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To know properties of the higher order perturbation method, the
analytical expressions for the higher order perturbation terms up to the
third order are obtained with one-group diffusion approximation in slab
geometry. The higher order perturbation term is generally expressed by the
product of three independent terms; i.e. the first order reactivity worth,
half the level distance, and the geometrical functions depending on the
perturbation region. The n'th order reactivity worth is proportional to
the n'th power of the first order reactivity worth, that is, proportional
to the n'th power of the concentration of the perturbation inserted.

The n'th order reactivity worth is propertional to the (n-1) 'th power of
the reciprocal of half the level distance, so that the magnitude of the
higher order reactivity worths relative to the first order reactivity weorth
pecomes larger as the infinite multiplication factor in the system approaches
to l.or the radius of the system becomes larger. If the perturbation is
uniformly inserted in the whole system of a bare reactor, the neutron flux
does not change and the higher order reactivity worths are zero for the
perturbation where only absorption cross section changes. The properties
of the higher order perturbed fluxes are also examined in detail., Further,
convergence criterion is deduced from the analytical expression of the

nigher order reactivity worths.
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I. Intrcduction

(1)

In a previcus paper , the general theory of the higher order per-
turbation method for reactor calculations w&s given and characteristics
of the higher order perturbation method was also numerically examined.
However, the higher order perturbation formula given in the previcus
paper dces not include the explicit form of the higher ofder perturbed
fluxes, so that characteristics of the higher order perturbation cannot
be directly known. Further, convergence criterion of the perturbation
series and error estimate of the first-order perturbation method were not
cstablished. The latter is very important since the first-order perturba-
tion technigque is widely used in reactor calculstions.

If analytical expressions of the arbitrary n'th term of the higher o
order perturbation can be obtained, it may be easy to know the convergence
criterion and error estimate. However, this is impossible for mul ti-group
energy treatment and alsc for one-group diffusion approximation.

In the present paper, analytical expressions of the higher order
reactivity worth up to the third order are obtained by one-group diffusion
approximation in slab geometry, and characteristics of the higher order
reactivity worths and perturbed fluxes are examined in detail. Further,
convergence criterion is also deduced from these analytical expressions,
However, the present treatment is limited up to the third order pertur-
bation, so that, in order to have strict mathematical treatment, the
general theory of the perturbation method for a self-adjoint operator
given by T. Kato(g)“(4) muist be used. The present treatment is, however,
very useful to grasp physical insight into the higher order perturbation
method. The strict mathematical treatment of convergence eriterion and
error estimate of the perturbation method for a gelf-adjoint operator

and numerical examples will be given in a further coming paper.
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II. General “heory of the Higher Order Perturbation Method

The brief description of the general theory of the higher order
perturbation method is given for its use in next section. Detailed dis-
cussions are given in & reference (1).

We will consider a critical reactor system. This reactor is un-
perturbed. The neutron flux and its adjoint flux in this system can be

calculated from the following equations;

Mg = S¢ - (1)

MEgx = Seg* (2)

where S is the operator for neutron production due to a figsuon process
and M is the opefator for neutron loss due to transport, absorption and
scattering, and M*, S¥ are the adjoint operators for M, S respectively.

Here, we put
Q - M - 3 ’ Q* = M#* - S* . (3)
Then, Egs. (1) and (2) can be. rewritten as

@ = 0 (4)
et = 0 . - | (5)

In a multigroup approximation, Q and Q¥ are the matrices, and ¢ and @* !
are the vectares,
If the perturbation is introduced in a critical reactor, this per-
turbation can then be described as changes in the system parémeters. It
the changes in the system operators M and S are represented by M and S,
the system operators after the perturbation can be expressed as

mr M+8M (6)

Wi

S S +8S , (1)

I

and the total change of the $ystem operator is equal to,



u . i

JAERI-M 5325
6Q = M- 8 . : - (8)

When the perturbation 4Q has been inserted, the system is no longer
stationary. The steady-state reactor equations for this perturbed system
can be obtained by introducing an effective multiplication facter for the
system as discussed by Henry and Usachev. By this procedure, the neutron
flux and ite adjoint flux in the unperturbed system are given as

M =_Ilc_' s (9)

M'*@'* - —_I]&' S‘*@'* (lO)

where K' is the effective multiplication factor for the perturbed system.

