calculated data for the inelastic scattering were finally lumped for the convenience on the construction of the element data, as follows:

MT=16, 22, 28, 103, 107 \((n,2n), (n,na), (n,np), (n,p), (n,a) \)

Calculated with the GNASH code/9/ including the precompound effect. Transmission coefficients for neutrons, protons and alphas were calculated with the ELIESE-3 code/10/ using the above optical model parameters, the Menat's ones/11/ and the Huizenga-Igo's/12/, respectively.

Calculated data for the \((n,p)\) cross sections were normalized to the Qaim's experimental data of 2.75 milli barns at 14.7 MeV/13/.

Calculated data for the \((n,np)\) cross sections were normalized to the Qaim's experimental data of 0.25 milli barns at 14.5 MeV/13/.

MT=102 Capture \(\text{Calculated with the CASTHY code/5/ and normalized to 49 mb at 100 keV/14/} \).

MT=251 Mu-bar \(\text{Calculated with the optical model} \).

MT=4 Angular Distributions of Secondary Neutrons

MT=2 \(\text{Calculated with the CASTHY code/5/} \).

MT=51-62, 91 \(\text{Calculated with the combined program of the CASTHY/5/ and ECIS/6/ codes} \).
MT=16, 22, 28
Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 22, 28, 91
Calculated with the GNASH code/9/.

References
8) ENSDF(Evaluated Nuclear Structure Data File)
MAT number = 3820

82-Pb- 0 JAERI Eval-Jul87 M.Mizumoto
 Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revision is recommended.
89-09 Revision is completed.
 Compilation was made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula

Resonance ranges:
Pb-204: 1.0E-5 eV to 50 keV
Pb-206,Pb-207,Pb-208: 1.0E-05 to 480 keV

Parameters were evaluated from the following exp. data.
Pb-204:Horen+84 /1/
Pb-206:Horen+79 /2/, Mizumoto+79 /3/
Pb-207:Allen+73 /4/, Raman+77 /5/, Horen+81 /6/
Pb-208:Allen+73 /4/, Macklin+77 /7/, Horen+86 /8/
The s-wave resonance energy of Pb-208 at 506 keV was changed
to 525 keV in order to the interference minimum around 500 keV.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>11.261 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.172 b</td>
<td>0.137 b</td>
</tr>
<tr>
<td>total</td>
<td>11.433 b</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 480 keV
Background cross sections are given for the elastic scattering cross section.

Above 480 keV

MT=1 Total
Cross sections in the energy range from 480 keV to 15 MeV were
obtained based on the experimental data of Schwartz+77 /9/.
Above 15 MeV. cross sections were calculated with an optical
statistical model code CASTHY /10/. The optical potential
parameters were obtained by fitting average total cross section
of natural lead as follows.
V=47.0 - 0.250-E, Ws = 2.30 + 0.41E, Vso = 6.0 (MeV)
r0 = 1.25, rs = 1.30, rso = 1.30 (fm)
a0 = 0.65, b = 0.48, as0 = 0.689 (fm)
Level density parameters were determined using low-lying
level data and observed neutron resonance spacing.

MT=2 Elastic scattering
(Total)-(All other partial cross sections)

MT=4,51=90,91 Inelastic scattering
Calculated with CASTHY /10/ and a DWBA calculation code DWUCK
/11/ for each isotope and constructed according to their isotopic
abundances.

Level scheme was taken from Ref /12/.
Levels above 2.200 MeV were assumed to be continuum.
Levels without (•) marks are calculated with only CASTHY /10/.

MT=16,17 (n,2n) and (n,3n)

Calculated for each isotope with a multi-step Hauser Feshbach code GNASH /13/, in which the Ignatyuk level density formula /14/ was incorporated, and constructed according to the isotopic abundances.

The (n,2n) cross section was normalized to the averaged value 2.184 b at 14 MeV based on the experimental values by Frehaut+80 /15/, Iwasaki+85 /16/ Yanagi+82 /17/ and Takahashi+85 /18/.

MT=22 (n,n'alpha)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MT=28 (n,n'p)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MT=102 capture
Calculated with CASTHY /10/ for Pb-204, Pb-206 and Pb-207. For Pb-208, estimated from the experimental data. The capture cross section of natural lead was constructed from these isotopes.

MT=103 (n,p)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MT=107 (n,a)
Calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MT=251 Mu-bar
Calculated with CASTHY /10/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51–90 : calculated with CASTHY /10/ and DWUCK /11/ for each isotope and constructed according to their abundances.
MT=16.17.22.28.91: assumed to be isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.22.28.91: calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=102: calculated with GNASH /13/.

MF=13 Gamma-ray Production Cross Sections
MT=3: calculated with GNASH /13/ for each isotope and constructed according to their abundances.

MF=14 Angular Distributions of Secondary Gamma-rays
MT=3.102: assumed isotropic.

MF=15 Energy Distribution of Secondary Gamma-rays
MT=3.102: calculated with GNASH /13/ for each isotope and constructed according to their abundances.

References
12) Lederer C.M. and Shirley V.S.: Table of isotopes, 7th ed.
MAT number = 3821

82-Pb-204 JAERI Eval-Jul87 M. Mizumoto
Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M. Mizumoto (JAERI)
87-11 Revision is recommended.
89-09 Revision is completed.
Compilation was made by T. Narita and T. Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Resonance ranges: 1.0E-5 eV to 50 keV
Parameters were evaluated from the data of Horen+84 /1/.
Effective scattering radius of 8.5 fm was selected.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>11.197 b</td>
</tr>
<tr>
<td>capture</td>
<td>0.681 b</td>
</tr>
<tr>
<td>total</td>
<td>11.857 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 50 keV
Background cross sections are given for the elastic scattering cross section.

Above 50 keV
Cross sections were obtained from optical and statistical model calculations. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.

V = 47.0 - 0.250E, Ws = 2.30 + 0.41E, Vso = 6.0 (MeV)
\(r_0 = 1.25 \) \(, r_s = 1.30 \) \(, r_{so} = 1.30 \) (fm)
\(a_0 = 0.66 \) \(, b = 0.48 \) \(, a_{so} = 0.889 \) (fm)

Level density parameters were determined using low-lying level data and observed neutron resonance spacing.

MT=1 Total
Calculated with optical and statistical mode code CASTHY /2/

MT=2 Elastic scattering
(Total)-(All other partial cross sections)

MT=4, 5, 51-56, 91 Inelastic scattering
Calculated with CASTHY /2/

Level scheme taken from Ref. /3/

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
</table>
g.s. | 0.0 | 0.0 + |
1 | 0.8882 | 2.0 + |
2 | 1.2739 | 4.0 + |
3 | 1.5627 | 4.0 + |
4 | 1.8174 | 4.0 + |
5 | 2.0649 | 5.0 + |
6 | 2.1855 | 9.0 - |

Levels above 2.200 MeV were assumed to be continuum.
MT=16,17 (n,2n) and (n,3n)
Calculated with a multi-step Hauser Feshbach model code GNASH/4/
in which the Ignatyuk level density formula/5/ was incorporated.
The (n,2n) cross section is normalized at 14 MeV to 2.12 barns
by Ikeda+87 /6/.
MT=22 (n,n'alpha)
Calculated with GNASH /4/.
MT=28 (n,n'p)
Calculated with GNASH /4/.
MT=102 capture
Calculated with CASTHY /2/ and normalized to 0.661 barn
at 0.025 eV.
MT=103 (n,p)
Calculated with GNASH /4/.
MT=107 (n,a)
Calculated with GNASH /4/.
MT=251 Mu-bar
Calculated with CASTHY /2/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-56 : calculated with CASTHY /2/.
MT=16,17,22,28 : assumed to be isotropic in the lab system.
MT=91 : assumed the same distributions in the lab.
system as those calculated with CASTHY /2/ in the center-of-mass system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28,91: calculated with GNASH /4/.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=16,17,51-56,22,91,102: calculated with GNASH /4/.

MF=14 Angular Distributions of Secondary Gamma-rays
MT=16,17,51-56,22,91,102: assumed to be isotropic.

MF=15 Energy distribution of secondary gamma-rays
MT=16,17,91,102: calculated with the GNASH /4/.

References
3) Lederer C.M. and Shirley V.S.: Table of isotopes, 7th ed.
MAT number = 3822

82-Pb-206 JAERI Eval-Jul87 M.Mizumoto Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revision is recommended.
89-09 Revision is completed. Compilation is made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula. Resonance ranges: 1.0E-5 eV to 500 keV
Parameters were evaluated from the data of Horen+79 /1/, and Mizumoto+79 /2/. Effective scattering radius of 8.5 fm was selected.

Calculated 2200-m/s cross sections and res. integrals.

<table>
<thead>
<tr>
<th>Energy (b)</th>
<th>2200 m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>10.463 b</td>
<td></td>
</tr>
<tr>
<td>capture</td>
<td>0.031 b</td>
<td>0.0980 b</td>
</tr>
<tr>
<td>total</td>
<td>10.494 b</td>
<td></td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 500 keV
Background cross sections are given for the elastic scattering cross section.

Above 500 keV
Cross sections were obtained from optical and statistical model calculations. The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.

\[
\begin{align*}
V &= 47.0 - 0.250 \times E, \\
W_s &= 2.30 + 0.41 \times E, \\
V_{so} &= 6.0 \text{ (MeV)}, \\
r_0 &= 1.25, \\
r_s &= 1.30, \\
r_{so} &= 1.30 \text{ (fm)}, \\
a_0 &= 0.65, \\
b &= 0.48, \\
\alpha_{so} &= 0.689 \text{ (fm)}.
\end{align*}
\]

Level density parameters were determined using low-lying level data and observed neutron resonance spacing.

MT=1 Total
Calculated with optical and statistical mode code CASTHY /3/

MT=2 Elastic scattering
(Total)-(All other partial cross sections)

MT=4.51-64.91 Inelastic scattering
Calculated with CASTHY /3/ and DWBA calculation code DWUCK /4/.

Level Scheme taken from Ref /5/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0.0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.8031</td>
<td>2.0 +</td>
</tr>
<tr>
<td>2</td>
<td>1.1670</td>
<td>0.0 +</td>
</tr>
<tr>
<td>3</td>
<td>1.3406</td>
<td>3.0 +</td>
</tr>
<tr>
<td>4</td>
<td>1.4666</td>
<td>2.0 +</td>
</tr>
<tr>
<td>5</td>
<td>1.6841</td>
<td>4.0 +</td>
</tr>
<tr>
<td>6</td>
<td>1.9978</td>
<td>4.0 +</td>
</tr>
<tr>
<td>7</td>
<td>2.2002</td>
<td>7.0 -</td>
</tr>
</tbody>
</table>
8 2.3843 6.0 -
9 2.6476 3.0 -
10 2.7823 5.0 -
11 2.8264 4.0 -
12 2.8645 7.0 -
13 2.9396 6.0 -
14 3.0165 5.0 -

Levels without (*) marks are calculated only with CASTHY /3/.
Levels above 3.100 MeV were assumed to be continuum.

MT=16 (n,2n)
Calculated with a multi-step Hauser Feshbach code GNASH /6/
in which the Ignatyuk level density formula /7/ was incorporated.
and normalized to 2.17 barns at 14 MeV based on the
results (x1.1) by Frehaut +80 /8/.

MT=17 (n,3n)
Calculated with GNASH /6/ and normalized to 0.245 barn at 20
MeV by Welch +81 /9/.

MT=22 (n,n'alpha)
Calculated with GNASH /6/ and multiplied by 5.

MT=28 (n,n'p)
Calculated with GNASH /6/ and multiplied by 5.

MT=102 capture
Calculated with CASTHY /3/ and normalized to 0.0306 barn at
0.025 eV.

MT=103 (n,p)
Calculated with GNASH /6/ and normalized to 2.0 mb at
14.5 MeV by Belovickij +76 /10/.

MT=107 (n,a)
Calculated with GNASH /6/ and multiplied by 5.

MT=251 Mu-bar
Calculated with CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-64.91 : calculated with CASTHY /3/ and DWUCK /4/.
MT=16,17,22,28 : assumed to be isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28,91 : calculated with GNASH /6/.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=16,17,22,28,61-64,91,102,103,107 : calculated with GNASH /6/.

MF=14 Angular Distributions of Secondary Gamma-rays
MT=16,17,22,28,51-64,91,102,103,107 : assumed isotropic.

MF=15 Energy Distribution of Secondary Gamma-rays
MT=16,17,22,28,91,102,107 : calculated with the GNASH /6/.

References
5) Lederer C.M. and Shirley V.S.: Table of isotopes, 7th ed.
MAT number = 3823

82-Pb-207 JAERI Eval-Jul87 M.Mizumoto
 Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revise is recommended.
89-09 Revision is completed
 Compilation is made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
 Resonance ranges: 1.0E-5 eV to 500 keV
 Parameters were evaluated from the data of Allen+73 /1/
 Raman+77 /2/ and Horen+79 /3/.
 Effective scattering radius of 8.04 fm was selected.

 Calculated 2200-m/s cross sections and res. integrals.

 2200 m/s res. integ.
 elastic 11.448b -
 capture 0.7120 b 0.3725 b
 total 12.160 b -

MF=3 Neutron Cross Sections
Below 500 keV
Background cross sections are given for the elastic scattering cross section.

Above 500 keV
Cross sections were obtained with optical and statistical model code CASTHY /4/.
 The optical potential parameters were obtained by fitting average total cross section of natural lead as follows.
 \(V=47.0 - 0.250\times E \), \(W_s = 2.30 + 0.41\times E \), \(V_{so} = 6.0 \) (MeV)
 \(r_0 = 1.25 \), \(r_s = 1.30 \), \(r_{so} = 1.30 \) (fm)
 \(a_0 = 0.65 \), \(b=0.48 \), \(a_{so} = 0.689 \) (fm)
Level density parameters were determined using low-lying level data and observed neutron resonance spacing.

MT=1 Total
 Calculated with CASTHY /4/.

MT=2 Elastic scattering
 (Total) - (All other partial cross sections)

MT=4.51-59.91 Inelastic scattering
 Calculated with CASTHY /4/ and the DWBA calculation code DWUCK /5/.
Level scheme taken from Ref /6/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>1/2 -</td>
</tr>
<tr>
<td>1</td>
<td>0.5709</td>
<td>5/2 -</td>
</tr>
<tr>
<td>2</td>
<td>0.8986</td>
<td>3/2 -</td>
</tr>
<tr>
<td>3</td>
<td>1.6337</td>
<td>13/2 +</td>
</tr>
<tr>
<td>4</td>
<td>2.3398</td>
<td>7/2 -</td>
</tr>
<tr>
<td>5</td>
<td>2.6230</td>
<td>5/2 +</td>
</tr>
<tr>
<td>6</td>
<td>2.6626</td>
<td>7/2 +</td>
</tr>
</tbody>
</table>
7 • 2.7276 9/2 +
8 • 3.2230 11/2 +
9 • 3.4130 9/2 -

All discrete inelastic levels with mark (*) are calculated with both CASTHY /4/ and DWUCK /5/.
Levels above 3.500 MeV were assumed to be continuum.

MT=16,17 (n,2n) and (n,3n)
Calculated with a multi-step Hauser Feshbach code GNASH /7/ in which the Ignatyuk level density formula /8/ was incorporated.
The (n,2n) cross section was normalized to 2.08 barns at 14 MeV based on the results (x 1.1) by Frehaut+80 /9/.

MT=16 (n,n'alpha) calculated with GNASH /7/ and multiplied by 5.

MT=28 (n,n'p) calculated with GNASH /7/ and multiplied by as the same factor as for MT=103.

MT=102 capture
Calculated with CASTHY /4/ and normalized to 0.710 barn at 0.025 ev.

MT=103 (n,p)
Calculated with GNASH /7/ and normalized to 1.6 mb at 14.5 MeV by Belovickij+76 /10/.

MT=107 (n,a)
Calculated with GNASH /7/ and multiplied by 5.

MT=251 Mu-bar
Calculated with CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-59,91: calculated with CASTHY /3/ and DWUCK /4/.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,22,28: assumed to be isotropic in the lab system.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=16,17,22,28,51-59,91,102,103,107: calculated with GNASH /7/.

MF=14 Angular Distributions of Secondary Gamma-rays
MT=16,17,22,28,51-59,91,102,103,107: assumed isotropic.

MF=15 Energy Distribution of Secondary Gamma-rays
MT=16,17,22,28,91,102,103,107: calculated with the GNASH /7/.

References
6) Lederer C.M. and Shirley V.S.: Table of isotopes, 7th ed.
MAT number = 3824

82-Pb-208 JAERI Eval-Jul87 M.Mizumoto
Dist-Sep89

History
87-03 Newly evaluated for JENDL-3 by M.Mizumoto (JAERI)
87-11 Revision is recommended.
89-09 Revision is completed.
Compilation is made by T.Narita and T.Fukahori (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Resonance ranges: 1.0E-5 eV to 800 keV
Parameters were evaluated from the data of Allen+73 /1/
Macklin+77 /2/ and Horen+86 /3/.
Effective scattering radius of 6.5 fm was selected.
The s-wave resonance energy at 506 keV was changed to 525 keV
to fit the interference around 500 keV region.

 Calculated 2200-m/s cross sections and res. integrals.
 2200 m/s res. integ.
 elastic 11.246 b -
capture 0.4258 mb 7.207 mb
total 11.246 b

MF=3 Neutron Cross Sections
Below 800 keV
Background cross sections are given for the elastic scattering cross section.

Above 800 keV
Cross sections were obtained with an optical and statistical
model calculation code CASTHY /4/. The optical potential
parameters were obtained by fitting average total cross
section of natural lead as follows,
V=47.0 - 0.250•E, Ws = 2.30 + 0.41•E, Vso = 0.0 (MeV)
 r0 = 1.25 , rs = 1.30 , rso = 1.30 (fm)
a0 = 0.65 , b=0.48 , as0 = 0.689 (fm)

Level density parameters were determined using low-lying
level data and observed neutron resonance spacing.
MT=1 Total
 Calculated with CASTHY /4/.
MT=2 Elastic scattering
(Total)-(All other partial cross sections)
MT=4,51-67,91 Inelastic scattering
 Calculated with CASTHY /4/ and a DWBA calculation code
 DWUCK /5/.
Level schemes were taken from Ref /6/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>2.6146</td>
<td>3 -</td>
</tr>
<tr>
<td>2</td>
<td>3.1977</td>
<td>5 -</td>
</tr>
<tr>
<td>3</td>
<td>3.4750</td>
<td>4 -</td>
</tr>
<tr>
<td>4</td>
<td>3.7085</td>
<td>5 -</td>
</tr>
<tr>
<td>Level</td>
<td>Energy (MeV)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.9199</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.9464</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.9609</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.9957</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.0855</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.1252</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.1803</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.2962</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.3237</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.3584</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.3829</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.4237</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.4805</td>
<td></td>
</tr>
</tbody>
</table>

Levels without (*) marks are calculated with only CASTHY /4/. Levels above 4.500 MeV were assumed to be continuum.

MT=16.17 (n,2n) and (n,3n)
Calculated with a multi-step Hauser Feshbach model code GNASH/7/ in which the Ignatyuk level density formula/8/ was incorporated. The (n,2n) cross section was normalized to 2.13 barns at 14 MeV based on the results (x1.1) by Frehaut+80/9/.

MT=22 (n,n'alpha)
Calculated with GNASH /7/ and multiplied by 5.

MT=28 (n,p)
Calculated with GNASH /7/ and normalized to 26 mb at 20 MeV by Walch+81/10/.

MT=102 capture
Calculated with CASTHY /4/ and estimated from the experimental data by Csikai+67/11/, Drake+71/12/, Bergqvist+72/13/ and Diven+60/14/.

MT=103 (n,p)
Calculated with GNASH /7/ and normalized to 4 mb at 18 MeV by Bass+68/15/.

MT=107 (n,alpha)
Calculated with GNASH /7/ and normalized to 1.6 mb at 14.5 by Coleman+59/16/.

MT=251 Mu-bar
Calculated with CASTHY /4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-67.91: calculated with CASTHY /4/ and DWUCK /5/.
MT=16.17.22.28: assumed to be isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.22.28.51-67.91: calculated with GNASH /7/.

MF=12 Gamma-ray Multiplicity Produced by Neutron Reactions
MT=16.17.22.28.51-67.91.102,103,107: calculated with GNASH /7/.

MF=14 Angular Distributions of Secondary Gamma-rays
MT=16.17.22.28.51-67.91.102,103,107: assumed isotropic.

MF=15 Energy Distribution of Secondary Gamma-rays
MT=16.17.22.28.91.102,103,107: calculated with the GNASH /7/.

References
6) Lederer C.M. and Shirley V.S.: Table of isotopes. 7th ed.
MAT number = 3831

83-Bi-209 JAERI Eval-May89 N.Yamamuro, A.Zukeran, JENDL-3 C.G. Dist-Sep89

History
89-04 Evaluation was performed for JENDL-3.
89-05 Compiled by K.Shibata and T.Narita (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula
Parameters were mainly taken from the work of Mughabghab et al. 1/.
Resonance region: 1.0E-5 eV to 200 keV.
Scattering radius: 9.68 fm
Calculated 2200-m/s cross sections and res. integrals

<table>
<thead>
<tr>
<th></th>
<th>elastic</th>
<th>capture</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.298 b</td>
<td>0.034 b</td>
<td>9.331 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total
Below 200 keV : Background cross sections given between
30 keV and 200 keV.
200 keV to 20 MeV: Based on the experimental data
/2,3,4/.

MT=2 Elastic scattering
(Total) - (Reaction cross section)

MT=3 Non elastic
Sum of MT=4, 16, 17, 22, 28, 102, 103, 104, 107

MT=4,51-62,91 Inelastic scattering
Statistical model calculations were made with the
SINCRON system 5/ using the modified Walter-Guss
potential parameters for neutrons. For MT=51,52,58,62,
the experimental data of Smith et al. 6/ were adopted
below 5 MeV. The calculated cross section of MT=91 was
modified so as to reproduce the measurements of the total
inelastic cross section below 8 MeV.
The direct-process components were considered for the
levels of MT=51,52,58,91 by the DWBA calculations.

The level scheme is given as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>9/2 -</td>
</tr>
<tr>
<td>1.</td>
<td>0.8964</td>
<td>7/2 -</td>
</tr>
<tr>
<td>2.</td>
<td>1.6085</td>
<td>13/2 +</td>
</tr>
<tr>
<td>3.</td>
<td>2.4300</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4.</td>
<td>2.4920</td>
<td>3/2 +</td>
</tr>
<tr>
<td>5.</td>
<td>2.5645</td>
<td>9/2 +</td>
</tr>
<tr>
<td>6.</td>
<td>2.5830</td>
<td>7/2 +</td>
</tr>
<tr>
<td>7.</td>
<td>2.5990</td>
<td>11/2 +</td>
</tr>
<tr>
<td>8.</td>
<td>2.6017</td>
<td>13/2 +</td>
</tr>
<tr>
<td>9.</td>
<td>2.6170</td>
<td>5/2 +</td>
</tr>
<tr>
<td>10.</td>
<td>2.7411</td>
<td>15/2 +</td>
</tr>
</tbody>
</table>
11. 2.7660 5/2 +
12. 2.8220 5/2 -

Levels above 2.85 MeV were assumed to be overlapping.

MT=16, 17, 22, 28, 103, 104, 107 (n, 2n), (n, 3n), (n, n', a), (n, n', p), (n, p)
(n, d) and (n, a) cross sections.
Calculated with SINCROS/5/.
Optical potential parameters for proton, alpha-particle and deuteron were taken from the works of Perey/7/,
Lemos/8/ and Lohr and Haeverli/9/, respectively.
The calculated (n, p) cross section was multiplied by 0.3333 in order to fit to the experimental data /10-12/ around 14 MeV.

MT=102 Radiative capture cross section
1.0E-5 eV to 200 keV: Resonance parameters given between 30 keV and 200 keV.
200 keV to 3 MeV: Calculated with the CASTHY code/13/.
The calculation was normalized to 4 mb at 100 keV.
3 MeV to 20 MeV: Based on the measurements/14-16/.

MT=251 Mu-bar
Calculated from File-4.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-62
Calculated with CASTHY for equilibrium process.
The components of the direct process were added to the levels of MT=51, 52, 58 by using the DWUCK code /17/.

MT=16, 17, 22, 28
Assumed to be isotropic in the laboratory system.

MT=91 The Kalbach-Mann systematics/18/ adopted at 14 MeV.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 22, 28, 91
Calculated with SINCROS.

MF=12 Photon Production Multiplicities
MT=3, 102
Calculated with SINCROS.

MF=14 Photon Angular Distributions
MT=3, 102
Assumed to be isotropic.

MF=15 Photon Energy Distributions
MT=3, 102
Calculated with SINCROS.

References
MAT number = 3881

88-Ra-223 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

<table>
<thead>
<tr>
<th>2200-m/s cross sections and resonance integrals</th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>143.10 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>0.70 b</td>
<td>1.06 b</td>
</tr>
<tr>
<td>Capture</td>
<td>130.00 b</td>
<td>435 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total cross section
Below 4 eV, calculated as sum of MT's = 2, 18 and 102.
Above 4 eV, optical model calculation was made with CASTHY/2/.
The potential parameters/3/ used are as follows.

\[
\begin{align*}
V &= 41.0 - 0.05 \times En \\
W_s &= 6.4 + 0.15 \times \text{SORT}(En) \\
W_w &= 0, \ V_{so} = 7.0 \\
r &= r_{so} = 1.31, \ r_s = 1.38 \\
a &= a_{so} = 0.47, \ b = 0.47
\end{align*}
\]

MT=2 Elastic scattering cross section
Below 4 eV, the constant cross section of 12.4 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4,51-64.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/.
The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>No.</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g.s.</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>1/2 +</td>
</tr>
<tr>
<td>1</td>
<td>50.19</td>
<td>3/2 -</td>
</tr>
<tr>
<td>2</td>
<td>61.53</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>79.77</td>
<td>3/2 -</td>
</tr>
<tr>
<td>4</td>
<td>123.91</td>
<td>5/2 -</td>
</tr>
<tr>
<td>5</td>
<td>130.27</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>174.72</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>174.78</td>
<td>7/2 -</td>
</tr>
<tr>
<td>8</td>
<td>247.47</td>
<td>9/2 -</td>
</tr>
<tr>
<td>9</td>
<td>280.31</td>
<td>3/2 +</td>
</tr>
<tr>
<td>10</td>
<td>286.16</td>
<td>3/2 +</td>
</tr>
</tbody>
</table>
11 329.85 3/2 −
12 334.52 3/2 +
13 342.50 3/2 +
14 342.92 5/2 +

Levels above 369.43 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 0.7 barn was taken from
Ref. 6, and 1/ν form was assumed below 4 eV. Above this
energy, the constant cross section was adopted.

MT=102 Capture cross section
Measured thermal cross section of 130 barns was taken from
Ref. 6, and 1/ν form was assumed below 4 eV. Above 4 eV,
calculated with CASTHY. The gamma-ray strength function
was estimated from Gamma-gamma = 0.040 eV and level
spacing = 8 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51–64.91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z·Z/A dependence/7/.

References
6) Mughabghab S.F.: "Neutron Cross Sections, Vol.1, Neutron
Resonance Parameters and Thermal Cross Sections, Part B,
MAT number = 3882

88-Ra-224 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>24.50 b</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.50 b</td>
</tr>
<tr>
<td>Capture</td>
<td>12.00 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 45 eV, calculated as sum of MT's = 2 and 102.
Above 45 eV, optical model calculation was made with CASTHY/2. The potential parameters/3/ used are as follows.

\[V = 41.0 - 0.05 \times En \] (MeV)
\[W_{s} = 6.4 + 0.15 \times \sqrt{En} \] (MeV)
\[W_{v} = 0, \ V_{so} = 7.0 \] (MeV)
\[r = r_{so} = 1.31, \ r_{a} = 1.38 \] (fm)
\[a = a_{so} = 0.47, \ b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 45 eV, the constant cross section of 12.5 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4,51-61.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2. The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>No</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>2 +</td>
</tr>
<tr>
<td>1</td>
<td>84.37</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>215.99</td>
<td>1 -</td>
</tr>
<tr>
<td>3</td>
<td>250.78</td>
<td>4 +</td>
</tr>
<tr>
<td>4</td>
<td>290.36</td>
<td>3 -</td>
</tr>
<tr>
<td>5</td>
<td>433.08</td>
<td>5 -</td>
</tr>
<tr>
<td>6</td>
<td>478.30</td>
<td>6 +</td>
</tr>
<tr>
<td>7</td>
<td>916.33</td>
<td>0 +</td>
</tr>
<tr>
<td>8</td>
<td>965.51</td>
<td>2 +</td>
</tr>
<tr>
<td>9</td>
<td>992.85</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>1052.95</td>
<td>1 -</td>
</tr>
<tr>
<td>11</td>
<td>1089.98</td>
<td>2 -</td>
</tr>
</tbody>
</table>

Levels above 1187 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.
MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=102 Capture cross section
Measured thermal cross section of 12 barns was taken
from Ref. 6, and 1/v form was assumed below 45 eV.
Above 45 eV, cross section was calculated with CASTHY.
The gamma-ray strength function was estimated from
Gamma-gamma = 0.040 eV and level spacing = 90 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-61.91 Calculated with optical model.
MT=16,17,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra
Obtained from level density parameters.

References
6) Mughabghab S.F.: "Neutron Cross Sections, Vol.1, Neutron
Resonance Parameters and Thermal Cross Sections, Part B,
MAT number = 3883

88–Ra–225 TIT Eval–Aug88 N.Takagi
Dist–Sep89

History
88–08 New evaluation was made by N. Takagi (Tokyo Institute of Technology. TIT)

MF=1 General Information
MT=451 Comment and dictionary

MF=2 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>112.40 b</td>
<td></td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
<td></td>
</tr>
<tr>
<td>Capture</td>
<td>100.00 b</td>
<td>593 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total cross section
Below 2.5 eV, calculated as sum of MT's = 2 and 102.
Above 2.5 eV, optical model calculation was made with CASTHY/2/. The potential parameters/3/ used are as follows.

\[V = 41.0 - 0.05\cdot En \] (MeV)

\[W_s = 6.4 + 0.15\cdot \sqrt{En} \] (MeV)

\[W_v = 0 \]

\[r = r_o = 1.31 \] (fm)

\[s = s_o = 1.38 \] (fm)

\[a = a_o = 0.47 \] (fm)

\[b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 2.5 eV, the constant cross section of 12.4 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4,51–56.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/. The level scheme was taken from Ref. 4.

No	energy(keV)	spin-parity
g.s. | 0.0 | 3/2 + |
1 | 25.39 | 5/2 + |
2 | 42.75 | 3/2 + |
3 | 100.60 | 9/2 + |
4 | 111.60 | 7/2 + |
5 | 149.90 | 3/2 + |
6 | 179.80 | 3/2 + |

Levels above 203 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=102 Capture cross section
Assumed to be 100 barns at 0.0253 eV, and in 1/v form
below 2.5 eV. Above 2.5 eV, calculated with CASTHY. The
gamma-ray strength function was estimated from Gamma-gamma
= 0.040 eV and level spacing = 5 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-56.91 Calculated with optical model.
MT=16.17.37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra
 Obtained from level density parameters.

References
MAT number = 3884

88-Ra-226 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resolved resonance parameters : 1.0E-5 eV to 1000 eV,
 Multi-level Breit-Wigner formula was adopted.
 Parameters were taken from those by Ivanov/2/.
 No fission width was given for all the resonances.
 Average gam-g = 0.0258 eV
 Effective scattering radius = 9.60 fm

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22.58 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>9.80 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>0.00005 b</td>
<td>0.0117 b</td>
</tr>
<tr>
<td>Capture</td>
<td>12.78 b</td>
<td>286 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
 Below 1 keV, cross section was represented with resonance parameters. Above 1 keV, optical model calculation was made with CASTHY/3/.
 The potential parameters/4/ used are as follows.
 \[V = 41.0 - 0.05\times En \quad \text{(MeV)} \]
 \[W_{\text{so}} = 6.4 + 0.15\times \text{SQRT}(En) \quad \text{(MeV)} \]
 \[W_{\text{v}} = 0, \quad V_{\text{so}} = 7.0 \quad \text{(MeV)} \]
 \[r = r_{\text{so}} = 1.31, \quad r_{\text{s}} = 1.38 \quad \text{(fm)} \]
 \[a = a_{\text{so}} = 0.47, \quad b = 0.47 \quad \text{(fm)} \]

MT=2 Elastic scattering cross section
 Below 1 keV, cross section was represented with resonance parameters. Above 1 keV, optical model calculation was adopted.

MT=4,51-66.91 Inelastic scattering cross sections.
 Optical and statistical model calculation was made with CASTHY/3/.
 The level scheme was taken from Ref. 5.

<table>
<thead>
<tr>
<th>No.</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>67.6</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>211.54</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>253.73</td>
<td>1 -</td>
</tr>
<tr>
<td>4</td>
<td>321.54</td>
<td>3 -</td>
</tr>
<tr>
<td>5</td>
<td>416.60</td>
<td>6 +</td>
</tr>
<tr>
<td>6</td>
<td>446.20</td>
<td>5 -</td>
</tr>
<tr>
<td>7</td>
<td>626.90</td>
<td>7 -</td>
</tr>
</tbody>
</table>
Levels above 1446 keV were assumed to be overlapping. The level density parameters were taken from Ref. 6.

\[MT = 16, 17, 37 \ (n, 2n), (n, 3n) \] and \((n, 4n) \) reaction cross sections Calculated with evaporation model.

\[MT = 18 \] Fission cross section

Measured thermal cross section of 0.05 mili-barn was taken from Ref. 6, and \(1/v \) form was assumed below 15 eV. For energy region above fission threshold, the evaluation was based on experimental data /7–10/, and between 15 eV and fission threshold, cross section was assumed to be the same as the value at 15 eV.

\[MT = 102 \] Capture cross section

Below 1 keV, cross section was represented with resonance parameters. Above 1 keV, it was calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 30.3 eV.

\[MT = 251 \] Mu–L

Calculated with CASTHY.

\[MF = 4 \] Angular Distributions of Secondary Neutrons

\[MT = 2.51–66.91 \] Calculated with optical model.

\[MT = 16, 17, 18.37 \] Isotropic in the lab system.

\[MF = 5 \] Energy Distributions of Secondary Neutrons

\[MT = 16, 17, 37.91 \] Evaporation spectra

Obtained from level density parameters.

\[MT = 18 \] Maxwellian fission spectrum.

Temperature was estimated from \(Z^{1.2}/A \) dependence/11/.

References

MAT number = 3891

89-Ac-225 TIT Eval-Aug88 N. Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology. TIT)

MF=1 General Information
MT=451 Comment and dictionary

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1012.40 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
<td>-</td>
</tr>
<tr>
<td>Capture</td>
<td>1000.00 b</td>
<td>1590 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total cross section
Below 0.6 eV, calculated as sum of MT's = 2 and 102.
Above 0.6 eV, optical model calculation was made with CASTHY/2/.
The potential parameters/3/ used are as follows,

\[V = 41.0 - 0.05 \cdot En \] (MeV)
\[W_S = 6.4 + 0.15 \cdot \sqrt{En} \] (MeV)
\[W_V = 0 \quad V_{so} = 7.0 \] (MeV)
\[r = r_{so} = 1.31 \quad r_s = 1.38 \] (fm)
\[a = a_{so} = 0.47 \quad b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 0.6 eV, the constant cross section of 12.4 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4, 51.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with CASTHY/2/.
The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3/2 +</td>
</tr>
<tr>
<td>40.0</td>
<td>3/2 +</td>
</tr>
</tbody>
</table>

Levels above 64 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16, 17, 37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=102 Capture cross section
Assumed to be 1000 barns at 0.0253 eV by the correlation of thermal cross section with number of excess neutrons.
Below 0.6 eV, the 1/v form was assumed. Above this energy, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and
level spacing = 1.2 eV.

