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A numerical simulation of the tokamak plasma with the magnetohydro-
dynamic fluid model is des;ribed. The code has the following two applications:
interpretation of the experiment of a tokamak plasma with a dynamic limiter,
and comparison of the experimenta] with the theoretical results obtained with
various transport theories. For the former application position of the
boundary in the code is movable. For the latter main part of the c;de can

be written automatically in a formula manipulation language {IBM-FORMAC).

txamples of the numerical calculation are also given.

* Present Mddress: Institute of Plasma Physics, Nagoya University, Nagoya
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1. Introduction

The main objective of the computer simulation of a tokamak plasma de-
scribed in this article is twofold. Firstly, we aim at the comparison of
the results obtained by the simulation and an experiment in which a dynamic
11miter]) is used. For this purpose the model for the code includes idn-
ization and charge exchange processes and the position of the boundary for
the numerical calculation is movable. Secondly, we aim at seeking the
way how we can get agreement between various quantities obtained by the

simulation and the experiment, especially, by taking various kinds of atomic

processes into-account. For this purpose we used an "Automatic Code Gener-

ator" to write the main part of the simulation code, in order to rewrite
the code easily when we would like to modify the set of the differential
equations. |

As for the work in reference to the first objective, Matsuda wrote
a computer codez) and studied a plasma behaviour numerically. In the code,
however, the plasma current was assumed to be constant and the source term
of the particle diffusion was neglected. Therefore, it is not satisfactory
to use the code for comparison of the results of the simulation with the
experimental results obtained in JFT-2 tokamak. In extending the code to
more general one we 1mpro§ed the code in the following two points. First,
we chose the mesh point at the position of the dynamic Timiter as the
boundary of the calculation, though in Ref.(2), the mesh point of the bound-
ary was fixed and anomaly factors were multiplied to the transport coeffi-
cients of the plasma in the shade of the dynamic limiter. By virtue of this
improvement the code can be applied to the simulation where a plasma current
changes violently. Second, we used the recursion formula to solve the
resulting Tinear simultaneous equations in order to reduce the computational
time and the size of the core area.

As for the second objective a lot of computer codes have been developed
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by many authors to simulate the spatial and temporal evolution of plasma
behaviour in a tokamak. For the simulation of the basic process of a

plasma it is desirable to develop a computer code with a particle model.

At pfesent, however, no satisfactory computer code with a particle model

is found to describe a plasma with high temperature and high density such

as a tokamak plasma. Therefore, the above-mentioned codes and the one

which will be described-in this article are also quid codes. In the field
6f tokamak experiments this kind of the computer code was first developed

by Dnestrovskii et a1.3) and Luc et a1%) to explain the experimental results
of T-3 tokamak. Though the codes were written on a basis of a simple medel,
they succeeded inexplaining the behaviour of the macroscopic quantities of

a tokamak plasma qualitatively. .Thereafter, stimulated by the succees of
them and, moreover, by the remarkably good experimental results obtained
with the T-3 and ST tokamaks, efforts were made to exp]ain, quantitatively,
the experimental results by the computer simulation. For example, the codes
7)

by the originator55’6) became more accurate and Duchs et al.’’ began to

study the plasma behaviour by a new code taking account of more complicated
formula for the transport processesg). Other authors such as Barnett et al.
of Oak Ridge National Laboratoryg) also wrote simulation codes for the tokamaks
of their laboratories. There remain, however, two important problems
concerning the contradictions between the results of the experiments and
the computer simulations. The first one is that there are anomalously

large eneray losses in the experimental results comparing with the results
of the computer simulation when we Took at the behaviour of the macroscopic
quantitieé such as energy confinement time. The second problem is that the
spatial distributions of the plasma quantities obtained experimentally
seems different from those obtained by the computer simulation. They have
close relations with each other. Vhen we compare the results of the

~ experiments Wwith the computer simulations several points should be noted.
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As for the computer simulation it is very important to note that in the
simulation codes we use theoretically obtained transport coefficients which
were derived under some assumptions and some approximations and are not
necessarily confirmed by experimental results. Another important thing
concerning the simulation is the fact that we do not know the initial
condition of the system because in the initial phase of the tokamak discharge
there occurs too complex processes to be preditted theoretically. As for
the experimenta]lresults, the most important thing is that it is, in general,
very difficult and, sometimes, impossible to measure the spatial distributions
of plasma parameters. By this fact even a macroscopic quantity which does
not depend on the spatial coordinates includes large meaéuring errors, if it
depends, implicitly, on the spatial distributions of plasma parameters.
Though many computer codes have been written with due regard to the above
things, it is inevitable that there remain some ambiquities on the choice of
the input parameters of the simulation code, On the basis of the present trans-
port thories, usually three kinds of factors are introduced to explain the
discrepancies between the results of the simulations and the experiments,
that issanomalies due to some unknown mechanisms which are not considered in
the transport theories, the effects of the 1hpurity ions with high atomic
number and the effect of neutral particles. We wrote a computer code
taking notice of the importance of the third one of the above factors and
tried to compare the experimental results obtained by JFT-2(JAERI tokamak)]0’11)
with the results of the simulation. Because one of our aims is to simulate
the plasma behaviour when the dynamic limiter is driven to move, it is especially
imbortant to solve the diffusion eguations with jonization term.

