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This report gives a detailed description of the theory and computational algorithms
of modernized coupled-channels optical model code OPTMAN based on the soft-rotator
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1. INTRODUCTION

For more than twenty years, an original coupled-channels optical model code OPTMAN
has been developed at Joint Institute of Energy and Nuclear Research to investigate nucleon-
nucleus interaction mechanisms and as a basic tool for nuclear data evaluation for reactor
design and other applications. Results of such activities for, e.g., 235U, 2Py, 236U, 23 U,
238Py etc., were included in evaluated Nuclear Data Library BROND [1] of former Soviet
Union. Except for the standard rigid rotator and harmonic vibrator coupling scheme encoded
in widely-used JUPITER [2] and ECIS [3] codes, level-coupling schemes based on a non-axial
soft-rotator model are included for the even-even nuclei in OPTMAN. This allows account
of stretching of soft nuclei by rotations, which results in change of equilibrium deformations
for excited collective states compared with that of the ground state. This is a critical point
for reliable predictions [4-6] based on the coupled-channels method.

Over many years, OPTMAN was developed and used for evaluation of reactor oriented
nuclear data. So it was written originally consider\ing only neutrons as the projectile with
possible upper incident energy of about 20MeV. In 1995-1998, this code was successfully
used as a theoretical base for nuclear data evaluation for minor actinides carried out in
the framework of ISTC Project CIS-03-95, financial party of which was Japan. In 1997
OPTMAN code was installed at Nuclear Data Center of Japan Atomic Energy Research
Institute and an active collaboration started. After that time, many new options were
added to the code following demands from a broad range of applications: power reactors,
shielding design, radiotherapy, transmutations of nuclear wastes and nucleosynthesis.

Calculations with OPTMAN are now possible both for neutrons and protons as the
projectile, and the upper incident nucleon energy is extended to at least 200 MeV [7]. Current
version of soft-rotator model of OPTMAN takes into account the non-axial quadrupole,
octupole and hexadecapole deformations, and (2, s and y—vibrations with account of
nuclear volume conservation. With these options, OPTMAN is able to analyze the collective
level structure, E2, E3, E4 y—transition probabilities and reaction data in a self-consistent
manner, which makes results of such analyses more reliable. We have found that this model

was flexible enough so that OPTMAN can be applied not only to heavy rotational nuclei
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[8,9], but can be applied very successfully even to a very light nucleus, namely *C [10,11] and
light one 28Si [12], and also to vibrational nuclei such as 5*Cr [13], *Fe [14,15] and **Ni [16].
In the mean time, energy dependence of the optical potential has been continuously improved
guided by physical principles. Now, such features as the high-energy saturation behaviour
consistent with Dirac phenomenology, relativistic generalizaion of Elton and Madland, and
properties stemming from the nuclear matter theory are taken into consideration.

Therefore, OPTMAN has capabilities applicable for analyses of nucleon interaction with
light, medium and heavy nuclei for a wide energy range, which will be crucially important
to fulfill many nuclear-data demands. Nevertheless, the code, especially the mathematical
algorithms are not described in detail before, so it may be still a “black box” for most
of the users. On the other hand, large computational resources available today made a
complete modernization of the code possible. Furtheremore, currently available theoretical
approaches were included with some new, more accurate advanced mathematical solutions
and algorithms. They have made the code a user-friendly program complex for coupled-
channels optical model calculations.

This report gives a description of the physics and computation algorithms developed
and incorporated into modernized OPTMAN code according to the ISTC B-521 Project’s

Working Plan, financing party of which is Japan.

2. DESCRIPTION OF THE SOFT-ROTATOR MODEL

We assume that the low-lying excited states observed in even-even non-spherical nuclei
can be described as a combination of rotation, 3-quadrupole and octupole vibrations, and
~-quadrupole vibration. Instant nuclear shapes that correspond to such excitations can be

presented [17,18] in a body fixed system:

R(0',¢') = Rorp(0',¢")

= RO {1 + Z ,B/\[LYAM(al’ Sol)}

An

'3 ! 1 . ! / / !
- Ro{l + 8, [cosmo(o,«p )+ g siny (Va0 ) + Yoral0'2)
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1 . ,
+ B [cos nYao(6', ') + 73 5m (Ya2 (€', ¢") + Yaa(6, %'))}

+baoYao(0, ") + D b4u(Y4u(0’,ip’)+Y4_u(0’,¢'))}- (1)
u=2,4

To simplify the calculations, we assume that internal octupole variables satisfy additional

conditions:

ﬁB:l:l = :63:{:3 = Oa ,B32 = ﬂ3—2, (2)

which are admissible in the case for the first excited states [19].

The Hamiltonian H of the soft-rotator model consists of the kinetic energy terms for the
rotation of the non-axial nuclei with quadrupole, hexadecapole and octupole deformations,
the f5-, v-quadrupole and octupole vibrations, and the vibrational potentials ignoring a

coupling between the three vibration modes [5]:

-t {Tﬁ, 1 }+"‘ Byt e do 4 SRV 4 VG V), O
2 132 ﬁZ
where
. 1 4. 0
T132 - ﬁg 8,82 (ﬂ2 8,82) ) (4)
. 1 0 /. 0
T, = “sn3 5 (sm 37(—3;) , (5)
R 1 0
B =~ (R ) ©)

The symbol T, denotes the operator of deformed nuclear rotational energy expressed in

terms of the angular momentum operator and principal moments of inertia

A

N 2 3
LA

i=1

12
(2) + J(3) + J(“)

(7)

Here, Ji(’\) stands for the principal moments of inertia in the direction of the i-th axis in the
body-fixed system due to quadrupole, octupole and hexadecapole deformations depending
on A=2, 3 and 4 respectively. The symbol I; denotes the projection of the angular momen-

tum operator on the i-th axis of the body-fixed coordinate, B30 -the quadrupole equilibrium
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deformation parameter at the ground state (G.S.) and B, -the mass parameter for multi-
polarity of A\. The eigenfunctions 2 of operator (3) are defined in the space of six dynamical
variables: 0§ﬂ2<oo,—oo<53<oo,ﬂ§§'y§L‘?M,OSOISZW,OS%SW
and 0 < 63 < 27 with the volume element dr = 33 33|sin 3v|dB;dB3dvdb; sin 6,d0,df3. Here
B3 = X BxuP5%, is the measure of nucleus deformation with multipolarity A. Below we con-
sider nuclei that are hard with respect to octupole transverse and hexadecapole vibrations.

