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i

P With the use of Mori's continued-fraction method and

by taking the collisionless approximation and assuming the
vertex part in Dyson's equation to depend only on the momentum
transfer Q, a generalized Hartree equation and the densitys=
density response function XQ(m) are obtained in terms of the
dénsity—density canonical correlation Xg: This generalized
Hartree equation contains the self-energy effect through the

effective interaction and the streaming term.

On the basis of this equation, the direct correlation

function and the Ornstein-Zernike relation in a classical

fluid are extended to the case of a quantum fluid. These re-

sults give a generalization of the Hohenberg-Kohn-Mermin theory
} for a nonuniform electron gas applicable to a quantum fluid and

also give an extension of the Percus method for deriving equa-

tions for the radial distribution functicn g(r) in such a way

as to treat a quantum fluid. By applying this method to a

neutral quantum fluid, quantal versions of the Percus-Yevick
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and the hypernetted chain equations are derived. For a charged
quantum fluid (electron gas), new integral equations are obtained
by dividing an interatomic potential into strong short-range and
slowly-varying long-range parts, and these equations give the
compressibility sum rule taking into account the role of the
short-range part of the potential in a similar way as Landau's
Fermi-liquid theory.

The generalized Hartree equation combined with these
integral equations for neutral and charged quantum fluids yields

extensions of the Landau kinetic equation in the Fermi-liquid

thecry and of the Landau-Silin equation for the electron gas,
respectively, to large wavevectcrs and high frequencies at nomn-
zero temperatures.

In conjuction with these integral equations, a method for
determining the dynamic and static structure factors,S5(Q,w} and
S(Q), and the self-energy Zg(e) jn a self-consistent manner is

set up.
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§1. Introduction

There have been proposed numerous successful but appar-
ently different approaches to the quantal many-body problem.
Among them, the so-called random-phase approximation (RPA),

1)

originally developed by Bohm and Pines in treating the

electron gas, has been applied to a wide variety of many-body
calculations. The RPA is essentially a weak-coupling approx-
imation. When an interaction plays a dominant role, therefore,
it is necessary to go beyond the RPA in order to calculate
properties of the system. The Landau theory of Fermi liquids

and also the Landau-Silin theory of the electron gasz), though
formal, have the advantage of being exact for any normal liquid,
irrespective of its density and its strength of interaction,

as long as the temperature is sufficiently low. These theories,
however, can not treat phenomena involving large wavevectors

and high frequencies. It should be also noted that these methods
can provide no account of equilibrium properties such as the
ground state energy and radial distribution function. Thus, it
is necessary to generalize the Landau theory and also the Landau=
Silin theory so as to be applicable to microscopic phenomena
involving large wavevectors and high frequencies at nonzero tem-
peratures and to bridge the gap between this macroscopic approach
and microscopic theories such as the RPA theory.

We consider the case of the electron gas as a typical
example of many-body problems. Equilibrium properties of the
electron gas have been investigated exhaustively in the RPA.

In the high-density limit the behaviour of the electron gas is

well described by the RPA because the average potential energy
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is small compared to the kinetic energy due to the presence
of the Fermi surface. The high-density 1limit is expressed by
the parameter r_ as T « 1 where 1 is defined by 4ﬂria§/3=1/no

the Bohr radius), while the region

(no; the number density, a,,

of actual metallic densities is an intermidiate regime (l.Ssrs
<5.6). In the regidn of actual metallic densities, the RPA
suffers from the drawback that the radial distriﬁution functioﬁ
g(r) becomes negative for small distance r.3) Hubbard4) has
given the correction to the RPA, but his result also has this
drawbacks). Nozieres and Pinesﬁ) came to the conclusion that

it was not especially fruitful to pursue the Systematic study of
corrections to the RPA because it is intrinsically a high den-
sity expansion.

In recent years, Singwi et 31.7) and Hubbards) calculated
the radial distribution function in the range of actual metallic
densities and improved};his drawback fairly well by using the
following semi-classiﬁgi ;pproach. They7)xﬁayglsolved the
equation of motion for the classical one-particle distribution
f(r,p,t)(i.e. the BBGKY equation) in the presence of an exter-

nal potential U{(r), by assuming the ansatz for the two-particile

distribution function

fg(r’?’"":f'lt) = :g‘(“‘>1l’,7i)j‘('r',‘l",k)j(lr-—r’l),_ (1.1)

and obtained a classical dielectric constant in the form

_ V(R) M B XG(w)
L@w =11 1~ U(Q)G(o).n,F 9('0(&)

(1.2)
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with
— _____ ———- 1.3
Here, (w) is the classical free-electron polarizability and

Q

S{Q) is the structure factor and v(Q) is the Fourier transform
of the Coulomb interaction. To obtain the quantal dielectric
constant they made the assumption that in the classical di-
electric constant the classical free-electron polarizability
and the classical structure factor can be replaced by their
quantal analogs. Thus, they proposed a quantal method of
determining of S(Q) in a self-consistent manner since the struc-
ture factor is expressed in terms of the dielectric constant
owing to the sum rule. In their calculation, the radial dis-
tribution function is positive for all values of the density up
to rs=4. However, their dielectric constant (1.1) has an
unsatisfactory feature that the compressibility obtained from
its long wavelength limit becomes negative for rs>3.

In order to obtain a more satisfactory expressiomn for the
compressibility, two ways of refinements have been proposed.
The first approach is due to Singwi et al.g) who derived an

improved dielectric constant with

| 4% 1.4
G@ =) Sk [Ste- s Yams,

S(@) = £(@,0)

The second approach is to determine the radial distribution

function with the aid of the virial form of the equation of
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10)

state, Thus Schneider obtained

G(Q) =-%-. %[S(lo-}l)-l+ﬂ.-§;.5(|q-3,)]%’ (1.5)

and Vashishter and Singwill) gave

G(G)-(lmn.%,.) -%—o 9%{5(,0_1,)_[J .‘é;-:)’ , (1.6)

where a is to be treated as a parameter. Although these two
refinements improved values of the compressibility fairly well,
the positiveness of the radial distribution function at small
r became slightly worse than the earlier Singwi et al. resu1t7).
Concerning the Singwi et al. approach7) to the electron
gas, the following two remarks should be mentioned. The re-
placement of the classical structure factor S(Q) by the quantal
one in the translation from the classical into quantal dielectric
constant is not unique since there are many functions which be-
come the classical structure factor in the classical limit.
Secondly, the Singwi et al. treatment is essentially limited to
the systems with a slowly varying potential, so that their
treatment cannot describe g(r) in small interparticle separation
at the low-density region where the strong and steep part of the
Coulomb potential plays an important role. Concerning the
compressibility, the situation is the same as the positiveness
of g(0). Therefore, refinements of their approach should be
performed in such a way that the strong and steep part of the
Coulomb interaction is treated correctly.
On the other hand, the classical statistical-mechanical method
for treating the many-body problem has several points superior

to the quantal one. For instance, a wide variety of integral
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equations for the radial distribution function g(r) such as
the Percus-Yevick (PY) and hypernetted chain (HNC) equations
have been proposed and shown to give the results in fair
agreement with experiments. However, it is difficult in
quantum fluids to derive integral equations for g(r) because
phase space cannot be separated into coodinate and momentum
spaces. There are three methods for deriving approximate
integral gquations (for example, the PY equation) for g(r) in
classical fluids; (i) the diagrammatic techniquelz), (ii) the
functional -expansion methodls), (iii) the use of collective
coodinate514). Among them the functional-expansion method
developed by Percus yields the PY, HNC equations and others in
a systematic way and has the advantage of indicating how cor-
rections can be made to them. Recently we have obtained inte-
gral equationsls) for a fluid with a potential with slowly=
varying and strong short-range parts, such as a charged particle
system, by using the functional-expansion method. Therefore,
if we can make this method applicable to quantal systems, these
integral equations for classical neutral and charged fluids
can be transformed in the case of quantum fluids in a systematic
manner. Previously Percuslﬁ) has tried to extend the PY equation
to quantum fluids by the use of collective coodinates, but his
attempt is not quite successful

Recently a generalized Vlasov equatlon1 ) 20) has been
proposed and used to describe new collective modes observed by
the inelastic neutron scattering experiments in classical
liquids. This generalized Vlasov equation involves an effective

interaction expressed in terms of the direct correlation function
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instead of a bare potential v(r). Consequently, this equation
is applicable even to the hard-sphere system in contrast to the
usual Vlasov equation. In this sense, the generalized Vlasov
equation offers an extension of the RPA for treating a strong=
coupling system, and a quantal version of this equation is ex-
pected to give an approach to a qﬁantal strong-coupling many=
body system.

The purpose of the present study is to extend the above*
mentioned advantageous treatment of the classical many-body
problem to the quantal one, and thus to obtain the method by
which Boson, Fermion, and classical fluids can be treated from
a unified point of view.

In §2, the density-density relaxation function is obtained

21) and the

with the use of Mori's continued-fraction method
dynamic structure factor S(Q,w) is represented in terms of the
self-energy Zg(s) and the density-density canonical correlation
XQ» which are to be determined in a self-consistent manner. In
§3, the self-consistent equation for the self-energy Zg(e) is
given. In §4, moments of the canonical correlation of the
density fluctuation YQ(m) are investigated up to the fourth mo-
ment.

In §5, we obtain expressions for quantal versions of the
direct correlation function and the Ornstein-Zernike relation.
With the use of the results in §5, the Hohenberg-Kohn-Mermin
theory in a nonuniform electron gas is generalized to the case
of quantum fluids in §6.

In §7, quantal extensions of the PY anf HNC equations are

derived and then in §8, the generalized Hartree equation derived
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in §2 in conjuction with these equations is shown to give a
generalization of the Landau kinetic equation in the Fermis
liquid theory.

In 59, we obtain integral equations for charged quantum
fluids and then in §10, the generalized Hartree equation com-
bined with these equations is shown to yield a generalization
of the Landau-Silin kinetic equation for the electron gas.