In section 2 the model of the calculation is described. Section 3
describes the method of the calculation briefly. Examples of the solutions
are presented in section 4 and section 5 is devoted to the discussions on

the problems of the code, though the detailed discussions on the comparison
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between the results of the simulation and the experiment of the dynamic limiter
are presented in a separate paper. For the convenience of the users of the

computer code the manual of the code is included in Appendix.

- -
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2. Model of the Calculation
(2-1) Basic Equations

The plasma to be simulated s described by the particle and energy balance
equatons and Maxwell equation. Though we are interested in the behaviour
of a toroidal plasma, we adopt a cylindrical plasma as the model of the
calculation assuming that it is a good approximation to shift the toroidal
effect to the transport coefficients. Recently theoretical works concerning
the neoclassical transport processes are carried out intensively by many
authors and the complicated and precise formula for the process is reportéd
by Hinton et a].]z) We adopted, however, simplified transport formu1as7)
in the code for the sake of the easiness of interpretation of the results
of the simulation. |

The set of the equations consists of four diffusion equations and an
auxiliary equation which describes the relation between the poloidal magnetic
field and the toroidal plasma current, The four diffusion equations are
those for the electric cﬁrrent, the electron density, and the energies of
the electronic and ionic components. By solving the equations we can get
the spatial and temporal evolutions of five quantities, that is, the
poloidal magnetic fie1d(Bp), the electron density(ne), the electron temper-

ature(Te), the ion temperature(Ti) and the toroidal plasma current(jz).

The equations are,
—B __.n_._(l_xB)=O (1)

Sa - %—g-{xD 3pn)-<ovz nn =0 (2)
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R R )

J - l—b;a—x'(XBp) = 0, o (5)

where n is the plasma fesistivity, Teq is the energy equipartition time
between the electronic and ionic components, Dp is the diffusion coefficient,
K (s=electron or ion} is the thermal conductivity, n is the neutral particle
density, <OU>J and <ouQ> are the reaction rate and energy 1oss rate for the
process j (j= fonization, excitation, bremsstrahlung, and charge exchange
processes) averaged over the Maxwellian distribution. - The functibnal forms
of the above quantities'are summarized in Appendix. Though the different
symbols are used for the electron density(ne) and the ion density(ni), as a
matter of convenience, they have in fact the common value in the code and

the effect of impurity ions with high atomic number is not included.

(2-2) Correction on the Reaction Rates

One of the important things of the study is to write a computer code _
which includes a source term in the diffusion equat%on of the particie
density. It requires, however, a long computing time to solve the équations

with the source term because the time constant of the process is very short
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for the neutral particles to be ionized or charge-exchanged and it requires
a very small time step to solve, numerically, the difference equation
derived from the diffusion equation. Therefore we modified the rate
coefficients for the jonization (<0U>1on) and charge exchange (<UU>Ch.EX)
processes after the following consideration. To simplify the discussion

we take account of only the ionization process aﬁd consider the following

equation for the temporal evolution of the neutral particle density (nn),

d _
T " 7 Vion"e™ T o(t.x), (6)

where it should be noted that the spatial distribution of the neutral
particles is determined only by the ionization process and the neutral
influx (& ) whose functional form is given in advance, in other words,

the diffusion of the neutral particles is not taken into account.

Assuming that the time interval (At) is small and the rate coefficient and
the influx do not change considerably during the time interval, we can
solve Eq.(6) analytically and we get the increment of the neutral particle

density for the time interval as,

o = nn(t) {exp(-<ou>1on neAt) -1}

- _;_HEL___{exp(-<Uu>ionneAt) -l]}. (7)

<gu>.
ov 1onne

From the above equation we find that the following modified rate

coefficient <ou>*_ _ can be used instead of the rate coefficient <0U>ion'

ion
1 '<GU>ionneAt o) oAty ]