For nuclei of shapes determined by Eq. (1), JZ-(’\) is given by [20]

J? = 4B,B%sin(y — 2/3mi), (i =1..3) (8)
J1(3) = 4 B; 32 (% cos’n + Vi sin 2n + 1) ) 9)

J2(3) = 4 B3 32 (% cos?n — V15 sin2np + 1) , (10)

4
J$) = 4B, B2 sin’n, (11)
(- 4B, (g‘bio + 4b%, + b2, + g\/ﬁbmbn + \/'?b4zb44) 3 (12)
J§4) = 4B, (gbio + 4b3, + b2, — %\/15640642 - ﬁb42b44) , (13)
J$ = 4B, (263, + 8b2,) (14)

with by, that can be presented as [21]:

bso = [ (\/7/12 cos &4 + /5/12 sin &4 cos 74) , (15)

baz = P4y/1/2sin 84 sin 4, (16)

bsys = ﬁ4\/1/72 (\/5/12 cos &4 — 1/7/12 sin é4 cos 74) (17)

with parameters 7, dy, and 4 determining the non-axiality of octupole and hexadecapole
deformations.
For convenience, let us rewrite the operator T, as
A 13 I?
VN D D o S B Ok
4Bof33 131 517 + azaji” + aszdi

(18)

where j,-('\) = J,-(’\)/4B,\ﬂ§ and ay; = (By/B;)(3:/B:)%. To solve the Schrodinger equation in
a perturbative way, we expand Eq. (18) around the minima of the potential energy of the

quadrupole and octupole vibrations, i.e. B2, 70 and Bso:
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Iz
Ir 4132322 ; ( ) + as ]( ) 4 042]}(4) Pa=b20
B3=PB30
6 [ I? ] ( |
. Y
87 + a32]( ) + a42.7i(4) Przfa0 °
B3=B30
L0 [ I ] " e [ﬁs F oo _ P2 = Pao
Oazy |5 + a32], )+ ag ]( ) P20 +630 Bao
Bs=B30
0 [ If ] 92430 [ﬂz - 520]
3a42 ( ) + a32]( ) + (142_]( ) 5%2%0 1820 ’

B3=Pao

where axz0 = (B)/B2)(Bx0/B20)* and sign =+ in front of B3y denotes that we bear

4

(19)

in mind that

even-even octupole deformed nuclei must have two minima at £330 of the potential energy

that correspond to two symmetric octupole shapes. These nuclei are characterized by the

double degeneration of levels, which is washed out as a result of tunneling transition through

a barrier separating those nuclear shapes with opposite values of octupole deformation which

is expressed as [22,23]:

3h2 2

8 B335

2
= €T e) .
2Bsu? ﬁzo( T <)

V(Bs) +

Owing to centrifugal forces caused by nuclear rotation, equilibrium octupole

changes as #3 = ;¢ in direct proportion to Bs.

(20)

deformation

It is shown in [24] that, along with the

choice of potential in the form of Eq. (20), this enables us to reproduce various patterns

of level-energy intervals observed experimentally for positive and negative parity bands of

even-even nuclei

Let us solve the Schrodinger equation in the zeroth order approximation for the expansion

(8565™")/ Ve 3y,

of the rotational-energy operator T,. Assuming that Q =

the following equation for u,

we arrive at

h? 9% K2 Q% h? 02 R 13 12
— — _ U
2B, 0p%  2Bsp3 0¢? 2B,p3 0y 232:3224 i=1 J, +a32_7( )+ a42],( ) P2zl
B3=PF30
h? . B3 h? 91 +sin®3y
Mo — hd = FEu. (21
V) + Spag T+ V)~ gpm sy | T B D
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The quadrupole and octupole variables in (21) are separated now. Therefore, the function

u can be factorized into these variables. Thus we can write as

= ¢i(ﬁ2,7,®)(pfﬂ3(€), (22)
where
+ _ Crs,
P () = 2 [, (1) 2 20 (7] (23)
T = :F € - (24)

Here xy,, (1) are oscillator functions that satisfy the equation:

W oot R
2B, 0¢? + 2B3pu? (€ F e) ] Xng, (T *) = hwc(n +1/2)Xng, (72 5 (25)

€

where the frequency is given by we = h/(Bap?), ng, = 0,1,2,-- - and C,,,, is the normalization
constant. The superscript + on the eigenfunctions of Eq. (23) specifies their symmetry under
the transformation €¢g — —¢p. Nuclear states of positive parity are described by symmetric
combinations of the oscillator functions, while states of negative parity are represented by
antisymmetric combinations.

The function ¥*(8,, v, ©) satisfies the equation

B2B20%E A% 9WE AP 1 3 2 "
232 8,322 232 372 2B2 4 =1 ( ) + as ]( ) + 042_'}',‘(4) pgy-;-ggo
B3=PB30

h? 91 +sin%3y E*

— |83V (B2) + BaVo(v) — 5B,1 sin’3y

where E,fﬂa = hwe(ng, + 1/2) F 8, is the energy of octupole longitudinal surface vibrations,
and 26, is the energy splitting of a doubly degenerate level due to the tunneling effect.

The only difference between equation (26) and the analogous equation (considered in
detail in [5]) for vibrational and rotational state of positive parity in non-axial deformed even-
even nuclei is due to the necessity of taking account of the dependence of the eigenfunctions
of the rotation operator T, on the parity of the states under consideration. If K is even (as
in our case), these functions have the form

(I)IMT( ) = Z IIMI{v:I:)ATI-I\’ (27)

K>0
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where
MK, ) = (2] +1)/(167%(1 + 6x0)))"/* [Dyyx (@) £ (-1)'Diy_(©)],  (28)

the symbol Di . (©) being the rotation function. In even-even nuclei, rotational bands
formed by positive parity levels are described by the wave functions |[IM K, +) of a rigid
rotator, which transform according to the irreducible representation A of the D, group.
Bands formed by negative-parity levels with even K are described by the functions [IM K, —)
that realize the irreducible representation B; of the same group [24].

Using the results from [5], we can obtain the eigenvalues of the nuclear Hamiltonian
predicting the energies of rotational-vibrational states (with allowance for the quadrupole
and octupole deformability of an even-even nucleus in the zeroth order approximation of T,

expansion) in the form

E;t'rnvnﬂsnﬂz = huwo {(V%""V”ﬁanﬁz + 1/2) X (4 - 3/P§"*“ﬂ3)1/2

1yl 2
+ _ﬂ&—_ [_'(V“'y - 1/0,7) + E:Ik‘r + 6:53 - € J

2 PITn-,'nﬂ ’2)’0 Oﬁs
1 p 2 ?
_PBw + , +
= ny — e+ e, — , 29
+2 PITn‘ynﬁa [ ’2Yo (V ! VOW) e & 60/33] } ( )
where X = —f} , and Pf‘;mn s, 18 @ root of the equation
2 £ 4 +
(PIannp 1) PI'rn-,ngs uﬁzo H (Vn"( Vo‘y) + EI‘F + Cnﬁs - 60g3 ’ (30)
o

where hwo, fig,, Hy and 7o are the model parameters to be adjusted to reproduce
experimentally-known band structures. The fw, parameter denotes an overall scale fac-
tor of the level energies, pg,,, fy, and . are related to the elasticity constants of S2—, v—
and octupole vibrations, respectively and 7o is the equilibrium point of the y—vibration.
Other quantities in the above equation are to be determined in the following way. The
quantity v, denotes the eigenvalue of the y-vibration corresponding to the quantum number
of n.. The quantity ¢3, is the eigenvalues of the asymmetric-rotator Hamiltonian (25,26]

corresponding to the first term of the r.h.s. of Eq. (19),

TP®%w, = ¢, PFur- (31)
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The symbol v, is determined by a system of two equations corresponding to the boundary

conditions for y-vibrations, and n., is the number of the solutions:

Vun, [—/—? (%n - 7(,)] =0

32)
\/5 (71‘ ] ’ (
V. |—— {=(n+1 —7> =0
! [ Ko 3( ) °
where v,,, denotes a solution of an oscillator equation
d? 1yl
I:d_y2 + Vn, + '2‘ - ’4_] Uny = 0’ (33)
which is a linear combination of two independent solutions:
v"'y(y) = cn'v I:DVn-y (y) + an'yvVn-* (y)] " (34)

where D,, denotes the well-known Weber function (see [27]). The symbol u}‘:mw samp, 18
determined also by the boundary conditions (32). For the (3, variable, however, one of the
boundaries is at inﬁﬁity where the functin V in the above equation diverges. Therefore, this

reduces the possible solution of equation (33) to be

v(y) = aDu(y), (35)

so that l/?fmvnﬁa ng, 18 determined by the following equation,

+
D+ [_\/ipl'rn.,n,g3 (4 3 )] - 0. (36)

v - px
Irnyngynp, KB Pl'rna,ngs

Finally, we can write the full wave function for the soft-rotator Hamiltonian as

Crg, 705"

+ _ i an
UiMrningyngy, = Clrnyngyns, V2 /sindy IjL;oHMk,i) "
V2
XDV?: ——T——<’82_ﬁ2ilrnn )
TRYTE3 6y /820”'17”’1"'ﬁ3n‘32 YB3
V2 i}
XUn, l:'u (7 - 70) [X"ﬂa (Te+) * X'n;;3 (7-5 )] ) (37)
Yo

with

/Bzil'rn,ynﬂa = /BZOPI:!‘:TTL-YRQ.’? ‘ (38)
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which denotes the equilibrium deformation of the stretched rotating nucleus for state I,

yTpy
and
2 + +
1 1 3 (l/n7 Vo,,) + Err + Cf - €Oﬁ
/-"’y B3 3
+4 = 4 + P ’ (39)
”)621,"7";33 Fy0 Itnyng,

with pg, being the nucleus softness for this state. The correction AE;hm.,n%nﬂz to the
‘rn-ynﬁ3

energy of rotational-vibrational states due to linear terms of expansion (19) can be easily

calculated by a perturbative way. If we consider ng, = 0 (as states with ng, > 1 lie above

the experimentally resolved ones), this correction is given by

-~

Tnyng, (=0)n = o T y T
ITnyng, (=0)ng, 2 @i 3“32 ( )+a32}( )+a42]1-(4) Pk T
B3=P30
e—olu? fi
[he fhe erfc(eo/phe) 2 + 2
X l - J Tnyng n 1 - J Tnyng, n 1
{ l:l + e"fo/l»‘e (60\/_ 60\/_ ) 1+ 6-60/"“] ;"‘:"Z ng; ( /y ) ;rn:nzg "222 ( /y )

__/8 o -r(o)
B, 4< ™ |§8 ()+a32]()+a42j()

|‘I’1MT 0)) X JEnpnpnsy (W= 1D/9?] 3 (40)

I'rn-ynﬁa ng,

where

J7 17"7"/33"132 [f(y)] = N f(y)D,z [__}_\/_5__ (y o P;E'”V”ﬂs):l

v
I"r’n,,’né e 0 IT"'ynps ng,

3 B2

+
XDVIi’T,nI n’ 11’ _j:— (y B PI’T'n;n’ﬁ3) dy
183" By ,UIIT/ ' :33

N Y -1/2
% {~/0 DZfrnvnﬁan% l:—--—;_—_ (y - Pﬁ'n?"ﬁa)jl dy}

)u'I'r'nqnﬁa
-1/2
oo 2
X / D} '-:I:L< ~ Py ) dy’ . (41)
0 I"r'n,’\’n’ﬂ3 n;;2 “I'T'n"yn;ss B3

3. OPTICAL POTENTIAL AND CHANNEL COUPLING

Multipoles of the deformed nuclear potential arising from deformed nuclear shape are
determined by expanding it in a Taylor series, considering (3_,, Or.Yau(€',¢")) in Eq.(1) to

be small;
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maz 5ty (r, R)

VinR®,) = V(s Ra) + 2 g By S uva@.6)),  42)

R('')=Ro ' i
in which body fixed coordinates (6’,¢') can be easily converted to the Laboratory ones by

using the rotation function D:

Yau(0',¢) = DusYau(6, 9), (43)

so that coupling potential can be written in a form:

Vcoupl(r,a"?")",@)\) — Z vt(r) i—m..-—nﬂgg . _ﬁ;tu. E Qt(jt‘T--n)",\u..,\m)*YVM(O,‘P). (44)
vp

t—m--—n>0

t _ 9'V(r,R)
Here, v'(r) = 5 |R(0’,¢')=Ro
standard spherical form, but now with the account of deformed instant nuclear shapes:

with the deformed optical nuclear potential taken to be a

V(Ta R(olv 90/)) = _VRfR(rv R(elv ‘PI))
yi {4WDaD§;fD(r, R, o)) — Wy [afu(r, RO &) + (1 - ) fi(r, R(G’,w’))]}

Y o 1d
+ (E) (Vso +iWso) —=—fso(r, R(8',¢"))o - L+ Veou(r, R(0',¢)), (45)

where the form factors are given as

fi= [1 + exp (7‘ - Ri(al’ ‘P/)) /ai]—l ’ Ri(a’v 99’) = R?rﬁ(gl') (PI) = riAl/srﬁ(olﬁ 99/)7 (46)

fw = exp{—((r — Rw(t',¢) faw)?},  Rw(0,¢) = Ryyrs(0',¢') = rwAlPrg(8,¢), (47)

with r3(0,¢') as defined by Eq. (1). The subscripts ¢ = R,V, D and so denote the real
volume, imaginary volume, imaginary surface and real spin-orbit potentials.