In §11, one of our equations derived in §9 is numenically solved
in the case of the electron gas and the result is compared with

that of Singwi et al. The last section is devoted to summary

concluding remarks.



JAERI-M s534¢

§2. Relaxation function and generalized Hartree equation

'
Let us consider the following relaxation function FQpp (z]

with momentum variables p and p'

D zje-‘*z £.a(0); Pp(@) dt .

- PO
wheTe

P st ondy  =AAAR)
(A : B> - _1;5‘ (QMH }‘Na‘i\e Bf}JA,(Z.Z)

+ _
af..O/a aff e/

W

91’@ . (2.3)
Here, ap* and ap are, respectively, the creation and annihilation
operators of the free-particle states with momentum p, U is
the chemical potential, the dagger, t , denotes Hermite conjugate,
B=1/kBT, and ﬁ and ﬁ are the Hamiltonian and the particle number
operator, respectively. The angular bracket indicates the average
over the grand canonical ensemble.

According to Mori's continued-fraction method21) this relax-

1
ation function T PP [z] may be expressed in the form
Q P

’ A A -1 A ,
]"fg[z] = Z (pl{B-tW, ++<2>} VP Kol ) e
?’I

where

(“QGH") = { %a; f(@> E—%Zf , (2.5)
#id1t) = 2, {Spa’ SpaXXFIAG'IT) |

Here (plAIp ) and (pIA 1[p ) denote, respectively, the p-p'

element of a matrix A and the inverse matrix A -1 and—@{z) is the

damping function.
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In the present study we take $(z)=0, which means the
collisionless approximation. Then, to calculate the relaxation
function erpl[z] by means of Eq.(2.4), we must evaluate prp'
and <5pQ;pp,Q>. In the first place we are concerned with the
calculation of XQPP'. This static correlation can be calculated
with the use of the temperature Green's function method as below.

In general the temperature Green's function;

—(RalD :

s ionT (;{-}Aﬁ)’b
Kapr (@5 @n) Eje 7" fal  Spardt o

with

Wy = 2mT/p, (2.8)

22)

obeys the following Dyson's equation:
2
K?,rf (G, wﬁ) = -F Z Gﬁ@'acaﬁ‘*wh) GP_%(E")é.’?/

< @
—_— '(—1'?‘_2 GTH%<ZH+ME) ef-ﬂl,_<£“) F??I (E.‘ . E," Icu,.)X

nn’
X G'fq.azq(sn’*wh) G'?/_@/Q_ (€ar) (2.9)
where
mn/p  (Boser) { (Bosom)
n = 7 =

~{ (Faamitm) (2.10)

(2ntO/p  (Fermiom)
and Gp(sn) denotes the one-particle temperature Green's function
defined at the set of points €n and ng,(en, €t wm) is the

t
vertex part. From E9.(2.7) we can see that xqpp is obtained by

setting wm=0 in Eq.(2.9), that is,
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P<P1’Q , y?’@> = K??/(Q, Wm=0) -.-:.—[3 %g’

= 'r?f Zﬂ: Gl'?.,.q/_‘__(in) G'_Q/.&Csn) gfp'

(
- F‘Z G‘%(E\‘)G"“%CSH) ??,(En ,E" :wn’o)

n,n

X Qprarn (Enr) T p-an CEnr) (2.11)

?
It is difficult to evaluate prp without the use of approxi-

mations, as is seen from Eq.(2.11). When the parameters e and

e, are small, ng.(cn, €t mm=0] is shown to depend on e , €.
weakly for Fermions.zs) Moreover, in the classical limit,
Rgp‘(en, €’ w,=0) 1is the function of only the wave-vector Q, and

as will be shown later,

b Ty = S@) =1,

where S(Q) is the structure factor. Considering these features,

we make the following approximation

@ Q@
rfpf<€n,im’3wn=°) = F , (2.12)

that is, ng, is independent of e, €., and p, p'. This approxi-
mation simplifies the calculation of prp' and reduces Eq.(2.11})
to
@
* = g - ) f ’
<S)fa??f’ca> fg@') 4 j(-ca(f I o#),

(2.13)
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where
_ L2
j'(a(f) = "r‘;' P 2?‘:6?_,.@/‘(8'&)6?_ A_Cg'n)
1 i 1 R R }
= ®p) 2 ey %{Gﬁ%(”ffrmw |
. igﬂ;g 9 G’n—e/:. L) — Gf-m“) 2 14
e mefien 8;%1-2;:%(12 fo-on=Z ptn (¥ N
Here

(2.15)

Gr ce R
= . R
T £ =Sy tM-ZHC)
is the analytically continued function of Gp(en) with a discrete

set of points e throughout the entire upper half-plane, so that

G (i6n) = Gy (&) For & 70,

and s; is the kinetic energy of a free particle and Zg(e),the
self-energy.

As an illustration of the function fQ(p), we take two simple
cases below. First in the absence of interactions (23(5)30),

f.(p) is reduced to

fca(f’):‘ "'"fi‘

Q
n (8;,.@/.,) —-n CE;—OA)

¢ P+F Zof-—@/q. !
1
n(g) = ép(a—ﬂ-) _

{2.15)'

where

‘( )
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and second in the classical limit, fQ(p) is shown to be propor-

tional to the normalized Maxwell distribution function ¢M(p):

,QW f‘g ) = P, (P, (2.16)

ko
where N is the average total number of particles.

On the other hand, there is an exact relation concerning

prp: y
;9{ “F?Zpg<f$ca ’f?’ca>
= -,;,{—<Pa}f°@> = Yy, @
where

Ve = ; =~ ; Q;_% Qp +ove

Owing to Egs.(2.17) and (2.13}, FQ has the form

B e
%; = ",%‘ZJC@(?) . (2.19)

With the use of Eqs.(2.18) and (2.13), there results finally

” 3( (%) gm )C ("’7("@ .1) JL@G’) _(2.20)

It should be mentioned that although Eq.{(2.20) is an ap-

where

T
proximation, prp given by Eq.(2.20) has the exact classical

limit, as shown below. Taking account of

%9(97'3(@): %‘{’;’:9(: =1 ,
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1
and Eq.(2,16), the classical 11m1t of XQPP is wrltten as

v<%a’ Ha? = —l~<ze T Sqp Ze ‘5@"?:)>
.-__—§M (> Cp—p7) + é’u (f){f(OJ —1}§u #2, (2.21)

where <AN,>C denotes the classical average over the grand

ke

canonical ensemble, that is,

(A, = 2 onplpn) [ oK (- p Hu) AnedT”
o> ; —i
X (’2: AP (=ppN )Se/xy(-pH,.f)dp)

This result is exact in the classical mechanical case.
Next, we calculate <5pQ; pp,Q> which is necessary to eval-

uate Eq.{(2.6), and obtain the result

where

{0y 4y > .

t
From Eq.(2.20), the inverse matrix to XQPP is easily

caiculated in the form

. Sew 1 111
(4 31 1#) = ERN {xe_%@} : e

Now, we find from a combination of Eqs.(2.2Z) and {(2.23) that

(4110l 9) = — L Wpa 3,?,_(51(_5-%ﬁ).&3@(¢)’ (2.28)
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where

iwpe = — o) / Fo (p)

_z o 4 R R
o e B 5Lt

This quantity ime is a complicated functional of the self-energy

In the case of E§=0, ime takes a simple form

o drgo o ]=if2
Lw?e = 'E[s?m‘"27_q = % m (2.26)
Thus we can obtain the relaxation function using Eqs.(2.20)
and (2.24). In Mori's method the continued-fraction representation
is obtained by use of a generalized Langevin equation of motion.21)
Before calculating the relaxation function, we investigate here a
generalized Langevin equation of motion associated with the con-
tinued-fraction representation of the relaxation function in our
| approximations. Also, from this equation the meaning of the ap-
proximations used above and of our continued-fraction represen-

tation becomes clear as shown later.

Making use of Eq.(2.24), we obtain the equation for

foa 121 =% (1) e Eaz

where

L Ak ~H Ak
S0 (t) = @ Poa © ,

in the following form

L

25)

; L 11d -
('Z’-t-tw.ra)?,r@[?]-t-;:—f;{ ;"x}t[nﬂ_% f’“q'i} ZfGCE‘J o

@
(2.27)
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where ng is the number density. Here we have put pr(t=D)=0.

If we make an approximation for z;(g) to be independent of €, then

Rwea = EM@/—._ — Epvn ,
x> = | L5 N Epran)~n(Fpon)

@ PNy Fepran —~Epan
where

R

Ep, =&+ 24,
so that Eq.(2.27) becomes
{2+ 3B puag~ Fron)| Spal B
L

1 {4 ; L -o
- sipl e ) 7 B TGy St

(2.28)

In comparison with the usual Hartree equation, we can see
that Eq.(2.27) is regarded as a generalized Hartree equation in
the following two points: (i) The bare potential in the usual

Hartree equation is replaced by the effective one:

4 ¢
'noPVe-H-(G) = "{X; ﬁ'@ (2.29)

)

which becomazs the direct correlation function C(Q) in the clas-

1

’nOFSVfo(ﬁQ) = -—T?,(j(ﬂ;) ==-§?Eb _—

(ii) The streaming term, (i/h)[e0 . ], in the usual
p+Q/2  “p-Q/2

sical limit

Hartree equation is replaced by ipr’ which depends on the self=

energy Eg(e) in a complicated way.
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Though there is no explicit Fock term in the generalized
Hartree equation, Eq.(2.27), the exchange effect is taken into
account in this equation due to the generalization in (i) and
(ii). The average of pr in Eq.(2.27) gives a quantal gener-

alized Vlasov equation for the Wigner function,

F, (@, #,2) = LS%arl®],

and the classical limit of this equation becomes a generalized
Vlasov equation.17)-20)
Now, we compute the relaxation function with the use of the

above results as follows: From Eq.(2.24), we get

3caC?)g P8 ®) Ve 1 1

('P, {?-Lwo} “’) (2 # e’ AQC‘E:PJ Z(G 2) /\a(i.rjv . (2.30)
where
Ao (2. 9) = P+iWpa (2.31)
| {5 B o)
@, B = 1— Veﬁ @) = Z Ao@p (2.32)

so that, with the aid of Eq.(2.20), the relaxation function

1
r PP [z] is written as

Q

]—,af?’[gl — Z_"_ (fl{?—it:)aﬂf") " Q@H’,)

= 5 {2 gofw ¢, [Fe® Veut® Falt) 1
” Aace,p) P /\e(E » S@ ) Noe )V

{j‘ ") gﬂ,'{' f (19-);2’0 —i} %‘3 fo('p’)%} (2.33)

716A,
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On the other hand, it can be easily shown that

Z(rhw 16 @A ) = —iw pa Falb) Sy
= 3@(4’) S?a-‘? (2.34)

under the condition that Eq.(2.29) holds. It should be noted
that Eq.(2.34) cannot be derived, if the potential contained
*)

in (p|idylp') is the bare one.