<gu> ¥ = —{{1- e Yy(1 - ) + }—
ion ne : <GU>ionnenn n_ At

(8)
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As the sink of the neutral particles due to the charge exchange process has
the same functional dependence on My s the same kind of modification can be
applied on the rate coefficient of the process and finally the following

equations are obtained for the two processes,

<oU> ., -(<ou>, +o <ou> Yn_At
<ou> ¥ = e +a1ggu> F}{(]'e ion ¢ ch.ex’e )
jon ¢ ch.ex e
$ 1 1
x(1 ) + —@ At} (9)
(<0U>5 on P <OU>py oy MMy My at
cousk i ULSOU> p oy L[(]_e—(qn»i n+uc<0U>ch.ex)neM)
ch.ex <UU>ion+ac<GU>ch.ex e
o) 1 1
x(1 ) + —% At}
(<UU>ion+ac<GU>ch.ex)ne n M at, (10)

where a. is the ratio of the neutral particle loss after the charge exchange

process.

(2-3) Influx of Neutral Particles

It is conjectured that the neutral particles play an important role in
the energy loss process of the tokamak plasma. And without considering the
effect of the ionization and charge exchange processes of the neutral
particles we can not afford to discuss the behaviour of the plasma when the
dynamic limiter is removed. It is, however, shown in the previous subsection
that to solve the ionization process numerically is a time consuming task,
Therefore, we decided to give a spatial and temporal dependence of the

neutral particle influx externally. The influx is given as,

5(t,x) = F(x)o(t), | (11)
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where ¢(t) is the neutral particle influx per unit volume (particles m'3sec'])
averaged over the plasma cross section, and F(x) is the spatial distribution
of the influx. The former is given numerically as input data for the code

and the latter is given analytically as an exponentially decaying function

of the spatial coordinate as,

ats , 12
Fix) = AXg 12 ~Xp /A x% i (12)
2:2-- 2;2-(]-3 ) + 1- ;‘2‘
p p p
F(x) = exp{-{xg-x}/2} (13)

where A is the penetration length of the neutral particles, Xy and xp are the

radii of the limiter and the boundary of the calculation, respectively.

(2-4) Motion of the Plasma boundary

To simulate the plasma in a tokamak with a dynamic limiter, we intréduce
two kinds of boundaries for the calculation. One is a fixed boundary which
defines the bounds of the region where mesh points are defined and the other
is a movable boundary defined by the edge of the limiter. The pbsitions of
the fixed and the movable boundaries are denoted by xp and X,, respectively.
The region inside the fixed boundary is divided into Nmax'] meshes and for
each time step the calculation is carried out for [(Nmax-]) Xg/xp]+1
mesh points (inside the movable boundary), where [A] denotes an integer n
which satisfies the relation n-1 < A < n. The boundary conditions for the

unknown variables are given at the inner boundary (x=x;} and the values

outside the inner boundary are not calculated in the code,
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3. Method of Calculation

13,14,15) is used to derive the difference equations

The implicit method
corresponding to the differential equations (Egs.(1-5)). After deriving the
difference equations we reduce the size of the matrix for the linear
simultaneous equations by the recursion formula given by Richtmyer and Morton16’17)
The above process is carried out automatically by the""Automatic Code
Generator" written in IBM-FORMAC language. The idea to write automatically
a p]ésma simulation code of the kind by FORMAC was first published by Rosen
and Okabayashi]g). Before we wrOte the simulation code of the article we also
wrote the "Automatic Code Generator". Using the code generator we can easily
modify the simulation code and write a new code from a set of differntial
equations of different forms. As the detailed description of the method o%
the calculation especially stressed on the "Automatic Code Generator" is

given in a separate paper, only a necessary description of the method of the

calculation is presented briefly in this section.

(3-1) Formula to Derive a Difference Equation

To derive a differnce equation from a differntial equation a rule of
replacement of a derivative into a difference of a variable is introduced.
Spatial derivatives of a variable % at a mesh point (n) are replaced by

differences of variables at mesh points (n-1, n and n+l) as,

3K = srAR(n-1) - K1)}, (14)
2 .

&K= —5(E(n-1) + K(ntl) - 2K(n)} - (15)
3x {Ax)

where Ax is the distance between the two adjacent spatial mesh points.

