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Algorithms based on the finite element method have been
developed for solving the two-dimensional multi-group neutron
transport equation in (r,z) geometry. In the algorithms the
finite element method is applied only to the spatial-variables
in regular torus cells.with rectangular cross sections. Angular
variables are treated in the discrete ordinate approximatioﬁ.

The formulations both in the continuous and discontinuous
méthods are performed by making use of the bilinear, cubic and
biquadratic Lagrange polynomials, respectively, for the cases
of four, eight and nine mesh points per rectangular subregion
on the (r,z) plane,

The Galerkin scheme is adopted for eliminating the residuals.

of approximate equations in the continuous and discontinuous
methods.
The algorithm using the neutron balance equation is also

| given for the continuous method.

*Atomic Energy Research Laboratory, Hitachi, Ltd.
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1. Introduction

The discrete ordinate S, approximation for the angular varia-
bles has become a very important numerical method to solve the
radiation transport equations and the Sn computer codes have been
widelf used in reactor and shielding calculations (1) (6]

The finite element method, on the other hand, which originated
in early times in the field of structure analysis and has been
proved to be a powerful tool, is now attracting much attention of
reactor physicists and mathematicians as a tool for solving multi-
dimensional diffusion and transport equations(ﬁ)nclo). The finite
element method has two main advantages over the finite difference
method; from the mathematical point of view .a particular class of
higher order approximation for the numerical solution can be appli-
ed and from the practical point of view any complex geometrical
configulations can be simulated. In 1971 Ohnishi applied the finite
element method to the neutron diffusion and transport equations in
two-dimensional (x,y) geometries by dividing the reactor system
into triangular subregions. In 1973 Reed et al. published a two-
dimensional transport code TRIPLET based on the finite element
method(ﬁ).

We are interested in combining these two familiar S, and finite
element methods to develop a computer program for solving multi-group
neutron transport equations in two-dimensional (r,z) geometry;

The TRIPLET_developed in Los Alamos Scientific Laborgtory is
just such a transport program as we are interested in, but it deals
with only triangular meshes in a planar geometry. Triangular mesh

causes rather complex algorithms, although it has higher flexibility
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to geometrically complicated reactor system. On the other hand, the
presence of the angular derivative in the transport equation for
(r,z) geometry makes the algorithm somewhat more complicated than
that for (x,y) geometry.

For these reasons we divide the whole system into a number of
subregions whose shape in (r,z) plane is a regular torus with rec-
tangular cross section, Lagrange's interpolating polynomials are
used as expansion functions to represent angular fluxes in a form
to be a linear combination of them in each subregion. Three types
of Lagrange polynomials are used: bilinear, cubic and biquadratic
polynomials, respectively, for the cases of four, eight and nine
space mesh points per rectangular elementary subregion in (r,z)
plane, The_coefficients of the lagrange expansion are the values
of the angular fluxes at these mesh points.

In combining the discrete ordinate S5 and finite element method,
several types of the formulation can be considered. We divide them
into two categories depending on whether the fluxes obtained are con-
tinuous over the whole system or not. The method which gives a
continuous solution is called as the continuous method. The dis-
continuous method, on the other hand, gives the discontinuous fluxes
at the boundaries of the subregions. The latter is rather trouble-
some to formulate and requires the large amount of computer core
storage, but it gives much more stable algorithm than the continuous
one(6).

To eliminate the reéidual resulting from the interpolation of
the exact solution with low order polynomials, we adopted a Galerkin

type scheme for both the continuous and discontinuous methods.
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A scheme using the balance equation is also formulated for the con-

tinuous method.
Z. Fundamental Equations

The time independent two-dimensional transport equation in

(r,z) geometry is written as follows:

4200 1 aceyh L.yt
UL i g, o

where the energy domain is divided into G intervals Of'WidﬂlAE%,

and qf%stands for the angular flux:
g .
Vi=¥irzug) =j Vir.z, 4, 4.E)dE .
ﬂE’_ .

For convenience of ready reference to and comparison with the
TRIPLET and THOTRAN(M)»(2) wnich is a discrete ordimate S_ code
for general two-dimensional geometries, we use the same notations
and coordinate system as used in these two codes.