For the reasons mentioned above, we need the potential expansion expressed with an ev-
ident dependence on deformation. For Coulomb potential Veou(r, B(8', ")), such expansion
with an evident dependence on the deformations becomes possible as we follow the sugges-
tion of Satchler et al. [28], using a multipole expansion of the Coulomb potential Vcou for
a charged ellipsoid with a uniform charge density within the Coulomb radius B¢ and zero
outside. Up to the second order of 3~ 8x,Y),, it reads:

Z7'e?
r

Vooul(r, R(0',¢)) = 0(r — Re)

Z27'e? r?
T lo(R~ —
oK. [3 Ré] (Re — 1)+
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3ZZ’€2 A p—(A+1) A —(A+1)
+ E 2/\ + 1 [7' RC 0(RC - T) + RCT 0(7‘ — Rc)] (ﬂ)‘“Y/\u)
Au
ZZ' 2 _
> > 7 [ = VPR 0(Re — 1) + (A + 2)Rer=C+06(r - Ro)

3 Gam

where Z', Z are charges of incident particle and nucleus, X = (2X + 1)!/2, while the symbol

AII "
(Y00 | 20 Z (By @ Ban)r, Yaus (48)

® means the vector addition, i.e.
(B ® Ban)y, = D (NN'W'" | M) By By (49)
w'ut

and O(r) =1, if r > 0 and 8(r) = 0, if r < 0. This form of expantion gives contributions to
v!(r) for t = 1 and 2 in addition to the couplings coming from the nuclear potential.

Coulomb potential deformation results in a dependence on r of the coupling potential
multipoles as #~*~! so that induced error for matching at radius R must be of order of
R~*, and hence the matching radius must be significantly increased or Coulomb correction
procedure must be applied [29]. As potential multipole A determines angular momentum
transfer, it is important for excitaion of the J™ = 2% level (for ground state with J™ = 0%)
but much less for levels with higher spiris.

The Coulomb potential used in the present work included some modifications to formula

(48). Instead of the spherical term, which is Zj;:z [3 — -;;;C—] 0(Rc —r) + @0(7’ — R¢)
for uniform charge density within the Coulomb radius R¢ and zero outside, one can use
Coulomb potential spherical term calculated taking into account the diffuseness of the charge
distribution with charge density form factor equal to fc = [l + exp(r — R¢) Jac]™'. Our
model involves quadrupole, octupole and hexadecapole instant nuclear deformations, i.e.
the Coulomb expansion of the potential can in principle give additional coupling strength
between collective states with an angular momentum transfer of 0 to 8. However, in the
Coulomb expansion used in this model, we truncate the dynamic square terms which lead
to zero angular momentum transfer. This is equivalent to introducing a dynamic negative

deformation (g in the radial expansion given in Eq. (1):

l\

Boo = — E ) (Br ® Br)oo (50)
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which is required as a condition to conserve the nuclear volume, i.e. the nuclear charge (25].
This correction is necessary to have the correct asymptotic behavior for the spherical term
of the Coulomb potential which must be equal to ZZ'e?/r. The additional coupling due to
the Coulomb potential was obtained in the same manner as for the nuclear one [30] with
deformed radii as described above.

As we consider S, to be dynamic in the soft-rotator nuclear model, nuclear shape
described in Eq. (1) will violate nuclear mass conservation. To conserve nuclear mass for
uniform nuclear density case, one must add a dynamic negative deformation Ggo to the radial
expansion given in Eq. (1). This is required as the condition to conserve the nuclear volume
[25] which is equivalent to mass and nuclear charge conservation for uniform nuclear and
nuclear charge density case adopted in [25]. So the radius describing shape of nuclei with

constant volume becomes

R(¢',¢") = Ry {1 + BooYoo + Zﬁ/\y)//\;t(ei> 80')} (51)
. =
Additional B deformation leads to additional zero nuclear potential multipole that couples
levels with equal spin and parity I™.

In case of nuclear density with diffuseness, one must use the following zero multipole

deformation 3, to conserve nuclear mass [31].

2
/ a f(rv Rva) Tzdl"
o= ~(22)g—— 0Tl (52)
o0 = ~(gq )k (AR
Oz 20
Here f(r,R,a) = f(z) denotes the nuclear density form factor, z = %, and 7o = =

We can write the above eqution as follows since integrals in it are just constants,

ﬂ(l)o = CpPoo- (53)

In our code we use nuclear real potential form factor fr(r, R, a) instead of nuclear density
form factor. As Cs appears to be close to unity, we take substitution of nuclear density form
factor by real potential one as an acceptable approximation. Such an approximation leads

to simultaneous conservation of nuclear volume and real potential volume integral in nuclear
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shape oscillations, so there is an additional reason to use it. Thus considering nuclear mass
and nuclear charge conservation, the multipoles of the deformed nuclear potential arising
from deformed nuclear shape are determined by expanding nuclear potential in a Taylor
series, now considering (85oYo0 + > _ Br.You(8',¢')) in Eq.(1) to be small:

Vi RO ) = Vi Bo) + s ) B Yoo + X usnl0 ), (54)
t=1 R(6',¢")=Ro A

One can see that account of nuclear volume conservation leads to additional zero multipole
term starting with the first nuclear potential derivative, which will additionally couple states
with equal spins and parity /™and themselves. This term is proportional to (8),)? and must
be taken into account, as account of terms up to (8y,)* is necessary to describe experimental
data consistently [32].

Starting with full wave function which is defined by wave functions of nucleon +nuclei

system [2]

=1 Z Rintnin (M) (1n8)gn; InTng,nyng,; JM)

Jnlpjn
= r~l Z RJﬂlnjn(r) E (]n-[nm]n MﬂlJM)ylnjnm;’nQiMnTn»,ngsn@ (55)
Jnlnin Mjn Mi,

and inserting it in the Schrodinger equation we are coming to the equation for radial wave

functions:
2 l(l+1 2uVeentr (T
(- - ”—h(“)) i) = 25 Vit () i) (50
Ill N

with a coupling potential Vy;,nu ¢ (1) for coupling built on soft-rotator nuclear Hamiltonian

wave functions:

V(P iy = ((18)7; ITng,nyng; JM| Z vt(r)ﬂﬁ""‘“""ﬁf\'f B

t—m..—n>0

X QU Y, 0, @) () ' T M)

—I'—s (1 1 -~
— (—I)J I'—s+l4U+(1 I)/z'\/—i—';llijjl

x 3 v'(r) 30 (fIBTTTTBR - Bhule)

t—m..—n>0

x Z(ll’OOluO)W( 1T YW (515 sv)

(L[| QU it (57)
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Here |i) and |f) parts of initial and final states nuclear wave functions depending on dif-
ferent modes of variables (), while |ITn,) is the rest part of the full nuclear wave func-
tion, holding dependence of nuclear level rotational quantum numbers I, 7 and non-axiality
v—oscillations.

In rigid rotator or harmonic oscillator case, system of coupled equations has the same

form as Eq. (56), but coupling potential V(r)ni;,nj differs and can be found in [2].

3.1 The Main Essence of the CC built on Soft-rotator Nuclear Model

As our wave functions are factorized to different oscillation modes, the matrix element

in the fourth line of Eq. (57) can be also factorized:

(1878 - -BRuli) = (AABY™ T lia)(Fv BT line) - +( faw|BRuliam). (58)

Here |i)) and | f)) stand for factorized parts of initial and final states nuclear wave functions,

describing A-multipole oscillations.

In Rigid Case:

(AlBilr) = (G.5.183|G.S.) = ((ilBlir))" = B = Blgs.

In Case of Soft-Rotator wave functions:

(AalBAln) # (IBN1A) # (G.S.1BLG.S.) # ({(AIBAIN) # Big.s.