- 10 -
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And the temporal derivative of a variable ﬁlis given as,

23 - é%{A(t+At) - A(E)D (16)
where it should be noted that all the variables are estimated at time t+;ﬁt
The symbol A& is used in Egs.(14-16) to stress that the value of A is
estimated at time t+%ﬂt- It should be, also, noted that the number of the
outermost mesh point (x=xp; the surface of the cylinder) is 1 and that of
the innermost one (x=0; the axis of the cylinder) is N ax:

Next we must introduce a.rule for linearization of the equation
consisting of M unknown variables because the temporal mesh point for

the time t+lAt is a virtual one and we must reduce-each term estimated at

2
t+%ﬂt to a linear combination of values at t and ones at t+At. For this
purpose we consider an arbitrary nonlinear term consisting of a product of
arbitrary combination of M varfab1eé, A], AZ’ ....... AM’ and we denote the
nonlinear term by f(A1,A2,...AM). Then we linearize the nqn]inear term

as follows,

‘?(A],AZ, ..... Ay) = FAL(E),A (), e Au(t))
M
" %ﬂtizlgﬁ§4t%én} ’ an

where it should be observed that ¥ is an approximate value of f(t+%ﬂt).

Moreover we pose the following condition,

————

(M%)=ﬂ%- U@

By the above condition, nonlinear term of more general form, that is,

- 11 -
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9, 2
'F(A-] ,AZ, ..... AM:"B'_t'A'i :'B“.EAzs-- ',"Bt M

of the linearization and the replacement of the di fferential operaor become

) can be also linearized and the operations

commutable.

Then we get M Tinear relations for the variables at t+At as,

g {a--(n)Aj(n+1)+B-j(n)Aj(n)+Y1j(n)Aj(n-1)}+6i(n) =0, (19)

(i=1,2,..... M)

‘where i and j are the numbers of the differential equations and the variables,

respectively, a (n) 8, (n) Y J(n) and di(n) are the coefficients
estimated at the spatial mesh point (n) which are the functions of the

variables estimated at time t.

(3-2) Boundary Conditions
To solve the difference equation (Eg.(19)) two kinds of boundary

conditions are imposed at the plasma surface and the plasma axis. At the

~ plasma surface the boundary conditions are,

A(1) = a; , (i =1,2,....M) (20)

where aﬁs are given as input data and for simplicity it is assumed that the
plasma surface coincides with the fixed boundary (n=1). On the other hand
at the plasma axis (n=Nmax) the boundary conditions are given according to

the parity of the variables as,

ANt = -1 A (Nmax -1, (21)

- 12 -
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]

where P. = [0, if A. is even at n=N
J max

1, if Aj is odd at n=Nmax'

(J=T,2,...... M)

In our case it is evident that among the five variables, on1y the first one

(Bp) has an odd parity.

- (3-3) Recursion Formula

To solve the linear simultaneous equations (Eq.(19)), it is not an

17,18)

efficient way to calculate the matrix with M(Nmax+1) X M(Nmax+1) elements

Therefore we used the recursion formula of Richtmyer. The value of the

variable Aj at (n+1)-th mesh point is represented by the linear combination

of the values of Ak (k=1,2,...M) at n-th mesh point as,

=

Agld1) = Eg (A (n) + Fyla), (22)

where Ejk(") and Fj(n) are the coupling constants independent of Aj's.
Then we substitute the representation {Eq.(22)) into Eq.(19) and we obtain

the following equation,

521[rg] m51“1rErm(”)Emj(”'1) + r§18irErj(n"]) + Yij]Aj(n-1)
MM M

+ [r51 mf1“irErm(")Fm(”'1) + m5181mFm(n'])
_ M

+8.:(n) + mf1aimFm(”)] = 0. (i=1,2,...M) (23)

The above equation is an identical equation and it should hold for arbitrary

- 13 -



JAERI-M 5697

values of Aj(n-1). Therefore, the coefficients OfAj's and the constant terms

are identically zero as,

M M M
rz1 mz1 i rm(n)E An-1) + rZ1BwEm(n-1) +Yij =0, (24)
(i =1,2,..... Mand j = 1,2,..... M)
M M M
rgI m§1a1rErm(n) (n-1) + m§131mFm(n 1)
M .
+ éi(n) + E1a1mFm( n) = 0. (25)
(i=1,2,..... M)
From these equations Emj(n-1) and Fm(n-1) are derived if Emj(n) and F_ (n)
are known beforehand. Therefore, if the values of Emj(Nmax-1) and Fm(Nmax )

are given, the values of Emj(n) and Fm(n) at n = Nmax'z’ Nmax-3,.....2,1

are determined succesively using the above equations. On the other hand,
EmJ( -1) and F (N -1) are derived from the boundary conditions at the
plasma axis. Subst1tut1ng Eq.{22) into the boundary condition (Eq.(21)) we

obtain the following equations,

M P.
21Y = (=1) 9
k= 1 Jk(Nmax) k1(Nmax 1) (-1) Gjl * (26)
M
kZ]EJk(Nmax)Fk(Nmax—l) + Fj(Nmax) =0, (27)
where 6j1=1 for j=1 and =-1 for j#l.