MT=251 Mu-L
 Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2,51,91 Calculated with optical model.
 MT=16,17,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,37,91 Evaporation spectra
 Obtained from level density parameters.

References
MAT number = 3892

89-Ac-226 TIT Eval-Aug88 N. Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>112.40 b</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
</tr>
<tr>
<td>Capture</td>
<td>100.00 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 0.4 eV, calculated as sum of MT's = 2 and 102.
Above 0.4 eV, optical model calculation was made with CASTHY/2/. The potential parameters/3/ used are as follows.

\[V = 41.0 - 0.05 \cdot En \] (MeV)
\[W_s = 0.4 + 0.15 \cdot \text{SQRT}(En) \] (MeV)
\[W_V = 0 \]
\[r = r_s = 1.31 \] (fm)
\[a = a_s = 0.47 \]
\[b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 0.4 eV, the constant cross section of 12.4 barns was assumed, which was the shape elastic scattering cross section calculated with optical model. Above this energy, optical model calculation was adopted.

MT=4,91 Inelastic scattering cross sections. Calculated with optical and statistical models by means of CASTHY/2/. No excited levels were taken into calculation, because spin of all levels were unknown/4/.

No energy(keV) spin-parity
\[g.s. = 0.0 \] (1+)

Levels above 200 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=102 Capture cross section
Assumed to be 100 barns at 0.0253 eV, and in 1/v form below 0.4 eV. Above 0.4 eV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 0.8 eV.
MT=251 Mu-L
 Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2.91 Calculated with optical model.
 MT=16.17.37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17.37.91 Evaporation spectra
 Obtained from level density parameters.

References
MAT number = 3893

89-Ac-227 Tit Eval-Aug88 N.Takagi
Dist-Sop89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
 No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>902.40 b</td>
<td></td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
<td></td>
</tr>
<tr>
<td>Fission</td>
<td>0.00029 b</td>
<td>0.138 b</td>
</tr>
<tr>
<td>Capture</td>
<td>890.00 b</td>
<td>1650 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 36 eV, calculated as sum of MT's = 2, 18 and 102.
Above 36 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows.

\[V = 41.0 - 0.05 \cdot E_n \] (MeV)
\[W_s = 6.4 + 0.15 \cdot \text{Sqrt}(E_n) \] (MeV)
\[W_v = 0 \]
\[V_{so} = 7.0 \] (MeV)
\[r = r_{so} = 1.31 \] (fm)
\[r_s = 1.38 \] (fm)
\[a = a_{so} = 0.47 \]
\[b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 36 eV, the constant cross section of 12.4 barns was
assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4.51-59.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy (keV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>3/2 -</td>
</tr>
<tr>
<td>1</td>
<td>27.36</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>29.95</td>
<td>5/2 -</td>
</tr>
<tr>
<td>3</td>
<td>46.37</td>
<td>5/2 +</td>
</tr>
<tr>
<td>4</td>
<td>74.14</td>
<td>7/2 -</td>
</tr>
<tr>
<td>5</td>
<td>84.56</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>110.00</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>126.85</td>
<td>9/2 -</td>
</tr>
<tr>
<td>8</td>
<td>187.36</td>
<td>11/2 -</td>
</tr>
<tr>
<td>9</td>
<td>210.92</td>
<td>13/2 +</td>
</tr>
</tbody>
</table>

Levels above 273 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16, 17, 37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 0.29 milli-barn was
taken from Ref. 6. and 1/v form was assumed below 36 eV.
Above fission threshold energy, experimental data/7/ were
adopted, and in the energy range between 36 eV and fission
threshold, cross section was assumed to be constant with
the value at 36 eV.

MT=102 Capture cross section
Measured thermal cross section of 890 barns was taken from
Ref. 6. and 1/v form was assumed below 36 eV. The cross
section near 36 eV was adjusted so as to reproduce the
measured resonance integral/6/. Above 0.45 eV, cross
section was calculated with CASTHY. The gamma-ray
strength function was estimated from Gamma-gamma = 0.040
eV and level spacing = 72 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-59, 91 Calculated with optical model.
MT=16, 17, 18, 37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 37, 91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from $Z^*/2/A$ dependence/8/.

References
 Resonance Parameters and Thermal Cross Sections, Part B,
MAT number = 3901

90-Th-227 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
 No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1749.40 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.40 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>202.00 b</td>
<td>210 b</td>
</tr>
<tr>
<td>Capture</td>
<td>1535.00 b</td>
<td>1420 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total cross section
Below 0.45 eV, calculated as sum of MT's = 2, 18 and 102.
Above 0.45 eV, optical model calculation was made with
CASTHY/2/.
The potential parameters/3/ used are as follows:

\[
V = 41.0 - 0.05\cdot En \quad (\text{MeV})
\]

\[
W_s = 6.4 + 0.15\cdot \sqrt{En} \quad (\text{MeV})
\]

\[
W_v = 0 \quad , \quad V_{so} = 7.0 \quad (\text{MeV})
\]

\[
r = r_{so} = 1.31 \quad , \quad r_s = 1.38 \quad (\text{fm})
\]

\[
a = a_{so} = 0.47 \quad , \quad b = 0.47 \quad (\text{fm})
\]

MT=2 Elastic scattering cross section
Below 0.45 eV, the constant cross section of 12.4 barns
was assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/.
No excited levels were taken into the calculation.

No energy(keV) spin-parity
g.s. 0.0 3/2 +

Levels above 9.3 keV/4/ were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 202 barns was taken from
Ref. 6, and 1/\nu form was assumed below 0.45 eV. In the
energy range above 0.45 eV, the shape was assumed to be
the same as Th-233 fission cross section and it was
normalized to the systematics of Behrens and Howerton/7/.

MT=102 Capture cross section
The thermal cross section of 1535 barns was estimated from
the ratio of fission and capture cross sections at 1 eV
and the measured fission cross section at 0.0253 eV/6/.
and the 1/v form was assumed below 0.45 eV.
Above 0.45 eV, cross section was calculated with CASTHY.
The gamma-ray strength function was estimated from
Gamma-gamma = 0.040 eV and level spacing = 0.9 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z**2/A dependence/8/.

References
Resonance Parameters and Thermal Cross Sections, Part B,
MAT number = 3902

90-Th-228 Kinki U. Eval-Jun87 T.Ohsawa Dist-Sep89

History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa* and M. Ohta
(Kyushu University). Details of the evaluation are
described in Ref. /1/ (*present address: Kinki University)
83-11 Fission spectrum was added. Resonance formula was changed
to MLBW formula. The total, (n,2n) and (n,3n) cross sections were modified.
87-06 Almost of JENDL-2 data were adopted for JENDL-3.
(MF3,M17), (MF3,M91) and (MF3,M102) were slightly
modified in high energy region.
Compilation was made by T.Nakagawa (JAERI).

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Total number of neutrons emitted per fission
Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region is below 7.798 eV. Parameters were given
for the MLBW formula. Only two resonances were observed by
Simpson et al. /3/. An additional term with 1/v dependence
was assumed to reproduce the thermal capture cross section.
Fission cross section was also assumed to have 1/v behavior.

Calculated 2200-m/s cross sections and res. integ.(barns)
2200-m/s Res. Integ.
Elastic 12.81 -
Capture 119.9 1170
Fission 0.300 1.02
Total 133.0 -

MF=3 Neutron Cross Sections
Below 7.798 eV is the resonance region. Background data
were given. The cross sections were evaluated in the energy
region above 7.798 eV as follows.

MT=1 Total cross section
Optical model calculation with the following parameters:
V = 41.0 - 0.05*E (MeV),
Ws = 6.4 + 0.15*SQRT(E) (MeV), -- der. Woods-Saxon --
Vso = 7.0 (MeV),
r0 = rso = 1.31 (fm),
rs = 1.38 (fm),
a = b = aso = 0.47 (fm).
These parameters were taken from those for Th-232 /4/.

MT=2 Elastic scattering cross section
Based on statistical and optical model calculations using
the code CASTHY /5/.

MT=4.51-67.91 Inelastic scattering cross section
Statistical and optical model calculations.

No. Energy(MeV) Spin-Parity
g.s. 0.0 0 +
1 0.0576 2 +
2 0.1869 4 +
3 0.328 1 −
4 0.3961 3 −
5 0.5193 5 −
6 0.8317 0 −
7 0.8746 2 +
8 0.9441 2 +
9 0.952 1 −
10 0.8688 2 +
11 1.016 3 −
12 1.0224 3 +

Levels above 1.025 MeV were assumed to be overlapping.

MT=16,17 (n,2n) and (n,3n) cross sections
Calculated by means of the evaporation model of Segev and Caner /7/.

MT=18 Fission cross section
The data of Vorotnikov et al. /8/ were adopted up to 5 MeV.
The fission cross section of the neighboring even-even isotope Th-230 normalized to join smoothly to the data of
Vorotnikov et al. was adopted above 5 MeV.

MT=102 Capture cross section
Statistical and optical model calculations with gamma-ray strength function of 0.00791.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-62,91
Statistical and optical model calculations.

MT=16,17,18 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91 Evaporation spectra

MT=18 Fission spectrum estimated from Z••2/A systematics by Smith et al. /9/.

References
1) Ohsawa T. and Ohta M.: Memoirs Faculty of Engineering,
Kyushu Univ. 40, 149 (1980).
5) Igarashi S.: ibid. 12, 67 (1975).
6) Lederer C.M. and Shirley V.S. (Ed.): Table of Isotopes,
MAT number = 3903

90-Th-229 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resolved resonance parameters : 1.0E-5 eV to 9.5 eV
 Single-level Breit Wigner formula was adopted. Parameters
 were determined on the basis of recommendation of Mogabghab
 /2/.
 For the levels whose radiative width and/or fission
 width were unknown, average gamma-g of 0.043 eV was assumed.
 Fission widths were calculated from (peak sig)*(gamma-f).
 Effective scattering radius was assumed to be 10 fm.

2200-m/s cross sections and resonance integrals
2200 m/s value Res. Int.
Total 104.09 b -
Elastic 9.928 b -
Fission 30.81 b 444 b
Capture 63.34 b 1236 b

MF=3 Neutron Cross Sections
MT=1 Total cross section
Above 9.5 eV, optical model calculation was made with
CASTHY/3/.
The potential parameters/4/ used are as follows,
V = 41.0 - 0.05*En (MeV)
Ws = 6.4 + 0.15*SQRT(En) (MeV)
Ww = 0 , Vso = 7.0 (MeV)
r = rso = 1.31 , rs = 1.38 (fm)
a = aso = 0.47 , b = 0.47 (fm)

MT=2 Elastic scattering cross section
Optical model calculation was adopted.

MT=4,51--54,91 Inelastic scattering cross sections.
Optical and statistical mode calculation was made with
CASTHY/3/.
The level scheme was taken from Ref. 5.

<table>
<thead>
<tr>
<th>No</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3</td>
<td>29.2</td>
<td>5/2 +</td>
</tr>
<tr>
<td>4</td>
<td>42.5</td>
<td>7/2 +</td>
</tr>
</tbody>
</table>

Levels above 67 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 6.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.
MT=18 Fission cross section
Above 9.5 eV, the cross-section shape was assumed to be
the same as Th-233 fission cross section and it was
normalized by the factor obtained from systematics of
Behrens and Howerton/7/.

MT=102 Capture cross section
Calculated with CASTHY. The gamma-ray strength function
was estimated from Gamma-g = 0.040 eV and level spacing =
0.53 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-54.91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37 Evaporation spectra were given
MT=18 Maxwellian fission spectrum. Temperature
was estimated from Z=2/A values/8/.

References
2) Mughabghab S.F.: "Neutron Cross Sections, Vol.1, Neutron
 Resonance Parameters and Thermal Cross Sections, Part B.
 (1978).
MAT number = 3904

90-Th-230 Kinki U. Eval-Jul87 T. Ohsawa Dist-Sep89

History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa and M. Ohta (Kyushu University: present address of Ohsawa is Kinki University). Details of evaluation are described in Ref. /1/.
83-11 Fission spectrum was added. Resonance parameters, and total, (n,2n) and (n,3n) cross sections were modified.
87-07 Evaluation for JENDL-2 was adopted to JENDL-3. But re-calculations of cross sections and angular distributions were made with the same OMP and level density parameters. Compilation was made by T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Comments and Dictionary
MT=452 Total number of neutrons emitted per fission
Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
Resonance region is below 564.26 eV. The MLBW formula was selected to reproduce resonance cross sections. A total number of 28 resonances up to 563 eV measured by Kalebin et al. /3/ were adopted in the present evaluation.
A background term with $1/v$ dependence was added in order to reproduce the thermal capture cross section.

Calculated 2200-m/s cross sections and res. integ.(barns)

<table>
<thead>
<tr>
<th>2200-m/s</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>32.32</td>
</tr>
<tr>
<td>elastic</td>
<td>9.774</td>
</tr>
<tr>
<td>fission</td>
<td>0.0</td>
</tr>
<tr>
<td>capture</td>
<td>22.55</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 564.26 eV is the resonance region where the background cross sections are given. Above 564.26 eV, the cross sections were evaluated as follows.

MT=1 Total cross section
Optical model calculation with the following parameters:
$V = 41.0 - 0.05\times E$ (MeV),
$W_s = 6.4 + 0.15\times\text{SORT}(E)$ (MeV), --- der. Woods-Saxon ---
$V_{so} = 7.0$ (MeV),
$r_0 = r_{so} = 1.31$ (fm),
$r_s = 1.38$ (fm),
a = b = a_{so} = 0.47$ (fm).
These parameters were taken from those for Th-232 /4/.

MT=2 Elastic scattering cross section
Statistical and optical model calculations using the code CASTHY /5/.

MT=4.51-63.91 Inelastic scattering cross section
Statistical and optical model calculations.
<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0534</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.173</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.357</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.506</td>
<td>1 -</td>
</tr>
<tr>
<td>5</td>
<td>0.571</td>
<td>3 -</td>
</tr>
<tr>
<td>6</td>
<td>0.635</td>
<td>0 +</td>
</tr>
<tr>
<td>7</td>
<td>0.678</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.682</td>
<td>5 -</td>
</tr>
<tr>
<td>9</td>
<td>0.781</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>0.881</td>
<td>4 +</td>
</tr>
<tr>
<td>11</td>
<td>0.951</td>
<td>1 -</td>
</tr>
<tr>
<td>12</td>
<td>1.009</td>
<td>2 +</td>
</tr>
<tr>
<td>13</td>
<td>1.012</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Levels above 1.02 MeV were assumed to be overlapping.

MT=16,17 (n,2n) and (n,3n) cross sections
Calculated by means of the evaporation model of Segev and Caner /7/.

MT=18 Fission cross section
Evaluation was made on the basis of the data of Muir et al. /8/ up to 2 MeV. Above 2 MeV, the fission probability data of Back et al. /9/ were used to calculate the fission cross section.

MT=102 Capture cross section
Statistical and optical model calculations with gamma-ray strength function of 0.00791.

MT=251 Mu-bar
Calculated with CASTHY.

MT=4 Angular Distributions of Secondary Neutrons
MT=2,51-63,91
Statistical and optical model calculations.

MT=16,17,18
Assumed to be isotropic in the laboratory system.

MT=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Evaporation spectra.

MT=18 Fission spectrum estimated from Z••2/A systematics by Smith et al. /10/.

References
1) Ohsawa T. and Ohta M.: Memoirs Faculty of Engineering, Kyushu Univ. 40, 149 (1980).
MAT number = 3905
90-Th-232 Kinki U. Eval-Mar87 T. Ohsawa
Dist-Sep89

History
87-03 Re-evaluation was made by T. Ohsawa (Kinki University). The following parts of previous evaluation /1/ were revised with new one.
- resonance parameters, elastic and inelastic scattering.
- Nu-p, Nu-d, energy distributions of neutrons.
88-09 Fission cross section was modified a little.
89-02 Fission product yields (MF=8) were replaced with JNDC FP Decay File version-2.
89-04 Fission spectrum was modified.
The compilation was made by T. Nakagawa(JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of Neutrons per Fission
- Sum of prompt and delayed neutrons.
MT=455 Delayed Neutrons per Fission
- Nu-d based on Tuttle's recommendation /2/.
MT=456 Prompt Neutrons per Fission
- Taken from Davey's recommendation /3/.

MF=2 Resonance Parameters
MT=151 Resolved and Unresolved Resonance Parameters
- Resolved resonances for MLBW formula : 1.0E-5 eV - 3.5 keV
- The parameters of JENDL-2 which were mainly based on Ref.4 and BNL 325(3rd) were modified as follows:
- (1) For 22 resonances in the lower energy region which make major contribution to the resonance integral, the new parameters of Kobayashi /5/ were adopted;
- (2) The average radiative width of 24.7 meV were attributed to those resonances for which the radiative width was not known.
- Unresolved resonances : 3.5 keV - 50 keV
- Average resonance parameters were given. The energy dependent S0 and S1 were calculated so as to reproduce the total and capture cross sections in this region.
- Fixed parameters:
- GG = 0.0212 eV, D-obs = 18.64 eV, R = 10.01 fm.
- Typical strength functions at 10 keV:
- S0 = 0.93E-4, S1 = 1.96E-4

Calculated 2200-m/sec cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>21.11 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>13.70 b</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>0.0 b</td>
<td>0.636 b</td>
</tr>
<tr>
<td>capture</td>
<td>7.40 b</td>
<td>84.4 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 3.5 keV:
- Background cross section is given for the capture.
Above 50 keV:
MT=1 Total
Based on the experimental data of Whalen/6/, Foster/7/ and Fasoli/8/ in the size resonance region, and Kobayashi/9/, Whalen/6/ and Uttly/10,11/ below 1.5 MeV, and optical model calculation above 14 MeV.

MT=2 Elastic Scattering
Obtained by subtracting the sum of capture, inelastic, fission, (n,2n), (n,3n) cross sections from the total cross section.

MT=4 Total Inelastic Scattering Cross Section
Sum of partial inelastic scattering cross sections.

MT=16 (n,2n)
Calculated with the model of Segev et al./12/.

MT=17 (n,3n)
Calculated with the model of Segev et al./12/.

MT=18 Fission
The ratio data Th-232/U-235 of Behrens/13/ were multiplied with the evaluated data/14/ of U-235(n,f).

MT=51-52 Inelastic scattering to the 1st and 2nd levels.
Calculated with consistent combination of coupled-channel (CC) and Hauser-Feshbach(HF) methods (CC/HF method)/15/.
The code JUPITOR-1/16/ was used for CC-calculations, ELIESE-3/17/ for the HF-calculations.

MT=58,59,60,62,66 Inelastic scattering to the 5th, 9th, 12th and 16th levels.
Compound nuclear component was calculated with the code ELIESE-3 using the generalized transmission coefficients calculated with JUPITOR-1 for the entrance channel. Direct reaction component was calculated with the code DWUCK/18/.

MT=53,54,56-58,60,61,63-65,67-70,91 Inelastic scattering to the other discrete and continuum levels.
Calculated with ELIESE-3 using the generalized transmission coefficients for the entrance channel.

MT=102 Capture
Based on the measurement of Kobayashi/19/ and calculation with the code CASTHY/20/.

The parameters for the CC and spherical optical potentials were taken from Haouat et al./21/ and Ohsawa et al./22/.

<table>
<thead>
<tr>
<th>CC</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = 46.4 \pm 0.3 \times En$</td>
<td>$V = 41.0 \pm 0.05 \times En$ (MeV)</td>
</tr>
<tr>
<td>$W_s = 3.6 \pm 0.4 \times En$</td>
<td>$W_s = 6.4 \pm 0.15 \times \sqrt{En}$ (MeV)</td>
</tr>
<tr>
<td>$V_{so}= 6.2$</td>
<td>$V_{so}= 7.0$ (MeV)</td>
</tr>
<tr>
<td>$r = 1.26$</td>
<td>$r = 1.31$ (fm)</td>
</tr>
<tr>
<td>$r_s = 1.26$</td>
<td>$r_s = 1.38$ (fm)</td>
</tr>
<tr>
<td>$r_{so}= 1.12$</td>
<td>$r_{so}= 1.31$ (fm)</td>
</tr>
<tr>
<td>$a = 0.63$</td>
<td>$a = 0.47$ (fm)</td>
</tr>
<tr>
<td>$a_s = 0.52$</td>
<td>$a_s = 0.47$ (fm)</td>
</tr>
<tr>
<td>$a_{so}= 0.47$</td>
<td>$a_{so}= 0.47$ (fm)</td>
</tr>
<tr>
<td>$\beta_2=0.190$</td>
<td>$\beta_2=0.190$</td>
</tr>
<tr>
<td>$\beta_4=0.071$</td>
<td>$\beta_4=0.071$</td>
</tr>
</tbody>
</table>

The level scheme was taken from Ref./23/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0</td>
<td>0+</td>
</tr>
<tr>
<td>1</td>
<td>0.049</td>
<td>2+</td>
</tr>
</tbody>
</table>
2 0.162 4+
3 0.333 6+
4 0.557 8+
5 0.714 1−
6 0.730 0+
7 0.7741 2+
8 0.7743 3−
9 0.786 2+
10 0.830 3−
11 0.873 4+
12 0.883 5−
13 0.889 4+
14 0.960 5+
15 1.054 2−
16 1.073 2+
17 1.0777 1−
18 1.078 0+
19 1.094 3+
20 1.105 3−

Continuum levels were assumed above 1.110MeV.
The level density parameters of Gilbert and Cameron/24/
were used.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2 Elastic scattering
Calculated with CC/HF method/15/.
MT=51-70 Inelastic
Calculated with CC/HF method/15/ and DWBA/18/.
MT=16,17,18,91 (n,2n), (n,3n), fission and continuum inelastic
Assumed to be isotropic in the LAB system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91 (n,2n), (n,3n) and continuum inelastic
Calculated with PEGASUS/25/.
MT=18 Fission
Maxwell spectrum. The temperature parameters were estimate
from the systematics of Howerton-Doyas/26/.
MT=455 Delayed Neutrons
The evaluation by Saphier et al./27/ was adopted.

MF=8 Fission Product Yield Data
MT=454 Independent Yields
Taken from JNDC FP Decay File version-2/28/.
MT=459 Cumulative Yields
Taken from JNDC FP Decay File version-2/28/.

References

MAT number = 3906

90-Th-233 Kinki U. Eval-Jul87 T.Ohsawa
Dist-Sep89

History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa and M. Ohta
(Kyushu University; present address of Ohsawa is Kinki
Univ.). Details of the evaluation are described in Ref.
/1/.
83-11 Fission spectrum was added. The total, \((n,2n) \) and \((n,3n) \)
cross sections were modified.
87-07 JENDL-2 data were adopted for JENDL-3.
Compilation was made by T.Nakagawa (JAERI).

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Total number of neutrons emitted per fission
 Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
 No resolved resonances were adopted, since there were no
 measurements made. Capture and fission cross sections at
 0.0253 eV were extrapolated up to 200 eV by assuming the
 form of \(1/v \) for the former, and up to 20 keV by assuming
 the form of \(1/v \) plus the constant value of 0.3 barns for the
 latter.

 Calculated 2200-m/s cross sections and res. integ.(barns)
 2200-m/s Res. Integ.
 total 1478.0
 elastic 13.0
 fission 15.0 11.1
 capture 1460.0 643

MF=3 Neutron Cross Sections
MT=1 Total cross section
 Optical model calculation with the following parameters:
 \(V = 41.0 - 0.05E \) (MeV),
 \(W_s = 6.4 + 0.15\sqrt{E} \) (MeV), --- der. Woods-Saxon ---
 \(V_{so} = 7.0 \) (MeV),
 \(r_0 = r_{so} = 1.31 \) (fm),
 \(r_s = 1.38 \) (fm),
 \(a = b = a_{so} = 0.47 \) (fm).
 These parameters were taken from those for Th-232 /3/.

MT=2 Elastic scattering cross section
 Statistical and optical model calculations using the code
 CASTHY /4/.

MT=4.51-65.91 Inelastic scattering cross section
 Statistical and optical model calculations.

Level scheme of Th-233 /5/.

No. Energy(MeV) Spin-Parity
\(g.s. \) 0.0 1/2 +
1 0.01687 3/2 +
2 0.05456 5/2 +
3 0.09363 7/2 +
4 0.37121 5/2 +
5 0.53958 1/2 -
6 0.58393 1/2 +
7 0.6115 3/2 +
8 0.62902 5/2 +
9 0.6822 3/2 -
10 0.7136 1/2 +
11 0.7218 3/2 +
12 0.7695 5/2 +
13 0.8145 3/2 +
14 0.8914 3/2 +
15 0.9476 3/2 -

Levels above 0.95 MeV were assumed to be overlapping.

MT=16.17 (n,2n) and (n,3n) cross sections
 Calculated by means of the evaporation model of Segev and Caner /6/.

MT=18 Fission cross section
 Fission probability deduced from direct reaction /7, 8/ was used to calculate the fission cross section.

MT=102 Capture cross section
 Statistical and optical model calculations with gamma-ray strength function of 0.00352.

MT=251 Mu-bar
 Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-65.91
 Statistical and optical model calculations.

MT=16.17,18
 Assumed to be isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17,91
 Evaporation spectra.

MT=18
 Fission spectrum estimated from Z*2/A systematics of Smith et al. /9/.

References
1) Ohsawa T. and Ohta M.: Memoirs Faculty of Engineering, Kyushu Univ. 40, 149 (1980).
4) Igarashi S.: ibid. 12, 67 (1975).
MAT number = 3907

90-Th-234 Kinki U. Eval-Jul87 T.Ohsawa
Dist-Sep89

History
81-04 Evaluation for JENDL-2 was made by T. Ohsawa and M. Ohta
(Kyushu University: present address of Ohsawa is Kinki Univ.). Details of the evaluation are described in Ref. /1/.
83-11 Fission spectrum was given. The total, (n,2n) and (n,3n)
cross sections were modified.
87-07 JENDL-2 data were adopted for JENDL-3.
Compilation was made by T.Nakagawa(JAERI).

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Total number of neutrons emitted per fission
Calculated with the semi-empirical formula of Howerton /2/.

MF=2 Resonance Parameters
MT=151 Resolved resonances
No resolved resonances were adopted, since there were no
measurements made. Capture and fission cross sections at
0.0253 ev were extrapolated on an 1/v basis up to an energy
of 15 eV.

Calculated 2200-m/s cross sections and res. integ.(barns)

<table>
<thead>
<tr>
<th>2200-m/s</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>14.75</td>
</tr>
<tr>
<td>elastic</td>
<td>13.0</td>
</tr>
<tr>
<td>fission</td>
<td>0.0</td>
</tr>
<tr>
<td>capture</td>
<td>1.75</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Optical model calculation with the following parameters:
V = 41.0 - 0.05*E (MeV),
W_s = 6.4 + 0.15*SQRT(E) (MeV), -- der. Woods-Saxon --
V_s = 7.0 (MeV),
r_0 = r_s = 1.31 (fm),
rs = 1.38 (fm),
a = b = a_s = 0.47 (fm).
These parameters were taken from those for Th-232 /3/.

MT=2 Elastic scattering cross section
Statistical and optical model calculations using the code
CASYTH /4/.

MT=4,51-67,91 Inelastic scattering cross section
Statistical and optical model calculations.

Level scheme of Th-234 (estimated from systematics)

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.048</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.160</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.336</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.576</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>0.730</td>
<td>0 +</td>
</tr>
<tr>
<td>MT</td>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.767</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.785</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.853</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.882</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.889</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.942</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.987</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.050</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.053</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.073</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.206</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.277</td>
<td></td>
</tr>
</tbody>
</table>

Levels above 1.06 MeV were assumed to be overlapping.

MT=16.17 (n,2n) and (n,3n) cross sections
Calculated by means of the evaporation model of Segev and Caner /5/.

MT=18 Fission cross section
Fission probability deduced from direct reaction /6/ and systematics of Behrens /7/ were used to obtain fission cross section.

MT=102 Capture cross section
Statistical and optical model calculations with gamma-ray strength function of 0.00791.

MT=251 Mu-bar
Calculated with optical model.

MT=4 Angular Distributions of Secondary Neutrons
MT=2.51–67.91
Statistical and optical model calculations.

MT=16.17,18
Assumed to be isotropic in the laboratory system.

MT=5 Energy Distributions of Secondary Neutrons
MT=16.17,91
Evaporation spectra were given.

MT=18
Fission spectrum was estimated from Z_{2}/A systematics of Smith et al. /8/.

References
1) Ohsawa T. and Ohta M.: Memoirs Faculty of Engineering, Kyushu Univ. 40, 149 (1980).
4) Igarashi S.: ibid. 12, 67 (1975).
MAT number = 3911

91-Pa-231 Kinki U. + Eval-Mar87 T.Ohsawa, M.Inoue and T.Nakagawa
Dist-Sep89

History

87-03 New evaluation was performed for JENDL-3 by T. Ohsawa and
M. Inoue.

87-07 Resonance parameters were evaluated by T. Nakagawa (JAERI).

88-07 Unresolved resonance region was modified.

Compilation was made by T. Nakagawa.

MF=1 General Information

MT=451 Descriptive data and dictionary

MT=452 Number of neutrons per fission

\[\text{Sum of MT's } = 455 \text{ and } 456. \]

MT=455 Delayed neutrons

Decay constants were assumed to be same as Thorium.

Nu-d was evaluated on the basis of Tuttle's recommendation /1/.

MT=456 Number of prompt neutrons per fission

Based on the Bois-Frehaut's semi-empirical formula /2/.

MF=2, MT=151 Resonance Parameters

Resolved resonances for SLBW formula: 1.0-5 - 115 eV

Neutron and radiative widths were mainly adopted from
Hussein et al. /3/, and fission width estimated from the
data of fission area measured by Platterd et al. /4/.

For the resonances whose fission area was not measured,
an average value of 40 micro-eV was assumed. A negative
resonance was given on the basis of recommendation by
Mughabghab /5/ to reproduce recommended thermal cross
sections /5/.

Unresolved resonances: 115 eV - 40 keV

Parameters were based on the average values obtained from
the resolved resonance parameters. S1 was determined
from the optical model calculation. Scattering radius was
adjusted so as to reproduce elastic scattering at 40 keV.

\[S0 = 0.90E-4, S1 = 1.2E-4, D-obs = 0.47eV. \]

Radiative width = 0.040 eV, R = 9.05 fm

Background cross section was given to the capture cross
section to connect smoothly to that in high energy region.

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>resonance integrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>210.69 b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>9.954</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>0.0196</td>
<td>4.81 b</td>
</tr>
<tr>
<td>capture</td>
<td>200.72</td>
<td>598 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Cross sections were represented with resonance parameters
below 40 keV. Above this energy, cross sections were
evaluated as follows.

MT=1 Total cross section

Calculated with the coupled-channel(CC) model code
JUPITOR-1/8/. The potential parameters used for the CC-
calculations are given below.

MT=2 Elastic scattering
Obtained by subtracting the sum of capture, inelastic, fission, (n,2n) and (n,3n) reaction cross sections from the total cross section.

MT=16 (n,2n)
Calculated with the model of Segev et al./7/.

MT=17 (n,3n)
Calculated with the model of Segev et al./7/.

MT=18 Fission
Based on the experimental data of Plattard/4/ below 12 MeV.
Above 12 MeV, the evaluation of Mann/9/ was adopted after appropriate renormalization.

MT=53,63 Inelastic scattering to the 3rd and 13th excited levels (members of the ground state rotational band).
Calculated with the consistent combination of CC and Hauser-Feshbach(HF) methods (CC/HF method)/9/. The code JUPITOR-1 was used for the CC calculations, and ELIREESE-3/10/ for the HF calculations.

MT=51-52,54-62,64-70,91 Inelastic scattering to the other discrete and continuum levels.
Compound nuclear component was calculated with the code ELIREESE-3 using the generalized transmission coefficients calculated with JUPITOR-1 for the entrance channel. The level density parameters were taken from Gilbert-Cameron/11/.

MT=102 Capture
Calculated with the code CASTHY/12/. The average radiative width and level spacing used to normalize the calculation are 40 meV and 0.47 eV, respectively/3/.

The parameters for the CC and spherical optical potentials were taken from Haouat et al./13/ and Ohsawa et al./14/ respectively.

<table>
<thead>
<tr>
<th>CC</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = 46.4 - 0.3 \cdot En$</td>
<td>$V = 41.0 - 0.05 \cdot En$ (MeV)</td>
</tr>
<tr>
<td>$W_{s} = 3.6 - 0.4 \cdot En$</td>
<td>$W_{s} = 6.4 + 0.15 \cdot \sqrt{En}$ (MeV)</td>
</tr>
<tr>
<td>$v_{so} = 6.7$</td>
<td>$v_{so} = 7.0$ (MeV)</td>
</tr>
<tr>
<td>$r = 1.26$</td>
<td>$r = 1.31$ (fm)</td>
</tr>
<tr>
<td>$r_{so} = 1.26$</td>
<td>$r_{so} = 1.38$ (fm)</td>
</tr>
<tr>
<td>$a = 0.63$</td>
<td>$a = 0.47$ (fm)</td>
</tr>
<tr>
<td>$a_{so} = 0.52$</td>
<td>$a_{so} = 0.52$ (fm)</td>
</tr>
<tr>
<td>$a_{so} = 0.47$</td>
<td>$r_{so} = 0.47$ (fm)</td>
</tr>
<tr>
<td>$\beta_{2} = 0.190$</td>
<td>$\beta_{2} = 0.190$</td>
</tr>
<tr>
<td>$\beta_{4} = 0.071$</td>
<td>$\beta_{4} = 0.071$</td>
</tr>
</tbody>
</table>

The level scheme was taken from Nuclear Data Sheets/15/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>3/2-</td>
</tr>
</tbody>
</table>
3 of Protactinium-231

1 0.0093 1/2−
2 0.0585 7/2−
3 0.0778 5/2−
4 0.0842 5/2+
5 0.1013 7/2−
6 0.1029 3/2+
7 0.1116 9/2+
8 0.1340 11/2+
9 0.1693 11/2−
10 0.1741 5/2−
11 0.1835 5/2+
12 0.189 13/2+
13 0.2183 7/2−
14 0.2473 7/2+
15 0.2720 9/2−
16 0.287 1/2+
17 0.3179 3/2+
18 0.3202 3/2−
19 0.3400 11/2−
20 0.3518 5/2−

Continuum levels were assumed above 0.38 MeV. The level density parameters were taken from Gilbert-Cameron/11/.

MT=251 Mu-bar
Calculated with the optical model.

MF=4 Angular Distribution of Secondary Neutrons

MT=2 Elastic scattering
Calculated with the CC/HF method.

MT=51-70 Inelastic scattering
Calculated with the CC/HF method for the 3rd and 13th excited levels. For the other levels, calculations with ELIESE-3 using the generalized transmission coefficients for the entrance channel were adopted, and isotropic distributions were assumed above 5.0 MeV because of zero cross sections.

MT=91 Inelastic scattering to the continuum Isotropic distributions in Lab. system was assumed.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,17,91 (n,2n), (n,3n) and continuum inelastic Evaporation spectra.

MT=18 Fission
Maxwell spectrum (taken from ENDF/B-V).

References
4) Plattard, S. et al.: 79 Knoxville, p.491
MAT number = 3912

91-Pa-232 TIT Eval-Aug88 N.Takagi
Dist-Sep89

History
88-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
 No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1176.23 b</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.23 b</td>
</tr>
<tr>
<td>Fission</td>
<td>700.00 b</td>
</tr>
<tr>
<td>Capture</td>
<td>464.00 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 1 eV, calculated as sum of MT's = 2, 18 and 102.
Above 1 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows.

\[V = 41.0 - 0.05\times En \] (MeV)
\[Ws = 6.4 + 0.15\times \text{SQRT}(En) \] (MeV)
\[Ww = 0 \] , \[Vso = 7.0 \] (MeV)
\[r = rso = 1.31 \] , \[rs = 1.38 \] (fm)
\[a = aso = 0.47 \] , \[b = 0.47 \] (fm)

MT=2 Elastic scattering cross section
Below 1 eV, assumed to be the same as shape elastic scattering cross section calculated with the optical model. Above 1 eV, optical model calculation was adopted.