By use of Eq.(2.34) and the identity
A A _4“.A
(B=1de) = {(rtw caw, +1} /R 239

Eq.(2.33) may be written as

144 o) ]33@(19) Veps (@) dalpr 1 1y ¥ ‘(
la LE] {/\ e, f)S T A @) Aap) VY Q’ (2:30)

In general, the relaxation function erp [z] and the response

function prp'[z] defined by
“Q??IEE'] = — __@_ E‘ﬁ< tt[ I’G(t) P;’o >J-:(‘ (2.37)

are telated as follows:

]_' a8 [R] = E.j. % [QJ-Q-}Y;'} (2.38)

which is derived by partial integration of Eq.(2.1). Comparison

of Eq.(2.36) with Eq.(2.38) gives the expression of the response

x) Equation (2.29) is the quantal extension of the condition
that the three kinetic methods [(i) imitial-value approach, (ii)
dielectric approach and (iii) method of fluctuations in distri-
bution function] of calculating the space-time correlation function

24)

should be equivalent to one another as is reported elsewhere.
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function in the form

X WEEJ — Bo(P) S. ., - B3] Vogs10) Jolp) 4
a No@ P TF' T Asp) £@®) Agapy V -
At first glance Eq.(2.39) has a simple structure similar to the

25)

(2.39)

expression obtained by use of the usual Hartree approximation,
which is obtained by replacing Veff(Q) by v(Q), the Fourier
transform of the bare potential, and ipr by (i/h][sg+Q/2~e;_Q/2]
in Bq.(2.39). But the expression of Eq.(2.39) is not so simple

. . o . . .

in general, since XQ » XQ and 1pr contained in Veff(Q) and
AQ(z,p) are related to the function, fQ(p) defined by Eq.(2.14).
Also, the density-density response function XQ(m) is expressed

as

X (w) = 129{” E(w+io*)]
BT

%Qo (00)/{ 1+T)°PVQ_H(G))(; (w)} , (2.40)

where

° _ 1 Npron ~ Np-or
/((O(w NE 4 o~ Rw o +iot .

With the aid of the general relation between the canonical”

26)

correlation function and the relaxation function, the dynamic

structure factor S(Q,w) is given by the formula

S(Q,w)-‘-‘-%-@“ co{"g(p ) (w) (2.41)
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where
4_ ’
79(00) E%R@{F%}F‘g[ LQJ]}
1 1
= £ & om | Kot
41 1 1 '
T T T W neplest@) %{E(a,—aw)} . (2-42)

Consequently, structure factor S(Q) is determined by the sum rule

5@ =r8<e,w)atw =f§‘§°i oth(052) U, (w)dw,

(2.43)
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§3, Equation for self-energy Zgggl

In the preceding section we obtained the response function

in Eq.(2.39), where the vertex part

rCfaEJ = VQ-f-f (9)/ E(a,B) , (3.1)

involves xg, Xq and the self-energy Zg(e) through the definitions
of e¢(p,z) and Veff(p). In this section we obtain the expression
of Eg(g) in terms of the vertex part TI'(p,z); that is, the self=
consistent equation for Zg(e) with the use of the Hartree-Fock

approximation as follows:
With the Hartree-Fock approximation, the self-energy Ep(en)

is determined by the sum of the following two terms

S,a =2+ @ s

where 3= denotes the one-particle Green's function Gp(en), ~S

denotes the interaction Veff(p) and ameans the vertex part

I (#,6) = Vgﬁ(@)/’f(@‘z,‘) . (3.3)

S (f0) = £ (b ~i&) For €O,

In the first place, we compute the first term in Eq,(3.2) as

follows:

i

- ﬁi:z: kati—'f;(fh'?t) 8”0-_th)éﬁn(‘ul)

ay ¢ (TP
v M
B %(%3§¢dwrRAC?”Tr-fno"w)ﬁ‘:, ""i:f‘dw) (3.4)
- %Sa&‘ﬁ r’c‘?-ﬂ ,O) Gf,(fu,)

_20_
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-f-'l (E) = : (3.5)
_f‘m{(—%—) , (t:-—i) FMW'M)
~ T"R (?a 1&n) For Eu>0 ’
7,8 = N (3.6)
7" (¢, 16) for &x<0,
and
GI'R(‘&,\ ')Lor‘ tn o )
C‘,"PC{..,) = P / (3.7)

G5 (i5.) for &<O |

Here, the sum over oy is replaced by the

contour integral and C, the contour of Re w=0
integration, is shown in Fig. 1. We ::::c

] i = Im(igy, - w ) =0
can now easily perform the analytic !

» Imw=0

continuation with respect to e, in { ]

Eq.(3.4) into the real axis, thereby

Fig. 1. The path C of integrati;m in Eq.
(3-4).

obtaining the retarded function E?(p,a).
Since the integral over the large arcs

is equal to zero, Eq.(3.4) is shown to be

K
R iy ».Cr,,(s) Sml P, w)
Zic'ﬂ ) = an(m)s‘giw ) o w+8 ~% +io0t

X{ fo () = F1(€)] G.)

Here, the details of the calculation of the above result are

omitted, for the derivation is similar to that given by Abrikosov
et a1.27)

On the other hand, the second term in Eq.(3.2) is given in



JAERI-M 5349

the form

R
SRr =8 =g, oo

Combinining Eqs.(3.8) and (3.9), we obtain a self-consistent

equation for Zg(e).
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84, Sum rules

In this section we compute moments of the function YQ(m)
defined by Eq.(2.42), with respect to w, Since YQ(m) is an
even function concerning w, we have only to calculate even

moments

<<a)2">> me’f (w)dw (4.1)

From Eq.(2.27), we obtain the equation for

gf@ (W) Eg_wffad‘) e

in the form

La)tcii:

0 Ppa = Wea Fpa tmup Vo (@ § Cpatol) f, .

from which, with the use of the relation

Z W pa@ fa(zp) = O (4.3)
4
the equation of continuity is derived as

0
WPy = % w?@ﬁya = QJpw .9
Here, the current jQ(m) is a complicafed functional of the

self-energy. The equation of continuity (4.4) plays an impor-

tant role in the calculation of «wzﬁ» below.

(1) L1

With the aid of the Krammers-Kronig relation, the zeroth

moment( P is easily given by,

S’Jo(w)dw = -—-5 % L‘-(w]} Xa @)
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This is the exact zeroth moment relatiom.

. 2
(i1) 4u™P
With the help of the equation of continuity (4.4} the

second moment 4:;)2» may be written as
o oo
f wla;(w)dw = N‘Lf<w‘?a(a’); whalw) 2do)
-g0 - o
1o $15(%,
= 7[_7\74§_,.‘_25 pe Gl c,w]dw} (4.6)
te - ’

Due to the relation between FQpp'[iw] and prp'[im], and the

Krammers-Kroning. relation, the above equation becomes

o0
S W 0w) dw = l""f@“’rﬁr 9m§l’ ]

Z “pe Vpa W
N w

%Z%@J‘a(@) NPF ‘{ Zmr’afo(f)}

= T\JLZP: “:@ Falp) | (4.7

Here we have used Eq.(4.3). If we take either the classical
limit or put zg(e)-o in the quantal case, we obtain the

following result

LS 2 Q
,—\,-; <@ o (P) = ms3 4.8)
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That is, the right-hand side of Eq.(4.7) becomes identical with
the exact second moment. In general, if we want to have the

exact second moment, we must regard Eq.(4.8) as a condition to

be imposed on fQ(p).
(ii1) €ut»

Due to the equation of continuity, the fourth moment becomes

o0 (- o4
= / \ ,
J;GQ*Q&Q(QOJGJ = FIZE}S‘“”t”fotuf51<luf?g) “J%ma>.
00 g AP
Let us replace mpr in the above equa}ion by

Copa Pp@ +7o plett @ § pafelp) §

which is obtained from Eq.(4.2), then the fourth moment(m4}
yields four terms. We repeat the procedures leading to Eq.(4.7)

and sum up these four terms, then we obtain

_ 4 *
{uwt) = {ﬁ' %wpe f‘o(f?} + ;&%wrze](o(?)} Nefs Ve (@) | (4.9)
If we make Zg(e)=0, then the first term of the above equation

is written as

a2 A
NL%“:Q'foCP) = 2 {ﬁb +’+<K5>} , (4.10)

£, 4
<KE> = Klfz,l,:im<af %) . (4.11)
This term reduces to the exact classical limit since

' = 3L
b <HE> = 35
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If we assume here that the relation (4.10) as well as (4.8) is

generally valid, the fourth moment <m4)> is finally written in

the form
1

(w‘f))— {K‘O +1+(KE>} wp (f;:)q;!,ﬂVeﬂ(@), (4.12)

while the exact one is

Laty = __{t‘@"‘

'2_

+'+<KE>} m

Ny *Ur) @t
+-”—‘-gdl“3(}")[]-m(@3)] >es me (4.13)

where

2 = (OP/R.
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§5. Quantal Ornstein-Zernike relation

In classical fluids the Ornstein-Zernike (0Z) relation
plays an important role in treating integral equations for
g(r). Thus, in this section we derive a quantal extention of
the 0Z relation,

For a classical system, the OZ relation is written as

1n—-1 = C(r)+m§C(ar—r'|)j§(r’)—-i}ahr’ , (5.1)

which is obtained from the relation between the functional

derivativesls)

[-powm]| dnar*)

szn(r D 3[_ SCr—r') : (5.2)
where

(5.3)

MI = — C(ir-r1) -g-S(lr—""J/'n,

S ner’)
Sncrv)
5[—{3U(t')] .