- 14 -
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From Eqs.{24 and 26) and Eqs.(25 and 27} the following two equations are

derived, respectively,

P. M
. _ J - - .
aij( 1) Y o+ rzlsirErj(Nmax 1) + Yij a, (28)
M
mf]BimFm(Nmax']) * éi(Nmax) =0. (29)
By solving the above equations we can get the matrix Emj(Nmax—]) and
Fm(Nmax-])'

Thus instead of a set of Tinear simultaneous equations with M(Nmax+1)
variables we obtain (Nmax+!) sets of linear simultaneous equations each

with M variables. These equations are summarized as,

[C(m)IE(n-1) + G5(n) = O, (30)
[C(MIF (n-1) + D(n) =0, (31)
(80N 3, ) JEs Ny 1) + A (o) = 0, (32)
6T (1) + piN) = 0, (33)
where

"5 (n) = T8y () Epgn). . By ()], (34)

| ' (n) = [F(n),Fpln) e Fy(n) s | (35)
%, (n) - [aU(n)(-nijU(n), ..... an.(n)(-nPJ'wMj(n) (36)

J
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[B(n)] =r81](
By

M
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r=1

M
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n),éz(P)s ----- SM(n)]s
(n),YZj(n), ..... YMj(n)],
n), ......... a1M(n))

1) J aMM(n)

11 I B]M(n)‘

n), ......... BMM(n)J
1r(n)Er](n)+B11(n)’ -----
Mr(n)ErT(n)+8M](n)’ .....
132y, Nmax"]’ and j

(37)
(38)
(39)
(40)
M
§ aTr(n)ErM(n)+81M(n)
r=1
M .............
rf]“Mr(”)ErM(”)+BMM(”) ,
(41)
=1,2, 0.0 M.

The output of the "Automatic Code Generator" is a deck of a FORTRAN cards of

matrix elements corresponding to the coefficients of the above equations.-

We can get a simulation code by inserting the cards into a prepared set of

a subprogram. In the code the quantities Aj(n)'s are derived for the

boundary conditions {Eq.(20)), using Eq.(22)19)‘

- 16 —
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(3-4) Apparent Singularities of Diffusion Terms at the Origin

There appears apparent singularities at the plasma axis because of the
factor of 1/x, if we replace simply the diffusion type equations by the
difference equations. To avoid the singularities, we expand the terms by

power series of x near the plasma axis and we get the following equations.

9 rn 3 -
M axex axop] = 0 (42)
2
limt2mdng = 20 (o)a e (43)
x50 X axX-""pax' e Py XZ x=0 °
2
D T 3 n
.1 3 X 3 . e e
1im—T2T _P2n1=2_%(0)
x30 X €3XT Ny ox'e DL (44)

The same kinds of equations hold also for the case of thermal diffusion.

(3-5) Determination of the Time Step Width
The time step width is automatically determined by examining the
increments of the variables for each time step. The criteria for the

determination of the step width are summarized in Table 1.
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4. Examples of Solution

In this section we present two examples of the results of the numerical
simulation. One is the simulation of the JFT-2 plasma with normal fixed
limiter and the other is the simulation of the plasma which is obtained using
the dynamic 1imiter. Both the results are preliminary and the more detailed
descriptions of the results are given in a separate paper. It should be noted
that in choosing the input parameters there remains a lot of degree of
freedom bécause we can compare the distributions of the physical quantities
only indirectly between the experimental results and the computatione®

results.

(4-1) Simulation of the Plasma in JFT-2 with Mormal Fixed Limiter
In this subsection one of the typical discharges of JFT-2H>

reproduced by the computer simulation is presented. The discharge conditions

are as folTows; P=1.6 x 107 Torr Hy, By=1.0 Wo/r’, B =0.012 Up/m’ anc

the radius of the limiter is 0.25 m. The waveforms of the 1Qop voltage

and the plasma current obtained experimentally are shown in Fig.1. For tne
computer simulation the waveform of the plasma current was approximated by
a piecewise linear function as shown in Fig.2. In the preliminary
calculation only the effect of the neutral influx was especially noticed.
Case 1 (Fig.3) is the resultof the simulation for the spatially averageq
neutral influx of 3 x 1020 m'3sec'] and case 2 {Fig.4) is that for the

20 -3

influx of 1 x 10" m’ sec™!. From these figures it is found that the

plasma parameter which is most sensitive to the magnitude of the neutral
influx is the spatial distribution of the electron density. The loss flux

and the increment of the electron demsity due to the jonization process is

20 -3 1

nearly balanced when the-averaged neutral influx is 1 x 10°" m “sec  and

- 18 -
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in this case the stationary state of the density distribution is nearly
attained.