The static reactivity is generally defined by the following relation.
1
p = 1l-—f (11)

By this relation, Egs. (9) and (10) can be rewritten;

Q@ =—Ps'Q (12)

Q' *@'* = pSIEQ'X (13)
where

Q' = Q+éQ , QX = QF+aQ . (14)

To obtain the higher order pefturbed flux and reactivity worth, the
iterative method well known in quaﬁtum mechanics can be used, In place
of Eq. (12), we will consider Eq. (15) in which the values 6 Q and &S
are replaced by 4 8Q and 4 65, respectively:

(Q+ 1 8Q)¢" = -p(S+1388)¢ | (15)

For solving this equation, @' and p are expressed in the following power

series;
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@' = ®(O) + A¢(1) + 12¢(2) ot (16)

p o= 2t 42202 23483+ Ll (17)

where ®(n) and p(n) now correspond to the n'th-order perturbed neutron

fiux and n'th-order reactivity.
Substituting Egs. (16) and (17) into Eq. (15) and equating the co-
efficients of equal powers of 1 on both sides of the resultant equation,

a series of equations which express the successively higher orders of

perturbation can be obtained:

w©) - o (18)
o'l - q(l) _ p(l)s¢(0) (19)
Q¢(2) - q(Z) _ P(2)s¢(0) (20)
QED(H) — q(n) _ P(nlsgﬁ(o), (21)

where

(e —aggnet) -5 fDsgnt) T p(Wasgle-i) | (52)

i=1 i=1

The higher order perturbation formula for reactivity can be easily

obtained by miltiplying both sides of Bq. (21) by the edjoint flux pl0)*

in the unperturbed system and integrating over all regions.

P(n) = —<016Q|n‘1>
n-1 '
- 3 P(1)<:o 1631 n-i-1>>, (23)
i=l
where
(0%, (B
< _ <87 ap >
Cl1A lm> <¢(O)*S¢(O)> . (24)

In this derivation, the following relation is used.

- « iy
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<pl0*gg)s _ o . (25)

The first, second and third order perturbation formulas not contzining

p(i) explicitly are as follows:

p(l) = -<018Q10> | (26)
p(a) = =<016Q11>
+<<016Q 10>C01868S 10> , (27)

p(3) = —<o1dg 2>
+ <018Q11><0 183 10>

2
-<016Q10>(<0185 10> -<C1d8811>). (28)

To calculate the n'th-order reactivity p(n), it is necessary to know
poth 1) and pup o the (n-1)'th order. To obtain the n'th-order
perturbed flux ¢(n) by golving Bq. (24), it is necessary to know ¢(i) up
to the (n—l)'th order and p(i) up to the n'th order. The zero'th-order
neutron flux is known, so that the higher order perturbed fluxes and

reactivity worths can be obtained successively in the following order:

MO R e R ¢S B C R
Sn-1) o o) L4 . (29).
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III. Analytical Expression of the Higher Order Perturbation Values

In order to simplify the mathematical treatment, we will consider a
bare system in slab geometry and use one-group diffusion approximation.
A reactor model is shown in Fig, 1 where the half-thickness cf & bare
reactor is 2 and that of a perturbation region is b.

The neutron flux in an unperturbed system can be calculated from the

following equation(5).

2
d
222 4 (r,-v58 = 0, (30)
dx
where
® = neutron flux
D = diffusion coefficient
X, = absorption cross section
' e = fission ¢ross section

number of neutrons emitted per fission.

T
I

From Eq; (1), the unperturbed fliux is

@ = cos ﬁ X R (31)

where | _z
o __ f7 =& _ (
"B - D - 2a

- )2 (32)

In the perturbétion region, it is assumed that X, and »Z ; change

and D does not change. Then, the first order reactivity worth is given

5o <@P>,

! FP = - r

i vy <¢2> (33)

f a

% where

<g> - {b ¢7dx = b+ —g sin 28 (34)
2 . '

<¢ >a = a . (35)
3 = o3 _-o(vxy) . - (36)
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The first order perturbed flux can be calculated from Eq. (19).