Here, n(r) or n{(r|U) denotes the density in a nonuniform fluid

= m,Scr—+ w?{?(ir-r’t)—i} (5.4)

due to an imposed external potential U(r) and |0 means the
functional derivative being taken at U(r)=0, that is, n(r)=n0
(no; the average density) and C(r), the direct correlaticn
function. From these equations, we can obtain the Fourier

transforms of functional derivatives.

Because of

?@ [ %?—%gczi]

o] = ’?ZOS(@), (5.5)

__27”
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where

)~ = n,-F_ { g(r)—-i} ’ (5.6)

?‘Q[‘f(n] = [f(l")etgrdr , (5.7)

there follows from Eq.(5.2)

S[-puw]) 7 4
'3"9[ cS'ncr’)IaJ T n.S(o). (5:8)

From the above consideration in the case of classical

fluids, we can derive a quantal OZ relation through the re-

placement of the functional derivatives, g%%é%%%%T o and

6 {-BU(T)]
nlr

For this purpose, in the first place we must obtain a

0! by quantal ones respectively as follows.

quantal extension of the direct correlation function, C(r).

28)

In a quantal system, according to the linear response theory

QM
] = 7, KQ (5.9)
Q

L 4

Eq.(5.5) is replaced by
= [ Sncriv)
@l 3[-pUrI]

where Xq is defined by Eq.(2.16),so that Eq.(5.2) yields
x [5[—pv<n] Q”J _ 1 .
@| Srcr) lo 7o Xg - (5.10)

Since in a classical system the Fourier transform of the

direct correlation function satisfies the relation

EF,Q [’noC(lr—w'l)] = 1 - m-?‘a[g[ng:t; J '(5.11)

the Fourier transform of a quantal direct correlation function

must be expressed in the form
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Sqe [”"6("’"")] = ‘R(G)—-n.?g S [-pum ]

Sncr’)

I

'ﬁ.(@) - 1/%9 (5.12)

where h(Q) 1is a certain function which satisfies

fom hl@) = 1

t o

On the other hand, the average of the equation of motion (2.27)
in the classical limit reduces to a generalized Vlasov equationlv)_zo)

with an effective interaction

"nop VQ-H-(GJ ="'{ - 'Sg(_@";} =-noC(Q) . (5.13)

That is, the term in Eq.(2.27)

3 veﬁ((-\) = - 5%‘3 - -7%- (5.14)
@ @) 2

becomes the direct correlation function in the classical limit,
where Xg is defined by Eq.(2.19). Thus, in a quantum fluid, the
effective potential (5.14) plays the same role in determining
atomic motions as the direct correlation function does in a
classical fluid and also the function, {llxg-l/xq}, satisfies

the condition (5.12) necessary to be a quantal direct correlation
function,.

Consequently, it is appropriate in our framework to choose

ng['no 6(3’)] = N, 6(0) = 1/)(0 - 1/%@ (5.15)

as a quantal direct correlation function C(r).

_29_
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In the second place, we extend the relationlS) between the
density distribution n(r|U] under an external potential U(r)

and the radial distribution function g(r)} in a classical system

N(rluo=v) = N, 3(}") ) (5.16)

where v{r) is the interatomic potential, to a quantal system on
the basis of the relation in the classical system,
g&[’—gff—’]- {nermen-nfir'=Cr) | oo
Sn(r) |, y
Here, we make the ansatz that the relation {5.17) remains
valid in the quantal system if we replace the classical quan-
tities in Eq.(5.17)} by their quantal analogs; that 1is,

oM
S-pom 1 {'ncr’ }am ,
- U=U)—~7,

'Y
= C (r) (5.18)

Usefulness of the ansatz (5.18) can only be judged a posteriori.
By taking Fourier transformation of Eq.(5.18), we obtain

an equation for ?'Q[n(rIU=v) -n ] in the form

F. %:7%%] Qn] T [ neiven -

=F [6w] = £{L -4
@ ??° Xoo XQ .
From this equation and (5.10), we get finally

?Q[WCHU=U)—7I.J = -;-? — 1 . (5.19)
Q

QM

_30_
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this reduces to Eq.{5.16) as seen from the fact 11m XQ S(Q)

and lim XQ

>0
Between the quantal direct correlation function C(r) and

{n(r|U=v)-n0} given by Eq.(5.19), we can set up & relation
as follows. The identity % . xQ=1 given by the Fourier trans-

form of Eq.(5.2) is rewritten as

o ~ 2
_9-(-% -1 = A nCle) D(Q-noC(cf]
Xo 1-X2n.C@ -

With the use of Egs.(5.15) and (5.19), this equation is trans-

(5.20)

formed into

NV 4 _ REF A 'ncr’wlﬁ} ’
T 1 = B-Cir)+n, {B-CCII"—H)H Me 11dr ) (5.21)

LY

where B is an operator defined by

%@[é\'f(r)] = X;'?Q[jf(r)] , (5.22)

and n(r|v) = n(r|U=v).
This equation (5.21) is a quantal extension of the 0Z relation
{5.1).

It should be noted that {n(riv)-n,} given by Eq.(5.19)
represents a non-linear response to imposition of an external
field U(r)=v(r) which is identical with the interatomic
potential at the origin, and also the relation (5.19) offers

a quantal version of the Percus method as shown later.
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§6. Generalization of Hohenberg-Kohn-Mermin Theory

29) and Merminso) have shown that the

Hohenberg and Kohn
thermodynamic potential © in a nonuniform electron gas due to

imposion of an extermal potential U(r) is represented as

Q= gvcr’) nerimde’ + F [ncro | , (6.1)

where n(r|U) denotes the density at r and Fin(r|U)] is a
functional independent of U(r). On the basis of Eq.(6.1),
they have derived the Thomas-Fermi equation and the expression
of F[n] as a functional Taylor's expansion with respect to
{n(r]U)-no}.

In this section, on making use of Eq.(6.1) and thé results
in §5 we extend the results of Hohenberg-Kohn-Mermin in more
general form suitable not only for an electron gas but also for
quantum fluids whose potential need not be able to be Fourier=

transformed.

Since g%%;T at the equilibrium satisfies the relation

S0 B SF[WU _
NG ag = U + JN(r) (o5 9 ? (6-2)

there follows

S | SFIn
S| s

If we put

Flncrio)] = Hnno] ,u[ novdr

ap—

_ _ 80
ey anee’ .

(6.3)

39
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we find from Eq.(6.2)

SHIM) = - =Ttrm), o9

where fU(X)n(¥|U)dr + H[n] is the free energy and u, the

chemical potential. A functional Taylor's expansion of
%%%%}l =T (r{n) around a constant function n(r]U),where r is

€q
a fixed point, is expressed as

KGIOERK([5) ’mw{:{g}g—)}] § nerfo)~nonp} dir”

Here,

UCPIC) omengy = Mo (0C1ID) (6.7)

where (c) is the chemical potential in a uniform system at

the density ¢. By making an approximation

TCrim) _ _$0w
%W ¢ = New) S Nr)|c=nmv) (¢-8)
_ & Ulr) -1z , 'R L=
~ " Snaale T ]T{C(f""" )~ —Cfn——o)} ’
where

?g[ﬁ'(”/’nn] = {(Q)/?lo = 1%%?\/: ' (6.9)

and using Eq.(6.8), Eq.(6.6) is expressed as
PH = Mo (Nlr 10)) +p 0 —‘,(E'Clr—#’l){na"w)-mwu)}dr’

+ _‘gﬁlﬁ”‘ﬂ{mcr? g —neriv)pdir’,
’ (6.10)

If we make another approximation

R(ltr-—r'[) = S (c—+) . (6.11)
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noting the relation %iT h(r)=86(r) , Eq.(6.10) is written in

the form

P}A = )3}1. (’)’LCHU)) + S Ur) | (6.12)

_gc(_lr—rfl N¥ncrio)-nddr+ {'“,,‘L’jw }P(;‘%To‘a%,)

. . s o_,.0
where Kp 15 the isothermal compressibility and noKT_BXQ-O‘

15)_

This is a quantal extension of the previous result In the

case of K%/KTél we obtain the relation

PP = Pﬂ.(’h(ﬂm) '*‘PU?,(Y‘) , (6.13)

where
PU (r)= pU(r) SC(IH'I){?I(Y‘?D’)—-W.}“”’. (6.14)

In the Hohenberg-Kohn-Mermin theory, -C(r) is replaced by gv(r).
On the other hand, in the case of In(r|U)—no[/no«1, Eq.(6.12)
is written in the form
LB D
(rlo) —+ NCriv) U,(r) =

Next, we consider the functional Taylor's expansion of

(6.15)

F[n(r|U)] around n_  for the case of [n(r|U)-n |/ngl. Since
from Eq. (6.3)

é'&
Inerdnir) Fnl

’

1 S[-pow 1,y R
o I c[Smr')] -r,-{c(lr-rl)-——,;:-)}

and 6P[n]/6n| =0, F[n] is represented as
FInl = Frne1 + 3{{-C0rvifp}aneaney drdr/
+ _.S RAUr¥1) Amer) aneH) dirdr’ (6.17)
2 M, F )

— 34_

(6.16)
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where

F L rn] = 1/9(2\,

and &n{r) = n(r|U)-n0. In the case of the electron gas,
Eq.(6.17) reduces to the result of Hohenberg-Kohn if we use
the RPA, that is, -E(r)/8=%v(r) and Eg(e)%o. This fact shows
that our choice of a quantal direct correlation function
" (5.15) is appropriate.