The reason why the electron and ion temperatures are higher than those
obtained experimenta11y]1) will be partly explained by the fact that the
calculation is carried out for the effective charge of unity and the collison

frequency falls in the banana region of the neoclassical transport theory.

(4-2) Simulation of the Plasma Obtained Using the Dynamic Limiter

The dynamic limiter which is installed in JFT-2 tokamak is a quickly
removable limiter. It can be triggered to move at any time during. the
discharge. It is driven to move by a pair of air cylinders and the maximum
velocity of the limiter is about 10 m/sec. The main purpose of the experiment
of the dynamic Timiter is to investigate whether the equilibrium and the
stability of the plasma is sustained when the plasma is insulated from the
20,21}

‘external solid material ( fixed ) limiter or not The transport

phencmena .such as particle diffusion will be also investigated experimentally
usihg the dynamic limiter. These experiments are, however, very difficult
because available diagnostic methods are not sufficient to get a spatial
distribution of the plasma parameters. Therefore we analyze the experimental
data by comparing them with the results of the numerical simulation. In the
following four examples of the results of the simulation ( cases a, b, ¢,

and d) are presented, which are all preliminary ones and show qualitatively
the effect of the neutral particles and the magnitude of the transport
coefficient. The case a is the reference case where anomalous transport
coefficients are not taken into account, and the neutral particle influx

3cec™!. The case b shows the result for the condition that

0203 1

is 3 x 1020 m

sec ' when the dynamic

the neutral particle influx is reduced to 1 x 1

limiter is removed. The cases c and d show the results for the cdndition

- 19 -
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that the anomaly factors of 5 and 10 are multiplied to the neoclassical electron
thermal conductivity of the plasma in case b. Figures 5,6 and 7 are the
waveform of the plasma current, the position of the dynamic limiter and the

mean neutral influx, respectively. Figures 8, 9,:12 and 11 are the
distributions of the plasma parameters for the above four cases, respectively.
The time behaviour of the averaged temperatures is given Fig.12. From

these figures it can be generally said that the distributions of the plasma
parémeters change more slowly than the speed of the dynamic limiter when

the neutral influx is 1 x 1020 m':gsec'1 and the anomaly factor of the
transport coefficients is not taken into account. Comparing the density
distribution of case a with that of case b we find that tha abrupt change

of density distribution in case a after the dynamic limiter is removed is

due to the ionization process of the neutrals. The fact that the distribution
of the current density does not change considerably when the dynamic
Timiter is removed seems to contradict with the experimental result which
shows that the hot region of the plasma moves with the edge of the dynamic
Timiter. So far as the distribution of the electron temperature is concerned,

however, the experimental results are reproduced easily by choosing a large

anomaly factor for the electron thermal conductivity (Figs. 10 and 11},

- 20 -
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5. Discussions
In writing the computer code several simptifications and approximations
are introduced and there remain some problems and restrictions for usage of

the code.

Firstly the transport process in the code is based on the simplified
neoclassical theory. The partiéle Toss and the theréa] loss are described
only by the diffusion coefficient and the thermal conductivity. Theréfore
if the processes are well described by the neoclassical theory, the complete
neoclassical process should be included in the code. It is, however, very
easy to rewrite the code by using the "Automatic Code Generator”,

Secondly the code.is written on the basis of the two fluid model
(electron and jon) and the neutral particle influx is given as an external
function. Therefore the three fluid model should be adopted if the behaviour
of the neutral particles is the important purpose of the calculation.

In the same way, many fluids model should be adopted {f the behaviour of the
impurity ions is analyzed by using the computer code.

Because of the above mentioned facts and some other reasons, the results

of the computer calculation do not fully agree with the experimental results.

The code is, however, very useful to analyze the separate phenomena in detail.

- 2] ~
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Appendix A.  Fundamental Quantities Used in the Simulation Code
Functional forms of the quantities which appear in the simulation code
are summarized in the following. The temperature is expressed in eV and

the other quantities are expressed in MKS unit.
[1] Plasma resistivity (n)
= 5.98 x 107 S T2 | (A-1)

where

_ -6
Tna =1(23.4 -1.15 'Iogw(ne x 107°) + 3.45 1og1OTe, for T, < 50 eV,

25.3 - 1.15 Tog,5ln, 1078) + 2.30 Tog, T, for T_ > 50 eV,
(A-2)

[2] Energy equipartition time (req)

-3.30 x 1014 T 32 (n, Tnh). (A-3)

Teq
[3] Particle diffusion coefficient and thermal conducfivity (Dp and KS)