Usually for initial and final states from one band :

(fr|BL]ix)/(G.S.|8L|G.S.)>1

and can be less than unity for interband case.

For quadrupole oscillations (fr=2|B%]ir=2) = ,B;OJ:E,M,%,% [yY], with .]i,,.,w,.ps,./32 [f(v)]
I"r’n,'yniasn’ﬂ2 I’T'nfyn:33n‘ﬁ2

determined by Eq.(41). So it is easy to understand that enhancement of the coupling
strength compared with the rigid-rotator model [2] arises because the dynamic variables in

deformed nuclear optical potential expansion are averaged over the wave functions of the
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appropriate collective nuclear shape motions given by the solutions of the soft-rotator model
Hamiltonian solutions. Such enhancement is equal to (i,|5%|f1)/B%q.s. and this ratio is usu-
ally greater than unity, as a soft-rotating nucleus is rotating with increasing velocity for
collective states with higher spins I and thus is increasingly stretched due to the centrifugal
force, so that equilibrium deformations By, for states with higher spins I are greater than
equilibrium G.S. deformation B)g.s.. As the deformation potential energy V() of the soft
rotator model in terms of nuclear softness u, is considered to be ~ ﬁlf\'(ﬂ’\ - ,3,\@5)2, the
coupling enhancement is larger for nuclei with larger softness p and vanishes for nuclei with
small py. Of course this also concerns the functions cosy and siny appearing in matrix ele-
ment (I7n,||QUm-mXA"A)*| | ['r'n! ) of Eq.(57), which are in turn averaged over non-axiality
~-vibrations eigenfunctions. Such enhancements are different for different combinations of
initial and final states, and also depend on the powers of potential expansion ¢. In this
way, the soft-rotator model predicts the redistribution of coupling strength, i.e. the particle
current between the channels, which in turn changes the estimates of direct level excitation

cross sections without introducing additional assumptions and/or parameters.

4. SOLUTIONS OF SCATTERING PROBLEMS

Let us rewrite system of equations (56) in more convenient form:

CL0) S v it (59

k

To solve the scattering problem, we need to find the normalized solutions f n;(r) which,
in asymptotic region where nuclear forces become absent, must become an incoming plane
wave with a unit current plus an outgoing wave in initial (z) channel and pure outgoing
waves in all other final (j) channels

i ki
fni(r) = 8B, (n,) + | £-Cis (Fy (1) + Gy, (1.7)) (60)

7
where Fi(n,r) and Gi(n,r) are Coulomb functions, that are already normalized to a unit
current, and C;;-matrix describes scattering. The symbol 7 denotes the Sommerfeld param-

eter
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ZZ'e*u
= . 1

4.1 Accurate Solution of Coupled-channels System for Radial Functions and Matching

Solutions, determining C;;-matrix, can be found if we have a system of independent
solutions f*(r) of Eq. (59), each vanishing at the origin, number of which is equal to
the number of coupled equations N: m = 1, N. In the vicinity of the origin, the central
potential may be considered to be constant and is equai to its value at the origin Viens,(0),
while coupling terms V,,;;,nj (r) and Coulomb potential vanish. Therefore, Eq. (56) reduces

to:

& I(1+1) 2 2pVeentr (0)
(W T the T

) Ruii(r) = 0 (62)

It is easy to see that solutions of the above equation will be independent if they depend on

r at the origin as:

fm(r) = pyrlit), (63)

J

This dependence can be used as boundary conditions for integrating Eq. (59) to get its
necessary independent solutions.
OPTMAN code uses Stérmer [33] algorithm for step by step integration from the origin

to the matching radius:
fHr+h) =2f7(r) = f7*(r — k) + h* | 2293 Ve (r) fi (7)
k
=176 Y " Vie(r — h) fi*(r — k) + 194 Vie(r — 2h) f*(r — 2h)
k k
~96 > Vie(r — 3h) fi*(r — 3h) + 19 Vix(r — 4R) fi* (r — 4h)| . (64)
k k

Please note that above we are integrating system of homogeneously coupled equations and

use that f"(r) = >4 Vie(r) fe(r).
In case of N coupled equations, number of arithmetic operations for one step integration

of one system line is proportional to N x (M + L), where M is the number of operations



JAERI-Data/Code 2004-002

necessary to calculate coupling potential Vj, and L (~ 10) denotes number of arithmetic
operations necessary to make summations and multiplications for each k for one step integra-
tions using Eq. (64) with all components preliminary prepared. Then number of arithmetic
operations for one step integration for all system lines is proportional to N x N x (M +L). If
K is the number of integration steps, number of arithmetic operations necessary to get one
independent solution of coupled equation system is proportional to N?x(M+L)x K. And to
get N independent solutions, necessary for matching, we need N3 x (M + L) x K. So number
of arithmetic operations in suggested algorithm and thus computational time grows as the
number of coupled equations in the power of three. In case for three levels with spins 0%, 2%,
4% N =¥ ;(2I+1) is equal to 15. If we include 6* level in coupling scheme, N becomes 28,
almost twice so that N3and thus necessary computational time becomes ~ 8 times longer.
Soft-rotator model describes at least collective levels from 3-4 low lying bands, including
negative parity one. vIt is shown that coupling of the first levels from this bands cannot be
ignored in reliable optical calculations. For such calculations N may be 50 and more. One
can evaluate typical number of arithmetic operations, thus computational time, considering
that typical number of integration steps from origin to the matching radius is about 100-200
and number of operations necessary to calculate coupling potential Vjx, Eq. (57) due to it
complicity is about 60 for neutrons and 180 for protons, yet most potential elements Vj; are
be calculated in advance and can be used repeatedly. Such algorithm requests about ~ 10°
arithmetic operations to solve typical coupled-channels system of equations. Please note
that running scattering problem we need solutions for a number of coupled-channels sys-
tems for each spin and parity J™, giving significant contribution to calculated cross-sections
(about 100 for 200 MeV incident energies). It can be concluded that suggested algorithm
is rather time consuming. Looking at Eq. (64) one can see that for one step integration
for any of integrated solutions f(r) potential Vji(r) is the same, so once it is organized we
can perform one step integration for all solutions f*(r) simultaneously. In this case number
of arithmetic operations necessary for integration for all independent solutions reduces to
N2x(M+L)xK+N*x(N-1)xLxK =N*xKx(M+L+(N—1)xL). One can see

that for large N suggested algorithm of simultaneous fI*(r) functions integration is about
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M/L =~ 6 — 20 times quicker. This quicker algorithm is now realized in subroutine SOSIT.
After independent solutions f*(r) are found, one can easily get C;;-matrix, matching
the solutions to have the desired asymptotic wave functions behavior. Matching approach
used in our code is suggested by [3].
We consider, that numerical solution f[*(r) is a linear combination of the normalized
solutions fn;(r), each having an incoming wave with a unit current only for channel ¢, so

that for asymptotic radius R region we can write:

™ (R + h) Z i { (R+ h)Si; + JEC,—,- [F(R+h) +iG;(R+ h)]} . (65)

Then, we can determine matrices

f(R+h)Gi(R—h)— [F(R—h)G;(R+h)

J

5
Ani = R TG (R—h) — F(R—WG, (R h) ~ &% {%“\E,C”}
f'"(R+h) i(R—h)— fl*(R— h)G;(R —h)

J

) —
Fi(R+h)G;(E—h) - F(R—h)G;(R+h) th Ciiy

1

k.
- _ Z mi + 1Bmi) FC,'J'. (67)
\l 3

One can see that it is necessary to invert (Ami + 1Bp;) matrix with complex elements de-

giving matching equations:

termined by Eq. (66) to get C;; elements.