Here, we should mention that Eq.(6.17) is equivalent to
the resﬁlt of Hohenberg-Kohn as shown below. Equation (6.17)

is rewritten in the form

FIn] =Fin]+ £ (5580 anmanc drae’

= F[m,] + %S UGr-r’) AN(r) ANr) dir dr’

1 { o[- INT{I ’ } r ’ /
+ -é-g{ p- S ) :- vir-v |) aAng )A?I(r)dl’dl‘_

(6.18)
With the aid of Eq.(5.10), the Fourier transform of the kernel

K(lr-;l) of the third term in Eq.{(6.18) is expressed as
K@) = Fa[kar-ri]=Fo [ 2 2554 - 295 ]
e 5
2(5 /n° q@ - p U-(G)
i
z U(e) /{ 8(@)-—1} . (6.19)

{
/{ 1-—-0((@,)} ‘(6. 20)

!

H

where

¢(e) = i/{ L =M, U@) p Xl

_35_
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This is nothing but the result of Hohenberg-Kohn. Essentially,
Eqs.(6.17) and (6.18) are two different ways of separations of
the functional derivative 6[-8U(r)]/6n(f)[° into the two parts;
the one separation is into -C(|r-¥|) and h(lr-;l)/no, the other,
Bv(|r-t|) and EL&%—‘%—)-LI -Bv(|r-1"|).
The definition of a direzt correlation function (5.15) gives
the separation (6.17) automatically.

In contrast to the expression (6.18), Eq.(6.17) is appli-
cable to a system interacting via a potential which can not be

Fourier-transformed.
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§7. PY and HNC equations for neutral quantum fluids

13) to treat a

In this section we extend the Percus method
quantal system on the basis of the results in §5 and obtain
quantal PY and HNC equations.

If the density n(r!/U) in a nonuniform system due to impo-
sitionh of an external potential U(r) is approximately determined
by a functional equation F[n(rlU)]%F[nO], the Percus method
yields an improved integral equation for n(r|U) in a nonuniform

system by making a functional-expansion of F[n], for example,

around the average density n:

FIn] = Fln,]+ %_E%l o{mr’m—-n.} dr’ (7.1)

truncated at the first order. Then, by using the relation
(5.16) between the density in the nonuniform system and g(r) in
the uniform system, this improved equation for n(r|U) becomes
an integral equation for g(r) in the uniform system, if the exter-
nal potential U(r) is set equal to the interatomic potential
v(r). Owing to the relation (5.19), the same procedure is ap-
plicable to a quantal system.

In the first place, we derive a quantal PY equation. In a
nonuniform fluid interacting via a short-range potential, the
density n{r|U) under an external potential U(r) is approximately

described by

P 1 _ |

and more generally is determined by

Nrig) = N°CrliT) ’ (7.3)

— a7 -
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where n’(r|U) is the density of a noninteracting fluid with
the streaming term inQ defined by Eq.(2.25). From this fact

it is proper to take

Gr['n] = ’}’L(H'U')/qq"(r!‘o') , (7.4)

for a generating functional in the Percus method in order to
obtain an integral equation for n(r|Usv) in a fluid with a

short-range interaction. On account of

° ) o
?’g[fﬁ;&‘:ﬂo] = n.%a (7.5)

which is derived from Eq.(2.27) setting Veff(Q)=0, we obtain

the functional derivative of Eq.(7.4) at ng

SGndp _ SCr—r) 1 { Sn%riv) | S[-pT][ 4
SNr')ie o Ne n, é["PUU"")] o Sner’) od
_ S¢e=vy A S[-pu®])

= =5 B- S ], , O

where B is the operator defined by Eq.(5.22). Consequently,

the functional-expansion of Eq.(7.4) is represented as

Tnno) — N(HT) _A é]_‘_pu’(r)} A }dr,
neCriv) e BJ—__—’;?!UJ) o{’nCHU) 0 . (7.7)

By putting Usv in the above equation and using Eq.(5.19) we

obtain a quantal PY equation in the form

ANy = NV Mo }
B C(r) = ~m, {nO(riU) { (7.8)

Here we make a further approximation,

ne(rly) = JCLU] (7.9)

.‘38_
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in order to obtain an explicit expression for n°(r|v) in Eq.(7.8).
Since the Fourier transforms of E(r) and n(rlv) are expressed in
terms of Xq and xg as seen from Egs.(5.15) and (5.19), the
Fourier transform of Eq.(7.8) is an equation for xQ,so that the
combined use of Eqs.(7.8), (2.41), (2.43) and (3.2) determines
S(Q,w), g(r) and Zg(e) in a self-consistent manner.

In the classical limit, Eq.(7.8) reduces to the classical
PY equation since

A : ~pU nerty)
(B =1, fom RV =RET omd 5 =Meflr)

%0 x>0

Furthermore, we remark here that in a Fermi system at zero tem-

perature, the function R[v] is written as

Yelvl [1-vw/EJ Y2 | (u/g, < 1)

__1;{___ - (7.10)
° 0 , W/rE: 21),

so that the potential in ®[v] plays the same role as the hard=
sphere potential when v(r)/Epgl (EF; the Fermi energy).
On making use of the OZ relation (5.21), Eq.(7.8) can be

put in an alternative form,

Nerlv) = vV {1+ T} (7.11)
where

’f(r) = ’naf{é\é\(lr;r't)}{-mgg)—i}dr' (7.12)

If we put here

Tw) = ’ncrw)/fnomv) = 1+77Cr) , (7.13)

-38—
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elr) = ’)’L°CHU)/’n° , (7.14)

‘S‘(Y‘) = ) — 1 , (7.15)

then Eq.(7.11) is rewritten as
Tr) = 1-n.g’l‘(ﬂ){c(r’)dr’-mof‘t(r')ﬂr')'?(&w’! Jedrsr)dr’ (7.16)

which is the identical form to the classical PY equation31).

Therefore, in the case of the hard-sphere system with a diameter

Oy because of

olm { , Cr>om)
r) = (7.17)
g , (r<om) ,

the solution of Eq.(7.16) is nothing but the classical one
obtained by WertheimSl) in the closed form, so that for quantum
hard-sphere fluids (Fermions or Bosons) the quantal direct
correlation function C(r) is expressed in terms of the classical

direct correlation function CH(r), as

% C(@) Cu(a) , (7.18)

where
N, CH (6) = ? [‘nocﬂ(r)] = *zwfdﬁ 4 M (A:a‘ﬂe)r.up,u)cu) ,
3 (7.19)
R = (T/6) MoOhn , (7.20)

o= (H2Y/ Q)% 5 p= btz /!
[ 2 |
= 22+ (eayt

_40 —
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The canonical density-density correlation function XQ is also

expressed as

9(;/{ 1= n,Cq (GJ} . | (7.21)

In the second place, we are concerned with the derivation
of a quantal extension of HNC equation. For this purpose by
analogy with the classical case, we take as a generating func-
tional

N(rio)
Gl'['n] Im 0] (7.22)

whose functional derivative at n, is given by
S mencrm] _ SCrr) A S-pow]]
sneyl” niriv

R Sna) 1, - Y

Thus, the functional Taylor's expansion of Eq.(7.22} truncated

at the first order is written as

A ¢ / ¢ _ NG ’hCH )

By putting U=v in Eq.(7.24), we obtain a quantal HNC equation

AN _ My g mHU) °Criv)
B C(r) T Q/h MNe n

which is rewritten by using the 0Z relation (5.21) in the form

Ny = neerw expi g (7.26)

?

°

(7.25)

where Y(r) is defined by Eq.(7.12). Obviously Eq.(7.25) in
the classical limit reduces to the usual HNC equation. It
should be mentioned here that in addition to Eq.(7.25) there

is another quantal extension of the HNC equation as will be

shown in §9B.
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§8. Generalization of Landau kinetic equation

In this section we show that Eq.(2.27) with an effective
interaction BVeff(Q)=-E(Q) obtained by the quantal PY or HNC
equations derived in §7 gives an extension of the Landau kinetic
equation in the Fermi-liquid theory to the case of Fermion and
Bosons in the large (Q,w) region at T$#0. In Eq.(2.27), however,
the momentum dependence of the scattering amplitude function

f in the Landau theory is neglected.

pp’
Considering the fact the PY equation (7.11) is written as

BCr) = %CHUJ/nO —{ =T ) (8.1)

{41[1;]—1} {1+’?<r~)}

where

IP[U] ’ﬂ“CHU‘)/-no ""“—" oelvul /fn_o , (8.2)

we can represent the Fourier transform of the direct corre-

|l

lation function in the form

9(90-7!06'(@) = W.F:(é)‘fg}(é,i)mf(f)if (8.3)
“7"0F:((§)

1

*

'n.,F: &) = %aj{lpfv]-i}emrdr , (8.4)
SW tnoFyc)dt (8:5)

7427



JAERI-M 5349

In the special case of the hard-sphere, it has been shown in

87 that ‘
nF(e) = =N Cr (@), | (8.7)

From the above consideration and Eqs.(2.27) and (8.3), we can

write a kinetic equation for 6np(Q,m)=<p Q>[ =-iw] as

_ Fe) 4 0
(hoo 50070 ) (0,00 +H{ My oMy s |5 25 SRS vzén (@w=0.