MT=4 Inelastic scattering cross sections
Optical and statistical model calculation was made with
CASTHY/2/. No excited levels were recommended in Ref. 4.

<table>
<thead>
<tr>
<th>energy(keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>2-</td>
</tr>
</tbody>
</table>

Levels above 50 keV were assumed to be overlapping. The level density parameters were taken from Ref. 5.

MT=16,17,37 \((n,2n), (n,3n) \) and \((n,4n) \) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 700 barns was taken from
Ref. 6. and 1/v form was assumed below 1 eV. For
energies above 1 eV, the shape was assumed to be the same
as U-233 fission cross section and normalized to the systematics by Behrens and Howerton/7/.

MT=102 Capture cross section
Measured thermal cross section of 464 barns was taken from Ref. 6, and 1/\(v\) form was assumed below 1 eV. The cross section shape near 1 eV was adjusted so as to reproduce the resonance integral/6/. Above 1 eV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 0.417 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.91 Calculated with optical model.
MT=16, 17, 18.37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 37, 91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z*^2/A dependence/8/.

References
MAT number = 3913

91-Pa--233 Kinki U. + Eval-Mar87 T. Ohsawa, M. Inoue and T. Nakagawa Dist-Sep89

History
87-03 Re-evaluation was performed for JENDL-3 by T. Ohsawa, M. Inoue (Kyushu University) and T. Nakagawa (JAERI)
Compilation was made by T. Nakagawa.

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
 Sum of Nu-p (MT=456) and Nu-d (MT=455)
MT=455 Number of delayed neutrons
 Taken from Tuttle's semi-empirical formula /1/. Energy
dependence was ignored.
MT=456 Number of prompt neutrons
 Based on the semi-empirical formula by Bois and Frehaut /2/.

MF=2, MT=151 Resonance Parameters
Resolved resonances for SLBW formula: from 1.0E-5 to 16.5 eV
Parameters were taken from the recommendation by Mughabghab
/3/ and modified to reproduce thermal cross sections and
resonance integral of capture /3/.
Unresolved resonance parameters: from 16.5 eV to 40 keV
Average resonance parameters recommended by Mughabghab /3/
were adopted.
 S0 = 0.75E-4, S1 = 1.5E-4, D-obs = 0.59 eV,
 gamma width = 0.047 eV
 (S1 was adjusted with ASREF /5/ so as to reproduce total
 and capture cross sections around 20 keV.)

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>53.051 B</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>13.021</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>0.0</td>
<td>2.1 b</td>
</tr>
<tr>
<td>capture</td>
<td>40.031</td>
<td>864</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 40 keV, the resonance parameters were given. Above 40
keV, cross sections were evaluated as follows.

MT=1 Total cross section
 Calculated with the coupled-channel (CC) model code
 JUPITOR-1/5/. The potential parameters used for the CC-
calculations are given below.

MT=2 Elastic scattering
 Obtained by subtracting the sum of capture, inelastic,
fission, (n,2n) and (n,3n) reaction cross sections from the
total cross section.

MT=16 (n,2n)
 Calculated with the model of Segev et al. /6/.
MT=17 (n,3n)
Calculated with the model of Segev et al. /6/.

MT=18 Fission
Calculated using the experimental data on the fission probability /7/.

MT=53.66 Inelastic scattering to the 3rd and 16th excited levels (members of the ground state rotational band).
Calculated with the consistent combination of CC and Hauser-Feshbach(HF) methods (CC/HF method) /8/. The code JUPITOR-1 was used for the CC calculations, and ELIESE-3 /9/ for the HF calculations.

MT=51-52,54-55,67-70,91 Inelastic scattering to the other discrete and continuum levels.
Compton nuclear component was calculated with the code ELIESE-3 using the generalized transmission coefficients calculated with JUPITOR-1 for the entrance channel. The level density parameters were taken from Gilbert-Cameron /10/.

MT=102 Capture
Calculated with the code CASTHY /11/. The average radiative width and level spacing used to normalize the calculation are 40 meV and 0.79 eV, respectively /12/.

The parameters for the CC and spherical optical potentials were taken from Haouat et al. /13/ and Ohsawa et al. /14/ respectively.

<table>
<thead>
<tr>
<th>CC</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 46.4-0.3+En</td>
<td>V = 41.0-0.05+En (MeV)</td>
</tr>
<tr>
<td>Ws = 3.6+0.4+En</td>
<td>Ws = 6.4+0.15+SORT(En)(MeV)</td>
</tr>
<tr>
<td>Vsc= 6.2</td>
<td>Vsc= 7.0 (MeV)</td>
</tr>
<tr>
<td>r = 1.26</td>
<td>r = 1.31 (fm)</td>
</tr>
<tr>
<td>rs = 1.26</td>
<td>rs = 1.38 (fm)</td>
</tr>
<tr>
<td>rsc= 1.12</td>
<td>rsc= 1.31 (fm)</td>
</tr>
<tr>
<td>a = 0.63</td>
<td>a = 0.47 (fm)</td>
</tr>
<tr>
<td>as = 0.52</td>
<td>as = 0.62 (fm)</td>
</tr>
<tr>
<td>ase= 0.47</td>
<td>as= 0.47 (fm)</td>
</tr>
<tr>
<td>beta2=0.190</td>
<td>---</td>
</tr>
<tr>
<td>beta4=0.071</td>
<td>---</td>
</tr>
</tbody>
</table>

The level scheme was taken from Nuclear Data Sheets /15/, except the 300.4 keV-level, for which 7/2- was adopted instead of 7/2+ according to the suggestion of Gonzalez /16/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>3/2-</td>
</tr>
<tr>
<td>1</td>
<td>0.0067</td>
<td>1/2-</td>
</tr>
<tr>
<td>2</td>
<td>0.0572</td>
<td>7/2-</td>
</tr>
<tr>
<td>3</td>
<td>0.0706</td>
<td>5/2-</td>
</tr>
<tr>
<td>4</td>
<td>0.0865</td>
<td>5/2+</td>
</tr>
<tr>
<td>5</td>
<td>0.0947</td>
<td>3/2+</td>
</tr>
<tr>
<td>6</td>
<td>0.1036</td>
<td>7/2+</td>
</tr>
<tr>
<td>7</td>
<td>0.1090</td>
<td>9/2+</td>
</tr>
<tr>
<td>8</td>
<td>0.1634</td>
<td>11/2+</td>
</tr>
<tr>
<td>9</td>
<td>0.1691</td>
<td>1/2+</td>
</tr>
</tbody>
</table>
10 0.1792 9/2-
11 0.2017 3/2+
12 0.2123 5/2+
13 0.2379 9/2+
14 0.2573 5/2-
15 0.2796 7/2+
16 0.3004 7/2-
17 0.3061 7/2+
18 0.3661 9/2+
19 0.4477 3/2-
20 0.4546 3/2+

Continuum levels were assumed above 0.5 MeV. The level density parameters were taken from Gilbert-Cameron/7/.

MT=251 Mu-bar
Calculate from angular distributions.

MF=4 Angular Distribution of Secondary Neutrons

MT=2 Elastic scattering
Calculate with the CC/HF method.

MT=51-70 Inelastic scattering
Calculate with the CC/HF method for the 3rd and 13th excited levels. For the other levels, calculations with ELIESE-3 using the generalized transmission coefficients for the entrance channel were adopted.

MT=91 Inelastic scattering to the continuum
Isotropic distribution was assumed in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 17, 91 (n,2n), (n,3n) and continuum inelastic
Evaporation spectra based on the level density parameters

MT=18 Fission
Maxwell spectrum (taken from ENDF/B-V).

References
4) Kikuchi, Y.: private communication.
MAT number = 3921

92-U-232 Kinki U.+ Eval-Mar87 T. Ohsawa and T. Nakagawa
Dist-Sep89

History
87-03 Evaluation was carried out by T. Ohsawa (Kinki University)
and T. Nakagawa (JAERI).
T. Nakagawa: resonance parameters
T. Ohsawa: other quantities
Compilation was made by T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Total number of neutrons per fission
Sum of Nu-p and Nu-d
MT=455 Number of delayed neutrons
Determined from Tuttle's semi-empirical formula /1/.
MT=456 Number of prompt neutrons
Based on the semi-empirical formula by Bois and Frehaut /2/.

MF=2, MT=151 Resonance parameters
Resolved resonance parameters (from 1.0E-5 to 200 eV)
Recommendation by Mughabghab /3/ was adopted, and its formula
was changed from Reich-Moore to Multilevel Breit-Wigner
type. Background cross section was given to reproduce
measured fission cross sections /4,5/ at valleys of levels.

Calculated 2200 m/s cross sections and resonance integrals
2200 m/s res. integ.
total 162.3 b
elastic 10.78 b
fission 76.66 b 364 b
capture 74.88 b 173 b

These values are almost the same as recommendation
by Mughabghab /3/ except capture resonance integral
which is recommended as 280+--15 barns.

MF=3 Neutron Cross Sections
Above 200 eV
MT=1 Total
Calculated with the spherical optical model.

The parameters for the spherical optical parameters were
as follows:

\[V = 40.47 - 0.06 \cdot En \] (MeV), \[V_{so} = 8.8 \] (MeV)
\[W_{s} = 6.8 + 0.04 \cdot \text{SORT}(En) \] (MeV), \[W_{v} = 0.0 \]
\[r = 1.32 \text{ (fm)}, r_{s} = 1.38 \text{ (fm)}, r_{so} = 1.22 \text{ (fm)} \]
\[a = as = aso = 0.47 \text{ (fm)} \].

This set of parameters was found to give good agreement
with the measurements of Simpson et al. /6/ in the energy
region from 1 keV to 10 keV.

MT=2 Elastic Scattering
Calculated with the code CASTHY /7/.

MT=16 \((n,2n) \)
Calculated with the model of Segov-Fahima /8/.
MT=17 (n,3n)
 Calculated with the model of Segev-Fahima/8/.

MT=18 Fission
 Calculated by using the fission probability data of
 Gavron et al./9/ and compound formation cross sections
 calculated with the optical model. Below 1 keV, the cross
 section was determined on the basis of Farrell/5/.

MT=51–60,91 Inelastic scattering to the discrete and con-
 tinuous levels
 Calculated with the code CASTHY/7/. The level scheme was
 taken from Lederer et al./10/ and Schmorak/11/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>0+</td>
</tr>
<tr>
<td>1</td>
<td>0.048</td>
<td>2+</td>
</tr>
<tr>
<td>2</td>
<td>0.157</td>
<td>4+</td>
</tr>
<tr>
<td>3</td>
<td>0.323</td>
<td>6+</td>
</tr>
<tr>
<td>4</td>
<td>0.541</td>
<td>8+</td>
</tr>
<tr>
<td>5</td>
<td>0.563</td>
<td>1–</td>
</tr>
<tr>
<td>6</td>
<td>0.629</td>
<td>3–</td>
</tr>
<tr>
<td>7</td>
<td>0.692</td>
<td>0+</td>
</tr>
<tr>
<td>8</td>
<td>0.736</td>
<td>2+</td>
</tr>
<tr>
<td>9</td>
<td>0.805</td>
<td>10+</td>
</tr>
<tr>
<td>10</td>
<td>0.867</td>
<td>2+</td>
</tr>
</tbody>
</table>

Continuum region was assumed above 1.0 MeV. The level
density parameters of Gilbert-Cameron/12/ were used.

MT=102 Capture
 Calculated with the code CASTHY/7/.

MT=251 Mu-bar
 Calculated with the code CASTHY/7/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Elastic scattering
 Calculated with the code CASTHY/7/.

MT=51–60,91 Inelastic scattering
 Calculated with the code CASTHY/7/.

MT=16,17 (n,2n), (n,3n)
 Assumed to be isotropic in the Lab system.

MF=5 Energy Distributions of the Secondary Neutrons

MT=16,17 91 (n,2n), (n,3n) and continuum inelastic
 Evaporation spectra.

MT=18 Fission
 Maxwell spectrum. The temperature parameters were esti-
 mated from the systematics of Howerton-Doyas/13/.

References
3) Mughabghab, S.F.: "Neutron Cross Sections", Vol. 1, Part B,
MAT number = 3922

92-U -233 SAEI+ Eval-Mar87 H.Matsunobu,Y.Kikuchi,T.Nakagawa Dist-Sep89

History
82-06 Evaluation for JENDL-2 was made by N. Asano (SAEI),
H. Matsunobu (SAEI) and Y.Kikuchi(JAERI).
87-03 Re-evaluation for JENDL-3 was made by H.Matsunobu (SAEI)
Main part of revision was the cross sections above 10 keV
and angular and energy distributions of neutrons.
Data were compiled by T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Nu-total
 Sum of Nu-d and Nu-p
MT=455 Nu-d
 Below 4 MeV
 Nu-d = 0.0075094 + 4.627E-5+ln(E(MeV))
 Between 4 and 20 MeV
 Based on the data of Masters et al. /1/ and Evans et al.
 /2/.
MT=456 Nu-p
 Renormalization was made to 3.756 of Cf-252.
 Below 1 MeV
 Nu-p = 2.486 + 0.1121\times(E-DE),
 where DE is difference of average fragment kinetic energy
 between incident and thermal neutron energies. It was
 taken from data of Boldeman et al. /3/.
 Between 1 and 2.73 MeV
 Nu-p = 2.436 + 0.1279\times E
 Between 2.73 and 7.47 MeV
 Nu-p = 2.327 + 0.1678\times E
 Above 7.47 MeV
 Nu-p = 2.857 + 0.08889\times E

MF=2 Resonance Parameters
MT=151
 a) Resolved resonance region (1 eV to 100 eV)
 Resolved resonance parameters for the single-level Breit-
 Wigner formula based on the data of Nizamuddin and Blons
 /4/.
 b) Unresolved resonance region (0.1 keV to 30 keV)
 Parameters were deduced with ASREP code /5/ so as to
 reproduce the evaluated cross sections in this energy
 region.

MF=3 Neutron Cross Sections
 a) Thermal energy region (below 1.0 eV)
 MT=1 Total
 Sum of partial cross sections
 MT=2 Elastic scattering
 Calculated from resolved resonance parameters by using the
 effective scattering radius of 9.93 fm.
 MT=18 Fission
 Based on data of Weston et al. /6/, Cao et al. /7/,
 Deruytter and Wagemans /8/ and Pshonichny et al. /9/.
MT=102 Capture

Based on the data of Weston et al. /6/.

2200-m/s cross sections and calculated res. integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>587.9 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>12.70 b</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>529.9 b</td>
<td>772 b</td>
</tr>
<tr>
<td>capture</td>
<td>45.30 b</td>
<td>139 b</td>
</tr>
</tbody>
</table>

b) Resonance Region (from 1 eV to 30 keV)

Represented with resolved and unresolved resonance parameters and background cross sections. The unresolved resonance parameters were determined to reproduce cross sections evaluated as follows.

c) Smooth part (above 30 keV)

MT=1 Total

Based on the data of Poonitz /10,11/. Between 10 and 48 keV, cross-section curve calculated with the statistical-model code CASTHY /12/ and the coupled-channel theory code ECIS /13/ was normalized at 48 keV.

MT=2 Elastic

Obtained by subtracting non-elastic scattering cross section from the total cross section.

MT=4 and 51-64.91 Inelastic scattering

Calculated with CASTHY /12/ and ECIS /13/. Coupled levels were first three levels. Deformed OMP was adopted from the recommendation by Haouat et al. /14/, and spherical OMP the same as that used for JENDL-2.

Deformed OMP

\[V = 46.4 - 0.3 \times 10^{-E} \]
\[r_0 = 1.26 \]
\[a_0 = 0.63 \]
\[\beta_2 = 0.22, \beta_4 = 0.08 \]

Spherical OMP

\[V = 41.8 - 0.20 \times 10^{-E} + 0.008 \times 10^{-E} \times 2. \]
\[r_0 = 1.31 \]
\[a_0 = 0.57 \]

Level scheme was taken from Ref. /15/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.04035</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.0922</td>
<td>9/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.1551</td>
<td>11/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.29882</td>
<td>5/2 -</td>
</tr>
<tr>
<td>5</td>
<td>0.31191</td>
<td>3/2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.3208</td>
<td>7/2 -</td>
</tr>
<tr>
<td>7</td>
<td>0.34047</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.3537</td>
<td>9/2 -</td>
</tr>
<tr>
<td>9</td>
<td>0.397</td>
<td>11/2 -</td>
</tr>
<tr>
<td>10</td>
<td>0.39649</td>
<td>1/2 +</td>
</tr>
<tr>
<td>11</td>
<td>0.41576</td>
<td>3/2 +</td>
</tr>
<tr>
<td>12</td>
<td>0.5039</td>
<td>7/2 -</td>
</tr>
</tbody>
</table>
3 of Uranium-233

13 0.5467 5/2 +
14 0.5871 7/2 +

Above 0.6 MeV, assumed to be overlapped. Levels with asterisk were coupled in the ECIS calculation.

MT=16.17 (n,2n) and (n,3n)
 Calculated by Pearlstein's method /16/. The (n,2n) cross section was normalized to fission-spectrum-averaged value of 0.00408 b measured by Kobayashi /17/.

MT=18 Fission
 Based on the experimental data of Gwin et al. /18/, Carlson et al. /19/, Manabe et al. /20/, Kanda et al. /21/, Iwasaki et al. /22/, Meadows /23,24/ and Poenitz /25/, and the fission cross section of U-235 obtained by the simultaneous evaluation /26/.

MT=102 Capture
 In the energy range from 30 keV to 1 MeV, the alpha values measured by Hopkins and Diven /27/ were multiplied by the fission cross section. In the high energy region, values calculated with CASTHY and ECIS were normalized to 0.0578 b at 1 MeV.

MT=251 Mu-bar
 Calculated with CASTHY and ECIS.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2, 51-64 and 91
 Calculated with CASTHY and ECIS.

MT=16.17 and 18
 Assumed to be isotropic in the Lab system.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16.17,91
 Calculated with PEGASUS /28/.

MT=18 Fission spectrum
 Calculated with Madland-Nix formula /29/. The following parameters were taken from Ref. /29/.
 - Average energy release = 188.971 MeV
 - Total average FF kinetic energy = 172.1 MeV
 - Average Masses of Light and heavy FF = 95 and 139
 - Level density parameter = A/11

MT=455 Delayed neutrons
 Recommendation by Saphier et al. /30/ was adopted.

MF=8 Fission Product Yields
 MT=454 Fission product yield data (independent)
 MT=459 Fission product yield data (cumulative)
 Both were taken from JNDC FP Decay Data file version 2 /31/.

References
5) Kikuchi Y.: to be published.
13) Raynal J.: ECIS.
MAT number = 3923

92-U -234 Kawasaki Eval-Mar87 T.Watanabe
Dist-Sep89

History
87-03 New evaluation for JENDL-3 was made by T.Watanabe (Kawasaki
Heavy Ind.)
87-06 Compilation was made by T.Nakagawa (JAERI)

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Taken from ENDF/B-VI evaluation (=JENDL-2).

MF=2 Resonance Parameters
MT=251 Resonance Parameters : 1.0E-5 eV - 50 keV
Resolved resonances for MLBW formula : 1.0E-5 eV - 1.5 keV
Parameters of Ref./1/ were adopted after modification of
an average radiative width to 0.026 eV/2/.
A negative
level was added at -2.06 eV so as to reproduce the cross
sections at 0.0253 eV/2/.
Total = 119.1 + 1.3 b
Elastic = 19.6 + 1.0 b
Capture = 99.8 + 1.3 b

Unresolved resonances : 1.5 keV - 50 keV
The following parameters were given.
<WG> = 0.026 eV/2/, <WF> = 0.0 eV, D-obs = 10.6 eV/2/.
S=0 = 0.96E-4 (calculated with ECIS/3/).
S-1 = 1.197E-4 (adjusted to the total cross section
calculated with ECIS/3/).
R = 9.70 fm (adjusted to the total cross section at
50 keV).

Calculated 2200 m/s cross sections and resonance integrals.

<table>
<thead>
<tr>
<th>2200 m/s</th>
<th>Resonance integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>119.2 b</td>
</tr>
<tr>
<td>elastic</td>
<td>19.41 b</td>
</tr>
<tr>
<td>fission</td>
<td>6.22 mb</td>
</tr>
<tr>
<td>capture</td>
<td>99.75 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 50 keV, resonance parameters were evaluated.
Background cross sections for the fission were given in the
unresolved resonance region.

MT=1,2,4,51-62,91,102 Total, elastic and inelastic scattering,
and capture
Calculated with coupled-channel code ECIS/3/ and spherical
optical and statistical model code CASTHY/4/.

The Deformed optical potential parameters of Lagrange/5/ were adopted for the ECIS calculation.

\[V = 46.42 - 0.3 \times \text{En.} \]
\[W_s = 3.72 + 0.4 \times \text{En.} \]
\[V = 46.42 - 0.3 \times \text{En.} \]
\[V = 46.42 - 0.3 \times \text{En.} \]
\[V = 46.42 - 0.3 \times \text{En.} \]
= 7.72

En above 10 MeV
Vso = 6.2 rso = 1.12 aso = 0.47
beta2 = 0.194
beta4 = 0.071

The spherical optical potential parameters for the CASTHY calculation were determined so as to reproduce the total cross section calculated with ECIS by using the above OMP.

\[V = 41.49 - 0.1359 \times En \]
\[Ws = 9.284 - 0.2086 \times En + 0.03225 \times En^{2} \]
Vso = 4.248,
r = 1.315, rs = 1.381, rso = 1.15
ao = 0.528, b = 0.372, aso = 0.597

The level scheme was taken from Ref. /6/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity Coupled Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.04348</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.14334</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.29506</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.49702</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>0.7412</td>
<td>10 +</td>
</tr>
<tr>
<td>6</td>
<td>0.78628</td>
<td>1 -</td>
</tr>
<tr>
<td>7</td>
<td>0.80989</td>
<td>0 +</td>
</tr>
<tr>
<td>8</td>
<td>0.94785</td>
<td>4 +</td>
</tr>
<tr>
<td>9</td>
<td>0.9628</td>
<td>5 -</td>
</tr>
<tr>
<td>10</td>
<td>0.9691</td>
<td>3 +</td>
</tr>
<tr>
<td>11</td>
<td>0.9895</td>
<td>2 -</td>
</tr>
<tr>
<td>12</td>
<td>1.0236</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Continuum levels were assumed above 1.024MeV

Level density parameters were evaluated using D-obs and excited level data /2,6/.

\[a(1/MeV) \times T(MeV) \times Ex(MeV) \times Sig\times 2(0) \]

92-U-234 29.349 0.4598 4.79 16.872
92-U-235 31.415 0.3914 4.231 14.378

The gamma-ray strength function (=84.6E-4) was determined by normalizing the capture cross section to 0.45535 b at 50 keV which was calculated from above-mentioned unresolved resonance parameters.

MT=16.17 (n,2n) and (n,3n)
JENDL-2 data calculated with the evaporation model were renormalized so that they might be consistent with the fission and compound formation cross sections calculated with ECIS and CASTHY.

MT=18 Fission
Experimental data /7,8,9/ of fission cross section ratio to U-235 were evaluated. Fission cross section was obtained by multiplying the U-235 fission cross section/10/ to the ratio.
MT=251 Mu-L bar
Calculated with ECIS and CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-62.91 Calculated with ECIS and CASTHY
MT=16.17.18 Assumed to be isotropic in the lab. system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Table type data were given.
Spectra were calculated with preequilibrium and multi-step evaporation model code PEGASUS /11/.

MT=18
Calculated with the formula of Madland and Nix /12/.
Constant compound nucleus formation cross section model was adopted.
Total average FF kinetic energy = 171.09 MeV
Average energy release = 187.976 MeV
Average mass number of light FF = 95
Average mass number of heavy FF = 140
Level density parameter = A/10.0

References
MAT number = 3924

92-U -235 SAE1+ Eval-Mar87 H.Matsunobu,K.Hida,T.Nakagawa+ Dist-Sep89

History
87–03 Newly evaluated for JENDL-3 by the following evaluators.
K.Hida (NAIG) gamma-ray production data
Y.Nakajima (JAERI) resolved resonances
T.Nakagawa (JAERI) unresolved resonances
H.Matsunobu (SAE1) other quantities
88–08 Data were partly modified to final JENDL-3 data.
Nu-bar, Unresolved resonance parameters.
89–02 FP yields were replaced with JNDC FP Decay File version-2.
Data were compiled in ENDF-5 format by T.Nakagawa (JAERI)

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Total number of neutrons per fission
Sum of nu-p (MT=456) and nu-d (MT=455).
MT=455 Delayed neutron data
Evaluated on the basis of the experimental data by Keepin et al. /1/, Keepin /2/, Masters et al. /3/, Conant and Palmodo /4/, Evans and Thorpe /5/, Cox /6/, Besant et al. /7/ and Synetos and Williams /8/.
MT=456 Number of prompt neutrons
Evaluated on the basis of the experimental data by Boldeman and Walsh /9/, Soleilhac et al. /10/, Frehaut et al. /11,12/, Meadows and Whalen /13/, Prokhorova et al. /14,15/, Savin et al. /16/, Kaeppeler and Bandl /17/, Boldeman et al. /18/, Frehaut and Boldeman /19/, Boldeman and Frehaut /20/, Gwin et al. /21/, Frehaut et al. /22/, Gwin et al. /23/, Howe /24/, and Boldeman and Hines /25/. The standard value of 3.756 of Cf-252 nu-p was used in the present evaluation.

MF=2 Resonance Parameters
MT=151
1) Resolved resonances : 1.0 - 100 eV
2g-Gamma-n : Simple average of experimental data.
Gamma-g : Weighted average of experimental data.
Gamma-f : Calculated from the averaged fission area.
Details of the evaluation given in Ref. /26/.
Total spin J values were taken from Moore et al./27/.
2) Unresolved resonance parameters : 100 eV - 30 keV
The evaluated total, capture and fission cross sections were fitted by adjusting S0, S1 and Gamma-f. The fission cross section was based on the experimental data of Weston and Todd /28/.
The capture cross section was determined as (Sig-f)/(alpha(JENDL-2)).

2200-m/s cross sections and calculated res. integrals.
2200 m/s res. integ.
elastic 14.64 b -
fission 584.0 b 275 b
capture 96.0 b 152 b
total 694.8 b -

MF=3 Neutron Cross Sections
Below 1.0 eV: Based on the experimental data.

Between 1.0 and 100 eV: Background data for resonance parameters are given to well reproduce the experimental data.

Above 100 eV: Data were evaluated as follows. Between 100 eV and 30 keV, the unresolved resonance parameters were given to reproduce these cross sections.

MT=1 Total

Evaluated on the basis of the experimental data by Uttley et al. /29/, Boeckoff et al. /30/, Schwartz et al. /31/, Green et al. /32/, Foster and Glasgow /33/, Poenitz et al. /34/, and Poenitz and Whalen /35/.

MT=2 Elastic scattering

Evaluated on the basis of the experimental data by Smith /36/, Smith and Whalen /37/ and Knitter et al. /38/ in the energy range from 0.3 to 2.3 MeV. In the remaining energy range it was derived by subtracting sum of partial cross sections from total cross section.

MT=4,51–79,91,251 Inelastic scattering cross section and mu-bar

Evaluated on the basis of experimental data and calculation with optical and statistical models, and coupled channel theory taking into account of deformation of nucleus. The calculated inelastic scattering cross sections were decreased by factor of 0.9 below about 2 MeV so as to be in agreement with Smith et al. /39/.

Deformed optical potential parameters were adopted from the recommendation by Bouat et al. /40/.

\[V = 46.4 - 0.3\cdot E_n, \quad W_s = 3.3 + 0.4\cdot E_n, \quad V_{so} = 6.2 \quad (\text{MeV}) \]

\[r_0 = 1.26, \quad r_s = 1.26, \quad r_{so} = 1.12 \quad (\text{fm}) \]

\[a_0 = 0.63, \quad b = 0.52, \quad a_{so} = 0.47 \quad (\text{fm}) \]

\[\beta_{-2} = 0.22, \quad \beta_{-4} = 0.08 \]

The spherical optical potential parameters were obtained by fitting the experimental data of the total cross section.

\[V = 40.90 - 0.04\cdot E_n, \quad W_s = 6.5 + 0.25\cdot E_n, \quad V_{so} = 7.0 \quad (\text{MeV}) \]

\[r_0 = 1.312, \quad r_s = 1.375, \quad r_{so} = 1.320 \quad (\text{fm}) \]

\[a = 0.490, \quad b = 0.454, \quad a_{so} = 0.470 \quad (\text{fm}) \]

Statistical model calculation with CASTHY code /41/.

Competing processes: fission \((n,2n)\), \((n,3n)\), \((n,4n)\).

Level fluctuation was considered.

The level scheme taken from Refs. /42,43/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>7/2 -</td>
</tr>
<tr>
<td>1</td>
<td>0.075</td>
<td>1/2 +</td>
</tr>
<tr>
<td>2</td>
<td>13.038</td>
<td>3/2 +</td>
</tr>
<tr>
<td>3</td>
<td>46.347</td>
<td>9/2 -</td>
</tr>
<tr>
<td>4</td>
<td>51.697</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5</td>
<td>81.732</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>103.2</td>
<td>11/2 -</td>
</tr>
<tr>
<td>7</td>
<td>129.292</td>
<td>5/2 +</td>
</tr>
<tr>
<td>8</td>
<td>150.4</td>
<td>9/2 +</td>
</tr>
<tr>
<td>9</td>
<td>170.7</td>
<td>13/2 -</td>
</tr>
<tr>
<td>10</td>
<td>171.378</td>
<td>7/2 +</td>
</tr>
<tr>
<td>11</td>
<td>197.1</td>
<td>11/2 +</td>
</tr>
<tr>
<td>12</td>
<td>225.40</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>
13 249.1 15/2 -
14 291.1 11/2 +
15 294.7 13/2 +
16 332.818 5/2 +
17 338.8 17/2 -
18 357.2 15/2 +
19 367.05 7/2 +
20 368.8 13/2 +
21 393.184 3/2 +
22 414.8 9/2 +
23 426.71 5/2 +
24 445.7 7/2 +
25 474.27 7/2 +
26 510.0 9/2 +
27 533.2 9/2 +
28 607.7 11/2 +
29 633.04 5/2 -

Continuum levels assumed above 650 keV.
The level density parameters: Gilbert and Cameron /44/.

MT=16,17,37 (n,2n), (n,3n), (n,4n)
Evaluated on the basis of the following experimental data
and calculation with evaporation model.
(n,2n) : Frehaut et al. /45/
(n,3n) and (n,4n) : Veoer and Arthur /46/.

MT=18 Fission
Derived with simultaneous evaluation/47/ on the basis of the
capture cross sections of Au-197 and U-238, the fission
cross sections of U-235, U-238, Pu-239, -240 and -241 in the
energy range from 50 keV to 20 MeV. Experimental data of
U-235 considered in this evaluation are as follows:
Perez et al. /48/, Poenitz /49,50/, Czirr and Sidhu
/51,52,53/, Szabo and Marquette /54/, Barton et al.
/55/, Canci and Grenier /56,57/, Carlson and Patrick
/58/, Kari /59/, Adamov et al. /60/, Arlt et al. /61,
62/, Wasson et al. /63,64/, Li et al. /65/, Mahdavi et
al. /66/, Carlson and Behrens /67/, Corvi et al. /68/,
Dushin et al. /69/ and Weston and Todd /28/.

MT=102 Capture
Derived from the evaluated alpha value and fission cross
section below 1 MeV. Calculated with CASTHY above 1 MeV.

Alpha value was evaluated on the basis of the experimental
data by Kononov et al. /70/, Dvukhsherstnov et al. /71/,
Gwin et al. /72/, Bluhm and Yen /73/, Hopkins and Diven
/74/, Beer and Koeppeles /75/ and Corvi et al. /68/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-78, 91 Calculated with CASTHY and ECIS codes.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Calculated with PEGASUS/76/ on the basis of the
multi-step evaporation model.

MT=18 Distributions calculated with the formula of Madland and Nix
were adopted. Constant compound nucleus formation
cross section model was adopted.
Total average FF kinetic energy = 171.8 MeV
Average energy release = 186.980 MeV
Average mass number of light FF = 98
Average mass number of heavy FF = 140
Level density parameter = A/9.6

MT=455
Taken from Saphier et al. /78/

MF=8 Fission Product Yield Data
MT=454 and 459
Both were taken from JNDC FP Decay File version-2 /79/.

MF=12 Photon Production Multiplicities (option 1)
Given for the following sections below 369.579 keV

MT=18 Fission
The thermal neutron-induced fission gamma spectrum
measured by Verbinski /81/ was adopted.

MT=51-69 Inelastic Scattering
The photon branching data taken from /43/ were converted
to the photon multiplicities.

MT=102 Capture
Calculated with GNASH /80/, where the pygmy resonance
was introduced /82/.

MF=13 Photon Production Cross Sections
MT=3 Non-elastic
Calculated with GNASH /80/ above 369.579 keV.
Verbinski's data /81/ were used up to 20 MeV.

MF=14 Photon Angular Distributions
MT=3, 102
Isotropic distributions were assumed.

MF=15 Continuous Photon Energy Spectra
MT=3, 102
Calculated with GNASH /80/
MT=18
Experimental data by Verbinski /81/ were adopted.

References
42) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th Ed.
MAT number = 3925

92-U - 236 NAIG Eval-Mar88 T. Yoshida
Dist-Sep89

History
79-03 New evaluation for JENDL-2 was made by T. Yoshida (NAIG).
86-12 JENDL-2 data were critically reviewed.
88-03 JENDL-2 data were revised to make JENDL-3 on the basis
of the 86-12 review. New Russian measurements (1982-1986)
were fully adopted, resultantly leading to a nearly 30
per-cent reduction of capture cross-section above 1.5 keV.
Sub-threshold fission curve was introduced between 1.5 keV
and 700 keV. Unknown gamma-f was assumed to be 0.354
milli-eV.
Data were compiled by T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Taken from Malinovskii's paper /1/

MF=2 MT=151 Resonance parameters
Resolved resonances for MLBW formula: 1.0E-5 eV to 1.5 keV
Res. energies and Gam-n (for Gam-n greater than 0.1*Gam-g)
: Carraro /2/
Gam-n (for Gam-n smaller than 0.1*Gam-g): Mewissem /3/
Gam-g : Mewissem /3/, when not given, mean value was taken.
Gam-f : Theobald /4/.
Average Gam-g = 23.0 milli-eV
Average Gam-f = 0.354 milli-eV
A negative resonance was introduced to reproduce the 2200-
m/s capture cross section of (5.11±0.21) barns recommended
Unresolved resonances: 1.5 keV to 40 keV
Parameters were determined to reproduce total and capture
cross sections calculated with CASTHY and evaluated fission
cross section. Obtained parameters are:
S0 = 0.900E-4, S1 = energy dependent (1.8E-4 - 2.7E-4)
Gam-g = 0.023 eV, Gam-f = energy dependent
R = 9.36 fm, D-obs = energy dependent (14.66 - 13.57 eV)

Calculated 2200-m/s cross sections and res. integrals
2200-m/sec Res. Integ.
total 13.69 b -
elastic 8.337 b -
fission 0.0613 b 7.77 b
capture 5.295 b 346. b

MF=3 Neutron Cross Sections
Below 1.5 keV, all background cross sections are zero.
Above 1.5 keV, data were evaluated as follows. In the energy
range from 1.5 to 40 keV, unresolved resonance parameters were
evaluated and background cross section was given to elastic
scattering.