This equation becomes for the perfurbation region [(-b, CJ,[0, b ]

o) (1) (1), 1, (0)
—D__?x? + (Sa - “Z‘f)¢l = -(6Q+ o vEf)¢ ,  (31)
and‘for the unperturbed region(-a, -bJ], (b, al,
d2®£1) 1 1 0
-D -E'z— + ( Za - sz)(p(z ) = —p( ) U2f¢( )- (38)

The source terms on the right-hand side of Egs. (37) and (38) are shown in
Fig. 2 in which an absorption cross section is only changed. The source

term has a sharply cut-off distribution in the perturbation region and a

smoothly varying distribution proportional to the number of neutrons

emitted per fission in the unperturbed region.
. Using Egs. (32) and (33), Egs. (37) and (38) can be rewritten as

2 (1) :
"¢
___%__ pz¢§l) = Agl) cos 8x (39)
dx
and
2 (1)
!
dxé 32¢gl) = Agl) cos Ax , (40)
where
<> <@ vE
A(l) (1) a b f (41)
1 = =-p 5 ’
<P D
v
Aél) = p(l)_l_)-f_ . (42)

Eqs. (11) and (12) are equal to equations describing the resonance pheno-
mena is forced oscillation 6 . These equations can be solved by the e
eigen-function expanded or neutron life-cycle method, However, in the
present case, it is mast simple to solve directly these equations,
Solutions of Egs. {39) and (40) can be easily obtained(6).
Agl)
singx + gx sin gx , (43)
2

= Cl coa fx + C

4 2
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al)

q)(zl) = 03 cos Ax + C4 sinfg x +“Ej;92— fx sin fgx . (44)

The coefficients 02 and 04 are determined from the boundary conditios:

(1)
Lol
1 -0 , qﬁ_gl)(a) -0 . | (45)

dx z=0

Then, ¢(l) and (D(zl) become

1
(1) o
gbl = Cl cos ﬂx+7ﬂg—ﬁx sin Az, (46)
(1)
A
@gl) = €, cosPBx ~- 22 8(a-x) sin Bx . (47)
p 28

Two boundary conditions are used to calculate C] and 0.3.

(1) (2) gy o
dx x=b dx x=b
From the boundary conditions, the next relation is only obtained:
1 >
0, = Og+ Y (4, - &,) sin"Fp , (49)

and each value of Cl and 03 cannot bte determined. The values Cl and 03
are coefficients of cos fx. This means that an operation Q in Eg. (19)
is equal to that of a critical system, so that the component proportional
to cos fx formed by the self-sustaintion in chain reaction always remains
to be undertermined. This is undesirable for the presént purpose. The
higher order perturbed fluxes satisfy the relation (25). Therefor, this

relation can be used to obtain coefficients Cl and 03. Then, we have

<¢2>a - <®2>b Agl)(ﬁx sin gx cos Ax >y

g = - C

1 3 <®%b 232 <¢2>b
i <Blex) sin px conpx>y P2y - En
8 P>, - <P @y
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wWhere
b a
<f(x)>b = 2/ flxax, <&(x)> , =2/ f(x)dx. {51)
0 b

From Egs. (49) and (50), each value of C1 and 03 can be determined,
Firally, the first order perturbed fluxzes in the perturbation and

the unperturbed regions are as follows.

¢§l) = CI(I.? cos X + Cg_]é)ﬁx sin fx (52)
Qﬁgl) = CéilL) cos fX + Cg]é) ﬁ(a—x) sin fx . (53)
wWhere
(1) _ L _ k. 39
PN als o £, (v/a) (54)
2 2
C(l) 1 k., 8 Q 5 -<®>a'<¢>b
12 = Y -1 = 5T (55)
oo f <@ >
(1) _ 1 k, 80 (1)
cy0 = - el S £,7'(v/a) (56)
2
(1) R T
2 = = % T2 : (57)
4 k_ -1 £ <P,
in which
(& - b <gB <>
fgl)(b/a) = 2 cos“ b - 2 b } (58,8)
N\ a < @¢™>
a
/<¢2>
fél)(b/a) _ 2 2b -2 socgﬁb} (58,b)
(<8,
k= w3/ 3, _— (59)

The values f:(Ll), f(21), 2( <¢2>a - <¢2>b)/<¢72>a and 2 <¢2>b/@2>a

dependent only on the value of b/a are shown in Fig. 3. From Egs. (52)
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through (58), the first order perturbed flux has the following properties.