In the case of Fermion this equation reduces to the Landau
equation if we take the wave-vector Q small and T=0 as shown
below: If we define ep=Re(s)and neglect Im(s%where € is the
solution of

8_8‘2..2?(2):0 , (8.9)

the function fQ(p) defined by Eq.(2.14) in the small Q limit
is expressed as
1 anC8)
/al/n -5-0(19) = — — (8.10)
e &

with the use of the relation

2 R
{G[-:(E)} = 'a%??q"?(z) ’ (8.11)

where n(€)=exp[8(e-u)-n]'1-

Because of Eq.(8.10) and the relation in the small Q

an (s g
R(Speo) “Mpon) = ST OFE |

Eq.(2.25) is written as

\ o Lgofle
wpa == 3@/ = 78T 1
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Also, by using Eq.(8.10), Eq.(2.19) in the small Q limit becomes

9""‘[3%; = 2{9)""_}(-6(’?)}

[~ Sl @0
4 anCE _ 1 _
:Z: - ,J‘%;‘SCE? /bk)
= 3m"/¢P = ww) /N , (8.14)

where m* is the effective mass and Y(0) the density of states;
PF’ the Fermi momentum. Hence, finally Eq.(8.8) in the small
Q region is shown to become

(8.15)
where

V‘, 8‘3 ’ (8.16)

P —_—
§o = F@ /{Y0/N] (5.17)

This is the Landau equation with an approximate scattering
amplitude functien fPP'#foo' Note that,in Eq.(8.15), foo
is determined by the quantal PY equation; for example, in the
case of the hard-sphere
-f — ‘?;?- (I-+QEQ~)1
oo 3m* (1—2)t .

From Eq.(8,15) the sound velocity s is represented as

42 = —fﬁig{ 1+ F(07} (8.19)

3mm »

which is identical to the formula given by Landau. Thus we can

(8.18)

consider Eq.(8.8) as an extended Landau kinetic equation for
the large (Q,w) region at non-zero temperatures. This situation
is not altered if we use the quantal HNC equation (7.26) instead

of Eq.(7.11).
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£89. Integral equations for charged quantum fluids

Since the Coulomb potential consists of both long-range
and strong short-range parts, the PY and HNC equations are
not applicable to a charged particle system even in the clas-
sical case when the density of a system increasessz).

Remedying these defects, we have previously derived integral
equationsls) suitable for a charged particle system even in the
high density region. In this section, we extend these inteéral

equations applicable to a quantum system such as an electron

gas at zero temperature.

(A) Equations appropriate to a slowly varying potential

As shown in §6, the density n(rfU) in a nonuniform system
due to a slowly-varying external potential U, that is, in the

case of |n(r|U)—n0|/n0<1, is approximately determined by

L ..Vn("'lu') + ’R(HU)VU?‘(r) = O) (9.1)
TN, o5

where UD(r) is defined by Eq.(6.14),

This fact suggests that to derive an integral equation
suitable for fluids interacting via a slowly varying potential

we should take

G‘In] = ni}f.vn(rl'U') + N(r| U)VU'E (r), (9.2)
o N\T

for a generating functional, whose functional derivative with

respect to n(r) is written as

SG‘[‘T’-] - 1 —r’) +T §_‘Z_(Ll+nVUJ .
i Mo LAL Al R
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where
(9.4)

Il

D ~
pUTCr) - C(r) .
Hence, the functional Taylor's expansion of G truncated at the

first order is

e S r_ﬁv(.r)]
VS 71.0"') 0

= —~n(nD) VU'E{CY‘) +')1,,V§U‘D(1r—r’| ){'n(r’m)—-no} dr’

{mcﬁw—-m}dr’ 9.5)

from which by setting U(r)=v(r) an integral equation is derived

in the form

Vé(ﬁ = ._.?_lﬁ%f’l VﬁUB(” + Vp{’ucr) -—'U%(r)} [(5.6)

where

UD (r) = Y +5UDCIr—H){'nCr 1o — m}dr (5.7)

This equation is rewritten by taking Fourier transform in the

form

- ? o [ X 4%
%'(G) V@) + 7o g—l Un (7}){ x'z;i" *i}(u'):' (9.8)
vl — Gla)}

il

where
1
Uf.g(O)_ Ue)+ 7"6(3(;(-0 Xo 7(9 1) (9.9)
ve)/ €e) ,
1/@-(0):5 ‘XG/Q(; - Gr(@){xo/“o—i} (9.10)

g@% U@ L {%o-ﬂ __1
QU@ T ;{a_‘“ (wa (9.11)

Gle) =
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Remenbering the relation

o
(Xa/[ 1+n,ﬁv(0J{1—Gfm} Xs],
we obtain from Eq.(6.11) the recurrence formula for G(Q)

~Ge) = 7 (% {2 (B i){%il -4jak, o

in the case of an electron gas.
With the aid of Eqs.(9.5) and (5.10), an integral equation

for the density (charge) distribution n{r|U) under the external

potential U(r) is expressed as

[ nenm =y (5.13)
~ —{oe)+{2 72w T, foo-nIinpa

. !
where

4 |
UE{ @)= Ule)+ (17 */;60)55' [?ZOPIU)-%] (9.14)

Since the function XQ can be determined from Eq.(9.6), this
equation contains only one unknown function n(r|U). If we take

only the first term of Eq.(9.13), we obtain the linear response

formula

F [ ~n] = — TG)nphq, ©39

which is written for U(r)=v(r) in the form

1

Ty e —n.] = ~ V@) mplp = g5 -1, 010
where
) = lr Vi T(@), (9.17)
TTe) = M 9(2 /{1—2}‘(@) (—'r(a)‘nop;(;} (9.18)
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while the nonlinear response n(r|v) to the external potential

U=v is determined by

ga [nciv)=n,] = %a/glao ~1 | ) (9.19)

Therefore, Eq.(9.13) determines the nonlinear density response
n(r|U) to the external potential U. Due to the condition
In{r|U)-n_ |/n 1 under which Eq.(9.13) is derived, Eq.(9.13)
does not give n(r|U) so well in the small r region where the
Coulomb potentiallis strong and steep.

We give here the two remarks concerning Eq.(9.8). If we
make an approximation, Ug(r)%U(r) in Eq.(9.2), Eq.(9.11) reduces

to

1 18% (Xia-p1 _ 4] 4%
Ge)=-% 3[7{'0_‘“ [om . oo

that is, €(Q)=1, in Eq.(9.11). 1In comparison of Eq.(9.20) with

7), their equation is obtained from

the result of Singwi et al.
Eq.(9.20) by replacing X|Q-q|/XO|Q-q| by S(|Q-q|) which is the
classical limit of the former.

Next, if we make an appromimation, T(r)=-gv(r), that is,

if we use in Eq.(9.6)

Uulr) = U + U(lr-r?){’)?(r’:u)—-no}dr” (9.21)

instead of Vg(r), we obtain

G’(Q)= i Q?f 7(‘1 XIG-S-I _1 éia (9.22)
n) %* 7(2' X} o—yi @’ .
In comparison of Eq.(9.22) with a later work of Singwi et al.g)

there are the following two differences;

(i), the factor XIQ'q|/X0|Q-ql in Eq.{9.22) is replaced by
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s(|Q-ql) and (ii), x:/xq=1+v(1-G)xgEee(q) is replaced by
e{(g)zl+v(q)n(q) where w(q) is defined by Eq.(9.18). The
difference (ii) means that in the result of Singwi et al.
ﬁb[n(rlv)-no] is approximated by the linear respomnse, 1/¢(Q}-1,
as shown by Egs.(9.16) and (9.19).

(B) PY equation with a -screened potential

In a fluid interacting via a long-range potential the
Hartree field (the screening effect) plays an important role.
The Thomas-Fermi method taking account of this effect gives
the density n(r|U) in a nonuniform electron gas due to imposi-

tion of the external potential U(r) in the form

Nv) = 2t UH(r)] , (9.23)

where

U.(n) = o +JU(|"‘"U£?‘2(r'IU‘)—72°f dr’ (9.24)

From this fact we can see that in order to derive an
equation in such a way as to take account of the Hartree field
we should take

= o

Gr['n] %CHU‘)/QQ CrlTw) (9.25)
for a generating functional, whose functional derivative is
written as

sGin]| _ aCr—r') _3 s-puen]| pUG""”U

S )|, 72, S mery

(9.26)
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A
Here, B is the operator defined by Eq.(5.22). Consequently an

equation for n(r|U) in the external potential U(r) is expressed

A
égjzngll ’ - } 4
B gncy.l) 0 na'lU') 7?0 Ar (9.27)
—. _nriu) Ne } R Uar—r'l){n(r'm')—ﬂ. dr’
o N i R%r|0,) i+ BJ } ‘
By putting U(r)=v(r) in Eq.(9.27), we obtain an equation for
n{r|v)
~ — /\—£_7Q[T12f9 { U . ‘}
C(f‘) - B e, nOCHU,‘,,) 1
- 72.[3{150‘) —~ Uy Cr‘)} (9.28)
’

where Vy is defined by Eq.(9.21). This equation (9.28) may be
rewritten with the use of the 0Z relation (5.21) in a different

form

rriy) = 72°CVIUH){1+'7(H+§-n,f:(v-?};{)} (9.29)

For a moment, we are concerned with the case of an electron

15], if we use {n(r[v)—no}

gas. As is shown in the classical case
obtained by the Thomas-Fermi theory in an electron gas at T=0

as an approximation, Eq.(9.28) is written as

A
~ -1 Neriy) 2 Q@
Ciry = -8 2L o, [ [Serorr]— 1]

- nﬂ—?ﬁ { 1 - e-er}) (9.30)

- 507
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where QTF is the Thormas-Fermi constant, so that the direct
correlation function C(r) and the potential ez/r are auto-
matically separated into the short-range and 1lOng-range parts.

Since Eq.,(7.2) for zero temperature reduces to

PCrun) o LU O s (Unlg.21)
e | o Y2 1
L=V [Ee )", (Vnlg< ),

there follows from Eq.(%.29)

YUY) =0 For Unln/E. 2 1, (9.32)
so that n(r{v) never becomes negative near the origin. If we
evaluate VH(r) by applying the RPA in the calculation of

{n(rlv)—no} in Eq.(9.21), this screened potential in the small

distance is expressed as32)
. 4 —ax
UHO”)/EF =Xl e T cesax (9.33)
where X=ppT, a=2f§js}154 EF and a=(4/9n)1/3, whence we can

estimate X, which satisfies n(r|v)=0 for rppé‘xo; for example,
xo=0.75 for rs=4. Note that this analysis (9.33) cannot be
applied to an electron gas of high density since Eq.(9.23)
does not take account of the exchange effect. From the above
consideration we can expect that Eq.(9.28) could determine g(r)
in the small distance correctly.