-3/2 2

= f ' '
Dp = prYp€ q Uepe , for v, < vyqs
B v R™'q vyo0l for vy < v < v (A-4)
pp'p~ 9 VTePe Te® Ve © Voe
2 2
~chY VePe i for V2e© Ve

and
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g Frbs Tks®

2 2
kBkCSYkS 9 VePgh

where ¢ = x/R, q = xBO/(RBp),
o = [3.37 x 1078 81 71/2,
1.45 x 107 871 11/2,
v, = [1.00 x 1072 anp T
7.15 x 1071% Tnn n T
nee SR gy
Voe© R q'1 Vs ,
Voe® 5.95 x 105 Tlfz,
1.3 x 10° 7}/2,

pr’ Bpp’ ch’ Bkbe’ Ekpe’ Bkce’ Bkbi’ kai’ Bkc1'

e
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q Ve Ny

- p=1 2
kas{ksR 9 Y75P5 Me >

]

-3/2

e

-3/2

.i

3

for

for

for

for

for

for

for

for

for

for

for

AY
5

< Vg

< Vg < Vg
< Ve

e

i

e

i

e,

e, i

e

(A-5)

(A-6)

(R-7)

(A-10)

are the numerical constants

and the following values are adopted for them throughout the calculation.
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R = 1.60, = 1.25, = 1,00,
pr 1.60 Bpp ch

Bkbe = 1.81, kae = 3.00, Bkce = 2.33,
Bkbi = 0.48, kai = 3.00, Bkc.i = 0.71 )

Yp’ Yo and Y; are anomaly factors which are defined by a subprogram.

[4] Ionization rate coefficientzz)

_ -12 ) -3/2
<QU5n = 4.44 x 10 b hiy) Te , {(A-11)
where h(y) = - e Ei(-y)/y,
Yy = X/Tes

Ei(-y) = - [ 27 e 4z,

x = 13.595 eV,
b =0.2.
22)

[5] Excitation loss

) -11 -1/2 i
<c5uQ>ex n. = 0.59 x 10 S(yex) Te nnne/(nn+ne) , (A-12)
where  S(y_ ) = - Ei(-y.),
yex - Xex/Te’ Xex = 10.
23)

[6] Charge exchange loss
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<guQ> n = 1.57 x 10'16‘{101.] = 28.4 Togy T

ch.ex n i

! (1ongT.)2} n T?/Z . (A-13)

[7] Bremsstrahlung loss

<ouQ>, ng = 1.05 x 10719 ns Tllz. (A-14)
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Appendix B.  Flow chart of the code

The code consists of a main routine {MAIN), 10 principal subroutines
and many other subprograms used for determihing the coefficients of the
difference equations. Figure 13 shows the flow chart of the main part of
the code. Table 2 is the list of the subprograms which are not shown
explicitly in Fig. 13 Functional form of the transport coefficients and
their anomaly factors are changeable by replacing the corresponding
subprograms in the 1ist. For the convenience of the replacement of sub-

programs, the 1ist of the COMMON variables are also presented in Table 3.

Appendix C.  Input card format
The input card format and an example of the input data are shown ir
Tables 4 and 5, respectively. The meaning of the symbols in Table &

is summarized in Table 6.

- 27 -
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Table 1

. .
Table of multiplier (FACT } to the time step width (DT).

The time step width (DT)is changed to a new value (FACT * QI) by examining

the values of the variables (AN and XNN) according to the table.

* Underlined words are symbols used in the FORTRAN program.

3aN < 0 3|AN-A0| > 8,*A0 VIAN-AO| < 9,*AD
or and ~ Va’H
IXNN < O YERN > 0 JaXNN] < wz*xmno
At < Atmin 1 1 2
(DTMN)
Mt < At 1/2 1 2
<Atch(DTCH)
Bty < Ot 1/2 1/2 2
< Atmax
(DTMX)
A .
t . <Ot 1/2 1/2 1