(1) The first order perturbed flux is proportional to the concentration

of an inserted perturbation.

(2) The value of fgl)(b/a) is always positive for all values of b/a.
Therefor, if 'Za incresses in the perturbation region, the first order
perturbed flux is, then, negative in the vicinity of the center of the

Perturbation region. If vEf increases, the first order perturbed flux is

positive in the same region.

(%) The values of fgl)(b/a) and 2 %:¢%>é -<:®%>B)/<¢?>E become zero as

the value of b/a approaches 1. Therefore, when a perturbation is uniformly
inserted in the whole system, the first order perturbed flux becomes zeTo.

In this case, the exact reactivity worth can be easily obtained.

(4) From the factor kx/4(km - 1)., the first order perturbed flux'becomes

large as the radius of a reactor becomes large.

—11-
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As an example, the spatial distribution of first order perturbed fluxes
for an absorbing material is shown in Fig. 4. The second-order reactivity
worth is given by Eqg. (27). Substituting Eq._(52) into Bq. (27),

(2) - (p(l))ZF(z)(b/a)

e Lk _-1
v 2
- P P ] (60)
vS . <$>,
where
2
<P > a~b
72 (p/a) = 2 = cos- BB
<¢ 2% a

<ct52>a - <¢2>b (‘3 b 2 o) (
- —-—= cos“ Bb)| . 61)
<<«'>2>a 2 <¢'2>b

The values of F(Z)(b/a) and also the function

Keo = 1
Keo

22 /e, 1) = 72 (v/a) - 4 (62)
are shown in Fig. 5. The latter functicn is useful for examining the
property of p(g) when only VE% changes., Characteristics of the second
order reactivity worth depend on those of the first-order perturbed flux.

Properties of the second order reactivity worth are mainly the follow-

ing:

(1) The second-order reactivity worth is proportional to the second power
of the first order reactivity worth, that is, the second power of the
concentration of an inserted perturbation, ‘Further, frem the factor
gﬂ/4(gn—1), the value of the second order reactivity worth becomes large

as the volume of reactor becomes large.

(2) The value of F(Z)(b/a) is positive for all values of b/a. Therefore,

when X g is only changed, the second order reactivity worth is always

positive.
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(%) The value of H(Z)(b/a, Keo) is positive for small values of b/a. and
negative for the large values. Therefore, when p Jp is only changed, the
second order reactivity worth is positive for small values of b/a and
negative for the large values., This property depends on the value of k_,
and if the value of kg is larger than 4./3, the second order reactivity
worth is always negative when only » X is changed. '

We will then cslculate the second order perturbed flux. This flux

can ke calculated from Eg. (20). This equation becomes for the perturbed

region
3¢ 2)
-D-—d%- + (E-a - vSf)¢§_2) = -(6Q + p( 1) vy )®(l)
X
(Vs vI.) + £ QD(O) ,
(63)
and for the unperturted region
242)
-D 2 + (Za - vEf)Qbéz) = —p(l) yzfqzbgl) - p(g) u2f®(o). (64)

The spatial distribution of the source term on the right-hand side of
o |
Egs. (63) and (64) is shown in Fig, 6 where the absorption cross section

is only changed. Equations (63) and (64) can be rewritten as

a2\ ?
- é B2¢§2) = A§2) cos % + BJ(_Z) gx sin gx (65)
(2)
dx2 + B qb( 2) = .Aéz) cos A x + B(zz)ﬂ(a-x) sin gz (66)
where
@ (1 E (e (@ P PR )
AIL z&ﬁ(f’ l))g[F (v/a) - <®2>b e fll (p/a) ]
() O(rE) <o -<¢2>b] . k
+ P 2 [ (67)
»zf <¢>a D |
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<> <P 2 vE
'Bgz) L S R S

4 k-1 <@§§% D

kOO

s (U RO OO R U O)

_ (1) 6(y2f)1<¢%% vzf (69)
P v)_:'f <¢2>a D ’
g2 _ 1 _]&L(p(l))2 2 "% (70)
2 4 k-1 D '

o0

Equations (65) =nd (66) can be easily solved by the same procedure as for
the first order perturbed flux. The solutions satisfying the boundary

conditions Eq. (45) are as follows.