MT=1, 2, 4, 51-79, 91, 102, 251 Sig-t, Sig-el, Sig-in, Sig-c, Mu-bar
Coupled channel and statistical model calculations were made
with ECIS /6/ and CASTHY codes /7/, respectively.
The deformed optical potential parameters after Haouat and
Lagrange /5/:
\[V_r = 49.8 - 16 \cdot s_y - 0.3 \cdot E_n \] (MeV),
\[W_s = 5.3 - 8 \cdot s_y + 0.4 \cdot E_n \] (MeV),
\[V_{so} = 6.2 \] (MeV),
where \(s_y = (N - Z)/A \)
\[r = 1.26, \quad s = 1.20, \quad s_{so} = 1.12 \] (fm),
\[a = 0.63, \quad a_s = 0.52, \quad a_{so} = 0.47 \] (fm).
The spherical optical potential parameters for the statisti-
cal model calculation with CASTHY:
\[V_r = 40.8 - 0.05 \cdot E_n \] (MeV),
\[W_s = 6.5 + 0.15 \cdot E_n \] (MeV),
\[V_{so} = 7.0 \] (MeV),
\[r = 1.32, \quad s = 1.38, \quad s_{so} = 1.32 \] (fm),
\[a = 0.47, \quad a_s = 0.47, \quad a_{so} = 0.47 \] (fm).

Competing processes: fission, \((n,2n)\) and \((n,3n)\)

Level fluctuation was considered. The gamma-ray strength
function was determined so that the calculated capture cross
section reproduced the measured value of 0.85 barn /8/
around 10 keV.
The level scheme taken from Ref. /9/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>J-Parity</th>
<th>No.</th>
<th>Energy(MeV)</th>
<th>J-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>0.0</td>
<td>0 +</td>
<td>1</td>
<td>0.04524</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.14948</td>
<td>4 +</td>
<td>3</td>
<td>0.30978</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.52225</td>
<td>8 +</td>
<td>5</td>
<td>0.66757</td>
<td>1 -</td>
</tr>
<tr>
<td>6</td>
<td>0.7442</td>
<td>3 -</td>
<td>7</td>
<td>0.7828</td>
<td>10 +</td>
</tr>
<tr>
<td>8</td>
<td>0.9476</td>
<td>5 -</td>
<td>9</td>
<td>0.91916</td>
<td>0 +</td>
</tr>
<tr>
<td>10</td>
<td>0.9581</td>
<td>2 +</td>
<td>11</td>
<td>0.9604</td>
<td>2 +</td>
</tr>
<tr>
<td>12</td>
<td>0.9670</td>
<td>1 -</td>
<td>13</td>
<td>0.9880</td>
<td>2 -</td>
</tr>
<tr>
<td>14</td>
<td>1.0014</td>
<td>3 +</td>
<td>15</td>
<td>1.0070</td>
<td>7 -</td>
</tr>
<tr>
<td>16</td>
<td>1.0356</td>
<td>3 -</td>
<td>17</td>
<td>1.0512</td>
<td>4 +</td>
</tr>
<tr>
<td>18</td>
<td>1.0529</td>
<td>4 -</td>
<td>19</td>
<td>1.0587</td>
<td>4 +</td>
</tr>
<tr>
<td>20</td>
<td>1.0601</td>
<td>3 +</td>
<td>21</td>
<td>1.0700</td>
<td>4 -</td>
</tr>
<tr>
<td>22</td>
<td>1.0882</td>
<td>12 +</td>
<td>23</td>
<td>1.0938</td>
<td>2 +</td>
</tr>
<tr>
<td>24</td>
<td>1.1044</td>
<td>5 -</td>
<td>25</td>
<td>1.1110</td>
<td>2 -</td>
</tr>
<tr>
<td>26</td>
<td>1.1267</td>
<td>5 +</td>
<td>27</td>
<td>1.1470</td>
<td>3 +</td>
</tr>
<tr>
<td>28</td>
<td>1.1494</td>
<td>3 -</td>
<td>29</td>
<td>1.1640</td>
<td>6 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.17 MeV.
The ground state, 1-st and 2-nd excited levels were coupled
in the ECIS calculation.

MT=16.17 \((n,2n)\) and \((n,3n)\)
Calculated with the PEGASUS code /10/.

MT=18 Fission
Evaluated on the basis of measured data of U-236/U-235
/11,12/. To get absolute value Matsumbo's evaluation /13/
for U-235/(n,f) was employed.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51,52 Calculated with ECIS and CASTHY
MT=53-79.91 Calculated with CASTHY.
MT=16,17,18 isotropic distribution in the lab. system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91 Calculated with PEGASUS.
MT=18 Maxwellian fission spectrum. Temperature was estimated from Z^2/A values (14).

MF=8 Fission Product Yields Data
MT=454 Independent yields
MT=458 Cumulative yields
Both were taken from JNDC FP Decay Data File version 2/15.

References
 A.N. Gudkov: Atomnaya Energiya, 61 (1986) 379
13) H. Matsunobu: evaluation for JENDL-3 (MAT=3924).
MAT number = 3926

92-U-238 KYU, JAERI+ Eval-Apr87 Y.Kanda et al.
Dist-Sep89

History
87-01 Simultaneous evaluation for fission and capture cross sections was completed in the energy range above 50 keV.
87-04 Other quantities were evaluated by
Y. Kanda and Y. Uenohara (Kyushu Univ.): MF's = 3, 4 and 5 above resonance region.
T. Nakagawa (JAERI): Resolved resonance parameters and background cross sections.
K. Hida (NAIG): Data for gamma-ray production.
88-03 Data of total, elastic, inelastic (MT=59,60) and capture cross sections were partly modified.
89-03 Data of total, elastic, inelastic and capture cross sections were modified. Unresolved resonance parameters were also modified. FP yields were added.

MF=1 General Information
MT=451 Descriptive data and directory records
MT=452 Number of neutrons per fission
Sum of MT's= 455 and 456
MT=455 Delayed neutron data
Taken from Ref./1/.
MT=456 Number of prompt neutrons per fission
Taken from evaluation by Frehaut /2/.

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
1) Resolved resonance parameters for MLBW formula
(resolved resonance region = 1.0E-5 eV to 9.5 keV)
After JENDL-2 evaluation /3/., Extensive analysis was made by Olson /4/.
In the JENDL-3 evaluation, the parameters were modified from JENDL-2 on the basis of of Olson's data and resonance region was extended up to 9.5 keV. R' and parameters of the 6.07-eV level were adjusted to reproduce the thermal cross sections.
Resonance energy and neutron widths : weighted average of JENDL-2 and Olson's data.
Capture and fission widths : Same as JENDL-2.
Effective scattering Radius : 9.7 fm
l-assignment : based on the method by Bollinger and Thomas /5/.

2) Unresolved resonance parameters
(unresolved resonance region = 9.5 keV to 50.0 keV)
Parameters were obtained with the parameter fitting code ASREP/6/ so as to reproduce the cross sections evaluated in this energy region.

2200-m/s cross sections and calculated resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s(b)</th>
<th>res. integ (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>11.820</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>9.139</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>0.110E-6</td>
<td>2.02</td>
</tr>
<tr>
<td>capture</td>
<td>2.681</td>
<td>279</td>
</tr>
</tbody>
</table>
MF=3 Neutron Cross Sections
Below 50 keV, background cross sections were given. In the
resolved resonance region, they were estimated from picket-
fence model and numbers of missing levels.
Above 50 keV, cross sections were evaluated as follows:

MT=1 Total
The same as JENDL-2 which were based on the following
experimental data.
Below 500 keV: Uttley et al./7/, Whalen et al./8/
Poenitz et al./9/, Tsubone et al./10/
0.5 - 4.5 MeV: Poenitz et al./9/, Tsubone et al./10/
Kopsch et al./11/
4.5 - 15 MeV: Foster and Glasgow /12/
15 - 20 MeV: Bratenahl et al./13/, Peterson et al./14/.

MT=2 Elastic Scattering
Calculated as (Total)-(Partial cross sections)

MT=4, 51-76, 91 Total and partial inelastic scattering
Cross sections were calculated by taking account of direct
and compound processes. Cross sections for MT's = above 60
were increased by 5% to final JENDL-3.

1) Direct process
Coupled-channel model code ECIS/15/ was used together with
spherical optical and statistical model code CASTHY/16/ for
calculation of inelastic cross sections to the 1-st and
second levels. Cross sections were normalized to the
experimental data/17,18,19/ around 3 MeV of incident energy.
The optical potential parameters were taken from Ref./17/:
V0=46.2 - 0.3E, Ws = 3.6 + 0.4E, Vso = 6.2 (MEV)
r = 1.26, rs=1.26, rso=1.12 (fm)
a = 0.63, as=0.52, aso=0.47 (fm)
\beta_2 =0.188, \beta_4 =0.057

Direct cross sections to the other levels were calculated
with DWUCK4/20/ . Those of 3-rd, 6, 8, 9, 10, 11, 13 and
14-th levels were normalized to the experimental data /21/.
Normalization factors to other levels were estimated from
these results.

The optical potential parameters /22/ used in DWUCK-4:
V0 = 50.378 - 0.354E - 27.073(N-Z)/A, (MeV)
WS = 9.265 - 0.232E + 0.03318E^2 - 12.666(N-Z)/A, (MeV)
Vso = 6.2, (MeV)
r = 1.264, a = 0.612, (fm)
rs = 1.256, as = 0.553 + 0.014E, (fm)
rso = 1.1, aso = 0.75 (fm)

2) Compound process:
Calculated with CASTHY /16/. The same optical potential
parameters as those for ECIS calculation were used.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.S.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.044889</td>
<td>2 +</td>
</tr>
</tbody>
</table>
2 0.1484 4 +
3 0.3072 6 +
4 0.5178 8 +
5 0.8801 1 -
6 0.7319 3 -
7 0.7757 10 +
8 0.8271 5 -
9 0.827 0 +
10 0.95 2 -
11 0.9663 2 +
12 0.993 0 +
13 1.0373 2 +
14 1.0565 3 +
15 1.0765 12 +
16 1.107 1 -
17 1.1289 2 -
18 1.1503 9 -
19 1.169 3 -
20 1.2239 2 +
21 1.243 4 -
22 1.27 6 +
23 1.2785 2 -
24 1.290 5 -
25 1.3784 11 -
26 1.4153 14 +

Continuum levels were assumed above 1.5 MeV.

MT=16 (n,²n)
Smooth cross section was determined on the basis of Frehaut et al./24/ below 15 MeV, and Veeser et al./25/ and Karius et al./26/ above 15 MeV.

MT=17 (n,3n)
Based on Veeser et al./25/

MT=18 Fission
Below 100 keV: Taken from experimental data./27/.
100 - 600 keV: Evaluated on the basis of the data of Diffilippo et al./28/, Behrens and Carlson./29/, Nordborg et al./30/ and Meadows./31,32/.
Above 600 keV: Results of simultaneous evaluation./32/ made by considering the experimental data of Refs./29-32, 34-43/.

MT=102 Capture
Below 300 keV, evaluation was mainly based on the data measured by Kazakov et al./44/. Above 300 keV, data were taken from JENDL-2 which were determined mainly from the measurements by Poenitz./43/, Panitkin and Sherman./45/, Moxon./46/, Frickel et al./47/ and Menlove and Poenitz./48/. At high energies, slight modification was made.

MT=251 Mu-L bar
Calculated from the angular distributions in MF=4, MT=2.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51,52 Calculated with ECIS/15/, CASTHY/16/ and
ELIESE-3/49/.

MT=5376 Calculated with DWUCK4/20/ and ELIESE3
MT=16,17,18,91 Assumed to be isotropic in the lab. system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17 Evaporation spectrum
MT=91 Evaporation spectrum in a table form.
MT=18
Calculated with the formula of Madland and Nix /50/.
Constant compound nucleus formation cross section model was adopted.
Total average FF kinetic energy = 170.07 MeV
Average energy release = 186.436 MeV
Average mass number of light FF = 98
Average mass number of heavy FF = 141
Level density parameter = A/10.0

MT=455
Taken from Saphier et al. /51/

MF=8 Fission Product Yields Data
MT=454 Independent yields
MT=459 Cumulative yields
Both were taken from JNDC FP Decay Data File version-2/52/.

MF=12 Photon Production Multiplicities (option 1)
Given for the following sections below 933.941 keV.

MT=18 Fission
The thermal neutron-induced fission gamma spectrum of U-235 measured by Verbinski /54/ was adopted for the whole energy region. The intensity of photon below 0.14 MeV, where no data were given, was assumed to be the same as that between 0.14 and 0.3 MeV.

MT=51-59 Inelastic
Photon branching data were taken from Ref. /55/, and converted to photon multiplicities.

MT=102 Capture
Calculated with GNASH/63/. In the case where the obtained multiplicities were too large, they were renormalized by using energy balance.

MF=13 Photon Production cross sections
MT=3 Non-elastic
Photon production cross section calculated with GNASH /53/ were grouped into the non-elastic in the energy range above 933.941 keV. Transmission coefficients for incident channel were generated with ECIS/15/, and those for exit channel with ELIESE-3/49/. The data for fission were based on the measured U-235 spectra /54/. Further details are given in Ref. /56/.

MF=14 Angular Distributions of Photons
Isotropic distributions were assumed for all sections.

MF=15 Continuous Photon Energy Spectra
MT=3 Non-elastic
Calculated with GNASH /53/.
MT=18 Fission
U-235 spectra measured by Verbinski/54/.
MT=102 capture
Calculated with GNASH/53/.

References
1) Evanec A.E. et al.: Nucl. Sci. Eng., 50, 80 (1973), and
2) Frehaut J.: NEANDC(E) 238/1 (1980).
6) Kikuchi Y.: private communication.
22) Madland D.G. and Young P.G.: "neutron Nucleus Optical
Potential for the Actinide Region" IAEA-190, p. 251 (1978).
45) Panitkin Yu.G. and Sherman L.E.: Atomnaya Energiya, 39, 17
(1975).
MAT number = 3931

93-Np-237 Kyushu U. + Eval-Nov87 Y.Uenohara, Y.Kanda
Dist-Jan88

History
79-03 New evaluation was made by N.Wachi and Y.Kanda (Kyushu University), and Y.Kikuchi (JAERI).
87-11 (n,2n), (n,3n) and fission cross sections were re-evaluated in the energy range above 100 keV by Y.Uenohara and Y.Kanda (Kyushu University).
88-01 Compiled by T.Nakagawa (JAERI).
Modified quantities : (1,452), (1,456), (3,2), (3,16)
(3,17) and (3,18)
89-02 FP yields were taken from JNDc FP Decay File version-2.
89-03 (n,2n) reaction cross section was modified.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Delayed neutron data
Experimental data of Benedetti + /1/ and systematics by Tuttle /2/.
MT=456 Number of neutrons per fission
Based on experimental data of Frehaut + /3/.

MF=2, MT=151 Resonance parameters
Resolved resonances for SLBW formula : 1.0E-6 - 130 eV
Res. energy. Gam-n, Gam-g: Weston and Todd /4/.
Gam-f : Plattard + /5/.
Average Gam-g = 40 milli-eV.
A negative resonance added.
Unresolved resonances : 130 eV - 30 keV
Parameters by Weston and Todd /4/ with slight modification
Adopted parameters :
S0=1.02E-4 , S1=1.888E-4 , D-obs=0.45 eV
Gam-g=40 milli-eV.
Gam-f values determined so that Sig-f = 0.008 b.

Calculated 2200 m/s cross sections and resonance integrals:
2200 m/s value Res.Int.
total : 208.5 b
elastic : 27.52 b
 fission : 0.01921 b 6.36 b
capture : 181.0 b 663 b

MF=3 Neutron Cross Sections
MT=1,4,51-64,91,102,251 Total, inelastic, capture and Mu-bar
Calculated with optical and statistical model code CASTHY /6/.
The spherical optical potential parameters :
V = 43.55 , Ws = 11.0 , Vso = 7.0 (MeV)
r = rs = 1.32 , rso= 1.3 (fm)
a = b = 0.47 , aso= 0.4 (fm)
In the statistical model calculation with CASTHY code, competing processes, fission, (n,2n) and (n,3n), and level fluctuation were considered. The level scheme was taken
from compilation by Ellis /7/.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2+</td>
</tr>
<tr>
<td>1</td>
<td>0.03320</td>
<td>7/2+</td>
</tr>
<tr>
<td>2</td>
<td>0.05854</td>
<td>5/2-</td>
</tr>
<tr>
<td>3</td>
<td>0.07580</td>
<td>9/2+</td>
</tr>
<tr>
<td>4</td>
<td>0.10296</td>
<td>7/2-</td>
</tr>
<tr>
<td>5</td>
<td>0.13000</td>
<td>11/2+</td>
</tr>
<tr>
<td>6</td>
<td>0.15852</td>
<td>9/2-</td>
</tr>
<tr>
<td>7</td>
<td>0.2260</td>
<td>11/2-</td>
</tr>
<tr>
<td>8</td>
<td>0.26754</td>
<td>3/2-</td>
</tr>
<tr>
<td>9</td>
<td>0.281</td>
<td>1/2-</td>
</tr>
<tr>
<td>10</td>
<td>0.305</td>
<td>13/2-</td>
</tr>
<tr>
<td>11</td>
<td>0.327</td>
<td>7/2-</td>
</tr>
<tr>
<td>12</td>
<td>0.332</td>
<td>1/2+</td>
</tr>
<tr>
<td>13</td>
<td>0.357</td>
<td>5/2-</td>
</tr>
<tr>
<td>14</td>
<td>0.369</td>
<td>5/2+</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 0.370 MeV.
The level density parameters were taken from Gilbert and Cameron /8/. The gamma-ray strength function for the capture cross section was determined so that $	ext{Sig-C} = 0.742$ b at 200 keV.

MT=2
Elastic scattering
Calculated as (total - sum of partial cross sections).

MT=16
(n,2n)
For JENDL-2, data were calculated with the evaporation model of Segev +/9/. The data for JENDL-3 were evaluated by fitting to the following experimental data:
- Perkin+ /10/
- Landrum+ /11/
- Lindke+ /12/
- Fort+ /13/
- Gromova+ /14/
- and Kornilov+ /15/.
The data of JENDL-2 were used as prior values, and 50% fractional standard deviations were assigned to them.

MT=17
(n,3n)
For JENDL-2, calculated with the evaporation model of Segev +/9/. Above 16.5 MeV, the JENDL-2 data were modified by adding the values of (Sig-2n of JENDL-2) - (Sig-2n of JENDL-3). Below 16.5 MeV, the shape of (n,3n) cross section of JENDL-2 was normalized to the modified value at 16.5 MeV.

MT=18
Fission
Evaluated from measured data. Above 100 keV, simultaneous evaluation method was used by taking account of the following experimental data:
- Klem+ /16/
- Protopopov+ /17/
- Schmitt+ /18/
- Grundl /19/
- Iyer+ /20/
- Diacoletti+ /21/
- Kobayashi+ /22/
- Arlt+ /23/
- Cancer+ /24/
- Garlea+ /25/
- Kuprijanov+ /26/
- White+ /27,28/
- Stein+ /29/
- Behrens+ /30/
- and Meadows /31/.

MF=4
Angular Distributions of Secondary Neutrons
MT=2,51-64.91
Calculated with the optical model.
MT=16,17,18
Isotropic in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
Evaporation spectrum.
MT=16, 17, 91
Estimated from Z^{+2}/A systematics by Smith $+\frac{32}{6}$
by assuming $E(Cr-252) = 2.13$ MeV.

MF=8 Fission Product Yields
MT=454 and 459
Both were taken from JNDC FP Decay Data File version-2/33/.

References
7) Y. A. Ellis: Nucl. Data Sheets, B6, 539 (1971).
MAT number = 3932

93-Np-239 Kyushu U. + Eval-Mar76 Y. Kanda, JENDL-CG
Dist-Sep89

History
76-03 The evaluation for JENDL-1 was performed by Kanda (Kyushu
Univ.) and JENDL-1 Compilation Group. Details are given
in Ref. /1/.
83-03 JENDL-1 data were adopted for JENDL-2 and extended to 20
MeV. MF=5 was revised.
87-07 Data format was converted into ENDF-5 format and adopted
to JENDL-3.

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
Taken from the Np-237 data of ENDF/B-IV.

MF=2 Resonance Parameters
MT=151 No resonance parameters were given.

2200-m/sec cross sections and calculated resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>res. integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>47.50 b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>10.50 b</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>0.0 b</td>
<td>7.06 b</td>
</tr>
<tr>
<td>capture</td>
<td>37.00 b</td>
<td>445. b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 4.0 eV.
MT=1 Total
 Sum of partial cross sections.
MT=2 Elastic scattering
 The constant cross section of 10.5 barns was assumed from
 $\Sigma = 4.3 \times (0.147 A^{(1/3)})^{2}$.
MT=18 Fission
 Assumed to be zero barns.
MT=102 Capture
 The form of $1/\nu$ was assumed. The 2200-m/sec cross section
 was adopted from the experimental data by Stoughton and
 Halperin /2/.

Above 4.0 eV.
MT=1 Total
 Calculated with optical and statistical model code CASTHY
 /3/. Optical potential parameters were obtained by Ohta and
 Miyamoto /4/ by using the total cross section of Pu-239.
 $V = 45.87 - 0.27 N$, $W_N = 0.06$, $W_S = 14.1$, $V_{so} = 7.3$ (MeV)
 $r = 1.27$, $r_i = 1.27$, $r_s = 1.302$, $r_{so} = 1.27$ (fm)
 $a_0 = 0.652$, $a_i = 0.315$, $a_s = 0.98$, $a_{so} = 0.652$ (fm)
MT=2 Elastic scattering
 Calculated with CASTHY /3/.
MT=4,51-58,91 Inelastic scattering
 Calculated with CASTHY /3/. The level scheme was adopted
 from Nucl. Data Sheets Vol. 6.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.031</td>
<td>7/2 +</td>
</tr>
</tbody>
</table>
2 of Neptunium-239

<table>
<thead>
<tr>
<th>MT</th>
<th>Level</th>
<th>E (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.07112</td>
<td>8/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.07467</td>
<td>5/2 -</td>
</tr>
<tr>
<td>4</td>
<td>0.11766</td>
<td>11/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.1230</td>
<td>7/2 -</td>
</tr>
<tr>
<td>6</td>
<td>0.17305</td>
<td>9/2 -</td>
</tr>
<tr>
<td>7</td>
<td>0.2414</td>
<td>11/2 -</td>
</tr>
<tr>
<td>8</td>
<td>0.320</td>
<td>13/2 -</td>
</tr>
</tbody>
</table>

Levels above 430 keV were assumed to overlapping. In the calculation the capture, fission, (n,2n) and (n,3n) cross sections were considered as competing processes.

MT=10,117 (n,2n) and (n,3n)
Calculated with Pearstein's method /5/.

MT=18 Fission
Estimated from the Np-237 fission cross section by normalizing with neutron separation energies.

MT=102 Capture
Below 100 keV, the cross section was calculated from
\[\text{Sig} = 435 / \text{SORT(En)} \text{ barns.} \]
Above 100 keV, the shape of the experimental data for Np-237 by Nagle et al. /6/ was adopted and normalized to 1.4 barns at 100 keV.

MT=251 Mu-bar
Calculated with CASTHY /3/.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Calculated with CASTHY code /3/.
MT=51-58 Isotropic in the center-of-mass system.
MT=16,17,18,91 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,17,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum estimated from
\[Z^*/2/A \text{ systematics} /7/.

References
MAT number = 3941

94-Pu-238 Map1. JAERI Eval-Apr79 T.Hojuyma, Y.Kikuchi, T.Nakagawa
Dist-Sep80

History
79-04 New evaluation was made by T. Hojuyma (Map1) /1/ in the
energy range from 1.0E-5 eV to 20 MeV.
89-07 Cross sections below 9.15 eV were modified by Y. Kikuchi and
T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Nu-p and Nu-d for thermal neutron based on Manero's semi-
empirical formula /2/. Neutron-energy dependence of Nu
based on Howerton's evaluation /3/.

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters: 1.0E-5 to 9.15 eV
Average capture width, S0, <D> and R were estimated from
systematics/4,5/. The first positive resonance was located
at 6.3 eV, and its neutron width was estimated from S0.
The fission width was determined so that the fission cross
section calculated from unresolved resonance formula with
the fission width might smoothly connect at 10 keV to the
cross section in high energy region. A negative resonance
was added at -0.8 eV and the parameters were adjusted so as
to reproduce the fission cross section of 170 b at 0.0253
eV/4/ and reasonable capture cross section.

\[<W_G> = 0.030 \text{ eV} \]
\[R = 9.46 \text{ fm} \]
\[<D> = 0.3 \text{ eV} \]
\[S_0 = 1.25\text{E}-4 /4.5/ \]

Calculated 2200-m/s cross sections and resonance integrals:

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>331.1 b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>16.34 b</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>169.4 b</td>
<td>58.8 b</td>
</tr>
<tr>
<td>capture</td>
<td>145.4 b</td>
<td>401 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT= 1 Total cross section
Obtained by optical model calculation. Optical potential
parameters were taken from Murata's evaluation /7/ except
real potential.

--- Optical Potential Parameters ---
\[V = 39.5-0.05\times\text{En} \quad (\text{MeV}) \]
\[W_0 = 6.5+0.15\times\text{En} \quad (\text{MeV}) \]
\[V_{so} = 7.0 \quad (\text{MeV}) \]
\[r_0 = r_{so} = 1.32, r_s = 1.38 \quad (\text{fm}) \]
\[a = a_{so} = 0.47, b = 0.47 \quad (\text{fm}) \]

MT= 2 Elastic scattering cross section
Obtained by optical and statistical model calculations.

MT=4.51-54.91 Inelastic scattering cross sections
Obtained by optical and statistical model calculations.
Level scheme was taken from Ref./8/ except 4th level of which energy was based on Lynn/9/.

<table>
<thead>
<tr>
<th>No.</th>
<th>E_n (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>44.6</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>145</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>523</td>
<td>8 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 661 keV.

MT=16.17 (n,2n) and (n,3n) cross sections
Calculated with statistical model based on Pearlstein/10/.

MT=18,19,20,21 Fission cross sections
Below 10 keV:
Calculated from the unresolved resonance formula with the following parameters.
S0 = 1.25E-4, S1 = 2.22E-4, <D> = 6.3 ev,
<WG>= 0.0415 eV, <WF> = 0.0035 eV.

Above 10 keV:
Calculated from fission plateau cross sections /7,12/ and Hill-Wheeler type barrier penetration factor /11/.
Fission barrier parameters were taken from Weigmann/13/.

MT=102 Capture cross section
Calculated by optical and statistical model with <WG> of 41.5 milli-eV and <D> of 6.3 ev.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distribution of Secondary Neutrons
MT= 2 Based on optical and statistical model calculation.

MT=1-54 Isotropic in the center-of-mass system.
MT=16-21,91 Isotropic in the laboratory system.

MF=5 Energy Distribution of Secondary Neutrons
MT=16,17,91 Evaporation spectrum assumed
MT=18,19,20,21 Fission spectrum of Maxwellian form adopted.
Theta taken from evaluation of Terrell/14/.

References
MAT number = 3942

94-Pu-238 MAP1. JAERI Eval-Mar89 T.Kawakita, T.Nakagawa
Dist-Sep89

History
79-03 New evaluation was made by T.Kawakita (PNC).
89-03 Re-evaluation was made by T.Kawakita (MAP1) and
T.Nakagawa(JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
The thermal value of prompt neutrons was based on
experimental data of Jaffey /1/ and Nu-d was taken from
semi-empirical formula by Manero /2/. The energy dependent
term was estimated from Howerton's formula /3/.
(Only total nu is given in the file.)

MF=2 Resonance Parameters
MT=151 Resolved resonance parameters for MLBW formula.
Energy range is from 1.0E-5 eV to 500 eV. Parameters were
taken from the following experimental data.
40 resonances above 10 eV : Silbert /4/
4 resonances below 10 eV : Young /5/
The parameters of two negative and 2.9-eV resonances were
adjusted to the thermal cross sections/6/.

Calculated 2200-m/s cross sections and resonance integrals

\begin{tabular}{ll}
2200-m/s & Res. Integ. \\
\hline
\text{total} & 586.7 b \\
\text{elastic} & 28.53 b \\
\text{fission} & 17.89 b \\
\text{capture} & 540.3 b \\
\end{tabular}

MF=3 Neutron Cross Sections

The energy region below 500 eV is the resonance region. Above
500 eV, the cross sections were evaluated as follows.

MT=1, 2, 4, 51-78, 91, 102 Total, elastic and inelastic scattering,
and capture cross sections
Calculated with optical and statistical models. CASTHY/7/
was used for the calculation.

Optical potential parameters:
The real potential was adjusted so as to obtained the
reasonable compound nucleus formation cross section. The
other parameters were taken from Murata's evaluation /8/.

\begin{align*}
V &= 38.8 - 0.05 \cdot E_n \\
W_s &= 6.5 + 0.15 \cdot E_n \\
V_{so} &= 7.0 \\
a &= b = a_{so} = 0.47 \\
r &= r_{so} = 1.32 \\
rs &= 1.52
\end{align*}

The level scheme:
Taken from Ref. /9/.
<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>44.08</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>145.98</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>303.4</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>514.0</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>605.1</td>
<td>1 −</td>
</tr>
<tr>
<td>6</td>
<td>661.4</td>
<td>3 −</td>
</tr>
<tr>
<td>7</td>
<td>763.2</td>
<td>5 −</td>
</tr>
<tr>
<td>8</td>
<td>941.5</td>
<td>0 +</td>
</tr>
<tr>
<td>9</td>
<td>962.77</td>
<td>1 −</td>
</tr>
<tr>
<td>10</td>
<td>968.2</td>
<td>2 −</td>
</tr>
<tr>
<td>11</td>
<td>983.0</td>
<td>2 +</td>
</tr>
<tr>
<td>12</td>
<td>985.5</td>
<td>2 −</td>
</tr>
<tr>
<td>13</td>
<td>1028.55</td>
<td>2 +</td>
</tr>
<tr>
<td>14</td>
<td>1069.95</td>
<td>3 +</td>
</tr>
<tr>
<td>15</td>
<td>1082.57</td>
<td>4 −</td>
</tr>
<tr>
<td>16</td>
<td>1125.8</td>
<td>4 +</td>
</tr>
<tr>
<td>17</td>
<td>1174.5</td>
<td>2 +</td>
</tr>
<tr>
<td>18</td>
<td>1202.7</td>
<td>3 −</td>
</tr>
<tr>
<td>19</td>
<td>1228.6</td>
<td>0 +</td>
</tr>
<tr>
<td>20</td>
<td>1264.2</td>
<td>2 +</td>
</tr>
<tr>
<td>21</td>
<td>1310.3</td>
<td>2 +</td>
</tr>
<tr>
<td>22</td>
<td>1426.6</td>
<td>0 +</td>
</tr>
<tr>
<td>23</td>
<td>1447.3</td>
<td>1 −</td>
</tr>
<tr>
<td>24</td>
<td>1468.5</td>
<td>2 +</td>
</tr>
<tr>
<td>25</td>
<td>1560.0</td>
<td>1 −</td>
</tr>
<tr>
<td>26</td>
<td>1596.5</td>
<td>2 +</td>
</tr>
<tr>
<td>27</td>
<td>1621.4</td>
<td>1 −</td>
</tr>
<tr>
<td>28</td>
<td>1636.6</td>
<td>1 −</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1.65 MeV. The level density parameters of Gilbert and Cameron /10/. The fission, (n,2n) and (n,3n) cross sections were taken into account as the competing processes. For the capture cross section, the gamma-ray strength function was estimated from D-obs = 9.5 eV and average radiative width = 0.04 eV.

MT=16,17 (n,2n) and (n,3n) reaction cross sections Calculation based on the Pearlstein's method /11/.

MT=18 Fission cross section Evaluated mainly on the basis of data measured by Budtz-Jorgensen/12/. Other experiments /4, 13-20/ were also taken into consideration.

MT=251 Mu-bar Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons MT=2.51-78.91 Calculated with optical model.

MT=16,17,18 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons MT=16.17,91 Evaporation spectrum was assumed.

MT=18
Maxwellian type fission spectrum. Temperature was estimated from Z^2/Λ systematics by Smith et al. [21].

References

8) T. Murata: private communication.
9) C.M. Lederer et al.: Table of Isotopes. 7th Ed. (1978).
MAT number = 3943

94-Pu-239 NAIG Eval-Mar87 M.Kawai, T.Yoshida, K.Hida Dist-Sep89

History
87-03 Evaluation was made by
 M.Kawai and K.Hida(NAIG) : cross sections above
 resonance region and other quantities,
 T.Yoshida(NAIG) : resonance parameters and background
 cross sections,
88-08 Partly modified.
 Nu-bar, Resolved resons., (n,2n).
89-02 FP yields were taken from JNDC FP Decay Data File version-2.
89-03 Unresolved resonance parameters were slightly modified.

Data were compiled by T.Nakagawa (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Number of neutrons per fission
 Sum of Nu-p (MT=456) and Nu-d (MT=455).
MT=455 Delayed neutron data
 Evaluated data by Tuttle /1/ were adopted.
MT=456 Number of prompt neutrons per fission
 Standard Cf-252 SF Nu-p was taken to be 3.756. Thermal Nu-p
 was 2.8781 that was a mean value of experimental data. The
 energy dependent Nu-p was obtained from
 below 10 eV : Ref./2/ multiplied by 1.001
 10 eV < En < 500 eV: Ref./3/ multiplied by 1.0035
 500eV < En < 100keV: Ref./2/ multiplied by 1.001
 above 500 keV : Refs./4-8/
 Factors are ratios of 2.8781 and the experiments at thermal
 energy.

MF=2 Resonance Parameters
MT=151 Resolved and unresolved resonance parameters
 Resolved res. parameters for Reich-Moore formula: up to 1 keV
 Parameters were taken from Refs./8/ and /10/, in which the
 fission cross section measured by Weston and Todd /11/ had
 been used as the basis of analysis. The parameters given in
 Ref. /10/ were revised in 1988 by the original authors and
 these final values /12/ were adopted here.
 Unresolved resonances : from 1 to 30 keV.
 The energy dependent S0, S1 and fission width were deter-
 mined so as to reproduce the evaluated total, capture and
 fission cross sections.

 2200-m/sec cross sections and calculated resonance integrals.
 2200 m/s res. integ.
 total 1025.5 b -
 elastic 8.831 b -
 fission 746.7 b 299 b
 capture 270.0 b 185 b

MF=3 Neutron Cross Sections
 Below 1 keV, background cross section was given to reproduce
 the fission cross section measured by Weston and Todd /11/.
Between 1 and 30 keV, cross sections were replaced with unresolved resonance parameters.

MT=1 Total
Below 7 MeV, JENDL-2 evaluation which were based on the experiments of Refs. /13–17/ was adopted. Above 7 MeV, experimental data by Poenitz /18/ were adopted.

MT=2 Elastic scattering
Calculated as (Total) - (Partial cross sections).