Next, we proceed to the derivation of another type of
quantal HNC equation besides Eq.(7.26). In-56, we have shown
that the Thomas-Fermi method can be generalized by replacing
UH(r) by Ug(r) defined by Eq.(6.14). This fact suggests that

no(r|UH) in the generating functional (9.25) may be replaced by

no(r|Up) .

(8.31)
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Therefore, we choose as a generating functional

Gf['n] = N(r U)/'n"(rlUﬁ) , (9.34)

where Ug is defined by Eq.(6.14). In this case, the functio-
nal derivative of Eq.(9.34) with respect to n(r) at n, is
shown to becomes zero:

_ Sl g{&:&_} FU”} (9.35)

Snwle No sSner)

since the Fourier transform of the above equation becomes

A R L A 2

so that the functional Taylor's expansion of Eq.(9.34) truncated

at the first order reduces to

NUFIT) = %CH|TR) . (9.37)

By putting U=v in Eq.(9.37)}, we obtain an integral equation
P
mlrlv) = %r°rlva)

-1
%g(zn)?*{ H;P( +U,..(r) /U()] } (9.38)
where
(ﬂfﬁ r) _=_/3U<r') —-Jé\tlr—r’t){?'l("m*??o}“" (9.39)

and this equation can be written in an alternative form

CCY') =-3 1_7_1_%:;_){” (rllfz)-_i}' —P(U-UE) (9.40)

In the classical limit, Eq.(9.38) reduces to the classical
HNC equation. In this sense we can regard Eqs.(9.38) as well

as (7.26) as a quantal HNC equation.

_52_
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(C) Equations involving separated potentials

Though the short-range effect has been taken into account
to some extent, Eq.(9.6) is essentilly appropriate to fluids
with slow-varying long-range potentials. On the contrary,
Eq.t9.28) is suitable for systems with short-range potential,
the long-range part being taken into account in a type of the
RPA, that is,iﬁL(rj=-vL(r). In this section we derive combined
equations of EquQ.6] an& (9.28) by dividing the potential into
the short-range and 10Ong-range parts.

As shown in classical fluidsls), we can show that if direct’
correlation functions E;(rlv) (i=1.. m) are derived from
generating functionals Gi{n], respectively, by the Percus method,

new integral equations are given by

Clriv) =81(HPLU)+---- +C,;;,,(rlp,,z;), (9.41)
6CH U) "—'-‘0(181(”U)+'"' +Nm6:(rzv), (9.42)

where.pi's are operators separating the potential v(r) into the
i-th component (p1+}2+~- pm=1), and ai's arbitrary constants
(CL1+' .. +am=l)'

According to Eq.(9.41) we obtain an integral equation by

combining Eqs.(9.6) and (9.28)
~ -{ hnu) _
V) = - p[ B BGR n - 1] + TRV
- By~ Tp{ U=y ] (043

>
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where

Ul = U‘+S-U1(lr—r':)§ncr’w)—-m}a“”’; (i=S.L), (9.49)
= 31 ) ; US o= ;K.ZI .

With the aid of Eq.(5.21), this equation is rewritten in the

form
n(riy)= ?'Z"(VIU,?;)[ 1+7<r) +§{(52I:+ a_(r)}] (9.45)
where

V(= -—ﬂ—(%i)-VpU; —-[AV(U-U;) ) (9.46)

As is shown in §6, the bare potential v(r) in the Hartree
field may be replaced by the direct correlation function C(r),
that is, UH(r) by Ug(r). Hence, we can generalized Eq.(9.45)

with the replacements of vé(r) by
U?_f(r) = Vir) +f)fm(lr—r’l){’ncriw—-n,,}dr; (9.47)
P.UP ;(i=5,1)

and the result is written in the form

A

N =M RV 1+ By} e

Here,

Vél(rlv?i‘) - 'mmf) RUIY) g - .
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The density (charge) distribution n(r|U) under the external

potential U(r), associated with Eq.(9.48), is given by

NCrIT) = N°Cr o) { L+ B Perivin)y (550

where

VP(H U’ZL) = —EC—%L—UQVPU':L (9.51)

U?f(r) = ?‘;U'CFJ+SUD%IH7){n(rﬁU)-n°}dr'; (9.52)
(1=S,L),

When we apply these equations to an electron gas, it is

proper to adopt

g = @RHC*‘) ; EL_:]_-—M,}(C}@) (9.53)

as separating operators according to Ewa1d34).

_55*
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§10. Generalization of Landau-Silin kinetic equation

In this section, on the basis of integral equations derived

in 59, we prove that Eq.(2.27) in conjunction with Eq.(9.43) or

(9.48) becomes the Landau-Silin kinetic equationz) in the case

of an electron gas.

In the first place, the Fourier transform of Eq.(9.43) is

written in the form
.

02.5(5) = 7, C, (@) +n, e (5) 0.1
= —nF(8)) XS — nafp UB)H1-G (&)}
where
o “~ oo R . ~ _
Xz 1Ly (3) EfK(c'i TG+ X {080 )mCLci)}]d 7
+%0F5(5)+71¢.[5U:( (5')-%3'5 — 7, F—(é‘) (10.2)
- ?706:(5) = WQ/}U(@H‘?‘ Jz eﬁ(e 2)[_1 1.]4?

= ’)26[5?)'(5){1—@(5)}, (10.3)
‘L - =, =1 =
L. f{“ T apUs ) (%61 now
-1 ’

U,';’,(ES) = UNE) Xg/X5 5 (L=sS,L) aes

_56 -
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from which there follows
Q
Xa

= (10.6)
X l+['n°pucm{i—cr(m}-f-mF(c-\)/x;J%; .

Here, the term nOBvEQ){l-G(Q)} comes mainly from the long-range

part of the potential and the term nOF(Q) from the short-range
part. As for Eq.(9.48), the above situation is quite similar.
From Egs.{10.1) and (2.29}, Eq.(2.27) is written for 6np(Q,m)=

<pr>[z=-im] in the form

(h-Ewpa) S Ty (@, w) +{ Ny, ™ -0, U0 1-cw@r} +f,—%]7'};1 n,.(0.)

= O. (10.7)
Foliowing the same procedure as in §8, Eq.(10.7) in the small Q

1imit is rewritten as

)
(keo=@0))STp( @, W) + BYp %%d[ma) {1-G@)}+ {y::%}] 12522 (@)

= O, (10.3)
which is to be compared with the Landau-Silin equation

(ko-08,) SNy (@00 + 0O, TEEL Z{ V(@) + Fpprf @(;o; - o,

From Eq.(10.8) the compressibility sum rule in an electron

gas is drived as

‘?Eé“i - *03’31{ ‘ﬂ:‘(a) "’i}
_ }5753{ -1 U(O)WP,'{’}

ll

fim { Fle)— U@/ Cr(@)nopx ‘g

\\

F(o) — %G"LO)(@TF/OF) (10.10)
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. *
where Qp is the Fermi wavevector and K% = 3m /nopé

In contrast with Eq. (10.10), the Landau-Silin equation yields

i;\j-_; 1 = [~ (0) , (10.11)

since G(Q) = 0 in Eq.(10.9), and the treatment of Singwil et al.

7},9)

gives

0 . 1 i 2
%% —_— j_ = - EGCO)(QTF/Q'F) , (10.12)

which means that the short-range effect is not taken intoc account
appropriately in their treatment. Thus, we can see from Eq.(10.10)
that there is a close relation between the violation of the
compressibility sum rule and the behaviour of g(r) in the small

distance as mentioned in 89B.
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§11. Application to the electron gas

In §9, we have derived integral equations appropriate
to charged particle systems. An essential difference between
one of our equations and the Singwi et al. equation7) is ex-
pressed by Eqs(9.20) and (1.3), that is,X]Qﬂ”/X%}q|is replaced
by S(|Q-q|) in their equation. For comparison with the Singwi

et al. result, we solved numerically the equation for XQ}

Cey/p =v@ {1~ 6@} o1y

with G(Q) defined by Eq.(9.20) in the approximation, Z§(5)=0,
and with the aid of Eqs.(2.43) and (5.19) we obtain g(r) and
n(r|v).

The results are shown in Fig.2(A)-2(C) for the values of
rs=2, 3 and 5, respectively. In these figures, g(r)'s are
expressed in Fig.({a); the full lines denote our results and the
dotted lines,the Singwi et al. results. The curves of the den-
sity n(r|v) in the presence of the external field U(r)=v(r)
are shown in Fig.(b); full lines (i) and (ii) denote our cal-
culation and the results calculated from the linear response
formula (9.16), respectively, and the dotted curves are obtained
from the nonlinear formula (9.19) with the use of XQ of Singwi
et al.