®§2) = C, cos Px

1
2
- Bi:)z 8%%° cos fx + D]Zﬂ)g jx sin gx (71)
¢gz) = C cos Ax
I
Y ?(&a) cos P X - Y- A(a-x) singx , (72)
where
Dge) - al? . B§2) ol o aal? 32, (73)

From the boundary conditions Eq. (48), the following relation is obtained:

p(2)
1 2 2
Cl - c3 + 5 B“p= —_BYv sin 28b
LB
5t2)
s —2 B%(a-0)” 4 Bab) sin 28
48
pl2) p(2) _ -
+ = sin2 - 2 sinzﬁb ' (74)
48 # 482 ‘
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Further, from Eg. (25),

5(2) o2
° - K- jL2 X5
4 48
P>, -, 52 {2
- _ Oyt —5 Ky - — K4] , (75)
<P, gt 0 4
where
22 2 . |
<{B%x" cos” Bxxy <Bx sin fx cos Ax>y (76)
K = ’ X = , \T76
! <Hy ? &>,
and

<ﬁ2(a-x) 20052 ﬁx>a_b

<#(a-x)sin fx cos fx>,_,

=
It

) K =
? @5 - <oy :

<P - <
(77)

Using Eqgs. (74) and (75), C, and C can be determined.

3

Finally, the second order perturbed fluxes in

both the region are

¢§_2) = C](_:’La)‘cosﬁx + ng) ﬁ2x2 cos AX
+ 0(2) x sin §x (78)
_ 13 B ﬂ '
¢(22) = C(ml_) cos B + ng) ﬂ2x2 cos fx
+ 0(2) 8 (a-x) sin px {79)
2% . ’
where '
() 2 Ko 2 290 (2
EERRY: (ka,- D765 0 (o/2)
1 k, 09 8(*2)
T T o T - £, (n/a) , (80)
oo f f
(2) 1 Koo .o ,8Q 5 <¢%>a-<ﬁfih 2
T (k - 1) 3 2 2 ) (61)
o 7, f <P >,
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= )2 (2242 [(2)(3/5)
o f

1 ke a0 0(u3)  <¢Py @, -<o%

) -2 , (82)
TRy vy <>, <6,
and
1 K2
Cgi) - 16 (kwjol) { uzf) (2)(‘0/&)
k, 8a 3(»xp) (p)
¥ 4 k-1 vEf yZ'f f5 (b/a) ’ (83)
2 2 <¢2> |
cg—;) - )2(63 : (84)
B k- T T |
(2) 1 ko (2892 (5)
%3 = "6 S ) »_gf) | (v/a)
1 k_ 3Q a(vEf) <¢2>2 (85_)
4 k-1 vZ, 03 <¢2>2 :

The functions fgz)(b/a) (i;l, vee, 6) in Egs. (80) through (85) are depend-
ent only on the value of b/a, but very complicated,

<> —<gB 2 <o
82 (v/a) -p2 (2 L

<g™> R >2 °2
Py C VAP BN
<¢2> <>, <g> - <>
'( ) a b
£,°/(v/a) = @% [<¢ N gy - N g5, (87)
S () W, -<Fx ()
f(}z)(b/a) = 25’2"% </ (b/a) - <¢2>a 27 (v/a)
2
S S S
<7,
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and , ¢@ _ ae > ¢?
f§2)(b/a) 2 ( a¢2' %) (g, - b)) - 7

=

——(e, - 1,)

1]

2
b
2
a

+ ——z—fgf’)(b/a)(g3 h )+—f(2)(b/a)(g4+h4)] (89)

2 2 2
<gP> <> P> - <P
fég)(b/_a) A 2 (gpny) - — 2 (g5hs) I,
<#>, >, >,
(90)
. <¢>
22 (b/a) - f /e s Mm@ v, (o)
<¢% -
where ' . > >
. <8, Ll - (03
g = + 92
1 <¢2>a 1 <¢2>a by
W =<2 (%)
g, = (h, - K) 93
2 <;¢2>%— 3 3
{
g - <ge> <g2>
g =P oh - K (94)
3 <¢2>a 3 <¢2> 2
a
i i YOO | (35)
g, = K, - h ) 95
4 <> ‘o
in which
b = ﬂzbz - b sin 2fb, hé = 192(51-1})2 + p(a-b) sin 28b
h3 = h4 = Sln2ﬂb (96)

The coefficients of the second order perturbed flux are very complex,
Properties of the second order perturbed flux in the perturbation region
can be known only by examining the property of the coefficient C(z).