MT=4, 51–68, 91 Inelastic scattering
The direct component was calculated with coupled channel code ECIS /19/.
Eight states, marked with an asterisk in the level scheme given below, of the ground state rotational band were coupled in the calculation. Deformed optical potential parameters with a derivative Woods-Saxon absorption term were taken from Ref. /20/:

\[
\begin{align*}
V &= 46.2 - 0.3\cdot\text{En} \quad (\text{MeV}) \\
Wv &= -1.2 + 0.15\cdot\text{En} \quad (\text{MeV}), \quad \text{En} > 8 \text{ MeV} \\
W_s &= 3.6 + 0.4\cdot\text{En} \quad (\text{MeV}), \quad \text{En} < 7 \text{ MeV} \\
6.4 + 0.1\cdot(\text{En} - 7) \quad (\text{MeV}), \quad \text{En} > 7 \text{ MeV} \\
V_{so} &= 6.2 \quad (\text{MeV}) \\
r = r_v = 1.26, \quad r_s = 1.24 \quad r_{so} = 1.12 \quad (\text{fm}) \\
a = a_v = 0.615, \quad a_s = 0.50 \quad a_{so} = 0.47 \quad (\text{fm}) \\
\beta_{21} = 0.21, \quad \beta_{54} = 0.085
\end{align*}
\]

The compound component was calculated with optical and statistical model code CASTHY /21/, taking into account level fluctuation and interference effects. The fission, (n,2n), (n,3n), and (n,4n) reactions were considered as competing processes.

The neutron transmission coefficients for the incident channel were generated with ECIS, whereas those for the exit channel were calculated with CASTHY using spherical optical potential parameters adopted for JENDL-2 evaluation:

\[
\begin{align*}
V &= 40.72 - 0.05\cdot\text{En} \quad (\text{MeV}) \\
W_s &= 6.78 - 0.29\cdot\text{En} \quad (\text{MeV}) \\
V_{so} &= 7.0 \quad (\text{MeV}) \\
r &= r_{so} = 1.32, \quad r_s = 1.357 \quad (\text{fm}) \\
a &= a_{so} = 0.47 \quad (\text{fm})
\end{align*}
\]

The surface absorption is of derivative Woods-Saxon type.

The level scheme was taken from Ref. /22/:

<table>
<thead>
<tr>
<th>No.</th>
<th>g.s.</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
<th>Coupled level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>7.86</td>
<td>3/2 +</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>57.28</td>
<td>75.71</td>
<td>5/2 +</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>163.78</td>
<td>194.0</td>
<td>7/2 +</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>285.46</td>
<td>317.0</td>
<td>9/2 +</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>330.13</td>
<td>360.0</td>
<td>11/2 +</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>387.41</td>
<td>391.6</td>
<td>13/2 +</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>435.0</td>
<td>9/2 +</td>
<td>7/2 +</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9/2 +</td>
<td>7/2 -</td>
<td>8/2 -</td>
<td></td>
</tr>
</tbody>
</table>
Continuum levels were assumed above 538 keV.

MT= 16, 17, 37 (n,2n), (n,3n), and (n,4n)
Calculated with a modified version of GNASH /23/. The neutron transmission coefficients were generated with ECIS /19/ and optical model code ELIESE-3 /24/, respectively, using the above-mentioned deformed and spherical potentials. The level schemes for Pu-236, -237, -238, -239 and -240 were taken from Refs. /22/ and /25-28/. The Gilbert-Cameron's composite formula /29/ was used to represent the level density. Level density parameters were determined from the observed s-wave resonance spacing /30/ and the level schemes. The spin cut-off factors in the constant temperature model were represented by Gruppelaar's prescription /31/.

<table>
<thead>
<tr>
<th></th>
<th>Pu-236</th>
<th>Pu-237</th>
<th>Pu-238</th>
<th>Pu-239</th>
<th>Pu-240</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (1/MeV)</td>
<td>25.50</td>
<td>28.00</td>
<td>26.23</td>
<td>29.44</td>
<td>26.96</td>
</tr>
<tr>
<td>T (MeV)</td>
<td>0.442</td>
<td>0.418</td>
<td>0.422</td>
<td>0.388</td>
<td>0.412</td>
</tr>
<tr>
<td>C (1/MeV)</td>
<td>3.06</td>
<td>14.5</td>
<td>2.88</td>
<td>15.0</td>
<td>3.30</td>
</tr>
<tr>
<td>E-joint (MeV)</td>
<td>4.71</td>
<td>4.09</td>
<td>4.38</td>
<td>3.97</td>
<td>4.26</td>
</tr>
<tr>
<td>sigma••2</td>
<td>8.63</td>
<td>8.18</td>
<td>6.47</td>
<td>11.6</td>
<td>9.69</td>
</tr>
<tr>
<td>no. levels</td>
<td>4.0</td>
<td>19.0</td>
<td>22.0</td>
<td>19.0</td>
<td>28.0</td>
</tr>
<tr>
<td>E-max (MeV)</td>
<td>0.307</td>
<td>0.4736</td>
<td>1.3103</td>
<td>0.5118</td>
<td>1.2621</td>
</tr>
<tr>
<td>D-obs (eV)</td>
<td>0.395</td>
<td>10.7</td>
<td>0.383</td>
<td>9.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Gamma-g (eV)</td>
<td>0.043</td>
<td>0.027</td>
<td>0.043</td>
<td>0.034</td>
<td>0.043</td>
</tr>
</tbody>
</table>

D-obs of Pu-236, -237 and -238 were not available from Ref. /30/, and hence the parameters "a" for these nuclei were determined assuming its linear dependence on the mass A:

a = 0.365•A - 60.64 for even-even Pu isotopes
a = 0.659•A - 128.18 for odd-mass Pu isotopes

which were derived by analyzing the data of Pu-241, -242, -243, and -244 as well as Pu-239 and -240. Low-lying levels were hardly observed for Pu-236 and it was assumed to be identical to that of Pu-238 to determine the constant temperature parameters.

Evaluated fission cross section described below was fed to GNASH as a competing process. The pre-equilibrium process was taken into account. Though the parameter F2 was adjusted, the calculated (n,2n) cross section failed to well reproduce the measured data. Therefore, the measured (n,2n) cross section of Frehaut et al. /33/ was adopted in place of the calculated one.

MT=18 Fission
Below 50 keV
Based on measurements of Ref. /34/ and Ref. /35/.
Above 50 keV
Simultaneous evaluation was performed by Kanda et al. /36/.
MT=102 Capture
The cross section in the energy range below 1 MeV was derived as a product of the evaluated fission cross section and alpha value. The alpha values are identical to those of JENDL-2. Above 1 MeV the results of the statistical model calculation with CASTHY /21/ linked with ECIS /19/ were adopted. The photon strength function was normalized in the CASTHY calculation so as to reproduce the capture cross section of 280 mb at 100 keV.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51–68.91 Calculated with ECIS /19/ and CASTHY /21/.
MT=16.17.18.37 Isotropic in the laboratory system.

MF=5 Energy Distributions Secondary Neutrons
MT=16.17.37.91
Calculated with threshold cross section calculation code PEGASUS /37/ on the basis of preequilibrium and multi-step evaporation model.

MT=18
Distributions calculated with the formula of Madland and Nix /38/ were adopted. Constant compound nucleus formation cross section model was adopted.
Total average FF kinetic energy = 177.1 MeV
Average energy release = 198.154 MeV
Average mass number of light FF = 100
Average mass number of heavy FF = 140
Level density parameter = A/9.0

MT=455
Taken from Saphier et al. /39/.

MF=8 Fission product yields
MT=454 Independent yields
MT=459 Cumulative yields
Both were taken from JNDC FP Decay Data File version–2/40/.

MF=12 Photon Production Multiplicities and Transition Probability arrays
MT=16.17.37.91.102 (n,2n),(n,3n),(n,4n),Inelastic Scattering to the continuum, and Capture
Data calculated with GNASH /23/ were stored under Option-1 (multiplicities). The photon branching data were taken from Refs. /22/ and /25–28/. Some assumptions were made for levels of Pu-237 and -239 which had no information on branching: If E1 transitions were allowed to lower levels, the transition probabilities were equally shared among them. If not, equally shared collective E2 transitions were assumed. The photon strength functions were represented by the Brink–Axel type giant dipole resonance with conventional resonance positions and widths. They were normalized to input values at the thermal energy. The pygmy resonance was introduced only for Pu-240. The parameters were assumed to be the same as those of U-238 /41/.
Fission
Stored under Option-1 (multiplicities). The thermal neutron induced fission gamma spectrum measured by Verbinski /42/ was adopted and used up to 20 MeV neutron. Since no data were given for the photons below 0.14 MeV, it was assumed to be the same as that of the photons between 0.14 and 0.3 MeV.

Inelastic Scattering
Stored under Option-2 (transition probability arrays). Data were taken from Ref. /22/, and the same assumptions as described above were applied to the levels to which no data were given.

Photon Angular Distributions
MT=16,17,18,37,51-68,91,102 isotropic.

Continuous Photon Energy Spectra
MT=16,17,37,91,102 Calculated with GNASH /23/
MT=18 Experimental data by Verbinski /42/ were adopted.

References
37) Iijima S. et al.: to be published.
40) JNDC working group on Decay Heat: private communication (1989).
MAT number = 3944

94-Pu-240 NAIG+ Eval-May87 T.Murata, A.Zukeran
 Dist-Sep89

History
87-05 Evaluation was made by
 T.Murata (NAIG): Cross sections above resonance region
 and other quantities,
 A.Zukeran(Hitachi): Resonance parameters.
88-06 MT's=16, 17, 37 and 102 were modified.
89-02 FP yields were taken from JNDC FP Decay File version-2.
 Compilation was made by T. Nakagawa (JAERI).

MF=1 General Information
 MT=451 Comments and dictionary
 MT=452 Number of neutrons per fission
 Sum of MT=455(delayed neutrons) and MT=456(prompt neutrons).
 MT=455 Delayed neutron data
 Assumed to be the same as those of Pu-239.
 MT=456 Number of prompt neutrons
 Linear least-squares fitting to the experimental data of
 Frehaut et al. /1/ renormalized to Cf-252 Nu-p=3.756.

MF=2 Resonance Parameters
 MT=151 Resolved and unresolved resonance parameters
 1) Resolved resonances for MLBW formula (1.0E-5 to 4 keV)
 Parameters of a negative and the 1.057-eV resonances were
 revised on the basis of recommendation by Mughabghab /2/.
 Neutron and capture widths of other levels were based on the
 experimental data by Hokenbury et al. /3/ in the energy
 range from 20 to 500 eV, and Kolar and Boeckhoff /4/ from
 500 eV to 4 keV. The average capture width of 29.5 milli-eV
 was assumed for the resonances whose capture widths were
 unknown. Below 610 eV, the sub-threshold fission widths
 were calculated from the area data by Weston and Todd /5/.
 Above 610 eV, they were taken from the data by Auchampaugh
 and Weston /6/.
 2) Unresolved resonances (4 to 40 keV)
 Energy dependent parameters were determined to reproduce the
 evaluated cross sections in this energy region. Fission
 widths were adjusted to average cross sections measured by
 Weston and Todd /5/.

 Calculated 2200-m/sec cross sections and res. integrals.

 | Total | Elastic | Fission | Capture | 2200-m/sec | res. integ. |
 |-------|---------|---------|---------|------------|-------------|
 | 291.13 b | 1.644 b | 0.0588 b | 289.4 b | 8110. b |

MF=3 Neutron Cross Sections
 Below 4 keV: Background cross sections are given to the capture
 cross section.
 Above 4 keV: Evaluated as follows. In the energy range from 4
 to 40 keV, the cross sections are represented with
 the unresolved resonance parameters, and the back-
 ground cross sections are given in MF=3.
MT=1 Total
Evaluated with spline fitting to the experimental data of
Smith et al./7/, Kaeppeler et al./8/ and Poenitz et al./9/

MT=2 Elastic scattering
Obtained by subtracting the other cross sections from total
cross section.

MT=4 Total inelastic scattering
Sum of partial inelastic scattering cross sections (MT=51
to MT=91).

MT=51-78, 91 Partial inelastic scattering
Below 3 MeV, the results of statistical and coupled-channel
calculation made by Lagrange et al./10/ were adopted. For
some levels, for which Smith's experimental data/11/ were
available, the calculated results were normalized (for 1st,
2nd, 3rd, 5th and 9 to 11th levels).

Level scheme

<table>
<thead>
<tr>
<th>No.</th>
<th>g.s.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.04285</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.14169</td>
<td>0.29431</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.4976</td>
<td>0.59736</td>
<td>8 +</td>
</tr>
<tr>
<td>6</td>
<td>0.64889</td>
<td>0.74232</td>
<td>3 -</td>
</tr>
<tr>
<td>8</td>
<td>0.8607</td>
<td>9.0032</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>0.93807</td>
<td>1.0018</td>
<td>1 -</td>
</tr>
<tr>
<td>11</td>
<td>0.95887</td>
<td>1.0306</td>
<td>2 -</td>
</tr>
<tr>
<td>12</td>
<td>0.9924</td>
<td>1.0375</td>
<td>4 -</td>
</tr>
<tr>
<td>13</td>
<td>1.0018</td>
<td>1.0764</td>
<td>4 +</td>
</tr>
<tr>
<td>14</td>
<td>1.0306</td>
<td>1.0895</td>
<td>0 +</td>
</tr>
<tr>
<td>15</td>
<td>1.0375</td>
<td>1.1155</td>
<td>5 -</td>
</tr>
<tr>
<td>16</td>
<td>1.0764</td>
<td>1.1370</td>
<td>2 +</td>
</tr>
<tr>
<td>17</td>
<td>1.1015</td>
<td>1.1615</td>
<td>6 -</td>
</tr>
<tr>
<td>18</td>
<td>1.1155</td>
<td>1.1778</td>
<td>3 +</td>
</tr>
<tr>
<td>19</td>
<td>1.1370</td>
<td>1.2230</td>
<td>2 +</td>
</tr>
<tr>
<td>20</td>
<td>1.1615</td>
<td>1.2325</td>
<td>4 +</td>
</tr>
<tr>
<td>21</td>
<td>1.1778</td>
<td>1.2408</td>
<td>3 -</td>
</tr>
<tr>
<td>22</td>
<td>1.2230</td>
<td>1.2621</td>
<td>5 -</td>
</tr>
<tr>
<td>23</td>
<td>1.2325</td>
<td>1.30873</td>
<td>0 +</td>
</tr>
<tr>
<td>24</td>
<td>1.2408</td>
<td>1.41079</td>
<td></td>
</tr>
</tbody>
</table>

Levels above 1.4108 MeV were assumed to be continuum.

MT=16,17,37 (n,2n),(n,3n) and (n,4n)
Calculated from neutron emission cross section and branching
ratio to each reaction channel. Neutron emission cross
section was obtained by subtracting the fission and capture
cross sections from compound nucleus formation cross section.
calculated with spherical optical model. Branching ratio
was obtained from formalism given by Segev et al. /12/

MT=18 Fission
Below 100 keV: Average values of fission cross section
measured by Weston and Todd /5/ were normalized to the value
at 100 keV of the simultaneous evaluation.
Above 100 keV: Simultaneous evaluation was made by taking
account of experimental data of fission ratio and absolute
cross sections of U-235, U-238, Pu-239, Pu-240 and Pu-241,
and capture cross section of Au-197 /13/.

MT=102 Capture
Below 350 keV: Based on the experimental data of Hockenbury et
al. /3/, Weston and Todd /14/ and the ratio data of Wisshak
and Kaeppeler /15/ with the capture cross section of Au-197
/13/. As a guide line, statistical model calculation was
made with CASTHY code /16/.
Above 350 keV: The statistical model calculation was
normalized to the value at 350 keV. Direct and collective
capture was included in high energy region adopting the
value for U-238 given by Kitazawa et al. /17/.

The spherical optical potential parameters
V = 40.0 - 0.05*En, \(W_s = 6.5 + 0.15*En \) (MeV)
\(V_{so} = 7.0 \) (MeV)
\(r = r_{so} = 1.32 \) (fm) \(r_s = 1.38 \) (fm)
\(a = a_{so} = 0.47 \) (fm)
Level density parameters were determined to reproduce the
resonance level spacings and staircases of discrete levels.

MT=251 Mu-bar
The same as JENDL-1 /18/ except for 20 MeV.

MF=4 Angular Distributions of Secondary Neutrons
MT=2
Taken from JENDL-2 /18/.
MT=16,17,18,37,91
Assumed to be isotropic in the laboratory system.
MT=51-78
For the 1st and 2nd levels, results of Lagrange et al. /10/
were adopted. For others, statistical and DWBA calculations
were made.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Calculated with pre-compound and multi-step evaporation
theory code PEGASUS /19/.
MT=37
Evaporation spectrum was given.

MT=18 Fission spectra
Calculated from Madland-Nix formula /20/.
Average energy release \(= 199.179 \) MeV
Total average FF kinetic energy \(= 177.53 \) MeV
Average mass number of light FF \(= 101 \)
Average mass number of heavy FF \(= 140 \)
Level density parameter \(= A/10.0 \)
MT=455 Delayed neutron spectra
 Assumed to be the same as Pu-239 which were taken from
 the evaluation by Saphier et al. /21/.

MF=8 Fission Product Yields
MT=454 Independent yields
MT=459 Cumulative yields
 Both were taken from JNDC FP Decay File version-2/22/.

References
 (1975).
8) Kaeppeler F., et al.: Proc. of Meeting on Nuclear Data of
 Higher Pu and Am isotopes for Reactor Application, held at
 BNL, p.49 (1978)
MAT number = 3945

94-Pu-241 JAERI Eval-Oct87 Y.Kikuchi, N.Sekine, T.Nakagawa
Dist-Sep89

History
79-10 New evaluation was made by Y.Kikuchi (JAERI) and N.Sekine
(HEC). Data of JENDL-1 /1/ were superseded.
79-12 Files 2, 3 and 4 were released as JENDL-2B /2/.
87-03 Data were revised by adopting the simultaneous evaluation
for the fission cross section.
89-02 FP Yields were added.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Sum of Nu-p (MT=456) and Nu-d (MT=455).
MT=455 Delayed neutron data
Data of Benedetti + /3/
MT=456 Number of prompt neutrons per fission
Data of Boldeman and Frenhaut /4/ for thermal fission were
adopted at low energy by assuming Nu-p(Cf-252 spontaneous
fission) = 3.753 for JENDL-2. For JENDL-3, data were
increased by a factor of 3.756/3.753. An energy dependent
term was based on Frenhaut + /5/

MF=2, MT=151 Resonance Parameters (the same as JENDL-2)
Resolved resonances: 1 - 100 eV
JENDL-1 data /1/ modified for better fit to experiments. A
negative resonance added. Background cross section applied
for fission and capture.

Unresolved resonances: 100 eV - 30 keV
Obtained by fitting evaluated fission and capture cross
sections.
Energy dependent parameters: S0, S1 and Gam-f.
Fixed parameters: R=9.8 fm, Gam-g = 0.040 eV,
D-obs = 0.85 eV

2200-m/sec cross sections and calculated resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>1388.2 b</td>
<td>b</td>
</tr>
<tr>
<td>elastic</td>
<td>10.23 b</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>1015. b</td>
<td>590 b</td>
</tr>
<tr>
<td>capture</td>
<td>363.0 b</td>
<td>187 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Point-wise data below 1 eV down to 1.0E-5 eV
Total : on the basis of the data of Smith + /6/
Fission : on the basis of the data of Wagemans + /7/
Elastic : calculated from resonance parameters
Capture : total - (fission + elastic)

Background cross sections for resolved resonances are given, and
no background cross sections for unresolved resonances.

Above 30 keV, smooth cross sections given as follows.
MT=1, 2, 4, 51-61, 91, 251 : Total, elastic, inelastic scattering cross sections and mu-bar calculated with optical and statistical models. Optical potential parameters used were obtained from systematics 8/:
\[V = 40.25 - 0.05 \cdot En, \quad W_s = 6.5, \quad V_{so} = 7.0 \quad \text{(MeV)} \]
\[r = rs_o = 1.32, \quad rs = 1.38 \quad \text{(fm)} \]
\[a = b =aso = 0.47 \quad \text{(fm)} \]
Statistical model calculations were performed with CASTHY code 9/. Taken into the calculation were competing processes (fission, (n,2n), (n,3n), (n,4n)) and level fluctuation. The level scheme taken from Ref. 10/.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy(keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>41.8</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>94.0</td>
<td>9/2 +</td>
</tr>
<tr>
<td>3</td>
<td>161.5</td>
<td>1/2 +</td>
</tr>
<tr>
<td>4</td>
<td>170.8</td>
<td>3/2 +</td>
</tr>
<tr>
<td>5</td>
<td>223.1</td>
<td>5/2 +</td>
</tr>
<tr>
<td>6</td>
<td>230.0</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>242.7</td>
<td>7/2 +</td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>11/2 +</td>
</tr>
<tr>
<td>9</td>
<td>335</td>
<td>9/2 +</td>
</tr>
<tr>
<td>10</td>
<td>388</td>
<td>13/2 +</td>
</tr>
<tr>
<td>11</td>
<td>445</td>
<td>11/2 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 490 keV.
The level density parameters: Gilbert and Cameron 11/.

MT=16, 17, 37 : (n,2n), (n,3n), (n,4n) calculated with evaporation model.

MT=18
Fission
Above 70 keV, simultaneous evaluation with U-235, U-238, Pu-240, Pu-241 12/ were adopted. The experimental data taken into account are those by Szabo+ 13, 14/, Carlson+ 15, 16/, Fursov+ 17/ and Keappeler+ 18/. Below 45 keV, JENDL-2 was adopted. These two sets of data were connected smoothly between 45 and 70 keV.

MT=102
Capture
Based on the data of Alpha by Weston+ 19/ up to 250 keV. Calculated with CASTHY above 250 keV. The gamma-ray strength function was determined so that Sig-c = 269 mb at 250 keV.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-61 : Calculated with CASTHY.
MT=16, 17, 18, 37, 91 : Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 18, 37, 91
Calculated with pre-equilibrium and multi-step evaporation code PEGASUS 20/.

MT=18 Prompt fission neutron spectrum.
Determined from Z/F/A systematics by Smith et al. 21/.

MT=455 Delayed neutron spectrum.
Evaluation by Sahier et al. 22/ was adopted.
MF=8 Fission Product Yields
MT=454 Independent yields
MT=459 Cumulative yields
Both were taken from JNDC FP Decay File version-2/23.

References
10) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th Ed.
15) Carlson G.W.
MAT number = 3946

94-Pu-242 NAIG Eval-Mar87 T.Murata, M.Kawai
Dist-Sep89

History
87-05 Evaluation was made by
T.Murata (NAIG): Cross sections above resonance region and
other quantities.
M.Kawai (NAIG): Resonance parameters.
89-02 FP Yields were added.
Compilation was made by T. Nakagawa (JAERI).

MF=1 General Information
MT=451 Descriptive data and dictionary
MT=452 Total number of neutrons per fission
Taken from ENDF/B-IV /1/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance parameters for MLBW (1.0E-5 ev to 1.15 kev)
Evaluation for JENDL-2 was modified on the basis of fission
cross section measurements by Weigmann et al. /2/
Res. Energies = BNL 325 (3rd) /3/
Neutron and capture widths = Poortmans et al. /4/,
Auchampaugh et al. /5/
Fission widths = Weigmann et al. /2/
R = 9.9 fm
Average capture width = 0.0242 ev
Two negative resonances were added to reproduce 2200-m/s
cross sections recommended by Mughabghab /6/
Unresolved resonance parameters (1.15 to 40 keV)
Parameters were determined to reproduce cross sections
evaluated as described below.

Calculated 2200-m/s cross sections and resonance integrals
2200-m/s(b) res. integ.(b)
total 27.11 -----
elastic 8.32 -----
fission 0.00256 5.58
capture 18.79 1130

MF=3 Neutron Cross Sections
Below 40 keV, represented with resonance parameters.

MT=1 SIG-TOT
Below 6 keV: Experimental data of Young and Reeder /7/
were averaged over some keV energy interval.
Above 6 keV: Spline fitting to experimental data of
Kaeppeler et al. /8/ and Moore et al. /9/

MT=2 SIG-EL
Obtained by subtracting other cross sections from total.

MT=4 SIG-INEL
Sum of partial inelastic cross sections

MT=51-91 Partial SIG-INEL
Below 3 MeV: The results of statistical and coupled channel calculation of Lagrange et al.10 were adopted.

Above 3 MeV: Extrapolation of the values was made based on DWBA calculation.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.S.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.04285</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.141685</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.284314</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.4876</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>0.59736</td>
<td>1 -</td>
</tr>
<tr>
<td>6</td>
<td>0.64889</td>
<td>3 -</td>
</tr>
<tr>
<td>7</td>
<td>0.74232</td>
<td>5 -</td>
</tr>
<tr>
<td>8</td>
<td>0.8607</td>
<td>0 +</td>
</tr>
<tr>
<td>9</td>
<td>0.90032</td>
<td>2 +</td>
</tr>
<tr>
<td>10</td>
<td>0.93807</td>
<td>1 -</td>
</tr>
<tr>
<td>11</td>
<td>0.95887</td>
<td>2 -</td>
</tr>
<tr>
<td>12</td>
<td>0.9924</td>
<td>4 +</td>
</tr>
<tr>
<td>13</td>
<td>1.0018</td>
<td>3 -</td>
</tr>
<tr>
<td>14</td>
<td>1.0306</td>
<td>3 +</td>
</tr>
<tr>
<td>15</td>
<td>1.0375</td>
<td>4 -</td>
</tr>
<tr>
<td>16</td>
<td>1.0764</td>
<td>4 +</td>
</tr>
<tr>
<td>17</td>
<td>1.0895</td>
<td>0 +</td>
</tr>
<tr>
<td>18</td>
<td>1.1155</td>
<td>5 -</td>
</tr>
<tr>
<td>19</td>
<td>1.1370</td>
<td>2 +</td>
</tr>
<tr>
<td>20</td>
<td>1.1615</td>
<td>6 -</td>
</tr>
<tr>
<td>21</td>
<td>1.1778</td>
<td>3 +</td>
</tr>
<tr>
<td>22</td>
<td>1.223</td>
<td>2 +</td>
</tr>
<tr>
<td>23</td>
<td>1.2325</td>
<td>4 +</td>
</tr>
<tr>
<td>24</td>
<td>1.2408</td>
<td>1 -</td>
</tr>
<tr>
<td>25</td>
<td>1.2621</td>
<td>3 +</td>
</tr>
<tr>
<td>26</td>
<td>1.2820</td>
<td>3 -</td>
</tr>
<tr>
<td>27</td>
<td>1.30873</td>
<td>5 -</td>
</tr>
<tr>
<td>28</td>
<td>1.41079</td>
<td>0 +</td>
</tr>
</tbody>
</table>

Levels above 1.41079 MeV were assumed to be continuum.

MT=16,17,37 Sigmas of \((n,2n)\), \((n,3n)\) and \((n,4n)\)
Given by multiplication of neutron emission cross section and branching ratio to each reaction. The neutron emission cross section was obtained by subtracting fission and capture cross sections from reaction cross section calculated with spherical optical model. The branching ratio was calculated with the formalism given by Segev et al.11/

MT=18 SIG-FISS
Below 100 keV: Shape of SIG-FISS determined on the fission area data of Auchampaugh et al.12/ Then normalized to the value of higher energy region.
Above 100 keV: Fission ratio to U-235 was determined on the experimental data of Behrens et al.13/ and multiplied by U-235 fission cross section 14/.

MT=102 SIG-CAP
Energy region of 6 keV to 210 keV: Determined on the basis of
experimental data of Hoehenbury et al. /15/ and Wisshak and Kaeppeler /16/.

Other energy region : Statistical calculation result with CASTHY code /17/ was normalized to SIG-CAP in the region of 6 to 210 keV. Direct and collective capture processes were included in high energy region using the value of U-238 given by Kitazawa et al. /18/.

** Parameters for the CASTHY code calculation

Spherical optical potential parameters

\[V = 40.1 - 0.05E_n \text{, } W_s = 0.5 + 0.15E_n \text{, } V_{so} = 7.0 \text{ (MeV)} \]

\[r = 1.32 \text{, } r_s = 1.38 \text{, } r_{so} = 1.32 \text{ (fm)} \]

\[a = a_{so} = 0.47 \text{ (fm)} \]

Level density parameters were determined to reproduce the resonance level spacings and level scheme sum staircases.

MT=251 Mu-L

Assumed to be the same as that of Pu-240.

MF=4 Angular Distributions

The same distributions as Pu-240 were assumed, which were determined as follows.

MT=2 DSIG-E1

Spherical optical model calculation

MT=51 to 91 DSIG-Inel

For the 1st and 2nd levels the results of calculation of Lagrange et al. /10/ are available and their results were adopted. For other levels, statistical plus DWBA calculations were made.

MF=5 Energy Distributions of Secondary Neutrons

MT=16, 17 and 91

Distributions were calculated with PEGASUS /19/.

MT=37

Evaporation spectrum was taken from JENDL-2

MT=18

Taken from JENDL-2. Temperature was estimated from Z••2/A systematics by Smith et al. /20/.

MF=8 Fission Product yields

MT=454 Independent Yields

MT=459 Cumulative Yields

Both were taken from JNDC FP Decay Data File version-2/21/.

References

MAT number = 3851

95-Am-241 JAERI Eval-Mar88 T.Nakagawa
JAERI-M 89-008 Dist-Sep89

History
82-03 Evaluation for JENDL-2 was made by Y.Kikuchi (JAERI) /1/.
88-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI)
/2/.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Sum of Nu-p (MT=456) and Nu-d (MT=455).
MT=455 Delayed neutron data
 Estimated with semi-empirical formula by Tuttle /3/.
MT=456 Number of prompt neutrons
 Experimental data of Jaffey and Lerner /4/.

MF=2, MT=151 Resonance parameters
Resolved resonances for MLBW formula : 1.0E-5 - 150 eV
 Data of Derrien and Lucas /5/ were adopted and 5 negative
 resonances were added. Values of total spin J were
 replaced with arbitrarily assumed values.

Unresolved resonances : 150 eV - 30 keV
 Parameters were determined by using ASREP/6/ so as to
 reproduce the capture cross section measured by Vanpraet
 et al. /7/ and the fission cross section by Dabbs et al.
 /8/.
 Energy independent parameters:
 \(R=9.37 \text{ fm}, \ G_{\text{in}}=0.044 \text{ eV}, \ G_{\text{in}}=0.4 \text{ eV} \)
 Energy dependent parameters:
 At 150 eV: \(S_0=1.08E-4, \ S_1=2.72E-4, \ WF=0.24 \text{ milli-eV} \)
 At 30 keV: \(S_0=0.79E-4, \ S_1=1.99E-4, \ WF=0.30 \text{ milli-eV} \)

Calculated 2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>Cross Sections</th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>614.6 b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>11.13 b</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>3.018 b</td>
<td>13.9 b</td>
</tr>
<tr>
<td>capture</td>
<td>600.4 b</td>
<td>1300 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1.2 Total and elastic scattering cross sections
 Calculated with optical and statistical models by using
 CASTHY/9/. Optical potential parameters/10/ were obtained
 by fitting the data of Phillips and Howe /11/:
 \[V = 43.4 - 0.107\cdot En \quad (\text{MeV}) \]
 \[W_s = 8.95 - 0.338\cdot En + 0.0531\cdot En^{2/2} \quad (\text{MeV}) \]
 \[W_v = 0 \quad V_{so} = 7.0 \quad (\text{MeV}) \]
 \[r = rso = 1.282 \quad r_s = 1.29 \quad (\text{fm}) \]
 \[a = a_{so} = 0.60 \quad b = 0.5 \quad (\text{fm}) \]

MT=4.51-65.91 Inelastic scattering cross sections
 Optical and statistical model calculation with CASTHY code
 /9/. The level scheme was taken from Ref. /12/.
No. & energy (keV) & spin-parity \\
--- & --- & --- \\
g.s. & 0 & 5/2 - \\
1 & 41.176 & 7/2 - \\
2 & 93.65 & 9/2 - \\
3 & 158.0 & 11/2 - \\
4 & 205.883 & 5/2 + \\
5 & 235.0 & 7/2 + \\
6 & 272.0 & 9/2 + \\
7 & 320.0 & 11/2 + \\
8 & 471.81 & 3/2 - \\
9 & 504.448 & 5/2 - \\
10 & 549.0 & 7/2 - \\
11 & 623.1 & 1/2 + \\
12 & 636.861 & 3/2 - \\
13 & 652.089 & 1/2 - \\
14 & 653.72 & 3/2 + \\
15 & 670.24 & 3/2 + \\
16 & 682.0 & 11/2 - \\

Continuum levels assumed above 732 keV. The level density parameters were determined on the basis of number of excited levels/13/ and resonance level spacing/14/.

<table>
<thead>
<tr>
<th>Am-242</th>
<th>Am-241</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(1/MeV)</td>
<td>29.6</td>
</tr>
<tr>
<td>T(MeV)</td>
<td>0.342</td>
</tr>
<tr>
<td>C(1/MeV)</td>
<td>22.98</td>
</tr>
<tr>
<td>E-x(MeV)</td>
<td>2.323</td>
</tr>
<tr>
<td>spin-cutoff(1/MeV-0.5)</td>
<td>30.85</td>
</tr>
<tr>
<td>pairing E(MeV)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

MT=16,17 (n,2n) and (n,3n) reaction cross sections
JENDL-2 data calculated with evaporation model were adopted.

MT=18 Fission cross section
Evaluated on the basis of the data by Dabbs et al./8/

MT=102 Capture cross section
Evaluated on the basis of the measured data of Vanpraet et al./7/ in the unresolved resonance region. Above 30 keV, Calculation with CASTHY was adopted. The gamma-ray strength function was determined so that the cross section was 1.7 barns at 60 keV.

MT=251 Mu-bar
Calculated with optical model.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-66.91 Calculated with CASTHY.
MT=16,17,18 isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum. Temperature was estimated from Z•2/A values /15/.

MF=8 Fission product yield data
Fission product yield data
Taken from ENDF/B-IV, and renormalized to 2.0.

References
NBS-Sp-425 (1975).
6) Kikuchi Y.: private communication.
MAT number = 3952

95–Am–242 JAERI Eval–Mar80 T.Nakagawa, S.Igarasi
JAERI–M 8903 (1980) Dist–Sep89

History
80–03 New evaluation was made by T.Nakagawa and S.Igarasi (JAERI).
Details are given in Ref. /1/.
87–04 Format was translated to ENDF–5 format.
88–03 Since no recent experimental data were available, the data
of JENDL–2 were adopted for JENDL–3.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Sum of prompt and delayed neutrons.
MT=455 Delayed neutron data
 Estimated from Tuttle’s semi–empirical formula /2/.
MT=456 Number of prompt neutrons per fission
 Semi–empirical formula by Howerton /3/
 Nu–p = 3.268 + 0.172*E(MeV).

MF=2 Resonance Parameters
MT=151 No resonance parameters

2200 m/s cross sections and calculated resonance integrals.
2200 m/sec Res. Integ.
 total 7611.44 b
 elastic 11.44 b
 fission 2100.0 b 1260 b
 capture 5500.0 b 391 b

MF=3 Neutron Cross Sections
MT=1,2,4,51–72,91,102,251 Sig–t, Sig–el, Sig–in, Sig–c, Mu–bar
Below 0.225 eV:
1/v form was assumed for fission and capture cross sections. Effective scattering radius of 9.54 fm was
used for elastic scattering cross-section calculation.

Above 0.225 eV:
Optical and statistical models were used.
The spherical optical potential parameters (MeV, fm):
V = 42.0 − 0.107*E , r = 1.282 , a = 0.6
W = 9.0 − 0.339*E + 0.0531*E^2 , r = 1.29 , a = 0.5
Vso = 7.0 , r = 1.282 , a = 0.6
Statistical model calculation with CASTHY code /4/.
Competing processes: fission, (n,2n) and (n,3n).
Level fluctuation considered. Gam-g = 0.05 eV and
D = 0.45 eV used for capture cross section calculation.
The level scheme taken from the compilation by Ellis
and Haese /5/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin–Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>1 –</td>
</tr>
<tr>
<td>1</td>
<td>0.044</td>
<td>0 –</td>
</tr>
<tr>
<td>2</td>
<td>0.046</td>
<td>3 –</td>
</tr>
<tr>
<td>3</td>
<td>0.049</td>
<td>5 –</td>
</tr>
<tr>
<td>4</td>
<td>0.074</td>
<td>2 –</td>
</tr>
<tr>
<td>5</td>
<td>0.113</td>
<td>6 –</td>
</tr>
<tr>
<td>6</td>
<td>0.148</td>
<td>4 –</td>
</tr>
</tbody>
</table>
7 0.148 5 -
8 0.190 7 -
9 0.242 3 -
10 0.263 6 -
11 0.263 7 -
12 0.288 4 -
13 0.288 2 -
14 0.325 3 -
15 0.341 5 -
16 0.372 4 -
17 0.410 6 -
18 0.430 5 -
19 0.468 7 -
20 0.500 6 -
21 0.581 7 -
22 0.679 8 -

Overlapping levels are assumed above 0.681 MeV.