The normalized solutions fn;(r) can be easily determined as:

Z uch (). (68)

4.2 Iterative Approach to Solve a System of Coupled Equations

The algorithm described above for accurate solution of coupled-channels system is quick,
but is still rather time consuming, as to get one solution with necessary asymptotic behavior
we need to get N independent solutions first. ”Sequential iteration method for coupled

equations” - ECIS, developed by J. Raynal [34] is also realized in OPTMAN code. It is
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more quicker, but faces iteration convergence problem for some specific scattering cases. We
modernized this algorithm improving its convergence.
Let us rewrite Eq. (59), presenting coupling in line j of system of coupled equations as

inhomogeneous term of homogeneous uncoupled equation:

d*f;(r
TED Vi) e) + X Vsl ) (69
dr pory
If we have some n-order iteration solution f(r) of Eq. (69) we can find next iteration
f;”'l (r) solution by integrating step-by-step by radius the following inhomogeneous equa-

tions:

& £ (r) nt1

dr? = Vij(r)fj (r) + W;(r) (70)
with W;(r) = T4y Vie(r) f2(r). To solve the scattering problem, derived solution f]'*!(r)
must have the right asymptotic physical behavior at the infinity - a plane incoming wave
with a unit current for initial channels, otherwise no incoming plane wave plus a spherical

outgoing wave.

First we match non-normalized derived solution fit(r), that gives:
f7H(r) = AF,(r) + B (B, (r) + G, (7)) - (71)

To get the normalized f7*!(r) with the right asymptotic form Eq. (60), let us recollect
that we can add any homogeneous solution to inhomogeneous ones, and it will be still the
solution of inhomogeneous one. If normalized homogeneous solution f(r) has the following

asymptotic form:

fE(r) = Fi(r) + C (Fi(r) + Gi,(r) (72)

]

normalized function should be

f*0 =4 = (A= 85) £ (r), (73)

where i mean wave functions with scattering through ground state. It is easy to see that

normalizing Eq. (73) determines C;;-matrix to be: Cj; = B — C(A — §;5).
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Modified Numerov method [35] is applied to integrate inhomogeneous equation (70). For

inhomogeneous equation:
f'(r) = V(r)f(r) + W(r), | (74)
the integration algorithms is:
E(r + h) = 26(r) — £(r — h) + u(r) + [W(r + h) + 10W(r) + W(r — h)] /12

with u(r) = (h2V(r) + h1V2(r)/12)é(r) and f(r) = &(r) + u(r)/12.

Original ECIS code [34] uses homogeneous solutions of Eq. (70) as zeroth order iteration
approximation f?(r)éd;;. To improve iterations convergence imaginary part of the diagonal
potential Vj;(r) for such zeroth order iteration approximation solutions must be enlarged
by a factor (1 + ;). This can be easily understood if one recollects that predictions of
inelastic scattering by spherical optical model need such enlargement of the central imaginary
potential to give results similar to coupled-channels predictions. Number of arithmetic
operations necessary for such coupled-channels solution is N*x M x K x I; here Ny M
and K are defined before, while I is the number of iterations necessary to convergence, it is
usually not high ( ~ 10) and decreases as the incident energy increases or coupling decreases
(conditions determining reliable DWBA approach, which as one can see is the first iteration
results). Number of arithmetic operations necessary to solve a system of coupled equations
for fixed spin J™ using this algorithm is almost the same as the accurate solution algorithm
described before with simultaneous independent solutions integration, if number of iterations
L ~ 10 . But for the systems with high spin J™ one iteration is usually enough for solution,
as absolute contribution of such states is small, so that high relative solution errors for
states with such J™ are acceptable, that makes iteration algorithm much more effective.
Nevertheless there are many special cases in which iteration procedure using homogeneous
solutions of Eq. (70) as zeroth order iteration approximation do not converge. In this case
we suggest to use wave functions from accurate coupled-channels solutions Eq. (68) for
coupled system with truncated rank to be used as zeroth order approximations. For such
functions, found with coupling of only several levels that are mostly strong coupled, number

of coupled equations is small, allowing a quick solution. These solutions describe ground
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and first excited states wave functions much more accurately than simple homogeneous
solutions, as now ground state wave functions used as zeroth order approximation already
account existence of coupling with the most strongly coupled excited levels and thus can be
used as starting approximations, allowing converging the problems that do not converge in

simple approach.

4.3 Asymptotic wave functions used to be matched with numerical solutions

Numerical solutions should be matched with Coulomb wave functions Fj(kr) and Gi(kr),
that are solutions of Eq. (56) in the outer region where nuclear potential vanishes and system

becomes uncoupled. Coulomb functions are the solutions of the following equation:

uf(p) = [{(L+1)/0" +2n/p F 1] wi(p) =0, (75)

sign F is for the channels with positive and negative (opened and closed) channels, p = k,r

ZZ'e2pu

ot . For positive energies Fi(kr) and Gi(kr) are two Coulomb functions [27]

and n =
regular and irregular at p = 0. In case of n = 0 they are reduced to spherical Bessel and

Neuman functions multiplied by p:

F(p) = (’;—”)1/2J1+1/2(p) = pii(p)

Gi(p) = (—1)’(%)1/2J-(z+1/z)(p) = (=1)'pj-i(p) = —pm(p), (76)

that can be easily calculated by recurrence [36].
For closed channels and 7 > 0 the only solution allowed from physical point of view is

the Whittaker function, which is exponentially decreasing:
w(p) = W(-n,01+1/2,2p). (77)

But for matching procedures of accurate solutions of Eq. (65) and iteration ones of Eq.
(71), we need also linear independent exponentially increasing solution. Both these functions
are not easily calculated with high accuracy for the set of appearing [, p and 5 values. On
the other hand, values of decreasing and increasing functions may differ by too many orders

of magnitude, that can make numerical matching inaccurate. To get the Coulomb functions
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for closed channels with necessary accuracy it was decided to consider them to be unity
at R — h matching point and get their values at R + h point by several step numerical
integration of Eqs. (75). Such integration gives correct relative function values with very
high accuracy, as integration is done on a very short variable interval of 2h. The accuracy

of the calculated functions is checked using Wronskian relationship:
Fi(p)Gi(p) — Gi(p)Fi(p) = const, (78)

so that Wronskian for calculated Fi(p) and Gj(p) functions is checked to be the same at
k(R — h) and k(R + h) matching points

It is quite clear that such a definition gives functions with arbitrary normalization, but
for closed channels we are not interested in absolute value of appropriate C-matrix element

of Eq. (60) as there is no current of scattered particles through these channels.