The functions f&z)(b/a) and
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Kem 1 2 (n/a) (97)

22 (e, x) = AP /a) - 4

are shown in Fig. 7.

Properties of the second order perturbed flux are mainly as fcllows:

(1) The second order perturbed flux is propertional to the second power of
the concentration of an inserted perturbaticn. From the factor (ko/ (ko - 1)2,
the magnitude of the second order perturbed flux relative to the unpertufbed

flux becomes large as ihe radius of the system becomes large.

(2) When P is.only changed, the second order perturbed flux in the
vieinity of the center of the perturbation region is positive if X = b/a

is smaller than 2.43%, and negative if X is larger. When lef is only changed,
this property further depends on the value of ¥ , and as the value of the
becomes larger, the range of X, in which the second order perturbed flux is

positive in the vicinity of the center of the perturbation region becomes

smaller.

As an example, the spatial distribution of second-order perturbed
fluxes for an absorbing material is shown in Fig. 8.

The third order reactivity.worth can be calculated from Eg. (28).
Inserting Egs. (52) and (78) into Eg. (28),

(3) 1T ke )2(p(l))3 F(S)(b/a)

L
1 ke (1)y2 8(v2y) < (3)
T4 km_-l(p ) vy, <¢> 27 (v/e)
() S0 ) <X
+ Iy ( vz‘f <¢2>a) » (98)
where
<P <g?> - <g™> 2
B3 (o/a) ——2 P (r/a) - 2 (—E5—B) K
>, - <#,
P>, 2 .
<,
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and
o <> - <™ P> 2
H(’)(b/a) -2 a 5 b K, - {—3 2 fgz)(b/a)
) >b < >b
+ 2F(2)(b/a) - 3F(2)(b/a) (100)

The two functions F(B)(b/a) and

B (b/a, k) = 73 (v/a) - 453;(;1_ 13) (1))

[==]

Keom 1 .2 '
+ (4T) (lOl)

are shown in Fig. 9.  From this figure and Eg. (98), the third order reac-
tivity worth has the following properties.

(1) The third order reactivity worth is proportional to the third power

of the first crder reactivity wbrth, that ig, proportional to the third
power of the concentration of the inserted perturbation. From the factor
(km/4 (k°o~ l))g, the‘magnitude of the third order reactivity worth relative

to the first order reactivity worth increases with radius of the system,

(2) From Fig. 9, the third order reactivity worth becomes positive or
negative, depending on the value of X = b/a and k.. When only 2, increases,

the third crder reactivity worth is negative if X is smaller than 2,25,

and positive if X is larger.

Finally, the reactivity worth up to the third order is as follows:

e oW o W0

og

8 ( vz%) <Q¢2>%
vEf <®2>a

cont’d
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1.0
0.8} Ftb/a)
Filb/a, ke) ko=1.0126 (137.9)
2.6 '
0.4
0.2

0.0 M .-—
N
N7
-0.2 \ V/

i //
-0.4 /

(3
Flbojke) ko= 1.0442 (73.7)

F}afbah,k@) ko= 1.0916 (5i.2)

_0_.6 -
(3
a Fi b, ka) ko= 1.1389 (41.6)
-0.8 Fiotoh, ke) ko= 1.2178 (33.2)
_1-0 I i ) L I L | | 1

o0 01 0.2 03 04 05 06 O7 08 09 1.0
— X = b/a

-]
Fig 9 The geometrical functions F  (b/a) ond Ff°(b/o, ke )

of the third order reactivity worth .
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2
ke 0(vx) ¢

oo
a

H(B)(b/a)

2
8 yzf) <¢ >b 2

+ (
_ 2
v <¢ >&

e ceree ) (102)

The first, second and third order reactivity worths are shown in Figs, 10
and 11.as a function of X = b/a. When the perturbation is inserted in the
whole system, the second and third order reactivity worths are zero for a
pure absorbing material, and o{ v3p)/ vZy and (& vZr)/ y}%)g respectively
for a pure fission material. In this case, the perturbed flux is egual to

the unperturbed flux, and the exact reactivity worth can be easily obtained.