The level density parameters of Gilbert and Cameron /6/.

MT=16,17 (n,2n) and (n,3n) cross sections
Calculated with the evaporation model by Pearlstein /7/.

MT=18 Fission cross section
The empirical formula used for the Am-242m data was
applied by shifting the energy origin to -49 keV.

MF=4 Angular Distributions of Secondary Neutrons

MT=2 Legendre coefficients are given by the optical and
statistical model calculations.

MT=16,17,18,91 isotropic distributions in the center-of-mass
system.

MT=51-72 isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons

MT=16,17,91 Evaporation spectrum
MT=18 Fission spectrum estimated from Z+2/A systematics by
Smith et al. /8/ by assuming E(Cf-252) = 2.13 MeV.

References
 (1965).
MAT number = 3953

95-Am-242m JAERI Eval-Mar88 T.Nakagawa
JAERI-M 89-008 Dist-Sep89

History
80-03 New evaluation was made by T.Nakagawa and S.Igarasi (JAERI).
Details are given in Ref. /1/.
88-03 Re-evaluation was made for JENDL-3 by T.Nakagawa (JAERI)/2/.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Sum of prompt and delayed neutrons.
MT=455 Delayed neutron data
Estimated from Tuttle's semi-empirical formula /3/.
MT=456 Number of prompt neutrons per fission
Based on the relative measurements /4,5/ to the U-235
data, and on the empirical formula by Howerton /6/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance parameters: below 20 eV
Parameters for 48 levels deduced by Browne et al./7/
and the single level Breit-Wigner formula were adopted.

Unresolved resonance parameters: 20 eV – 30 keV
Parameters were determined so as to reproduce the
fission cross section of Browne et al./7/. Background
sig was given to the fission at low energies.
Average WG = 0.05 eV, Average WF = 1.28 eV,
D-obs = 0.4 eV, S0 = 1.07E-4, S1 = e-dependent,
R = 9.59 fm

Calculated 2200m/s cross sections and resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>7969. b</td>
</tr>
<tr>
<td>elastic</td>
<td>5.667 b</td>
</tr>
<tr>
<td>fission</td>
<td>6409. b</td>
</tr>
<tr>
<td>capture</td>
<td>1254. b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 30 keV: Cross sections were represented with the
resonance parameters.

Above 30 keV:

MT=1.2 Total and elastic scattering cross sections
Calculated with optical and statistical model code
CASTHY/8/.
The spherical optical potential parameters (MeV, fm):
V = 42.0 - 0.107E , r = 1.282 , a = 0.6
W = 9.0 - 0.339E + 0.0531E-2 , r = 1.29 , a = 0.5
Vso = 7.0 , r = 1.282 , a = 0.6

MT=4.51-72.91 Inelastic scattering cross sections
Calculated with CASTHY/8/. The level scheme was taken
from the compilation by Ellis and Haese /9/, with
shifted energy origin at -49 keV.
Table: Energy Levels and Spin-Parity

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>-0.049</td>
<td>1 -</td>
</tr>
<tr>
<td>1</td>
<td>-0.005</td>
<td>0 -</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>3 -</td>
</tr>
<tr>
<td>3</td>
<td>0.0 (meta stable)</td>
<td>5 -</td>
</tr>
<tr>
<td>4</td>
<td>0.025</td>
<td>2 -</td>
</tr>
<tr>
<td>5</td>
<td>0.064</td>
<td>6 -</td>
</tr>
<tr>
<td>6</td>
<td>0.099</td>
<td>4 -</td>
</tr>
<tr>
<td>7</td>
<td>0.099</td>
<td>5 -</td>
</tr>
<tr>
<td>8</td>
<td>0.141</td>
<td>7 -</td>
</tr>
<tr>
<td>9</td>
<td>0.193</td>
<td>3 -</td>
</tr>
<tr>
<td>10</td>
<td>0.214</td>
<td>6 -</td>
</tr>
<tr>
<td>11</td>
<td>0.214</td>
<td>7 -</td>
</tr>
<tr>
<td>12</td>
<td>0.239</td>
<td>4 -</td>
</tr>
<tr>
<td>13</td>
<td>0.239</td>
<td>2 -</td>
</tr>
<tr>
<td>14</td>
<td>0.276</td>
<td>3 -</td>
</tr>
<tr>
<td>15</td>
<td>0.292</td>
<td>5 -</td>
</tr>
<tr>
<td>16</td>
<td>0.323</td>
<td>4 -</td>
</tr>
<tr>
<td>17</td>
<td>0.361</td>
<td>6 -</td>
</tr>
<tr>
<td>18</td>
<td>0.381</td>
<td>5 -</td>
</tr>
<tr>
<td>19</td>
<td>0.439</td>
<td>7 -</td>
</tr>
<tr>
<td>20</td>
<td>0.451</td>
<td>6 -</td>
</tr>
<tr>
<td>21</td>
<td>0.532</td>
<td>7 -</td>
</tr>
<tr>
<td>22</td>
<td>0.630</td>
<td>8 -</td>
</tr>
</tbody>
</table>

Overlapping levels were assumed above 0.632 MeV. The level density parameters were determined on the basis of number of excited levels/10/ and resonance level spacing/11/.

Am-243 and Am-242

<table>
<thead>
<tr>
<th></th>
<th>Am-243</th>
<th>Am-242</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{1/MeV}$</td>
<td>31.3</td>
<td>29.6</td>
</tr>
<tr>
<td>$T_{1/MeV}$</td>
<td>0.355</td>
<td>0.342</td>
</tr>
<tr>
<td>$C_{1/MeV}$</td>
<td>11.71</td>
<td>22.98</td>
</tr>
<tr>
<td>E-#(MeV)</td>
<td>3.278</td>
<td>2.323</td>
</tr>
<tr>
<td>spin-cutoff(1/MeV*0.5)</td>
<td>31.81</td>
<td>30.85</td>
</tr>
<tr>
<td>pairing E(MeV)</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Cross Sections

- **MT=16, 17** (n,2n) and (n,3n) cross sections
 Taken from JENDL-2 calculated with the evaporation model by Perlstein/12/.

- **MT=18** Fission cross section
 Determined by cubic spline-fitting to the data measured by Browne et al./7/

- **MT=102** Capture cross section
 Calculated with CASTHY/8/. The gamma-ray strength function was estimated from \(W=0.05 \, \text{eV} \) and \(D=0.4 \, \text{eV} \).

- **MT=251** Mu-L bar
 Calculated with CASTHY/8/.

Angular Distributions

- **MT=4** Angular Distributions of Secondary Neutrons
 \(MT=2.51-72.91 \)
 Legendre coefficients were given by the optical and statistical model calculations.

- **MT=16, 17, 18** Isotropic distributions in the laboratory system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91 Evaporation spectrum with nuclear temperature
calculated from level densities.
MT=18 Fission spectrum estimated from Z••2/A systematics by
Smith et al. /13/ by assuming E(Cf-252) = 2.13 MeV.

References
MAT_number = 3954

\[95\text{-Am-243 JAERI} \quad \text{Eval-Mar88 T.Nakagawa}\]
\[\text{JAERI-M 89-008 Dist-Sep89}\]

History
77-03 New evaluation was made by S.Igarasi and T.Nakagawa (JAERI).
Details are given in Ref. /1/.
82-03 Complete reevaluation for JENDL-2 was made by Y.Kikuohi
(JAERI). Details are given in Ref. /2/.
88-03 Reevaluated for JENDL-3 was made by T.Nakagawa (JAERI)/3/.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
\[\text{Sum of Nu-p (MT=456) and Nu-d (MT=455).}\]
MT=455 Delayed neutron data
\[\text{Estimated with semi-empirical formula by Tuttle /4/}.
\]
MT=456 Number of prompt neutrons
\[\text{Estimated from systematics. Same as previous evaluation /1/}.
\]

MF=2,MT=151 Resonance parameters
Resolved resonances for MLBW formula : 1.0E-5 - 215 eV.
JENDL-2 evaluation/2/ was based on the data of Simpson et
al./5/.. The fission widths were modified for JENDL-3 on
the basis of Knitter and Budtz-Jorgensen/6/.. Values of
total spin were assumed arbitrarily.

Unresolved resonances : 215 eV - 30 keV
Parameters of JENDL-2 were adopted.
\[\text{Obtained from optical model calculation:}\]
\[S_0=0.93E-4, \ S_1=2.44E-4, \ R=9.34 \ \text{fm}\]
\[\text{Estimated from resolved resonances:}\]
\[\text{Dobs=0.67 eV, \ WG=0.038 eV, \ WF=0.00012 eV}\]
\[\text{Calculated 2200-m/s cross sections and resonance integrals}\]
\[\begin{array}{lcc}
\text{2200 m/s value} & \text{Res. Int.} \\
total & 86.10 \ b & - \\
elastic & 7.483 \ b & - \\
fission & 0.1161 \ b & 7.59 \ b \\
capture & 78.50 \ b & 1830 \ b \\
\end{array}\]

MF=3 Neutron Cross Sections
Below 30 keV: Cross sections were represented with the
resonance parameters.
Above 30 keV:

MT=1.2 Total and elastic scattering cross sections
Calculated with optical and statistical model code
CASTHY//7//. Optical potential parameters were obtained /8/
by fitting the data of Phillips and Howe /9/ for Am-241:
\[V = 43.4 - 0.107\times E_n \quad \text{(MeV)}\]
\[W_s = 6.95 - 0.339\times E_n + 0.0531\times E_n^2 \quad \text{(MeV)}\]
\[V_{so} = 7.0 \quad \text{(MeV)}\]
\[r = r_{so} = 1.282 \quad , \ r_s = 1.29 \quad \text{(fm)}\]
\[a = a_{so} = 0.60 \quad , \ b = 0.5 \quad \text{(fm)}\]
2 of Americium-243

MT=4.51-59.91 Inelastic scattering cross sections
Calculated with CASTHY/8/. The level scheme was taken
from Ref. /10/

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>5/2 -</td>
</tr>
<tr>
<td>1</td>
<td>42.2</td>
<td>7/2 -</td>
</tr>
<tr>
<td>2</td>
<td>84.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>96.4</td>
<td>9/2 -</td>
</tr>
<tr>
<td>4</td>
<td>109.3</td>
<td>7/2 +</td>
</tr>
<tr>
<td>5</td>
<td>143.5</td>
<td>9/2 +</td>
</tr>
<tr>
<td>6</td>
<td>188.3</td>
<td>11/2 +</td>
</tr>
<tr>
<td>7</td>
<td>206.0</td>
<td>3/2 -</td>
</tr>
<tr>
<td>8</td>
<td>300.0</td>
<td>5/2 -</td>
</tr>
<tr>
<td>9</td>
<td>345.0</td>
<td>7/2 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 383 keV.
The level density parameters were determined on the basis
of number of excited levels/11/ and resonance level
spacing/12/.

<table>
<thead>
<tr>
<th></th>
<th>Am-244</th>
<th>Am-243</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (1/MeV)</td>
<td>30.3</td>
<td>31.3</td>
</tr>
<tr>
<td>T (MeV)</td>
<td>0.340</td>
<td>0.365</td>
</tr>
<tr>
<td>C (1/MeV)</td>
<td>26.47</td>
<td>11.71</td>
</tr>
<tr>
<td>E-x (MeV)</td>
<td>2.373</td>
<td>3.278</td>
</tr>
<tr>
<td>spin-cutoff (1/MeV × 0.5)</td>
<td>31.39</td>
<td>31.81</td>
</tr>
<tr>
<td>pairing E (MeV)</td>
<td>0.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

MT=16.17.37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Taken from JENDL-2 calculated with the evaporation model.

MT=18 Fission cross section
30 keV - 100 keV: smooth curve connecting the data in
the unresolved resonance region and above 100 keV
100 keV - 10 MeV: Spline-fitting to Kanda et al./13/.
Fursov et al./14/ and Knitter and Budtz-Jorgensen/8/.
10 MeV - 20 MeV: Shape was estimated on the basis of
Behrens and Browne/15/.

MT=102 Capture cross section
Calculated with CASTHY/8/. The gamma-ray strength
function was determined to reproduce the cross section
of 2.2 b at 30 keV/16/.

MT=251 Mu-L bar
Calculated with CASTHY/8/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-59.91
Legendre coefficients were given by the optical and
statistical model calculation.

MT=16,17,18,37
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91
Evaporation spectrum with nuclear temperature calculated
from level densities.
MT=18
Maxwellian fission spectrum estimated from Z^2/A systematics by Smith et al./17/.

MF=8 Fission product yield data
MT=454 Fission product yield data
Taken from ENDF/B-IV and renormalized to 2.0.

References
MAT number = 3955

95-Am-244 JAERI Eval-Mar88 T.Nakagawa
JAERI-M 89-008 Dist-Sep88

History
88-03 Evaluated for JENDL-3 was made by T.Nakagawa (JAERI)/1/.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Sum of Nu-p (MT=456) and Nu-d (MT=455).
MT=455 Delayed neutron data
Estimated from semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons
Estimated from semi-empirical formula by Howerton/3/.

MF=2,MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>2912. b</td>
<td>-</td>
</tr>
<tr>
<td>elastic</td>
<td>11.62 b</td>
<td>-</td>
</tr>
<tr>
<td>fission</td>
<td>2300. b</td>
<td>1260 b</td>
</tr>
<tr>
<td>capture</td>
<td>600. b</td>
<td>316 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 0.07 eV, sum of partial cross sections. Above 0.07 eV, calculated with optical and statistical model code
CASTHY/4/. The same optical potential parameters as those for Am-242 which were obtained /5/ by fitting the data of Phillips and Howe /6/ for Am-241, and modified a little.
\[V = 42.0 - 0.107\cdot En \quad (\text{MeV}) \]
\[W = 9.0 - 0.339\cdot En + 0.0531\cdot En^{0.5} \quad (\text{MeV}) \]
\[V_{so} = 7.0 \quad (\text{MeV}) \]
\[r = r_{so} = 1.282 \quad r_{s} = 1.29 \quad (\text{fm}) \]
\[a = a_{so} = 0.80 \quad b = 0.5 \quad (\text{fm}) \]

MT=2 Elastic scattering cross section
Calculated with CASTHY/4/.

MT=4,51-75.91 Inelastic scattering cross sections
Calculated with CASTHY/4/. The level scheme was taken from Ref. /7/.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy(keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>6 -</td>
</tr>
<tr>
<td>1</td>
<td>88.0</td>
<td>1 +</td>
</tr>
<tr>
<td>2</td>
<td>100.309</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>123.281</td>
<td>3 +</td>
</tr>
<tr>
<td>4</td>
<td>148.283</td>
<td>4 +</td>
</tr>
<tr>
<td>5</td>
<td>175.657</td>
<td>1 -</td>
</tr>
<tr>
<td>6</td>
<td>183.511</td>
<td>5 -</td>
</tr>
<tr>
<td>7</td>
<td>197.295</td>
<td>2 -</td>
</tr>
<tr>
<td>8</td>
<td>228.299</td>
<td>3 -</td>
</tr>
<tr>
<td>9</td>
<td>261.696</td>
<td>2 -</td>
</tr>
<tr>
<td>10</td>
<td>272.202</td>
<td>4 -</td>
</tr>
</tbody>
</table>
11 289.212 1 -
12 290.658 3 -
13 322.751 5 -
14 365.575 0 -
15 342.650 3 -
16 343.868 4 -
17 348.405 3 +
18 361.838 2 -
19 377.057 0 +
20 390.028 4 +
21 398.743 5 -
22 414.689 2 +
23 418.957 2 +
24 420.131 2 +
25 421.204 3 -

Levels above 435 keV were assumed to be overlapping.
The level density parameters were determined on the basis
of number of excited levels/8/ and resonance level spacing/9/.

<table>
<thead>
<tr>
<th>Am-245</th>
<th>Am-244</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(1/MeV)</td>
<td>31.3</td>
</tr>
<tr>
<td>T(MeV)</td>
<td>0.360</td>
</tr>
<tr>
<td>C(1/MeV)</td>
<td>18.06</td>
</tr>
<tr>
<td>E-x(MeV)</td>
<td>3.265</td>
</tr>
<tr>
<td>spin-cutoff(1/MeV*0.5)</td>
<td>31.98</td>
</tr>
<tr>
<td>pairing E(MeV)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Below 0.07 eV, 1/v shaped cross section was normalized to
2300 +/- 300 b at 0.0253 eV/9/. Above 0.07 eV, the cross
section was assumed to be the same as that of Am-242g
(MAT=3952 of JENDL-3).

MT=102 Capture cross section
Below 0.07 eV, 1/v cross section was normalized to 600 b
at 0.0253 eV that was estimated by assuming the same cross
section ratio as higher energy region. Above 0.07 eV,
calculated with CASTHY/4/. The gamma-ray strength
function was determined from D-obs=0.13 eV calculated from
level density parameters and WG=0.05 eV.

MT=251 Mu-L bar
Calculated with CASTHY/4/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-75.91
Legendre coefficients were given by the optical and
statistical model calculation.

MT=16,17,18,37
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91
Evaporation spectrum with nuclear temperature calculated
from level densities.

MT=18

Maxwellian fission spectrum estimated from Z^2/A

systematics by Smith et al. /10/.

References
MAT number = 3956

95-Am-244mJAERI Eval-Mar88 T.Nakagawa
JAERI-M 89-008 Dist-Sep89

History

88-03 Evaluated for JENDL-3 was made by T.Nakagawa (JAERI)/1/.

MF=1 General Information

MT=451 Comment and dictionary

MT=452 Number of neutrons per fission

Sum of Nu-p (MT=456) and Nu-d (MT=455).

MT=455 Delayed neutron data

Estimated from semi-empirical formula by Tuttle /2/.

MT=456 Number of prompt neutrons

Estimated from semi-empirical formula by Howerton/3/.

MF=2, MT=151 Resonance parameters

No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>2012. b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>11.62 b</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>1600. b</td>
<td>1260 b</td>
</tr>
<tr>
<td>capture</td>
<td>400. b</td>
<td>316 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total cross section

Below 0.07 eV, sum of partial cross sections. Above 0.07 eV, calculated with optical and statistical model code CASTHY/4/. The same optical potential parameters as those for Am-242 which were obtained /5/ by fitting the data of Phillips and Howe /6/ for Am-241, and modified a little.

\[
V = 42.0 - 0.107 \cdot En \quad (\text{MeV})
\]

\[
W_{Sp} = 9.0 - 0.339 \cdot En + 0.0531 \cdot En^2 \quad (\text{MeV})
\]

\[
V_{Sc} = 7.0 \quad (\text{MeV})
\]

\[
r = r_{so} = 1.282, r_s = 1.29 \quad (\text{fm})
\]

\[
a = a_{so} = 0.60, b = 0.5 \quad (\text{fm})
\]

MT=2 Elastic scattering cross section

Calculated with CASTHY/4/.

MT=4.51-75.91 Inelastic scattering cross sections

Calculated with CASTHY/4/. The level scheme was taken from Ref. /7/ and shifted by 88 keV.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-88.0</td>
<td>6 –</td>
</tr>
<tr>
<td>target s.</td>
<td>0.0</td>
<td>1 +</td>
</tr>
<tr>
<td>2</td>
<td>12.309</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>35.281</td>
<td>3 +</td>
</tr>
<tr>
<td>4</td>
<td>60.283</td>
<td>4 +</td>
</tr>
<tr>
<td>5</td>
<td>87.657</td>
<td>1 –</td>
</tr>
<tr>
<td>6</td>
<td>95.511</td>
<td>5 –</td>
</tr>
<tr>
<td>7</td>
<td>109.295</td>
<td>2 –</td>
</tr>
<tr>
<td>8</td>
<td>140.299</td>
<td>3 –</td>
</tr>
<tr>
<td>9</td>
<td>173.896</td>
<td>2 –</td>
</tr>
<tr>
<td>10</td>
<td>184.202</td>
<td>4 –</td>
</tr>
</tbody>
</table>
Levels above 447 keV were assumed to be overlapping. The level density parameters were determined on the basis of number of excited levels/8/ and resonance level spacing/9/.

<table>
<thead>
<tr>
<th></th>
<th>Am-245</th>
<th>Am-244</th>
</tr>
</thead>
<tbody>
<tr>
<td>e(1/MeV)</td>
<td>31.3</td>
<td>30.3</td>
</tr>
<tr>
<td>T(MeV)</td>
<td>0.360</td>
<td>0.340</td>
</tr>
<tr>
<td>C(1/MeV)</td>
<td>18.06</td>
<td>26.47</td>
</tr>
<tr>
<td>E-x(MeV)</td>
<td>3.265</td>
<td>2.373</td>
</tr>
<tr>
<td>spin-cutoff(1/MeV*0.5)</td>
<td>31.98</td>
<td>31.39</td>
</tr>
<tr>
<td>pairing E(MeV)</td>
<td>0.38</td>
<td>0.0</td>
</tr>
</tbody>
</table>

MT=16, 17, 37 (n, 2n), (n, 3n) and (n, 4n) reaction cross sections calculated with evaporation model.

MT=18 Fission cross section
Below 0.07 eV, 1/v shaped cross section was normalized to 1600 + 300 b at 0.0253 eV/9/. Above 0.07 eV, the cross section was assumed to be the same as that of Am-242g (MAT=3952 of JENDL-3).

MT=102 Capture cross section
Below 0.07 eV, 1/v cross section was normalized to 400 b at 0.0253 eV that was estimated by assuming the same cross section ratio as higher energy region. Above 0.07 eV, calculated with CASTHY/4/1. The gamma-ray strength function was determined from D-obs=0.13 eV calculated from level density parameters and WG=0.05 eV.

MT=251 Mu-L bar
Calculated with CASTHY/4/1.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-75, 91
Legendre coefficients were given by the optical and statistical model calculation.

MT=16, 17, 18, 37
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 37, 91
Evaporation spectrum with nuclear temperature calculated
from level densities.

MT=18

Maxwellian fission spectrum estimated from Z^2/A

systematics by Smith et al./10/.

References
MAT number = 3961

96-Cm-241 JAERI Eval-Mar89 T.Nakagawa
Dist-Sep89

History
89-03 Evaluation for JENDL-3 was made by T. Nakagawa(JAERI)/1/.

MF=1 General Information

- **MT=451** Descriptive data
- **MT=452** Number of neutrons per fission
 - Sum of MT=455 and MT=456
- **MT=455** Delayed neutron data
 - Estimated from the systematics by Tuttle /2/.
- **MT=456** Number of prompt neutrons per fission
 - Based on the empirical formula by Howerton /3/.

MF=2 Resonance Parameters

MT=151 No resonance parameters were given.

Calculated 2200 m/s cross sections and resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>851.9 b</td>
<td>---</td>
</tr>
<tr>
<td>elastic</td>
<td>11.9 b</td>
<td>---</td>
</tr>
<tr>
<td>fission</td>
<td>700.0 b</td>
<td>969 b</td>
</tr>
<tr>
<td>capture</td>
<td>140.0 b</td>
<td>160 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

Below 1 eV:

- The energy range was assumed to be the thermal region, and
- fission and capture cross sections with 1/ν shape were given
- and elastic scattering with a constant value. The total cross
 section is a sum of them.

Above 1 eV:

MF=1 2.451-54.91,102.251 Total, Elastic and Inelastic
scattering, Capture cross sections and Mu-L

Calculated with optical and statistical model code
CASTHY/4/.

The spherical optical potential parameters (MeV, fm):

- $V = 42.0 - 0.107\cdot\text{En}$,
- $r = 1.282$, $a = 0.60$
- $W_s = 6.95 - 0.339\cdot\text{En} + 0.0531\cdot\text{En}^2$,
- $r_s = 1.29$, $b = 0.50$

(derivative Woods-Saxon form)

$V_{so} = 7.0$, $r_{so} = 1.282$, $a_{so} = 0.60$

This set of potential parameters was determined /5/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /6/., and a real part was modified a
little to give a slightly high reaction cross sections in
a low energy region.

In the statistical model calculation, competing processes
of fission, (n,2n) and (n,3n), and level fluctuation were
considered. The level scheme of Cm-241 was taken from the
compilation by Ellis-Akova/ /7/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>$1/2^+$</td>
</tr>
</tbody>
</table>
Overlapping levels were assumed above 0.35 MeV. The level density parameters were determined on the basis of numbers of excited levels.

<table>
<thead>
<tr>
<th></th>
<th>Cm–242</th>
<th>Cm–241</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(1/\text{MeV})$</td>
<td>28.0</td>
<td>28.57</td>
</tr>
<tr>
<td>$T(\text{MeV})$</td>
<td>0.40</td>
<td>0.378</td>
</tr>
<tr>
<td>$C(1/\text{MeV})$</td>
<td>2.5771</td>
<td>5.287</td>
</tr>
<tr>
<td>$E-x(\text{MeV})$</td>
<td>4.3163</td>
<td>3.560</td>
</tr>
<tr>
<td>spin-cutoff(1/MeV = 0.5)</td>
<td>30.00</td>
<td>30.22</td>
</tr>
<tr>
<td>pairing $E(\text{MeV})$</td>
<td>0.15</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Average radiative width $= 0.040$ eV and $D = 6.6$ eV obtained from the level density parameters were used for the capture cross section calculation.

MT=16, 17 (n,2n) and (n,3n) cross sections
Calculated with the evaporation model by Pearlstein /8/.
Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model – fission).

MT=18 Fission cross section
The same cross section as Cm–243 /1/ was assumed. Below 1 keV, structure was replaced with a smooth curve.

MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51–54, 91
Legendre coefficients calculated with the optical and statistical models were given.

MT=16, 17, 18
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 91 Evaporation spectrum.
MT=18 Estimated from Z^+2/A systematics by Smith et al. /9/.,
assuming $E(Cf–252) = 2.13$ MeV.

References
1) Nakagawa T.: to be published as JAERI-M report.
MAT number = 3962

96-Cm-242 JAERI Eval-Mar89 T.Nakagawa
Dist-Sep89

History
79-03 Evaluation for JENDL-2 was made by S.Igarasi and T.Nakagawa (JAERI) /1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI) /2/.

MF=1 General Information
- **MT=451** Descriptive data
- **MT=452** Number of neutrons per fission
 - Sum of MT=455 and MT=456.
- **MT=455** Delayed neutron data
 - Estimated from the systematics by Tuttle /3/.
- **MT=452** Number of neutrons per fission
 - Based on the empirical formula by Howerton /4/.

MF=2 Resonance Parameters
- **MT=151** Resonance parameters
 - Resolved resonance region: 1.0E-5 eV to 275 eV.
 - Resonance energies = Altanov et al. /5/.
 - Neutron widths = Altanov et al. /5/.
 - Radiative widths = 0.040 eV.
 - Fission widths = Alam et al. /6/ for the low-lying 4 levels, and the average value of 0.004 eV for other levels.
 - Scattering radius = 9.38 fm.
 - A negative resonance was added at -3.45 eV, and its parameters were adjusted so as to reproduce well the thermal cross sections /7/.
 - Background cross section was given to the fission cross section.

Unresolved resonance parameters: 275 eV - 40 keV
Parameters were determined with a fitting code ASREP /8/ so as to reproduce the fission cross section measured by Alam et al. /6/., and total cross section at 40 keV.
- Energy independent parameters:
 - R=9.093 fm, S0=0.92E-4, S2=0.97E-4, WG=0.04 eV.
- Energy dependent parameters at 1 keV:
 - S1=3.04E-4, WF=0.093 eV, D=17.16 eV.

Calculated 2200m/sec cross sections and resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>32.57 b</td>
<td>---</td>
</tr>
<tr>
<td>elastic</td>
<td>11.61 b</td>
<td>---</td>
</tr>
<tr>
<td>fission</td>
<td>5.064 b</td>
<td>20.0 b</td>
</tr>
<tr>
<td>capture</td>
<td>15.90 b</td>
<td>108 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 40 keV, cross sections were represented with resonance parameters.

MT=1, 2, 4, 51-53, 91, 102, 251 Total, Elastic and Inelastic scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code CASTHY /9/.
The spherical optical potential parameters (MeV, fm):
V = 43.4 - 0.107 En. \(r = 1.282, a = 0.60 \)
\(Ws = 6.95 - 0.339 En + 0.0531 En^2, \) \(rs = 1.29, b = 0.50 \)
(derivative Woods-Saxon form)
\(Vso = 7.0, \) \(rso = 1.282, aso = 0.60 \)
This set of potential parameters was determined /1/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /10/.

In the statistical model calculation, competing processes
of fission, \((n,2n)\) and \((n,3n)\), and level fluctuation were
considered. The level scheme of Cm-242 was taken from
ENSDF /11/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.04213</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.138</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.284</td>
<td>6 +</td>
</tr>
</tbody>
</table>

Overlapping levels are assumed above 0.35 MeV. The level
density parameters were determined on the basis of numbers
of excited levels/11/.

\[
\begin{array}{ccc}
\text{Cm-243} & \text{Cm-242} \\
\text{a(1/MeV)} & 28.0 & 28.0 \\
\text{T(MeV)} & 0.40 & 0.40 \\
\text{C(1/MeV)} & 7.5406 & 2.5771 \\
\text{E-x(MeV)} & 3.8863 & 4.3163 \\
\text{spin-cutoff(1/MeV)*0.5} & 30.08 & 30.00 \\
\text{pairing E(MeV)} & 0.72 & 0.15 \\
\end{array}
\]

Average radiative width = 0.040 eV and D = 18 eV obtained
from the level density parameters were used for the
capture cross section calculation.

MT=16, 17 \((n,2n)\) and \((n,3n)\) cross sections
Calculated with the evaporation model by Pearlstein /12/.
Neutron emission cross section was assumed to be (compound
nucleus formation cross section calculated with optical
model - fission).

MT=18 Fission cross section
Below 1 MeV, cross section was determined on the basis of
data measured by Alam et al. /6/ and Vorotnikov et al. /13/.
Above 1 MeV, JENDL-2 evaluation was adopted, which was
based on the shape of Cm-244 /14/ and the empirical
formula on the fission-cross-section systematics around 4
MeV by Behrens and Howerton /15/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-53.91
Legendre coefficients calculated with the optical and
statistical models were given.

MT=16, 17, 18
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16, 17, 91 Evaporation spectrum.
MT=18 Estimated from Z+2/A systematics by Smith et al. /16/,
assuming E(Cf-252) = 2.13 MeV.
References
2) Nakagawa T.: to be published as JAERI-M report.
8) Kikuchi Y.: private communication.
MAT number = 3963

96-Cm-243 JAERI Eval-Mar89 T.Nakagawa
Dist-Sep89

History
81-03 Evaluation for JENDL-2 was made by T.Nakagawa and S.Igarashi
(JAERI) /1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI) /2/.

MF=1 General Information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (SLBW): 1.0E-5 eV to 70 eV.
Resonance energies = Anufriev et al. /3/.
Neutron widths = Anufriev et al. /3/ (assuming 2g=1)
Radiative widths = 0.040 eV (assumed)
Fission widths = total width /3/ - (WN+WG)
Scattering radius = 10 fm.
A negative resonance was adopted so as to reproduce well
the thermal cross sections /8/.

Unresolved resonance parameters: 70 eV - 40 keV
Parameters were determined with a fitting code ASREP/9/ so as to reproduce the fission cross section based on Silbert
/10/ and the total cross section calculated with optical model.

Energy independent parameters:
R=9.810 fm, S2=1.70E-4, WG=0.04 eV, WF=1.481 eV
Energy dependent parameters at 1 keV:
S0=1.32E-4, S1=1.06E-4, D=0.799 eV.

Calculated 2200m/s cross sections and resonance integrals.

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>757.5 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>9.926 b</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>617.4 b</td>
<td>1560 b</td>
</tr>
<tr>
<td>capture</td>
<td>130.2 b</td>
<td>199 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 40 keV, cross sections were represented with resonance parameters.

MT=1,2,4,51-63,91,102,251 Total, Elastic and Inelastic scattering, Capture cross sections and Mu-L
Calculated with optical and statistical model code CASTHY/11/.
The spherical optical potential parameters (MeV.fm):
V =41.0-0.107*En, r =1.282, a =0.60
Ws = 6.95 - 0.339 x En + 0.0531 x En x 2, rs = 1.29, b = 0.50
(derivative Woods-Saxon form)
Vss = 7.0, rs0 = 1.282, as0 = 0.60
This set of potential parameters was determined /12/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /13/ and a real part was modified a
little to give a slightly large strength function in a low
energy region.

In the statistical model calculation, competing processes
of fission, (n,2n), (n,3n) and (n,4n), and level
fluctuation were considered. The level scheme of Cm-243
was taken from the compilation by Ellis-Akowali /14/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>5/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.042</td>
<td>7/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.0874</td>
<td>1/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.094</td>
<td>9/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.094</td>
<td>3/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.133</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.153</td>
<td>11/2 +</td>
</tr>
<tr>
<td>7</td>
<td>0.164</td>
<td>9/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.219</td>
<td>13/2 +</td>
</tr>
<tr>
<td>9</td>
<td>0.228</td>
<td>11/2 +</td>
</tr>
<tr>
<td>10</td>
<td>0.260</td>
<td>9/2 +</td>
</tr>
<tr>
<td>11</td>
<td>0.530</td>
<td>15/2 -</td>
</tr>
<tr>
<td>12</td>
<td>0.729</td>
<td>1/2 -</td>
</tr>
<tr>
<td>13</td>
<td>0.760</td>
<td>3/2 -</td>
</tr>
</tbody>
</table>

Overlapping levels are assumed above 0.82 MeV. The level
density parameters were determined on the basis of numbers
of excited levels /15/ and resonance level spacing /8/.

Cm-244 Cm-243
a(1/MeV) 28.0 28.0
T(MeV) 0.395 0.40
C(1/MeV) 1.8807 7.5405
E-x(MeV) 4.2893 3.8863
spin-cutoff(1/MeV**0.5) 30.17 30.08
pairing E(MeV) 1.22 0.72

Average radiative width = 0.040 eV and D = 0.809 eV /7/
were used for the capture cross section calculation.

MT=16, 17, 37 (n,2n), (n,3n) and (n,4n) cross sections
Calculated with the evaporation model by Pearlsheim /16/.
Neutron emission cross section was assumed to be (compound
nucleus formation cross section calculated with optical
model - fission).

MT=18 Fission cross section
Below 10 keV : taken from JENDL-2 evaluation based on
Silbert /10/.
10 keV - 3 MeV: determined from Fomushkin et al. /17/.
Above 3 MeV : estimated.

MT=4 Angular Distributions of Secondary Neutrons
MT=2.51 - 63.91
Legendre coefficients calculated with CASTHY /11/.
MT=16,17,18,37
isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation Spectrum.
MT=18 Fission spectrum estimated from Z••2/A systematics by
Smith et al. /18/ by assuming E(Cf–252) = 2.13 MeV.

References
2) Nakagawa T.: to be published as JAERI-M report.
9) Kikuchi Y.: private communication.
MAT number = 3964

96-Cm-244 JAERI Eval-Mar89 T.Nakagawa Dist-Sep89

History
77-03 Evaluation for JENDL-2 was made by S.Igarashi and T.Nakagawa (JAERI)/1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI)/2/.