It should be noted that in our calculation, g(r) remains
positive at r5=5 where the results of Singwi et al. become neg-
ative. Even at rs=6, g(r) obtained from our formula remains
positive, that 1is, g(0)=0.146 whereas in the Singwi et al. result
g(0)=-0.03, and becomes jdentical with their result in the large

distance. However, the density n(r|v) in the small r becomes
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negative at r _=3; this breakdown is natural because Eq.(9.20)

is drived under the condition that the potential is slowly
varying. As T increases, the difference between n(riv) calculated
from the nonlinear formula and that obtained in the linear
approximation becomes large. The linear response theory gives
quite unsatisfactory n(r|v) and yields an overestimated amplitude

of oscillations in the charge density around the impurity.
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Fig. 2
(a} The radial distribu-
tion function g(r) and

(b) the density n(r]v)

The present theory,

the full curves in {(a)

and (i) in (b);

the Singwi et al. results,
the dotted curves;

the linear theory, the
full curves (ii).

the number associated with
curves (ii) denotes the

value of n(r=0|v).
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§12. Summary and concluding remarks

In the present study, we have obtained a set of self=
consistent equations for the density-density response functioen
xQ(m), the density-density canonical correlation XQ and the
self-energy Eg(e), which are given by Eqs.(2.40), (3.2) and an
integral equation such as Eq.(9.8); these equations can be
considered to determine, in a self-consistent manner, the dy-

namic and static structure factors, S(Q,w) and S(Q), and the

distribution function np due to the relations (2.41) and (2.43)

o At L 121
Ny =-T JEef“-—‘z }m{ 2.—&?,+)L—Z';(u .

and

- 00

In the first place, we have derived an approximate equation

. T .
of motion (2.27) for pr ap-Q/Zap+Q/2’ that 1is,

o _ |
k0o =i%a8pa  + { My oy ~Ppoul Ven(@5) S

. . o _ ' (12.2)
as a generalized Langevin equatlon 1in the Mori theory. In

comparison with the usual Hartree equation which is obtained
with the use of the RPA:

T £ o jLE:
Eq.(12.2) is different in the following points: the streaming
term pQ/m in Eq.(12.3)} is replaced by thQ which is a functional
of the self-energy as defined by Eq.(2.25), and also the bare
potential v(Q) and the distribution function n(e°p) for an ideal
gas in Eq.(12.3) are replaced, respectively, by the effective
potential Veff(Q), which is represented in terms of XQ and XOQ

as shown by Eq.(2.29), and the distribution function np determined
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by Eq.(12.1). In this sense, Eq.(2.27) can be regérded as a
generalized Hartree equation. From Eq.(12.2) or (2.27), the
density-density response function xQ(m) is expressed as
Eq.(2.40) which is quite similar to the formula obtained by
the use of the usual Hartree approximation.

In the expression for XQ(w) and np and also in the equation
of motion (12.2), the functions, XQ and Ei[g), remain to
be determined. 1In the second place, we have obtained an equation
(3.2) for the self-energy with the use of the Hartree-Fock ap-
proximation.

In the third place, we have set up integral equationsfor
XQ by extending the Percus method to the case of quantum fluids.
For this purpose, a quantal direct correlation function C(r) was
obtained as Eq.(5.15) on the basis of a generalized Hartree
equation (12.2). By making the ansatz (5.18), a quantal
Ornstein-Zernike relation (5.21) was derived as a relation between
C(r) and the inhomogeneous density n(riv) in the presence of an
external potential U(r}=v(r). Our definition of quantal direct
correlation function, (5.15), gave extensions of the results of
the Hohenberg-Kohn-Mermin theory for a nonuniform electron gas
in the forms of (6.13) and (6.17), and also extended the Percus
method to treat quantum fluids. Thus, we have derived a quantal
PY equation (7.8) and two quantal HNC equations, (7.25) and
(9.38), by applying the Percus method to neutral quantum fluids.
For charged quantum fluids such as an electron gas, we have
obtained three types of equations for XQ’ The first type of
equation , (9.8), is appropriate to treat a filuid with a slowly
varying potential, and includes the Singwi et al. equation,7)

as a special case. The second equation is an improved.quantal

_63_
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PY equation (9.28), in which the long-range potential is taken
into account in the form of the Hartree field. The third type

of equation is Eq.(9.45) or (9.48), which is composed of two
equations; One is the improved PY equation (9.28) involving

the short-range part of the potential and the other, the eguation
(9.8) invelving the long-range part.

Also, we have derived formulas (9.13), (9.27) and (9.50) for
the nonlinear density response n(r|U) to a static external poten-
tial U(r). These equations for n(r|U) contain XQ which can be
determined by a suitable integral equation for n(r|v). By using
these formulas, we can calculate, for example, the electron
density around an impurity in the electron gas.

Our generalized Hartree equation (2.27) for the case of
neutral and charged quantum fluids has provided us with Eqs. (8.8)
and (10.7), which are shown to be microscopic generalizations of
the Landau equation and of the Landau-Silin equation for large
wavevectors Q and high frequencies w, respectively.

Important points of our method may be emphasized in the
following way. The ordinary equation of motion in the RPA (12.3)
offers microscopic description of quantum fluids; this description,
however, gives correct Tesults only in the case where the inter-
action is sufficiently weak and the average potential energy is
small compared to the kinetic energy. On the other hand, although
the Landau theory of Fermi liquids {or the Landau-Silin theory
of the electron gas) has the advantage of being applicable to any
normal liquid, irrespective of its density and its strength of
interaction, this theory can provide no account of microscopic
properties such as the radial distribution function, and its

validity is limited to phenomena in the macroscopic regime, small
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wavevectors and low frequencies, and in the low-temperature
limit. As was shown by Eqgs.(8.8) and (10.7), our generalized
Hartree equation (12.2) led to extensions of the Landau and
the Landau-Silin equations to describe microscopic phencmena
involving large values of Q and w at nonzero temperature not
only in Fermion, but also in Boson systems. Moreover, this
equation, with the combined use of integral equations for

and Z?(e), gave a systematic method for obtdining explicit

XQ

results (not in the formal way) for the radial distribution

" function g(r), the space-time correlation function G(r,t) and

the distribution n, for both neutral and charged quantum fluids.
(Fermions or Bosons) including classical ones, irrespective of
law of interaction, from a unified point of view, and bridged
the gap between the macroscopic Landau approach and the RPA
theory.

In our treatment, we neglected the damping function 3(2),
that is, we adopted the collisionless approximation. In conse-
quence, our results are not applicable to the hydrodynamical
region. The fundamental approximation in our method is repre-
sented by Eq.(2.12). Relation (2.20) is derived in this approxi-
mation and is exact in the classical limit. Neglect of momentum
dependence in Eq.(2.12) corresponds to the approximation that,
in Landau's Fermi-liquid theory, the scattering amplitude func-

tion £, , is independent of p and p. The meaning of the approxi-

pp’
mation involved in the expression of XQ(m) or S(Q,w) can be

understood from our generalized Hartree equation (12.2) since

this equation is nothing but a generalized Langevin equation of

motion associated with the representation of TSD[Z] in the Mori
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theory.

In order to extend our method to the hydrodynamic regime,
we must evaluate the damping function 3(2). This is not an
easy work for a quantal system.

It should be noted that quantal integral equations are
set up not for the radial distribution function g(r) but for
n(r|v). The function n(r|v) is not so strongly coupled with
the dynamics of atoms as g(r) in the sense that the function
n(r|v) is related to XQ=XQ(m=o) whereas the radial distribution
function g(r) to S(Q)=j_:%%ceu(@-ti-‘i)jqu(w)dw , that is, to
the all w-range of XQ(w).

In the present study, we have made the approximation

N = (4| exp{ ple

-1
w— +Tr1=M ;- 12.4
CHTmp)-R | Gz
but this approximation is improved if we use the relation

4 dp 1 L
n (r‘l“U') (wsf ¢ ert _y 9’“{5_ a‘;,ﬂx.(r)—'z,(s)
= 2%, [ 0] e

where
JMCr) =-Ulr) + M

In Eqs.(7.8), (7.26) and (9.28), the exchange effect is mnot
taken into account so that, for example, Eq.(9.28) is not ap-
plicable to an electron gas in the high densities. It is not
difficult, however, to take account of the exchange effect in
Eqs.(7.8) and (9.28), as was done in the Thomas-Fermi theory.

We remark that the functional derivative, with respect to

U, of7?1[U] defined by Eq.(12.5) gives
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g,Q[SB’TJEU]

S-pUCr]

SRCrim| T o°
?lﬁ[éf—pv(r')]la]— /((Q . (12.7)

Thus, approximate expressions for n°(r|U) which satisfy Eq.(12.7)

| =

1 9% . 1v?®
— B am Ka=o , (12.6)

while

are required in order to improve integral equations such as
Eqs.(7.8) and (9.43).

Concerning the ansatz (5.18), that is,

['ﬂU”IU) 7'2] 9(0/9(" — 1 (12.8)

we give here three remarks. Recently Sjolander and StottSS)

have derived an integral equation for the electron density
around a point particle in the electron gas, taking into ac-
count nonlinear effects. Their equation for an impurity with

an infinite mass and the same charge as an electron is rewritten

in our notation
7*’(@) = —{U(G»)‘l' g—%-UC%)‘X""“Q_y)%}[SXQ , (12.9)

where

Il

’DM- (@) %Q [W(FIU)/fno—'i] . (12.10)

In this equation, they have used

Ge) = -7 S {S([@ 94) 1}2% , (12.11)

in the calculation of XQ=XQ/[1+V(Q){1-G(Q)}X6]. If we use

— Q% Xia-5% _
G(e) S %‘L{'xla—y 1}(2_10, : (12.12)
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instead of Eq.(12.11), then the solution for Eq.(12.9) is written

in the form,

P = K/ Ao -1}

this is nothing but the ansatz (12.8). Moreover, our evaluation
of n(r|v) shows a fairly good agreement with the results of
Sjolander and stott>) .

Also, it is important to note that, in contrast to the result
of a later Singwi et al. workg), the ansatz (12.8) gives the so=
called "electron-dielectric constant“36), ee(Q)=x8/xQ=1+v(1-G)x8,
in Eq.(9.22).

The last remark is that, as is seen from Eq.(9.16), the
ansatz (12.8) combined with XQ and Xg obtained by using RPA gives
the density response n(r|v)} in the linear approximation. In other
words, the RPA result is obtained in our method as follows: with

the aid of the ansatz (12.8), the functional expansion of n(r|U)

with respect to U(r)

- ST [ (el dr” |
mcrio) = n, +S SEpr] o{ p'D‘(r)f dr , (12.14)

yields the RPA result;

Xa = X&/{HU(Q)X;} ,

by putting U(r)=v(r) and by taking the Fourier transform. All
these facts indicate that the ansatz (12.8) is reasonable in
our framework.

An extension of this method to systems of binary mixture537)

and to systems with spin variables, can be performed without

further difficulties. The momentum dependence in the vertex



JAERI-M 5348

part Fpgien,eﬁ:wm=0) in Eq.(2.12) may be taken into account,
as was done in the lLandau theory, by expanding in a series of
Legendre polynomials. It is important to generalize this
method to be applicable to the hydrodynamic regime and also
to extend the linearized. equation of motion (12.2) so as to

treat nonlinear effects such as in critical phenomena,
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