2N -9 (v3y)

P= - (v):f)' |
53, - ¥ »2¢) 5( vy 0(vEg) 2
= - T, > + ( > ) - ...) (103)

For the present prmeblem, the higher order perturbation series converges if

523

ny

. : (104)

1 >l—————§(vzf)
vy

f

However, convergent criterion of the perturbation series is not so simple

for the generalized problem. 7
From Eq. (102), the higher order perturbation series for a pure

absorbing material is

- P(l);[‘l +—%__Ezf%;if p(l)F(z)(b/a)

o0

e )2 A2 F D (e

b e ) : - (209)
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in which, from Figs. 5 and G, the function F(Z)(b/a) and F(j)(b/a) satiefy:

1= F(z)(b/a) =0 |,
(106)

1> 17 (p/a)

Therefore, convergence criterion of the perfurbation series for a pure

‘absorbing material may be deduced from Eg, (105).

4._;?3L:_}m.>>..|;i1) P (107)

The factor koo - l)/k“,has the following physical significance. The

‘reactor equation in one-group diffusion approximation can be expressed in

eigen~-value equation.

e 1 |
- PR 28y = % (108)
. eff.n
where Keff.n is the eigen value. It is 1 for a just critical system and
generally

1 = Ko Xopp 1 > Kopp o> meee-2Kepp n e (109)

The reactivity worth is defined as

1
pP= 1o o (110)

Keff.n

Therefore, Eg. {108) can be rewritten td the one with eigen value

2

e : . >
n . .
D—"'é"“ + ( v)?f - Za)q)n = Pn,vzf@n . (111).
dx . .
The solution of this equatibn is
¢n = cqs_an : (112)

where
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PO

BS = = 2 (113)

From the boundary condition

pla) = 0 - (114)
(L-p v, -2 T
' nm Tf e (an+ 1)° )7 ) (115)
) 2a
. For a just critical systen,
v, =2
L& - (—)° : (116)
D 28

Therefore, the eigen value P, is given by

Koo - 1 '
2 oo
P, = ~[((m+1)°=-11] - (127)
Then,
Py = O (118)
k-1
pl = —BT s (119)
> K- 1
p, = —b—— , (120)
” koo
The level distance betweenfno and Pl is
k -1
4 = 8 —>= . (121)
k

Thus, the factor 4(kew- 1)/kein the left hand side of Eg. (107) is equal
to half the level distance between just a critical state and the first

excited state. .
For the general case, we must consider Eg. (102). The function H(B)(b/a)

becomes larger than 1, and satisfies
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3 = H(B)(b/a) =0 . (122)

Therefore, if the following conditions are satisfied, the perturbation

series will be convergent.

- 1 | |
4 —2 p(l) l , (123)
ko
3 »3.) <gt>
2z ‘ £ ® (124)
3 vZp g,

However, the present criterion is derived from Bqg. (102), and the more
higher order terms than the third order cannot be easily obtained, In
order to have strict mathematical treatment, the general theory of self-

adjoint operator by T. Kato must be usged,

e e
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IV. Conclusion

Applying the general theory of the perturbation method to the practical
reactor calculations with one-group diffusion approximation, properties of
the higher order perturbation method have been studied and the convergence
eriterion of the perturbation series have alsc deduced from the analytical
expressions of the higher order reactivitly worths., However, the present
analytical derivation is limited up to the third order reactivity worth,
so that, in order to have strict mathematical treatment, the general theory
of self-adjoint operator given by T. Kato must be used. This calculation
and numerical examples will be given in a further coming paper.

The convergence criterion for a pure absorbing material is given by
the condition that the first-order reactivity worth is smaller than half
the level distance between just a critical state aﬁd the first exciteéd
state. .This is reasonable from physical considerations and may be true
in a strict mathematical treatment.

The present treatment is limited to one-group diffusion approximation,
so that further extension due to multi-group energy treatment seems to be
necessary. However, the multi-group energy treatment is very difficult.
Even if the treatment is limited to two-group diffusion approximeticn,
analytical expression of the higher order perturbaticn terms cannot be

easily obtained.
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