MF=1 General Information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
 Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
 Estimated from semi-empirical formula by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
 Determined from semi-empirical formula by Howerton /4/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
 Resolved resonance region (MLBW): 1.0E-5 to 1 keV
 Above 20 eV, parameters by Moore and Keyworth /5/ were
 adopted assuming neutron width of 0.2 eV for 646.9, 759.7,
 914.0 and 971.5-eV levels, and below 20 eV, evaluation by
 Benjamin et al. /6/. The fission widths of low-lying
 levels were replaced with those by Maguire et al. /7/.
 Radiative width = 0.037 eV (assumed)
 Scattering radius = 11.2 fm (adjusted to 11.6 b
 at 0.0253 eV /8/.
 A negative resonance at -1.48 eV was adopted and its
 parameters were adjusted so as to reproduce well the
 thermal cross sections /8/.

Unresolved resonance parameters: 70 eV - 40 keV
 Parameters were determined with a fitting code ASREP/9/ so
 as to reproduce the fission cross section of Maguire et
 al. /7/, and the total and capture cross sections calcul-
 ated with optical and statistical models.
 Energy independent parameters:
 R=9.221 fm, S0=0.9E-4, S2=0.92E-4, WG=0.04 eV.
 Energy dependent parameters at 1 keV:
 S1=3.06E-4, WF=0.00244 eV, D=11.98 eV.

 Calculated 2200m/s cross sections and resonance integrals.
 2200 m/sec Res. Integ.
 total 27.20 b -
 elastic 11.06 b -
 fission 1.037 b 13.2 b
 capture 15.10 b 661 b

MF=3 Neutron Cross Sections
Below 40 keV, cross sections were represented with resonance
parameters.

MT=1,2,4,51-62,91,102,251 Total, Elastic and Inelastic
scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code
CASTHY/10/.
The spherical optical potential parameters (MeV, fm):

\[V = 43.4 - 0.107 \cdot E_n, \quad r = 1.282, \quad a = 0.60 \]

\[W_s = 0.95 \cdot E_n + 0.0531 \cdot E_n + 2, \quad r_s = 1.29, \quad b = 0.50 \]

(derivative Woods-Saxon form)

\[V_{so} = 7.0, \quad r_{so} = 1.282, \quad a_{so} = 0.60 \]

This set of potential parameters was determined /11/ to reproduce well the total cross section of Am-241 by Phillips and Howe /12/. The strength function of 0.91E-4 calculated with this OMP is in very good agreement with experiments /8/.

In the statistical model calculation, competing processes of fission, (n,2n) and (n,3n), and level fluctuation were considered. The level scheme of Cm-244 was taken from the compilation by Shurshikov /13/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>0.04927</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.14235</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>0.29921</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>0.50179</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>0.970</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.988491</td>
<td>0 +</td>
</tr>
<tr>
<td>7</td>
<td>1.0208</td>
<td>2 +</td>
</tr>
<tr>
<td>8</td>
<td>1.038</td>
<td>2 +</td>
</tr>
<tr>
<td>9</td>
<td>1.0402</td>
<td>0 +</td>
</tr>
<tr>
<td>10</td>
<td>1.0842</td>
<td>1 +</td>
</tr>
<tr>
<td>11</td>
<td>1.1059</td>
<td>1 +</td>
</tr>
<tr>
<td>12</td>
<td>1.187</td>
<td>2 +</td>
</tr>
</tbody>
</table>

Overlapping levels are assumed above 1.2 MeV. The level density parameters were determined on the basis of numbers of excited levels /14/ and resonance level spacing /8/.

\[
\begin{array}{lll}
\text{Cm-245} & \text{Cm-244} \\
\text{a (1/MeV)} & 30.0 & 28.0 \\
\text{T (MeV)} & 0.391 & 0.395 \\
\text{C (1/MeV)} & 11.288 & 1.8807 \\
\text{E-x (MeV)} & 4.0295 & 4.2893 \\
\text{spin-cutoff (1/MeV + 0.5)} & 31.31 & 30.17 \\
\text{pairing E (MeV)} & 0.72 & 1.22 \\
\end{array}
\]

Average radiative width = 0.037 eV and D = 12 eV were used for the capture cross section calculation.

MT = 16.17 (n,2n) and (n,3n) cross sections
Calculated with the evaporation model by Pearlstein /15/.
Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model - fission).

MT = 18 Fission cross section
Below 100 keV: smooth curve based on Maguire et al. /7/.
100 - 800 keV: JENDL-2 was adopted, which was obtained by fitting a semi-empirical formula to the experimental data of Ref. /5/.
0.8 - 8 MeV: estimated from experimental data /5, 16, 17/.
Above 8 MeV: the same as JENDL-2.
MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-62.91
Legendre coefficients were given by the optical and statistical model calculations.
MT=16.17.18
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.91 Evaporation spectrum
MT=18 Fission spectrum estimated from Z+2/A systematics by Smith et al. /18/ by assuming E(Cf-252) = 2.13 MeV.

References
2) Nakagawa T.: to be published as JAERI-M report.
9) Kikuchi Y.: private communication.
MAT number = 3965

96-Cm-245 JAERI Eval-Mar89 T.Nakagawa Dist-Mar89

History
78-03 Evaluation was made by S.Igarasi and T.Nakagawa (JAERI)/1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI)/2/.

MF=1 General Information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
 Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
 Estimated from the systematics proposed by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
 Experimental data by Howe /4/ were adopted. Their data
 are much smaller than other experiments /5,6,7/.

MF=2 Resonance Parameters
MT=151 Resonance parameters

Resolved resonance region (SLBW) : 1.0E-5 to 60 eV
Parameters for Reich-Moore formula by Moore and Keyworth
 /8/ were adopted above 20 eV, and those by Browne et al.
 /9/ below 20 eV with a little modification of a negative
 resonance so that the thermal cross section could be in
 agreement with the experimental data. The differences
 between Reich-Moore and single-level B-W formulas are
 treated as the background cross sections.
Radiative width = 0.04 eV
Scattering radius = 10.0 fm

Unresolved resonance parameters : 60 eV - 40 keV
Parameters were determined with a fitting code ASREP/10/
so as to reproduce the fission cross section of Moore and
Keyworth /8/, and the total and capture cross sections
 calculated with optical and statistical models.
 Energy independent parameters:
 R=9.43 fm, S0=1.02E-4, S1=2.24E-4, S2=0.9E-4,
 WG=0.04 eV.
 Energy dependent parameters at 1 keV:
 WF=2.01 eV, D=1.397 eV.

Calculated 2200 m/s cross sections and resonance integrals.

<table>
<thead>
<tr>
<th></th>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>2359 b</td>
<td></td>
</tr>
<tr>
<td>elastic</td>
<td>11.59 b</td>
<td></td>
</tr>
<tr>
<td>fission</td>
<td>2001 b</td>
<td>801 b</td>
</tr>
<tr>
<td>capture</td>
<td>346.4 b</td>
<td>110 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 40 keV, cross sections were represented with resonance
parameters.

MT=1,2,4,51-73,91,102,251 Total, Elastic and Inelastic
scattering. Capture cross sections and Mu-L
 Calculated with optical and statistical model code
 CASTHY/11/.
 The spherical optical potential parameters (MeV.fm):
\[V = 42.7 - 0.107 \cdot En, \quad r_\text{ss} = 1.282, \quad a = 0.60 \]
\[W_\text{ss} = 6.95 - 0.335 \cdot En + 0.0531 \cdot En \cdot En + 0.2, \quad r_\text{ss} = 1.29, \quad b = 0.50 \]
(derivative Woods-Saxon form)
\[V_{50} = 7.0, \quad r_{50} = 1.282, \quad a_{50} = 0.60 \]

This set of potential parameters was determined /12/ to reproduce well the total cross section of Am-241 by Phillips and Howe /12/. The strength function of 1.02E-4 calculated with this OMP is in good agreement with 1.18E-4/14/.

In the statistical model calculation, competing processes of fission, \((n,2n)\), \((n,3n)\) and \((n,4n)\), and level fluctuation were considered. The level scheme of Cm-245 was taken from the compilation by Ellis-Akova /15/:

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>7/2 +</td>
</tr>
<tr>
<td>1</td>
<td>0.0548</td>
<td>9/2 +</td>
</tr>
<tr>
<td>2</td>
<td>0.1215</td>
<td>11/2 +</td>
</tr>
<tr>
<td>3</td>
<td>0.1974</td>
<td>13/2 +</td>
</tr>
<tr>
<td>4</td>
<td>0.25785</td>
<td>5/2 +</td>
</tr>
<tr>
<td>5</td>
<td>0.2958</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>0.35086</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>0.35585</td>
<td>1/2 +</td>
</tr>
<tr>
<td>8</td>
<td>0.3615</td>
<td>3/2 +</td>
</tr>
<tr>
<td>9</td>
<td>0.3883</td>
<td>9/2 -</td>
</tr>
<tr>
<td>10</td>
<td>0.4167</td>
<td>11/2 +</td>
</tr>
<tr>
<td>11</td>
<td>0.4188</td>
<td>5/2 +</td>
</tr>
<tr>
<td>12</td>
<td>0.431</td>
<td>5/2 +</td>
</tr>
<tr>
<td>13</td>
<td>0.4429</td>
<td>11/2 -</td>
</tr>
<tr>
<td>14</td>
<td>0.498</td>
<td>13/2 +</td>
</tr>
<tr>
<td>15</td>
<td>0.5091</td>
<td>13/2 -</td>
</tr>
<tr>
<td>16</td>
<td>0.532</td>
<td>9/2 +</td>
</tr>
<tr>
<td>17</td>
<td>0.555</td>
<td>11/2 +</td>
</tr>
<tr>
<td>18</td>
<td>0.63365</td>
<td>3/2 -</td>
</tr>
<tr>
<td>19</td>
<td>0.6435</td>
<td>7/2 -</td>
</tr>
<tr>
<td>20</td>
<td>0.66155</td>
<td>5/2 -</td>
</tr>
<tr>
<td>21</td>
<td>0.7018</td>
<td>9/2 -</td>
</tr>
<tr>
<td>22</td>
<td>0.722</td>
<td>7/2 +</td>
</tr>
<tr>
<td>23</td>
<td>0.741</td>
<td>1/2 +</td>
</tr>
</tbody>
</table>

Overlapping levels are assumed above 0.82 MeV. Levels with higher spin than 13/2 or whose spin was unknown were neglected. The level density parameters were determined on the basis of numbers of excited levels/16/ and resonance level spacing/14/.

<table>
<thead>
<tr>
<th>Cm-246</th>
<th>Cm-245</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(1/MeV)</td>
<td>27.7</td>
</tr>
<tr>
<td>T(MeV)</td>
<td>0.365</td>
</tr>
<tr>
<td>C(1/MeV)</td>
<td>2.2560</td>
</tr>
<tr>
<td>E-x(MeV)</td>
<td>4.1307</td>
</tr>
</tbody>
</table>

spin-cutoff(1/MeV+0.5) | 30.17 | 31.31 |

pairing E(MeV) | 1.11 | 0.72 |

Average radiative width = 0.040 eV and D = 1.4 eV /14/ were used for the capture cross section calculation.

MT=16, 17, 37 \((n,2n)\), \((n,3n)\) and \((n,4n)\) cross sections
Calculated with the evaporation model by Pearlstein /17/.
Neutron emission cross section was assumed to be (compound nucleus formation cross section calculated with optical model – fission).

MT=18 Fission cross section
Below 100 keV: JENDL-2 was adopted, which was obtained by fitting a semi-empirical formula to the experimental data of Ref. /8/.
Above 100 keV: based on the experimental data of White and Browne /18/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-73,91
Legendre coefficients were given by the optical and statistical model calculations.
MT=16,17,18,37
Isotropic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum
MT=18 Fission spectrum estimated from Z*2/A systematics by Smith et al. /19/ by assuming E(Cf-252) = 2.13 MeV.

References
2) Nakagawa T.: to be published as JAERI-M report.
10) Kikuchi Y.: private communication.
MAT number = 3966
96-Cm-246 JAERI Evalu-Mar87 Y.Kikuchi, T.Nakagawa Dist-Sep89

History
87-03 New evaluation was made by Y.Kikuchi (JAERI) /1/.
89-03 Re-evaluation for JENDL-3 was made by T.Nakagawa (JAERI) /2/.

MF=1
MF=1 General Information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons
Semi-empirical formula by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
Semi-empirical formula by Howerton /4/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW): 1.0E-5 to 330 eV
Evaluation was based on the experimental data /5-9/ as follows:
Resonance energies = Refs. 6 and 8.
Neutron widths = Refs. 5, 6 and 7.
Radiative widths = Refs. 6 and 8, and average width of 0.031 eV was assumed.
Fission widths = Refs. 8 and 9. WF of 4.35eV level was adjusted to the thermal cross section.
Scattering radius = 9.85 fm. (adjusted to 11.1 b at 0.0253 eV/10/)
1/v background data were given to fission cross section.
Unresolved resonance region: 330 eV to 30 keV
Obtained from optical model calculation:
S0=0.94E-4, S1=3.17E-4, S2=0.88E-4, R=9.15 fm.
Estimated from resolved resonances:
D-obs=31.7 eV, WG=31 milli-eV.
WF obtained by fitting the data of Stopa et al. /9/.

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/sec</th>
<th>Res. Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>12.51 b</td>
</tr>
<tr>
<td>elastic</td>
<td>11.08 b</td>
</tr>
<tr>
<td>fission</td>
<td>0.14 b</td>
</tr>
<tr>
<td>capture</td>
<td>1.201 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 30 keV, cross sections were represented with resonance parameters.

MT=1,2,4,5,21-79,91,102,251 Total, Elastic and Inelastic scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code CASTHY/11/.
The spherical optical potential parameters (MeV, fm):
V = 43.4 - 0.107 × En, r = 1.282, a = 0.60
Ws = 6.95 - 0.339 \cdot En + 0.0531 \cdot En + 2, \quad rs = 1.29, \quad b = 0.50 \\
(derivative Woods-Saxon form) \\
Vso = 7.0, \quad rso = 1.282, \quad aso = 0.60 \\
This set of potential parameters was determined /12/ to reproduce well the total cross section of Am-241 by Phillips and Howe /13/.

In the statistical model calculation, competing processes of fission, \((n,2n)\), \((n,3n)\) and \((n,4n)\), and level fluctuation were considered. The level scheme of Cm-246 was taken from Ref. /14/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.85</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>141.99</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>295.5</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>500.0</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>841.7</td>
<td>2 -</td>
</tr>
<tr>
<td>6</td>
<td>876.4</td>
<td>3 -</td>
</tr>
<tr>
<td>7</td>
<td>923.3</td>
<td>4 -</td>
</tr>
<tr>
<td>8</td>
<td>981.0</td>
<td>5 -</td>
</tr>
<tr>
<td>9</td>
<td>1051</td>
<td>6 -</td>
</tr>
<tr>
<td>10</td>
<td>1079</td>
<td>1 -</td>
</tr>
<tr>
<td>11</td>
<td>1105</td>
<td>2 -</td>
</tr>
<tr>
<td>12</td>
<td>1124</td>
<td>2 +</td>
</tr>
<tr>
<td>13</td>
<td>1128</td>
<td>3 -</td>
</tr>
<tr>
<td>14</td>
<td>1129</td>
<td>7 -</td>
</tr>
<tr>
<td>15</td>
<td>1165</td>
<td>3 +</td>
</tr>
<tr>
<td>16</td>
<td>1175</td>
<td>0 +</td>
</tr>
<tr>
<td>17</td>
<td>1179</td>
<td>8 -</td>
</tr>
<tr>
<td>18</td>
<td>1211</td>
<td>2 +</td>
</tr>
<tr>
<td>19</td>
<td>1220</td>
<td>4 +</td>
</tr>
<tr>
<td>20</td>
<td>1250</td>
<td>1 -</td>
</tr>
<tr>
<td>21</td>
<td>1289</td>
<td>0 +</td>
</tr>
<tr>
<td>22</td>
<td>1300</td>
<td>3 -</td>
</tr>
<tr>
<td>23</td>
<td>1318</td>
<td>2 +</td>
</tr>
<tr>
<td>24</td>
<td>1349</td>
<td>1 -</td>
</tr>
<tr>
<td>25</td>
<td>1367</td>
<td>2 -</td>
</tr>
<tr>
<td>26</td>
<td>1379</td>
<td>4 +</td>
</tr>
<tr>
<td>27</td>
<td>1452</td>
<td>1 +</td>
</tr>
<tr>
<td>28</td>
<td>1478</td>
<td>2 +</td>
</tr>
<tr>
<td>29</td>
<td>1508</td>
<td>3 +</td>
</tr>
</tbody>
</table>

continuum levels assumed above 1526 keV.

The level density parameters were taken from Gilbert and Cameron /15/. The gamma-ray strength function of 9.76E-4 deduced from resonance parameters.

MT=16.17.37 \((n,2n)\), \((n,3n)\), \((n,4n)\) reaction cross sections
Calculated with evaporation model /16/.

MT=18 Fission
Evaluated on the basis of the measured data by Stopa et al./9/ and Fomushkin et al./17/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-79.91
Legendre coefficients were given by the optical and
statistical model calculations.
MT=16,17,18,37
Isotopic distributions in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum
MT=18 Fission spectrum
Temperature of 1.48 MeV was estimated from data of
Zhuravlev et al. /18/ for Cm-245 and Cm-247.

References
2) Nakagawa T.: to be published as JAERI-M report.
9) Stopa C.R.S. et al.: 1982 Kamesha, 1090 (1982), and
14) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th ed.
 (1978).
MAT number = 3967

96-Cm-247 JAERI Eval-Mar89 T.Nakagawa, Y.Kikuchi Dist-Mar89

History
83-03 Evaluation was by Y.Kikuchi(JAERI)/Ref.1/.
89-03 Re-evaluation was made for JENDL-3 by T.Nakagawa(JAERI)/2/.

MF=1 General information
MT=451 Descriptive data
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
Semi-empirical formula by Tuttle /3/.
MT=456 Number of prompt neutrons per fission
Thermal value of Zhuravlev et al. /4/ and energy dependent term of Howerton /5/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
Resolved resonance region (MLBW) : 1.0E-5 to 60 eV
Evaluation was based on the experimental data of Moore and Keyworth /6/ and Bolanova et al. /7/.
The parameters of 1.25-eV level were taken from Mughabghab /8/.
Radiative widths = 0.040 eV was assumed.
Scattering radius = 9.14 fm.
A negative resonance was added at -0.3 eV.

Unresolved resonance region : 60 eV to 30 keV
Parameters were determined with a fitting code ASREP /9/ so as to reproduce the fission cross section of Moore and Keyworth /6/ and the total and capture cross sections calculated with optical and statistical models.

Energy independent parameters:
- R=9.386 fm, S2=0.86E-4, WG=0.04 eV,
- WF(4-)=0.0534 eV, WF(5-)=0.05 eV, WF(3+)=0.03 eV,
- WF(4+)=0.68 eV, WF(5+)=0.05 eV, WF(6+)=0.47 eV.
- WF estimated by systematic survey /10/

Energy dependent parameters at 0.9 keV:
S0=0.74E-4, S1=2.89E-4, D=1.397 eV.

2200 m/s cross sections and resonance integrals
2200 m/sec Res. Integ.
total 147.8 b -
elastic 8.775 b -
fission 81.79 b 612 b
capture 57.20 b 535 b

MF=3 Neutron Cross Sections
Below 30 keV, cross sections were represented with resonance parameters.

MT=1,2,4,51-60,91,102,251 Total, Elastic and Inelastic scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code CASTHY /11/.

The spherical optical potential parameters (MeV, fm):
V =43.4-0.107*En, r =1.282, a =0.60
\[W_\text{S} = 0.95 - 0.339 \cdot En + 0.0531 \cdot En^{0.2}, \quad rs = 1.29, \quad b = 0.50 \] (derivative Woods-Saxon form)

\[V_{\text{so}} = 7.0, \quad rs_{\text{o}} = 1.282, \quad aso = 0.60 \]

This set of potential parameters was determined /12/ to reproduce well the total cross section of Am-241 by Phillips and Howe /13/.

In the statistical model calculation, competing processes of fission, \((n,2n)\), \((n,3n)\) and \((n,4n)\), and level fluctuation were considered. The level scheme of Cm-247 was taken from Ref. /14/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>9/2 −</td>
</tr>
<tr>
<td>1</td>
<td>61.5</td>
<td>11/2 −</td>
</tr>
<tr>
<td>2</td>
<td>133</td>
<td>13/2 −</td>
</tr>
<tr>
<td>3</td>
<td>227</td>
<td>5/2 +</td>
</tr>
<tr>
<td>4</td>
<td>266</td>
<td>7/2 +</td>
</tr>
<tr>
<td>5</td>
<td>285</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>317</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>342</td>
<td>9/2 +</td>
</tr>
<tr>
<td>8</td>
<td>404</td>
<td>1/2 +</td>
</tr>
<tr>
<td>9</td>
<td>433</td>
<td>3/2 +</td>
</tr>
<tr>
<td>10</td>
<td>449</td>
<td>5/2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 429 keV.

The level density parameters were taken from Gilbert and Cameron /15/. The gamma-ray strength function of 2.29E-2 was deduced from resonance parameters.

MT=16,17,37 \((n,2n)\), \((n,3n)\) and \((n,4n)\) reaction cross sections Calculated with evaporation model/16/.

MT=18 \textbf{Fission}

Evaluated on the basis of the measured data by Moore and Keyworth /6/ below 50 keV. Above this energy, the data of Fomushkin et al. /17/ were adopted.

MF=4 \textbf{Angular Distributions of Secondary Neutrons}

MT=2.51-60.91

Legendre coefficients were given by the optical and statistical model calculations.

MT=16,17,18,37

Isotropic distributions in the laboratory system.

MF=5 \textbf{Energy Distributions of Secondary Neutrons}

MT=16,17,37,91 Evaporation spectrum

MT=18 \textbf{Fission spectrum}

Temperature of 1.47 MeV was estimated from data of Zhuravlev et al. /4/.

References

2) Nakagawa T.: to be published as JAERI-M report.
9) Kikuchi Y.: private communication.
MAT number = 3968

96-Cm-248 JAERI Eval-Mar84 Y.Kikuchi and T.Nakagawa
JAERI-M 84-116 Dist-Sep89

History
84-03 New evaluation for JENDL-3 was made by Y.Kikuchi and
T.Nakagawa (JAERI). Details are given in Ref. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
Semi-empirical formula by Tuttle /2/.
MT=456 Number of neutrons per fission
Semi-empirical formula by Howerton /3/.

MF=2 Resonance Parameters
MT=151 Resonance parameters

Resolved resonance region (MLBW) : 1.0E-5 to 1.5 keV
Resonance energies, neutron and radiative widths were
taken from the experimental data of Benjamin et al./4/.
For resonances whose radiative width was unknown, the
average value of 0.026 eV /4/ was adopted. Fission widths
and the average fission width of 0.0013 eV were adopted
from Moore and Keyworth /5/.. The average fission width
was used for all resonances of which fission width had not
been measured. R=9.1 fm was assumed to reproduce the
potential scattering cross section of 10.4 barns assumed
by Benjamin et al./4/.. The neutron width of the first
resonance was slightly adjusted to reproduce the capture
cross section of 2.57 barns at 0.0253 eV. Background
cross sections were given only for the fission and total
cross sections by assuming the form of 1/v. The thermal
cross sections to be reproduced were estimated from
available experimental data.

Unresolved resonance region : 1.5 keV to 30 keV
Obtained from optical model calculation:
S1=3.32E-4, S2=0.844E-4, R=8.88 fm.
Estimated from resolved resonances:
D-obs=40.0 eV, Gam-g=26 milli-eV, S0=1.2E-4
Gam-f obtained by fitting the data of Stopa et al./6/.

calculated 2200 m/s cross sections and resonance integrals

\[
\begin{array}{lll}
\text{total} & 9.455 & b \\
\text{elastic} & 6.514 & b \\
\text{fission} & 0.370 & b \\
\text{capture} & 2.570 & b \\
\end{array}
\]

MF=3 Neutron Cross Sections
Below 30 keV, cross sections were represented with resonance
parameters.

MT=1,2,4,51-58,91,102,251 Total, Elastic and Inelastic
scattering, Capture cross sections and Mu-L
Calculated with optical and statistical model code
CASTHY/7/.
The spherical optical potential parameters (MeV, fm):
\[V = 43.4 - 0.107 \cdot E_n, \quad r = 1.282, \quad a = 0.60 \]
\[W_s = -6.95 - 0.339 \cdot E_n + 0.0531 \cdot E_n^2, \quad r_s = 1.29, \quad b = 0.50 \]
(derivative Woods-Saxon form)
\[V_s = 7.0, \quad r_s = 1.282, \quad a_s = 0.60 \]
This set of potential parameters was determined /8/ to reproduce well the total cross section of Am-241 by Phillips and Howe /9/.

In the statistical model calculation, competing processes of fission, \((n,2n)\), \((n,3n)\) and \((n,4n)\), and level fluctuation were considered. The level scheme of Cm-248 was taken from Ref. /10/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>43.40</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>143.6</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>297</td>
<td>6 +</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>8 +</td>
</tr>
<tr>
<td>5</td>
<td>1048</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>1050</td>
<td>1 -</td>
</tr>
<tr>
<td>7</td>
<td>1094</td>
<td>0 +</td>
</tr>
<tr>
<td>8</td>
<td>1094</td>
<td>3 -</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 1126 keV.
The level density parameters: Gilbert and Cameron /11/.
Gamma-ray strength function of 6.5E-4 deduced from resonance parameters.

MT=16,17,37 \((n,2n)\), \((n,3n)\) and \((n,4n)\) reaction cross sections
Calculated with evaporation model /12/.

MT=18 Fission
Evaluated on the basis of the measured data by Stopa et al. /8/ and Fomushkin et al. /13/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-58 Calculated with optical model.
MT=16,17,18,37,91 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith et al. /14/.

References
MAT number = 3969

86-Cm-249 JAERI Eval-Mar84 Y.Kikuchi and T.Nakagawa
JAERI-M 84-116 Dist-Sep89

History
84–03 New evaluation for JENDL-3 was made by Y.Kikuchi and
T.Nakagawa (JAERI). Details are given in Ref. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456.
MT=455 Number of delayed neutrons per fission
Semi-empirical formula by Tuttle /2/.
MT=456 Number of neutrons per fission
Semi-empirical formula by Howerton /3/.

MF=2 Resonance Parameters
MT=151 Resonance parameters
1/v region : 1.0E-5 to 4.15 eV
No resolved resonances were given.
Unresolved resonance region : 4.15 eV to 30 keV
Obtained from optical model calculation:
S0=1.08E-4, S1=3.95E-4, S2=1.04E-4, R=8.8 fm.
Estimated from level density parameters and systematics
D=obs=8.3 eV, Gam-g=40 milli-eV
Gam-f obtained by fitting the estimated fission cross
section (see below).

2200 m/s cross sections and calculated resonance integrals
2200 m/s value res. int.
total 13.22 b -
elastic 10.80 b -
fission 0.820 b 139 b
capture 1.600 b 215 b

MF=3 Neutron Cross Sections
Below 4.15 eV, pointwise cross sections were given as
follows:
MT=1(total) : sum of partial cross sections,
MT=2(elastic scat.) : 10.8 b calculated with optical model,
MT=18(fission) : 1/v shape (0.82 b at 0.0253 eV estimated
from ratio of fission and capture cross
sections in unresolved resonance region),
MT=102(capture) : 1/v shape (1.6 b at 0.0253 eV
obtained from measurements by Diamond/4/)
Between 4.15 eV and 30 keV, cross sections were represented
with resonance parameters.

MT=1,2,4,51-57,91,102,251 Total, Elastic and Inelastic
scattering. Capture cross sections and Mu-L
Calculated with optical and statistical model code
CASTHY/5/.
The spherical optical potential parameters (MeV, fm):
V = 43.4-0.107*En,
r = 1.282, a = 0.60
W s = 0.95-0.339*En+0.0531*En*2, rs = 1.29, b = 0.50
(derivative Woods-Saxon form)
Vso=7.0, rso=1.282, aso=0.60
This set of potential parameters was determined /6/ to
reproduce well the total cross section of Am-241 by
Phillips and Howe /7/.

In the statistical model calculation, competing processes
of fission, (n,2n), (n,3n) and (n,4n), and level
fluctuation were considered. The level scheme of Cm-249
was taken from Ref. /8/.

<table>
<thead>
<tr>
<th>No</th>
<th>Energy (keV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>1/2 +</td>
</tr>
<tr>
<td>1</td>
<td>26.22</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>42.4</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>52.18</td>
<td>7/2 +</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>9/2 +</td>
</tr>
<tr>
<td>5</td>
<td>110.1</td>
<td>7/2 +</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>208</td>
<td>3/2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 220 keV.
The level density parameters : Gilbert and Cameron /9/.
Gamma-ray strength function of 4.8E-4 deduced from
unresolved resonance parameters.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model /10/.

MT=18 Fission
Estimated as 0.95 • sig-f(Cm-247) by using systematics of
Behrens and Howerton /11/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-67 Calculated with optical model.
MT=16,17,18,37,91 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of
Smith et al. /12/.

References
8) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th ed.
 (1978).
MAT number = 3970

96-Cm-250 TIT Eval-Aug87 N.Takagi
Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology. TIT)
89-08 Cross sections were modified below 90 eV.

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
 No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11.70 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>10.80 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>0.002 b</td>
<td>6.86 b</td>
</tr>
<tr>
<td>Capture</td>
<td>0.40 b</td>
<td>8.23 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 90 eV, calculated as sum of MT's = 2, 18 and 102.
Above 90 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows.
V = 43.4 - 0.107*En (MeV)
Ws = 6.95 - 0.339*En + 0.0531*En**2 (MeV)
Wv = 0 , Vso = 7.0 (MeV)
\[r = rso = 1.282 \quad rs = 1.29 \quad (\text{fm}) \]
\[a = aso = 0.60 \quad b = 0.5 \quad (\text{fm}) \]

MT=2 Elastic scattering cross section
Below 90 eV, the constant cross section of 10.8 barns was
assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4.51-52.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>No</th>
<th>energy(keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>142</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Levels above 200 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
The cross section was assumed to be 0.1 barn at 0.0253 eV from the systematics of Prince/6/, and assumed the form of $1/\nu$ below 90 eV. At energies above 90 eV, the shape of the Cm-248 fission cross section was adopted, and it was normalized to the systematics of Behrens and Howerton/7/.

MT=102 Capture cross section
The cross section was assumed to be 20 barns at 0.0253 eV from the systematics of Prince/6/ and the correlation of thermal cross sections with number of excess neutron. The $1/\nu$ form was assumed below 90 eV. Above 90 eV, the cross section was calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 180 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-52,91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z^2/A dependence/8/.

References
MAT number = 3871

97-Bk-249 JAERI Eval-Mar85 Y.Kikuchi and T.Nakagawa
JAERI-M 85-138 Dist-Sep89

History
85-03 New evaluation for JENDL-3 was made by Y.Kikuchi and T.Nakagawa (JAERI). Details are given in Ref. /1/.
88-02 Data were checked and copied into JENDL-3.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
 Sum of MT's =455 and 456.
MT=455 Delayed neutron data
 Semi-empirical formula by Tuttle /2/.
MT=456 Delayed neutron data
 Semi-empirical formula by Howerton /3/.

MF=2, MT=151 Resonance Parameters
Resolved resonances for MLBW formula: 1.0E-5 eV to 60 eV
Resonance energies, neutron and radiative widths were taken from the experimental data of Benjamin+ /4/.
For resonances whose radiative width was unknown, the average value of 0.0357 eV /4/ was adopted. Fission width of 0.0002 eV was estimated from the thermal fission cross section, which was estimated from the systematics of capture to fission ratio by Prince /5/.
The parameters of the negative resonance were adjusted so as to reproduce the thermal cross sections. No background correction was applied.

Unresolved resonances: 60 eV - 30 keV
Obtained from optical model calculation:
 S1=3.0E-4 , S2=0.83E-4 , R=9.07 fm.
Estimated from resolved resonances:
 Dobs=1.16 ev , gam=g=35.7 milli-eV , S0=1.13E-4
 gam-f=0.2 milli-eV.

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>res. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>717.5 b</td>
</tr>
<tr>
<td>elastic</td>
<td>3.93 b</td>
</tr>
<tr>
<td>fission</td>
<td>3.96 b</td>
</tr>
<tr>
<td>capture</td>
<td>709.6 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1.2.4.51-68.91.102.251 Sig-t,sig-el,sig-in,sig-c,mu-bar
Calculated with optical and statistical models.
Optical potential parameters were obtained by fitting the total cross section of Phillips and Howe /6/ for Am-241:
V = 43.4 - 0.107*En (MeV)
W = 6.95 - 0.339*En + 0.0531*En^2 (MeV)
Wv = 0 , Vso = 7.0 (MeV)
r = rs2 = 1.282 , rs = 1.29 (fm)
a = aso = 0.30 , b = 0.5 (fm)

Statistical model calculation with CASTHY code /7/.
Competing processes: fission,(n,2n),(n,3n),(n,4n).
Level fluctuation considered.
The level scheme taken from Ref. 8.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>Spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0</td>
<td>7/2 +</td>
</tr>
<tr>
<td>1</td>
<td>8.8</td>
<td>3/2 -</td>
</tr>
<tr>
<td>2</td>
<td>39.6</td>
<td>5/2 -</td>
</tr>
<tr>
<td>3</td>
<td>41.8</td>
<td>9/2 +</td>
</tr>
<tr>
<td>4</td>
<td>82.6</td>
<td>7/2 -</td>
</tr>
<tr>
<td>5</td>
<td>93.74</td>
<td>11/2 +</td>
</tr>
<tr>
<td>6</td>
<td>137.7</td>
<td>9/2 -</td>
</tr>
<tr>
<td>7</td>
<td>155.84</td>
<td>13/2 +</td>
</tr>
<tr>
<td>8</td>
<td>204.6</td>
<td>11/2 -</td>
</tr>
<tr>
<td>9</td>
<td>229.3</td>
<td>15/2 +</td>
</tr>
<tr>
<td>10</td>
<td>283.0</td>
<td>13/2 -</td>
</tr>
<tr>
<td>11</td>
<td>313.0</td>
<td>17/2 +</td>
</tr>
<tr>
<td>12</td>
<td>372.8</td>
<td>15/2 -</td>
</tr>
<tr>
<td>13</td>
<td>377.6</td>
<td>1/2 +</td>
</tr>
<tr>
<td>14</td>
<td>389.2</td>
<td>5/2 +</td>
</tr>
<tr>
<td>15</td>
<td>410.6</td>
<td>3/2 +</td>
</tr>
<tr>
<td>16</td>
<td>421.3</td>
<td>5/2 +</td>
</tr>
<tr>
<td>17</td>
<td>428.9</td>
<td>7/2 +</td>
</tr>
<tr>
<td>18</td>
<td>474.9</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>

Continuum levels assumed above 519 keV.

The level density parameters: Gilbert and Cameron 9.
Gamma-ray strength function of 3.2E-2 deduced from resonance parameters.

MT=16,17,37 (n,2n),(n,3n),(n,4n)
Calculated with evaporation model.

MT=18 Fission
Evaluated on the basis of the measured data by Silbert/10/, Vorotnikov+/11/ and Fomshkin+/12/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-68 Calculated with optical model.
MT=16,17,18,37,91 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith+/13/.

References
8) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th ed.
MAT number = 3972

97-Bk–250 JAERI Eval–Mar87 T.Nakagawa
JAERI-M 88–004 Dist–Sep89

History
87–03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. 1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT=455 Delayed neutron data
Based on semi–empirical formula by Tuttle 2/.
MT=456 Number of prompt neutrons per fission
Based on semi–empirical formula by Howerton 3/.