** XNNO is the old value of XNN
= AOMXU, ¢, = AQMXL, wz = RMX.

9
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Table 5

$DATA
JFT-2 DLX (NORMAL,MOVE) NO.67940 PLATEAU, INFL.=V-TYPE,3.0E+21,ANOM=5

0.250 B
0.05 0.10 0.10 1.0E-040,003 1.0E-14

5 26
0.12 .25 0.9 1.0
1.60 1.25 1.00 '
1.81 1.66 3.73
0.68 1.33 1.60
0.03 1.00 1.00 20 -
0.01 0.0001 0.001 0.01 0.145
0.003 0.02 0.005
00 0O0D0O0O0TO 000
1526695
0.0 6.008 0.01 0.02 0.027 0.03
0.04 0.06 0.07 .0.08 0.10 0.12
0.14 0.148 0.15
0.0 0.0 - 6.8 20.2 26.3 25.0
27.7 30.4 30.4 29.7 26.3 20.3
13.5 7.5 0.0 '
0.0 0.200 .
5.0E+17 5.0E417
0.0 0.01 0.02 0.04 0.10 0.20
2.0 2.0 10.0 40.0 40.0 10.0
0.0 0.01 0.02 0.04 0.10 0.20
1.0 1.0 5.0 . 20.0 20.0 5.0
0.0 0.06 0.065 0.07 0.075 0.08
0.085 0.09 0.16
0.12 0.12 0.133 0.160 = 0.795 0.230
0.240 0.245 0.250
0.0 0.06 0.09 0.12 - 0.18

1.00E+2} 2.00E+20  2,00E+19 1.00E+20 G.30E+20

0.01 1.0 0.01 1.0 - 0.0 1.0
0.0 0.0 4.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
X .

5.0E417  1.0E+190.0 2.0 2.0
2.0 5.0 0.0 2.0 2.0

1.0 2.5 0.0 2.0 2.0

0.0 277057.0 0.0 2.0 2.0
1.0E+13 1.0£4150.0 2.0 2.0

dooie dede

$JEND-
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Table 6. Meaning of the symbols in Table 4*

SYMBOL MEANING
TITLE(J) Title of the calculation (within 80 characters).
MMAX Number of unknown variables (=5).
NMAX Number of spatial mesh points,
fL0 Initial position of the limiter (m).
Xp Position of the outermost mesh point (m).
R Major radius of the plasma (m).
BO Toroidal magnetic field (wb/mz).
BPB pr ,
BPP
Bpp
BPP BHC
BKEB 8keb
.BKEP Bkep
BKEC Bkec
BKIB Bkib
BKIP Bkip
BKIC Bkic
PLNG Penetration length of the neutrals (initial guess).
RCHX Loss rate of the charge exchanged neutrals.
¥YNTR Temperature of the cold neutrals.
ITMX Maximum number of iteration for determination of the

penetration of the cold neutrals.

* See also Tables 1 and 3,
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Fig. 1 The waveforms of the plasma current and the loop voltage

of the plasma obtained using the normal fixed limiter
(500 mm#).

0.05 010 0.5 _ .20 R
| t (sec) |

Fig. 2 The waveform of the plasma current expressed by a
piecewise linear function for the input data of the code.
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The result of the computer simulation for the plasma
current of Fig. 2 and the neutral particle influx
averaged over the plasma cross section of 3 x 10%0m~3
sec”! (case 1). Figures 3(a),(v),(c) and (d) show the
plasma current density, electron density, electron
temperature and ion temperature, respectively.
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The result of the computer simulation for the plasma
current of Fig. 2 and the neutral particle influx
averaged over the plasma cross section of 1 x 164 m 3
sec ! (case 2). Figures #(a),(b),(c) and {(d) show the
plasma current density, electron density, electron
temperature and ion temperature, respectively.
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Fig. 5 The plasma current for
the simulation of the
plasma cobtained by using
the dynamic limiter.
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Fig. 6 The position of the
dynamic limiter.

Fig. 7
The assumed time behaviour of the
neutral particle influx averaged
over the plasma cross section.
The curve A is used for the
simulation of Fig. 8 and the
curve B is used for the simulation
of Figs. 9, 10 and 11.
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Fig. & The distribution of the plasma parameters (a : plasma
current density, b : electron density, ¢ : electron
temperature and d : ion temperature) for case a.
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Fig. 9 The distribution of the plasma parameters (a : plasma
current density, b : electron density, ¢ ! electron

temperature and 4 : ion temperature) for case b,
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Fig. 10 The distribuftion of the Fig. 11 The distribution of the
eclectron temperature for electron temperature for
case C. case d.
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Fig. 12 The time behaviour of the averaged. electron temperature
for cases a and b (Fig. 12(a}) and for .cases b, ¢ and &
(Fig. 12(h)).
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[1] Dummy Main Routine { MAIN )

* Saye memory area.

(START )

“MEFORY = X

____1______

l'_ﬁﬂﬁ¢N—T37”W Call Main routine ( AMAIN }
(I‘

From MAIN
Prepare arrays
Read constants and boundary values

Read initial values

[ BOUND (Si 'I Calculate boundary values for each time step

ABGD 5 Calculate o, 3, y and &
EEFF S Calculate £ and F

Calculate Bp’ N Te’ Tf and jz

Examine the width of time step (DT}

Edit and print the results

LES EXIT To MAIN

Save old values for the next step

Fig. 13 Flow chart of the code.
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