5. C-MATRIX AND COUPLED CHANNELS OPTICAL MODEL PREDICTIONS

Using the C-matrix, all optical model cross-sections can be calculated.
Differential nucleon scattering cross-section with excitation of n-th level averaged over
incoming particle spin s and nuclear target spin I; projection M (scattering of unpolarized

nucleon with unpolarized target) can be calculated as:

da'n (__1)11—-1" Ji
8 " WEL AT e, L iy, = 08)] Cib s i Ciamigg 1 2 123133
J1

1211121112
- IFLFU
14

S22 Y

I3+
X Z PL(COS G)i [1 + (_1)11+12—L] [1 + (—l)yl’H;"L]
L=|t,-1|

x(j1j21/2 - 1/2 |L0) (J1321/2 - 1/2 |L0) W(J131J2]2, IlL)W(Jlj{szé; IlL)

+o1n {W‘z‘z’l‘ﬁ) 3221+ 1) Re [expli1) 701Gl 5] Palcost) + |fc(o)|2} . (79)

where o, and 7, = uZZ'e€*/h%k, are the corresponding Coulomb phase shift and Som-
merfeld parameter accordingly. f.(6) = —mexp 2i [o7, — m Insin 0/2] is the Coulomb

amplitude, which vanishes in case of neutron scattering.



JAERI-Data/Code 2004-002

Integrated scattering cross-sections o, can be derived from Eq. (79). Please note, that
due to Coulomb discontinuity at zero angle, such integration is impossible for elastic proton

scattering;:

2m

— J 2 .
= BEL T > (@ + 1) |Cns| - (80)

Jigl'y!

On

Total neutron cross section o, is determined by optical theorem [36]:

2T

= EEL T %(ZJ + 1) Im Cy1;, (81)
and compound formation cross section is:
2m J J 2
e = Oy — zn;an = BOLTT %(y +1) (Irn Ciht; — gjj or ) : (82)
Generalized transmission coefficients are determined by Eq. (82):
T =4 (Imcfm,j -3 {C;’,jnz,j,r) . (83)
iyt

5.1 Legendre Polynomial Expansion of Angular Distributions of Scattered Particles

Formula (79) allows to calculate angular distributions of scattered nucleons to be com-
pared with experimentally measured. On the other hand, OPTMAN code intends to present
such angular distributions as Legendre polynomial expansion giving coefhicients of such ex-
pansion to be used in evaluated nuclear data files.

According to ENDF-6 Formats Manual [37], angular distributions for neutrons (File 4,
LTT=1), which is also applicable to inelastically scattered protons (File 6, LAW=2), may

be presented as :

do, ENL 2L +1

a2

ar(E)Pp(cos9). (84)

One can see from formula (79) that ar( F) are real numbers and can be presented (please note,
that term with Coulomb amplitude vanishes for neutrons and inelastic proton scattering)

as:
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om(—1)h-1n
onki(2L + 1)(21; + 1) 5,

21112‘1'2
Y

ML

) [ (1)t [ ()it

x(j1j21/2 — 1/2|L0) (§141/2 — 1/2|L0) W (J1jrJaja; L)W (J1jyJagy; LiL),  (85)

ar(E) = Y. expld [ (o — o )] Citi nt'J;Cum nlb i 'Jl T R

1

with maximum L number N L = max(l} + {}).
In case of elastically scattered protons presence of Coulomb amplitude must be taken
into account. According to ENDF-6 Formats Manual [37] angular distributions for protons

(File 6, LAW=5) may be presented as:

dO'n . T]% 'r, ML 2L+1
dQ  4k?sin* 0/2 sin” 0/2 Re)exp [ann (sm 9/2)] Lzz:o 9 ar(E)Py(cos 0)
NL oL +1
+3 + br(E)Pyr(cos8). (86)
L=0

Comparing ENDF-6 format formula with (79) gives ar(E) :

1
k¥(2L +1)(2; + 1)

ar(E) = > (@24 + DGk, i (87)

Ji
with maximum L number ML = max(l;). These ar(E) have complex values, while by (E)

are real and similar to ar(FE) for neutrons:

. ~2 2~ 55
Y exp [i(m; — o;;)] CiLi nz;J{Cum a1 J2 01923132
J1J231520 12
I IRty

xi— [1+ (-1)h+e-t] 1+ (—1)i+i-L]

(=1)h=

uB) = merTnen v 1)

with the only difference that by (E) coefficients are not scaled by o, /27 value.

6. ENERGY DEPENDENCE OF OPTICAL POTENTIAL PARAMETERS

Options of OPTMAN code on the energy dependence of optical potential parameters
allow different possibilities. The reason is that there is significant difference for optical po-

tentials used in spherical and CC calculations. In spherical case, optical model calculations
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for a certain incident energy request the knowledge of the potential only for a specified in-
cident energy, while CC calculations request inherent optical potential energy dependence
due to account of energy losses for different coupled channels. As we intend to allow OPT-
MAN CC code to analyze data in a wide energy region (at least up to 200 MeV incident
energies) both for neutrons and protons simultaneously, we keep a global form of optical
potential which incorporates the energy dependence of potential, that is derived by consid-
ering the dispersion relationship as proposed by Delaroche et al. [38], and the high-energy
saturation behavior consistent with the Dirac phenomenology. The imaginary components
of this potential form vanish at at Fermi energy (property stemming from nuclear matter
theory). Such an energy dependence allows data analysis without unphysical discontinuities
in the whole energy range of interest both for neutrons and protons (constant potential
terms, allowing simple potential linear dependencies, shown by bold characters below for
imaginary surface, volume and spin-orbit potentials, can be also used, but please note that

being non-zero, they do not vanish at Fermi energies):

. ’ - 27
VR — (Vlg + V}%E* + V}%E*z + VI%E*S + VI%)ISPG—/\RE ) 1+ __T_}W(_l)z +ICm'soA_
VR+ Vg A
z7' .
+Ccoul’ﬁ/—3'cpcoul(E ), (89)
' A-2Z . E*S
_ DISP _1\Z2'+1 . —ApE*__ &~ w?° 1 pox
WD [WD + ( 1) wao A } € E*S + WIDg) + D+WD ’ (90)
E*S
Wy = WDISP—__ WO Wl E* 91
Vso = Vipe +F", (92)
E*S
Wso = WEISF — — 4L WS+ Wi, E*. 93
so =Wso™ gswins, + Wso+Wso (93)