MF=2, MT=151 Resonance Parameters
Resolved resonance parameters (MLBW) : 1.0E–5 eV TO 100 eV

Resonance parameters were hypothetically generated adopting
the following average values.
D–obs = 2.09 eV (from level density parameters)
S0, S1= 0.83E–4, 3.37E–4 (from optical model calc.)
Radiative width = 0.035eV (same as Cf–252)
Fission width = 0.095 eV (assumed that the ratio of
fission to radiative width is equal to
cross section ratio)
The energy of first level was adjusted to reproduce the
2200–m/s cross sections of 350 barns 4/ and 360 barns 5/ for
capture and fission, respectively.

Unresolved resonances
0.1 to 30 keV

By adopting parameters used for resolved resonance generation
as initial values, they were adjusted to reproduce the
evaluated fission and capture cross sections by using ASREP
6/.

Final values of the parameters are.
S0 = 0.82E–4, S1 = 3.9E–4, D–obs = 2.09 eV,
radiative width = 0.035 eV, R =9.02 fm,
fission width = 0.104 eV at 100 eV, 0.208 eV at 30 keV.

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1325.0 B</td>
</tr>
<tr>
<td>Elastic</td>
<td>12.22 B</td>
</tr>
<tr>
<td>Fission</td>
<td>959.3 B</td>
</tr>
<tr>
<td>Capture</td>
<td>353.4 B</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

1) The optical model calculation was performed with code CASTHY
7/.

Optical potential parameters used were obtained 8/ by
fitting the total cross section measured by Phillips and Howe
9/ for Am–241:

\[
\begin{align*}
V &= 43.4 - 0.107\times En \\
7W &= 0.95 - 0.339\times En + 0.0531\times En^2
\end{align*}
\]
(in the Derivative Woods–Saxon form)

\[
\begin{align*}
W_0 &= 0 \\
V_{so} &= 7.0
\end{align*}
\] (MeV)

\[
\begin{align*}
r &= r_{so} = 1.282 \\
rs &= 1.29
\end{align*}
\] (fm)
a = aso = 0.60 \ , \ b = 0.5 \quad (\text{fm})

2) In the statistical calculation, the fission, (n,2n), (n,3n) and (n,4n) cross sections were considered as the competing process cross sections.

3) The level density parameters were derived from resonance level spacings and low lying excited levels on the basis of Gilbert-Cameron's formula /10/.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>247</th>
<th>248</th>
<th>249</th>
<th>250</th>
<th>251</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(1/MeV)</td>
<td>28.1</td>
<td>27.8</td>
<td>34.2</td>
<td>30.05</td>
<td>30.0</td>
</tr>
<tr>
<td>Spin-cutoff fact</td>
<td>30.47</td>
<td>30.39</td>
<td>33.79</td>
<td>31.76</td>
<td>31.82</td>
</tr>
<tr>
<td>Pairing E(MeV)</td>
<td>0.39</td>
<td>0.0</td>
<td>0.903</td>
<td>0.0</td>
<td>0.865</td>
</tr>
<tr>
<td>Temp. (MeV)</td>
<td>0.364</td>
<td>0.326</td>
<td>0.366</td>
<td>0.340</td>
<td>0.385</td>
</tr>
<tr>
<td>C(1/MeV)</td>
<td>2.90</td>
<td>10.8</td>
<td>12.2</td>
<td>24.6</td>
<td>6.56</td>
</tr>
<tr>
<td>Ex(MeV)</td>
<td>7.97</td>
<td>1.85</td>
<td>4.30</td>
<td>2.34</td>
<td>4.05</td>
</tr>
</tbody>
</table>

Below 30 keV, cross sections are represented with resonance parameters.

MT=1.2 Total and Elastic scattering
The optical model calculation was adopted.

MT=4, 51 to 68 and 91 Inelastic scattering
The level scheme was taken from Ref. /11/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>0.0</td>
<td>2 -</td>
</tr>
<tr>
<td>1</td>
<td>34.5</td>
<td>3 -</td>
</tr>
<tr>
<td>2</td>
<td>35.6</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>78.1</td>
<td>5 +</td>
</tr>
<tr>
<td>4</td>
<td>86.4</td>
<td>7 +</td>
</tr>
<tr>
<td>5</td>
<td>97.0</td>
<td>5 -</td>
</tr>
<tr>
<td>6</td>
<td>104.1</td>
<td>1 -</td>
</tr>
<tr>
<td>7</td>
<td>125.4</td>
<td>2 -</td>
</tr>
<tr>
<td>8</td>
<td>129.0</td>
<td>6 +</td>
</tr>
<tr>
<td>9</td>
<td>131.9</td>
<td>3 +</td>
</tr>
<tr>
<td>10</td>
<td>157.0</td>
<td>8 +</td>
</tr>
<tr>
<td>11</td>
<td>167.0</td>
<td>6 -</td>
</tr>
<tr>
<td>12</td>
<td>175.4</td>
<td>1 +</td>
</tr>
<tr>
<td>13</td>
<td>191.0</td>
<td>7 +</td>
</tr>
<tr>
<td>14</td>
<td>211.8</td>
<td>2 +</td>
</tr>
<tr>
<td>15</td>
<td>237.0</td>
<td>3 +</td>
</tr>
<tr>
<td>16</td>
<td>242.0</td>
<td>9 +</td>
</tr>
<tr>
<td>17</td>
<td>248.0</td>
<td>7 -</td>
</tr>
<tr>
<td>18</td>
<td>270.0</td>
<td>4 +</td>
</tr>
</tbody>
</table>

Levels above 296 keV were assumed to be overlapping.

MT=16, 17 and 37, (n,2n), (n,3n) and (n,4n)
Calculated with evaporation model by taking the compound nucleus formation cross section calculated with optical model.

MT=18 Fission
Shape of the Cf-251 fission cross section /12/ was adopted
and multiplied by the factor of 0.84.

MT=102 Radiative capture
 Calculated with CASTHY. The average radiative width of 0.035
eV and s-wave level spacing of 2.09 eV were assumed.

MT=251 Mu-bar
 Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
 MT=2.51-68 Calculated with optical model.
 MT=16,17,18,37,91 Isotropic distributions in the laboratory
 system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
 MT=16,17,37,91 Evaporation spectrum assumed.
 MT=18 Maxwellian fission spectrum.
 Temperature estimated from systematics of
 Smith et al. (1984).

References
4) Mughabghab, S.F.: Neutron Cross Sections, Vol.1, part B,
7) Kikuchi, Y.: private communication.
MAT number = 3981

98-Cf-249 JAERI Eval-Mar85 Y.Kikuchi and T.Nakagawa
JAERI-M 85-138 Dist-Sep89

History
85-03 New evaluation for JENDL-3 was made by Y.Kikuchi and T.Nakagawa (JAERI). Details are given in Ref. /1/.
88-02 Data were checked and adopted for JENDL-3.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
 Sum of MT's = 455 and 456.
MT=455 Delayed neutron data
 Semi-empirical formula by Tuttle /1/.
MT=456 Number of prompt neutrons per fission
 Semi-empirical formula by Howerton /3/.

MF=2, MT=151 Resonance Parameters
Resolved resonances for MLBW formula: 1.0E-5 eV to 70 eV
Resonance energies, neutron and fission widths were taken from the experimental data of Benjamin /4/.
 The radiative width was assumed to be 0.04 eV according to Dabbs /5/.
A negative resonance was added so as to reproduce the thermal cross sections. No background correction was applied.

Unresolved resonances: 70 eV - 30 keV
Obtained from optical model calculation:
 S1=3.15E-4, S2=0 83E-4, R=9.08 fm.
Estimated from resolved resonances:
 Dobs=1.16 eV, gam-g=40 milli-eV, s0=1.00E-4
Fission widths were estimated from the channel theory of fission /6/.
 S0, S1, and S2 values were adjusted so as to reproduce the fission cross section measured by Dabbs /5/.

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>res. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>2176.7 b</td>
</tr>
<tr>
<td>elastic</td>
<td>8.22 b</td>
</tr>
<tr>
<td>fission</td>
<td>1866 b</td>
</tr>
<tr>
<td>capture</td>
<td>504.5 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1,2,4,51-63,81,102,251 sig-t, sig-e, sig-in, sig-c, mu-bar
Calculated with optical and statistical models.

Optical potential parameters were obtained by fitting the total cross section of Phillips and Howe /7/ for Am-241:
V = 43.4 - 0.107*En (MeV)
W0 = 6.95 - 0.339*En + 0.0531*En**2 (MeV)
Wv = 0
Vso = 7.0 (MeV)
r = rs0 = 1.282, rs = 1.29 (fm)
a = 0.60, b = 0.5 (fm)

Statistical model calculation with CASTHY code /8/.
Competing processes: fission, (n,2n), (n,3n), (n,4n).
Level fluctuation considered.
The level scheme taken from Ref. /9/.
No. Energy(keV) Spin-parity
g.s. 0 9/2 −
 1 62.47 11/2 −
 2 136.2 13/2 −
 3 145.0 5/2 +
 4 188.0 7/2 +
 5 219.0 15/2 −
 6 243.1 9/2 +
 7 379.5 7/2 +
 8 416.6 1/2 +
 9 437.5 9/2 +
 10 440.0 3/2 +
 11 443.0 7/2 +
 12 460.0 5/2 +
 13 500.6 9/2 +

Continuum levels assumed above 560 keV.
The level density parameters : Gilbert and Cameron /10/.
Gamma-ray strength function of 3.3E-2 deduced from
resonance parameters.

MT=16,17,37 \((n,2n),(n,3n),(n,4n) \)
Calculated with evaporation model.

MT=18 Fission
Evaluated on the basis of the measured data by
Silbert/11/, Dabbs+/5/ and Kupriyanov+/12/.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-63 Calculated with optical model.
MT=16,17,18,37,91 Isotropic in the laboratory system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of
Smith+/13/.

References
9) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th ed.
MAT number = 3982

98-Cf-250 JAERI Eval-Mar86 T.Nakagawa
JAERI-M 86-086 Dist-Sep89

History

86-03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT=455 Delayed neutron data
Based on semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons per fission
Based on semi-empirical formula by Howerton /3/.

MF=2, MT=151 Resonance Parameters

Resolved resonances for SLBW formula : 1.0E-5 eV to 150 eV
Hypothetical resonance levels were generated, and their
parameters were determined from the assumed average parameters
D-0 = 16 eV, radiative capture width = 0.0369 eV,
S-0 = 1.0E-4, fission width = 0.0001 eV, R = 9.252 fm.
Parameters of the negative and first positive levels were
adjusted so as to reproduce the thermal cross sections and
resonance integrals.
Unresolved resonances : 150 eV to 30 keV
S-0 = 1.0E-4, S-1 = 3.3E-4, D-0=16 eV, R = 9.11 fm,
radiative width = 0.0369 eV, fission width = 0.0001 eV.
The scattering radius was adjusted slightly.

calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>Value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>1950.7 b</td>
</tr>
<tr>
<td>elastic</td>
<td>167.4 b</td>
</tr>
<tr>
<td>fission</td>
<td>4.09 b</td>
</tr>
<tr>
<td>capture</td>
<td>1779.2 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections

MT=1 Total
MT=2 Elastic scattering
MT=4, 51 to 79 and 91 Inelastic scattering
MT=102 Radiative capture
MT=251 Mu-bar

Calculated with the program CASTHY /4/ based on the optical
and statistical models. Optical potential parameters were
obtained /5/ by fitting the total cross section of Phillips
and Howe /6/ for Am-241:

\[V = 43.4 - 0.107 \cdot En \quad (MeV) \]
\[Ws = 6.95 - 0.339 \cdot En + 0.0531 \cdot En^2 \quad (MeV) \]
\[Wv = 0 \quad , \quad Vso = 7.0 \quad (MeV) \]
\[r = rso = 1.282 \quad , \quad rs = 1.29 \quad (fm) \]
\[a = aso = 0.60 \quad , \quad b = 0.5 \quad (fm) \]

In the statistical calculation, level fluctuation and
competing process (fission, (n,2n) and (n,3n)) were taken into
account. The level scheme was taken from Ref. /7/.

<table>
<thead>
<tr>
<th>ground</th>
<th>0.0</th>
<th>0 +</th>
<th>15</th>
<th>1209.98</th>
<th>2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.722</td>
<td>2 +</td>
<td>16</td>
<td>1211.3</td>
<td>3 -</td>
</tr>
<tr>
<td>2</td>
<td>141.886</td>
<td>4 +</td>
<td>17</td>
<td>1244.51</td>
<td>2 +</td>
</tr>
<tr>
<td>3</td>
<td>296.25</td>
<td>6 +</td>
<td>18</td>
<td>1255.47</td>
<td>4 -</td>
</tr>
<tr>
<td>4</td>
<td>871.64</td>
<td>2 -</td>
<td>19</td>
<td>1266.65</td>
<td>0 +</td>
</tr>
<tr>
<td>5</td>
<td>905.90</td>
<td>3 -</td>
<td>20</td>
<td>1296.64</td>
<td>2 +</td>
</tr>
<tr>
<td>6</td>
<td>952.07</td>
<td>4 -</td>
<td>21</td>
<td>1311.07</td>
<td>5 -</td>
</tr>
<tr>
<td>7</td>
<td>1008.6</td>
<td>5 -</td>
<td>22</td>
<td>1335.1</td>
<td>6 -</td>
</tr>
<tr>
<td>8</td>
<td>1031.85</td>
<td>2 +</td>
<td>23</td>
<td>1377.83</td>
<td>(1 +)</td>
</tr>
<tr>
<td>9</td>
<td>1070.0</td>
<td>6 -</td>
<td>24</td>
<td>1385.49</td>
<td>(1 +)</td>
</tr>
<tr>
<td>10</td>
<td>1071.38</td>
<td>3 +</td>
<td>25</td>
<td>1396.16</td>
<td>5 -</td>
</tr>
<tr>
<td>11</td>
<td>1123.0</td>
<td>4 +</td>
<td>26</td>
<td>1411.34</td>
<td>(1 +)</td>
</tr>
<tr>
<td>12</td>
<td>1154.23</td>
<td>0 +</td>
<td>27</td>
<td>1426.88</td>
<td>3 -</td>
</tr>
<tr>
<td>13</td>
<td>1175.52</td>
<td>1 -</td>
<td>28</td>
<td>1457.83</td>
<td>6 -</td>
</tr>
<tr>
<td>14</td>
<td>1189.40</td>
<td>2 +</td>
<td>29</td>
<td>1478.45</td>
<td>5 -</td>
</tr>
</tbody>
</table>

Levels above 1.50 MeV were assumed to be overlapping. The level density parameters were derived from resonance level spacings and low-lying excited levels on the basis of Gilbert-Cameron's formula /8/. The average radiative capture width of 0.0369 eV and s-wave level spacing of 16 eV were assumed.

MT=16 and 17 (n,2n) and (n,3n) Calculated with evaporation model.

MT=18 Fission Evaluated on the basis of the systematics.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51-79 Calculated with optical model.
MT=16,17,18.91 Isotropic distributions in the laboratory system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17.91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith et al. /9/.

References
MAT_number = 3983

98-Cf-251 JAERI Eval-Mar86 T.Nakagawa
JAERI-M 86-086 Dist-Sep89

History
86-03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
 Sum of MT=455 and MT=456
MT=455 Delayed neutron data
 Based on semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons per fission
 Based on semi-empirical formula by Howerton /3/.

MF=2, MT=151 Resonance Parameters
Resolved resonances for SLBW formula: 1.0E-5 ev to 150 ev
Hypothetical resonance levels were generated, and their
parameters were determined from the assumed average parameters
 D-0 = 6.3 ev, radiative capture width = 0.0435 ev.
 S-0 = 1.0E-4, fission width = 0.0746 ev, R = 9.253 fm.
Parameters of the negative and first positive levels were
adjusted so as to reproduce the thermal cross sections and
resonance integrals.
Unresolved resonances: 150 ev to 30 keV
Parameters were adjusted so as to reproduce the assumed
fission and radiative capture cross sections.
 S-0 = 0.843E-4, S-1 = 4.56E-4, R = 8.842 fm,
 D-0 = 6.3 ev, radiative width = 0.0435 ev,
 fission width = 0.281 ev (for l=0), = 0.551 ev (for l=1)

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200-m/s value</th>
<th>res. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>7889.4</td>
<td>b</td>
</tr>
<tr>
<td>elastic</td>
<td>76.04</td>
<td>b</td>
</tr>
<tr>
<td>fission</td>
<td>4935.4</td>
<td>2780. b</td>
</tr>
<tr>
<td>capture</td>
<td>2877.9</td>
<td>1600. b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total
MT=2 Elastic scattering
MT=4, 51 to 73 and 91 Inelastic scattering
MT=102 Radiative capture
MT=251 Mu-bar

Calculated with the program CASTHY /4/ based on the optical
and statistical models. Optical potential parameters were
obtained /5/ by fitting the total cross section of Phillips
and Howe /6/ for Am-241:
 V = 43.4 - 0.107*En (MeV)
 Ws= 6.96 - 0.339*En + 0.0531*En**2 (MeV)
 Wv = 0 (MeV)
 r = rso = 1.282 , rs = 1.29 (fm)
 a = aso = 0.60 , b = 0.5 (fm)

In the statistical calculation, level fluctuation and
competing processes (fission, (n,2n), (n,3n) and (n,4n)) were
The level scheme was taken from Ref. 7/.

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (keV)</th>
<th>J-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground</td>
<td>0.0</td>
<td>1/2 +</td>
</tr>
<tr>
<td>1</td>
<td>24.625</td>
<td>3/2 +</td>
</tr>
<tr>
<td>2</td>
<td>57.282</td>
<td>5/2 +</td>
</tr>
<tr>
<td>3</td>
<td>105.73</td>
<td>7/2 +</td>
</tr>
<tr>
<td>4</td>
<td>165.304</td>
<td>7/2 +</td>
</tr>
<tr>
<td>5</td>
<td>145.46</td>
<td>9/2 +</td>
</tr>
<tr>
<td>6</td>
<td>166.31</td>
<td>9/2 +</td>
</tr>
<tr>
<td>7</td>
<td>177.69</td>
<td>3/2 +</td>
</tr>
<tr>
<td>8</td>
<td>211.72</td>
<td>5/2 +</td>
</tr>
<tr>
<td>9</td>
<td>237.76</td>
<td>11/2 +</td>
</tr>
<tr>
<td>10</td>
<td>239.34</td>
<td>11/2 +</td>
</tr>
<tr>
<td>11</td>
<td>258.44</td>
<td>7/2 +</td>
</tr>
<tr>
<td>12</td>
<td>295.7</td>
<td>13/2 +</td>
</tr>
<tr>
<td>13</td>
<td>319.29</td>
<td>9/2 +</td>
</tr>
<tr>
<td>14</td>
<td>325.35</td>
<td>13/2 +</td>
</tr>
<tr>
<td>15</td>
<td>370.39</td>
<td>11/2 -</td>
</tr>
<tr>
<td>16</td>
<td>392.0</td>
<td>11/2 +</td>
</tr>
<tr>
<td>17</td>
<td>424.10</td>
<td>15/2 +</td>
</tr>
<tr>
<td>18</td>
<td>434.3</td>
<td>9/2 -</td>
</tr>
<tr>
<td>19</td>
<td>442.</td>
<td>13/2 -</td>
</tr>
<tr>
<td>20</td>
<td>514.</td>
<td>11/2 -</td>
</tr>
<tr>
<td>21</td>
<td>544.05</td>
<td>5/2 +</td>
</tr>
<tr>
<td>22</td>
<td>590.18</td>
<td>7/2 +</td>
</tr>
<tr>
<td>23</td>
<td>649.2</td>
<td>9/2 +</td>
</tr>
</tbody>
</table>

Levels above 700 keV were assumed to be overlapping. The level density parameters were derived from resonance level spacings and low lying excited levels on the basis of Gilbert–Cameron's formula /8/. The average radiative capture width of 0.0435 eV and s-wave level spacing of 6.3 eV were assumed.

MT=16,17 and 37 \{(n,2n), (n,3n) and (n,4n)\}
Calculated with evaporation model.

MT=18 Fission
Evaluated on the basis of the systematics.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-73 Calculated with optical model.
MT=16,17,18,37,91 Isotropic distributions in the laboratory system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum.
MT=18 Maxwellian fission spectrum.
Temperature estimated from systematics of Smith et al. /8/.

References
MAT number = 3884

98-Cf-252 JAERI Eval-Mar87 T.Nakagawa
JAERI-M 88-004 Dist-Sep89

History
87-03 New evaluation was made by T.Nakagawa (JAERI).
Details are described in Ref. /1/.

MF=1 General Information
MT=451 Comments and dictionary
MT=452 Number of neutrons per fission
Sum of MT=455 and MT=456
MT=455 Delayed neutron data
Based on semi-empirical formula by Tuttle /2/.
MT=456 Number of prompt neutrons per fission
Based on semi-empirical formula by Howerton /3/.

MF=2, MT=151 Resonance Parameters
Resolved resonance parameters (MLBW) : 1.0E-5 eV TO 1 keV
Resonance parameters were taken from Moore et al. /4/ by
assuming an average value of radiative capture width (0.035
eV) and fission width (0.035 eV). Two hypothetical resonances
at 1.4 and 3.5 eV were adopted to reproduce the 2200 m/s
cross sections and resonance integrals /5,6/. Scattering
radius of 9.23 fm was estimated from the shape elastic
scattering cross section calculated with CASTHY /7/ from
optical potential parameters given below.
Unresolved resonances : 1 to 30 keV
Parameters were estimated from resolved resonances and
adjusted so as to reproduce the evaluated fission and capture
cross sections by using ASREP /8/. Values of the parameters
are D-obs = 27 eV, R = 8.9 fm and S0, S1, capture and fission
widths are as follows.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>S0</th>
<th>S1</th>
<th>Capt-width (eV)</th>
<th>Fiss-width (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.22-4</td>
<td>3.37-4</td>
<td>0.035</td>
<td>0.056</td>
</tr>
<tr>
<td>3.0</td>
<td>1.22-4</td>
<td>3.37-4</td>
<td>0.035</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Calculated 2200 m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>64.77</td>
<td>B</td>
</tr>
<tr>
<td>Elastic</td>
<td>11.04</td>
<td>B</td>
</tr>
<tr>
<td>Fission</td>
<td>33.03</td>
<td>111. B</td>
</tr>
<tr>
<td>Capture</td>
<td>20.71</td>
<td>47.4 B</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
Below 30 keV, cross sections are represented with resonance
parameters. Above 30 keV, data were mainly calculated with
optical and statistical models.

1) The optical model calculation was performed with code CASTHY
/7/. Optical potential parameters used were obtained /9/ by
fitting the total cross section measured by Phillips and Howe
/10/ for Am-241:

\[
V = 43.4 - 0.107 \cdot \text{En} \quad \text{(MeV)}
\]

\[
W = 6.95 - 0.339 \cdot \text{En} + 0.0531 \cdot \text{En}^2 \quad \text{(MeV)}
\]

\[
Wv = 0. \quad Vso = 7.0 \quad \text{(MeV)}
\]
2 of Californium-252

\[r = r_{so} = 1.282 \quad , \quad r_s = 1.29 \quad (\text{fm}) \]
\[a = a_{so} = 0.60 \quad , \quad b = 0.5 \quad (\text{fm}) \]

2) In the statistical calculation, the fission, \((n,2n)\), \((n,3n)\) and \((n,4n)\) cross sections were considered as the competing process cross sections.

3) The level density parameters were derived from resonance level spacings and low laying excited levels on the basis of Gilbert-Cameron's formula \(^{11}\).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>249</th>
<th>250</th>
<th>251</th>
<th>252</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(1/\text{MeV}))</td>
<td>29.4</td>
<td>31.2</td>
<td>32.2</td>
<td>31.6</td>
<td>32.2</td>
</tr>
<tr>
<td>Spin-cutoff fact</td>
<td>31.25</td>
<td>32.38</td>
<td>32.97</td>
<td>32.74</td>
<td>33.14</td>
</tr>
<tr>
<td>Pairing (E(\text{MeV}))</td>
<td>1.18</td>
<td>1.673</td>
<td>0.77</td>
<td>1.635</td>
<td>0.77</td>
</tr>
<tr>
<td>Temp. (\text{(MeV)})</td>
<td>0.3893</td>
<td>0.4025</td>
<td>0.3809</td>
<td>0.3927</td>
<td>0.3322</td>
</tr>
<tr>
<td>(C(1/\text{MeV}))</td>
<td>1.625</td>
<td>2.093</td>
<td>14.84</td>
<td>1.895</td>
<td>3.59</td>
</tr>
<tr>
<td>(E_{x}(\text{MeV}))</td>
<td>3.954</td>
<td>5.418</td>
<td>4.204</td>
<td>5.233</td>
<td>3.226</td>
</tr>
</tbody>
</table>

MT=1.2 Total and elastic scattering
The optical model calculation was adopted.

MT=4 51 to 59 and 91 Inelastic scattering
The level scheme was taken from Ref. \(^{12}\).

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy(keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>0.0</td>
<td>0 +</td>
</tr>
<tr>
<td>1</td>
<td>45.75</td>
<td>2 +</td>
</tr>
<tr>
<td>2</td>
<td>151.73</td>
<td>4 +</td>
</tr>
<tr>
<td>3</td>
<td>804.82</td>
<td>2 +</td>
</tr>
<tr>
<td>4</td>
<td>830.81</td>
<td>2 -</td>
</tr>
<tr>
<td>5</td>
<td>845.72</td>
<td>3 +</td>
</tr>
<tr>
<td>6</td>
<td>867.51</td>
<td>3 -</td>
</tr>
<tr>
<td>7</td>
<td>900.3</td>
<td>4 +</td>
</tr>
<tr>
<td>8</td>
<td>917.03</td>
<td>4 -</td>
</tr>
<tr>
<td>9</td>
<td>969.83</td>
<td>3 +</td>
</tr>
</tbody>
</table>

Levels above 1.03 MeV were assumed to be overlapping.

MT=16, 17 and 37 \((n,2n)\), \((n,3n)\) and \((n,4n)\)
Calculated with evaporation model by taking the compound nucleus formation cross section calculated with optical model.

MT=18 Fission
Evaluated on the basis of experimental data by Moore et al. \(^{14}\).

MT=102 Radiative capture
Calculated with CASTHY. The average radiative width of 0.035 eV and s-wave level spacing of 27 eV were assumed.

MT=251 Mu-bar
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-59 Calculated with optical model.
MT=16,17,18,37,91 Isotropic distributions in the laboratory system were assumed.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectrum assumed.
MT=18 Maxwellian fission spectrum.
 Temperature estimated from systematics of Smith et al./13/.

References
8) Kikuchi, Y.: private communication.
MAT number = 3985

98-Cf-254 TIT Eval-Aug87 N.Takagi
Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of
Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>17.10 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>10.60 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>2.00 b</td>
<td>24.3 b</td>
</tr>
<tr>
<td>Capture</td>
<td>4.50 b</td>
<td>6.5 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 120 eV, calculated as sum of MT's = 2, 18 and 102.
Above 120 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as
follows:
\[V = 43.4 - 0.107\times En \] (MeV)
\[Ws = 6.95 - 0.339\times En + 0.0531\times En\times En\times 2 \] (MeV)
\[Wv = 0 \] \[Vso = 7.0 \] (MeV)
\[r = rso = 1.282 \] \[rs = 1.29 \] (fm)
\[a = aso = 0.60 \] \[b = 0.5 \] (fm)

MT=2 Elastic scattering cross section
Below 120 eV, the constant cross section of 10.6 barns was
assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4,51,91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.
No energy(keV) spin-parity
g.s. 0.0 0 +
1 45.0 2 +
Levels above 140 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
The thermal cross section of 2.0 barns was estimated from
the ratio of fission and capture cross sections at 1 eV.
and measured capture cross section at 0.0253 eV. The form of $1/\nu$ was assumed below 120 eV. For energy above 120 eV, the shape of Cf-252 fission cross section was adopted and it was normalized to the systematics of Behrens and Howerton/8/.

MT=102 Capture cross section
Measured thermal cross section of 4.5 barns was taken from Ref. 7, and $1/\nu$ form was assumed below 120 eV. Above 120 eV, the cross section was calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 240 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2.51.91 Calculated with optical model.
MT=16.17.18.37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16.17.37.91 Evaporation spectra.
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z^2/A dependence/8/.

References
MAT number = 3891

99-ES-254 TIT Eval-Aug87 N Takagi Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2004.90 b</td>
</tr>
<tr>
<td>Elastic</td>
<td>10.60 b</td>
</tr>
<tr>
<td>Fission</td>
<td>1966.00 b</td>
</tr>
<tr>
<td>Capture</td>
<td>28.30 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 5 eV, calculated as sum of MT's = 2, 18 and 102.
Above 5 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows.

\[V = 43.4 - 0.107 \cdot E_n \] (MeV)

\[W_s = 0.95 - 0.339 \cdot E_n + 0.0531 \cdot E_n \cdot E_n \] (MeV)

\[W_v = 0 \] \(V_{so} = 7.0 \) (MeV)

\[r = 1.282 \] \(r_s = 1.29 \) (fm)

\[a = 0.60 \] \(b = 0.5 \) (fm)

MT=2 Elastic scattering cross section
Below 5 eV, the constant cross section of 10.8 barns was
assumed, which is the shape elastic scattering cross
section calculated with optical model. Above this energy,
onical model calculation was adopted.

MT=4, 51-52.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>g.s.</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>7 +</td>
</tr>
<tr>
<td>1</td>
<td>78.0</td>
<td>2 +</td>
</tr>
</tbody>
</table>

Levels above 503 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16, 17.37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 1966 barns was taken from Ref. 6. The 1/v form was assumed below 5 eV. The
shape of cross section near 5 eV was adjusted so as to reproduce the measured resonance integral of 1200±250 barns/6/. Above 5 eV, the cross section shape was assumed to be the same as Bk-250 fission cross section and it was normalized to systematics of Behrens and Howerton/7/.

MT=102 Capture cross section
Measured thermal cross section of 28.3 barns was taken from Ref. 6, and 1/v form was assumed below 5 eV. The cross section near 5 eV was adjusted so as to reproduce the measured resonance integral of 18.2±1.5 barns/6/. Above 5 eV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 2 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51-62,91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum
Temperature was estimated from Z^2/A dependence/8/.

References
MAT number = 3992

99=Es-255 TIT Eval-Aug87 N.Takagi
Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of
Technology, TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
 Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
 No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>79.03 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>10.60 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>13.43 b</td>
<td>93.3 b</td>
</tr>
<tr>
<td>Capture</td>
<td>55.00 b</td>
<td>278 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 2.47 eV, calculated as sum of MT's = 2.18 and 102.
Above 2.47 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows.

\[
\begin{align*}
V &= 43.4 - 0.107 \cdot \text{En} \quad \text{(MeV)} \\
W_s &= 6.95 - 0.339 \cdot \text{En} + 0.0531 \cdot \text{En}^2 \quad \text{(MeV)} \\
V_w &= 0 \quad , \quad V_{so} = 7.0 \quad \text{(MeV)} \\
r &= r_{so} = 1.282 \quad , \quad r_s = 1.29 \quad \text{(fm)} \\
a &= a_{so} = 0.60 \quad , \quad b = 0.5 \quad \text{(fm)}
\end{align*}
\]

MT=2 Elastic scattering cross section
Below 2.47 eV, the constant cross section of 10.6 barns was assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4.51-53.91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was assumed to be the same as
that of Es-253 taken from Ref. 4.

<table>
<thead>
<tr>
<th>No</th>
<th>energy (keV)</th>
<th>spin-parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0.0</td>
<td>7/2 +</td>
</tr>
<tr>
<td>1</td>
<td>48.0</td>
<td>9/2 +</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td>3/2 -</td>
</tr>
<tr>
<td>3</td>
<td>420.0</td>
<td>7/2 -</td>
</tr>
</tbody>
</table>

Levels above 500 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.
MT=18 Fission cross section
Measured thermal cross section of 13.43 barns was taken from Ref. 6, and 1/v form was assumed below 2.47 eV. Above 2.47 eV, the cross section shape was assumed to be the same as Cf-252 fission cross section and it was normalized to the systematics by Behrens and Howerton/7/.

MT=102 Capture cross section
Measured thermal cross section of 55.0 barns was taken from Ref. 6, and 1/v form was assumed below 2.47 eV. Above 2.47 eV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 4.94 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51–53,91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra.
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z+2/A dependence/8/.

References
MAT number = 3995

100-Fm-255 TIT Eval-Aug87 N.Takagi
Dist-Sep89

History
87-08 New evaluation was made by N. Takagi (Tokyo Institute of
Technology. TIT)

MF=1 General Information
MT=451 Comment and dictionary
MT=452 Number of neutrons per fission
Evaluated with semi empirical formula of Howerton/1/.

MF=2 Resonance parameters
MT=151 Resonance parameters
No resonance parameters were given.

2200-m/s cross sections and resonance integrals

<table>
<thead>
<tr>
<th></th>
<th>2200 m/s value</th>
<th>Res. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3396.60 b</td>
<td>-</td>
</tr>
<tr>
<td>Elastic</td>
<td>10.60 b</td>
<td>-</td>
</tr>
<tr>
<td>Fission</td>
<td>3360.00 b</td>
<td>1170 b</td>
</tr>
<tr>
<td>Capture</td>
<td>26.00 b</td>
<td>101 b</td>
</tr>
</tbody>
</table>

MF=3 Neutron Cross Sections
MT=1 Total cross section
Below 3.8 eV, calculated as sum of MT's = 2, 18 and 102.
Above 3.8 eV, optical model calculation was made with
CASTHY/2/. The potential parameters/3/ used are as follows:

\[V = 43.4 - 0.107 \cdot E_n \]
\[W_s = 8.85 - 0.339 \cdot E_n + 0.0531 \cdot E_n \cdot E_n \]
\[W_v = 0, \quad V_{so} = 7.0 \]
\[r = r_{so} = 1.282, \quad r_s = 1.29 \]
\[a = a_{so} = 0.60, \quad b = 0.5 \]

MT=2 Elastic scattering cross section
Below 3.8 eV, the constant cross section of 10.8 barns
was assumed, which was the shape elastic scattering cross
section calculated with optical model. Above this energy,
optical model calculation was adopted.

MT=4,51,91 Inelastic scattering cross sections.
Optical and statistical model calculation was made with
CASTHY/2/. The level scheme was taken from Ref. 4.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Spin-Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2 +</td>
<td></td>
</tr>
<tr>
<td>9/2 +</td>
<td></td>
</tr>
</tbody>
</table>

Levels above 94 keV were assumed to be overlapping.
The level density parameters were taken from Ref. 5.

MT=16,17,37 (n,2n), (n,3n) and (n,4n) reaction cross sections
Calculated with evaporation model.

MT=18 Fission cross section
Measured thermal cross section of 3360 barns was taken
from Ref. 6, and 1/v form was assumed below 3.8 eV.
Above 3.8 eV, the shape was assumed to be the same as Bk-250 fission cross section and it was normalized to the systematics by Behrens and Howerton/7/.

MT=102 Capture cross section
Measured thermal cross section of 26 barns was taken from Ref. 6, and 1/v form was assumed below 3.8 eV. Above 3.8 eV, calculated with CASTHY. The gamma-ray strength function was estimated from Gamma-gamma = 0.040 eV and level spacing = 7.6 eV.

MT=251 Mu-L
Calculated with CASTHY.

MF=4 Angular Distributions of Secondary Neutrons
MT=2,51,91 Calculated with optical model.
MT=16,17,18,37 Isotropic in the lab system.

MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,37,91 Evaporation spectra.
Obtained from level density parameters.

MT=18 Maxwellian fission spectrum.
Temperature was estimated from Z^{2}/A dependence/8/.

References