Here, E* = (E,— Ejn), with E, - energy of the projectile and Ej,, - the Fermi energy,
determined as Efn(Z,A) = —3[Sa(Z,A) + Sa(Z, A+ 1)] for neutrons and Ej,(Z,A) =
—115:(Z2,A) + Sp(Z + 1, A + 1)] for protons, where S;(Z, A) denotes the separation energy
of nucleon ¢ from a nucleus labeled by Z and A, while Z’, Z and A are charges of incident par-
ticle, nucleus and nucleus mass number, respectively. As we intend to analyze neutron and
proton scattering data simultaneously, we want to have unique optical potential for nucleons

with form suggested by Ref. [38] plus a term Cepui Z Z'/ A3 0 0ui( E*) describing the Coulomb
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correction to the real optical potential and isospin terms (—1)Z '+ICW-SO(A —27) [ Apuiso(E*)
and (—1)2 Crise(A—22) /A" puiso( E*). We assumed that energy dependences of @,i50( E*)
and @uis0( E*) are the same as those of real and imaginary surface potentials (see Eq.
(89,90)), while @0 ( £*) can be constant (just unity) or considered to be the minus derivative

of Eq. (89) , so that

1

vErvgEr DT

viso A
o (94)

Ceout(Ep) = (ARVPISFe*rE" _ VL _oV2E* 4+ 3VE*) |1 +

The parameters WIDp, WIDy, WRISP. WPISP WDISP A\, and Ar were taken to be
equal for neutrons and protons. We consider, that Lane model [39] works, therefore the
neutron-proton optical potential difference of the suggested potential stems from the isospin
terms, the Coulomb correction terms and difference of the neutron-proton Fermi energies.
Real rg and Coulomb r¢ potential radii can be considered to be energy dependent as

experimental data analises [8,38] indicate dispersion-like energy dependence:

CrE*S
« _ 0
CoE*S
* —_ 0 e —
ro(E7) =rc [1' E*S + WIDg] (96)

Potential diffusenesses a; can be energy dependent, reflecting that they may grow or

decrease with nuclear excitation energy:
a;=al+aE* (97)

with a}, assumed to be zero above an energy Epung.

If energy losses due to collective levels excitation as compared to the nucleon incident
energies involved in the analysis are noticeable, the dependence of the local optical potential
for different channels can be taken into account as:

WIZV(EP_M),

2

where ¢ and f denote initial and final channels, while E; and E; the corresponding level

energies.

A-27
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7. RELATIVISTIC GENERALIZATION OF NON-RELATIVISTIC
SCHRODINGER EQUATION

Upper boundary of incident energy of the OPTMAN code is supposed to be about
200 MeV, so our non-relativistic Schrodinger formalism involved relativistic generalization

suggested by Elton [40]. The nucleon wave number k was taken in the relativistic form:
(hk)* = [E* — (Myc*)*]/c? (98)

where E denotes the total energy of projectile, M, the projectile rest mass, and c¢ the light
velocity. To allow non-relativistic motion of the target with rest mass My, incident particle
mass M, was replaced with the relativistic projectile energy F in reduced mass formulae, so
that the quantity k£ and optical potential values were multiplied by a coefficient:

1

[ B/ (Mrd®) (%9)

Following Elton’s [40] suggestions, we multiply optical potential strengths except for the spin-
orbit and Coulomb terms by a factor K(E), as a relativistic optical potential generalization.
Elton [40] suggests it to be E/(Myc?). Therefore, the factor grows without limit as the
projectile energy E grows. We use this factor as suggested by Madland [41], K(F) =
2E/(E 4 M,c?), which saturates at 2 as incident energy grows, as it looks more physical and
allows easier fitting of experimental data. Of coursé, optical potential can be in any case
fitted to the experimental data without such multiplier, so that such relativistic correction
can be included while fitting. However, we agree with Elton [40] that “ it is advantageous to
separate out known relativistic factor in the central potential”, as this may allow successful
extrapolation of optical potential from low incident projectile energy region to higher and
vice versa. One can see that for low energies all these relativistic generalization factors have

non-relativistic kinematic limit.
8. POTENTIAL ADJUSTMENT

Such best fit optical potential parameters can be found by automatic minimization of x?

value:
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= 1 N1 K (doyi/dQare — doij [ dQesp \ N % Ttot gy, ~ Ototesa; ) -
N+M+L+3 |5 K = Aci; /ey AGior

=1 ] J =1 eval;

L (Oreac — Oreaceyal; 2 S0 _ g0 2 Sl _ gl 2 R — R 2
cal; eval; cal eval cal eval cal eval
+Z( e ) + (———A 5 ) + (—-—A S ) + (-————A = ) , (100)

i=1 eval eval eval

here K;* is the number of angles for which angular distribution is measured for incident
energy ¢, and the number of such energies is N, while numbers of total and reaction cross-
section data are M and L, respectively. The symbols S° S! and R’ denote s-, p-wave
strength functions and scattering radius, respectively. All the other optical observable, if

any, can be also included in x?search criteria.

9. ANALYSIS OF B(E2) DATA

The +-transition probability B(E)) of soft rotator model can also be calculated. For
instance B(E2) calculated in homogeneously charged deformed ellipsoid approximation ac-
counting linear terms of inner by, dynamic variables (higher terms can be taken into consid-

eration, see ( [25]) is

5Q4 T ATk
B(E2; ItTn,ngng, — ]rT/n'qn'ﬁsnbz) = Ton {K;m [(1+ d0x)(1 + 50}(,)]1/2

x [(ny] cos y|n) [(I'2K0|TK) + (=1)F'(I'2 — KO|I K )8ko| Sxx

+1/1/2(n,|siny|n! ) [(I"2K"2| I K)ok k142 + (I'2K" — 2|1 K )6 11—

2
! ? - 2
+(=1)"(I"2 = K'2/IK)bk x|} [J R [y]} , (101)
I'r’nfyn’ﬁ n’

3 B2

here J rrayng,ng, [y] is enhancement factor due to nuclei softness determined by Eq.(41).

10. CONCLUSION

According to the ISTC B-521 Project’s Working Plan we finalized modernizing OPT-
MAN code’s computational approaches and new, more accurate numerical algorithms be-
came possible now due to available large computational resources. We developed two mod-

ernized algorithms for solution of coupled channels equations in scattering problem. First is
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the accurate system solution, which is 6-20 times faster than previously used. Second quick
solution algorithm is the iteration one with the improved convergence. We also improved
the accuracy of matching procedure in case of charged scattered particles. More grounded
optical potential parameters dependences guided by physical principles made it possible a
global optical potential search. All the algorithms are already included in the currently
modernized code OPTMAN. Users of the code can choose one of these algorithms when
running optical calculations. Instead, OPTMAN code has a capability to select the optimal
option, depending on the number of couple equations, on the coupling strength, incident
particle energy, and system spin. Current version of modernized OPTMAN code was used
to find best fit nuclear optical parameters for 12C [11], 24?Mg [42], 28-3%Si [12] and *2Cr
[13]. They are already used for predictions of cross sections for '2C, natural Si and Mg for

Japanese high energy nuclear data evaluation.
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