Integrating Eq. (1} over solid angle intervalA{2,, we have

Wtk ATNED) g 2y 8 (o

3 3 - %
F ST V) TRW Y = WaS,

(§=1~6, M= 1~MT), (2)

mey

where the discrete ordinate Sn approximation is used for angular
variables (solid angle space is partitioned into MT intervals).
In Eq.(2) the quantities with the angular mesh index m(m=1~MT) are

defined as follows;

W,..=SS ﬂl}iij"/zm ’
i = Yra = [[u r2.u9duds /oy ]/
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A scheme using the balance equation is also formulated for the con-

tinuous method.
Z. Fundamental Equations

The time independent two-dimensional transport equation in

(r,z) geometry is written as follows:

ooy $) - ¢
%_a(r‘H __ai%l.*.}z%-fofwa’zsg) (§=1~¢), (1)

or r

where the energy domain is divided into G intervals of widthAEa, s

and ﬂf%stands for the angular flux:
9 .
YWz = | Yz uee)de
GE’ .

For convenience of ready reference to and comparison with the
TRIPLET and THOTRAN(M)» (%) wnich is a discrete ordimate s_ code
for general two-dimensional geometries, we use the same notatioms
and coordinate system as used in these two codes.

Integrating Eq.(l} over solid angle interval AL2,, we have

Wtk UTYE) gy 2

¥ —
r ar n 3?_ r(dﬂ*& mq‘ Ill-}g ) +G wﬂ'Vm w’“S
(%’- ~G, M= {~MT), (2)
where the discrete ordinate Sn approximation is used for angular
variables (solid angle space is partitioned into MT intervals).

In Eq.(2) the quantities with the angular mesh index m(m=1~MT) are

defined as follows;

WL=SS&“4£/Em ’
lrs (r z) = Uu (rnz ,ﬂ,‘f)a{ﬂ-d?éx,]/wm
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The coefficients (Y, are assumed to satisfy the following

mt
conditions(l)’(z). Demanding that there is no net particle loss
due to angular redistribution the initial @/ values vanish on each
7 level, and requiringlﬁf(r,z)=constant as the solution of Eq.(2)
for an infinite system, we can write
(xm+ﬁ'_ K-y, = ~ WMy
Now, we attempt to get an approximate solutionﬂiﬁ(r,z} to Eq.(2)
by representing the unknown discretized angular flux as a linear

combination of Lagrangé's interpolating polynomials defined in each:

rectangular subregion with NL mesh points;

Py - < D ()
1V,.":(F,Z) “Z‘Wm (r.2) , (3)

where'wﬁa‘and[_ (r z) stand for combining coefficients and Lagrange
polynomials, respectively. The unknowns are HOW'ﬂﬂsz, which have
the physical meaning that they are the approximate values of the
angular flux at the point (1 ,zg) in the subregion. The polynomial
ﬁ?r,z), explicit representations of which are listed in Appendix I,
has a property that the value is unity at the point (1 ,zg) and
zero at all other (NL-1) points in the subregion. |

Substituting Eq.(3) into Eq.(2), we get

wm,u..; T3 (L) e 02 ] 4
+g‘ (dm!& _::: W% im 3(1) [ (‘()I‘,ZJ]'f O“t Wey .LZ-i' q’:(ﬂ) [L(_‘ir i )] = wm,S:(r Z),

(g=i~G, m=1{~MT). 4)
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A spherical harmonic expansion is used for the source term

on the right hand side of Eq.(4) (see the references(l)’(z)):

IscT
m(rZ) Z Z(znfi) n(rZ)ER (ftn. 9:,&)% (rz) *%Z\’O‘(rz %(rz)-ﬁ-
9’-1 n=0 K=0
£ (2ne1) 2 Rila 2 Qe

nao (5)

where associated Legendre-polynomials R: are defined by

K "SKO -K ! % *
Rn(ﬂn.s"n)=[(2mﬂ<)§? ) J P () COS Ky 5 (6)

{m:‘m-ﬂ;—?z;)*/zm} L for Tmr0
3. Iani'[(i-z“;"l;)%/’z,..] +7, for .40 .

Furthermore, the functions %?(r,z) are defined by

@i{sr, 2)= SiMJ R, IV 2 M.9) 27, =
ZJLZWMR (/um,ﬁ"m)[Z ¢ <rz)]. (7)

m={

In Eq.(4), we used NL Lagrange polynomials in each subregions
whose shape in (r,z) plane is rectangular. There is a great choice
of the degree of Lagrange polynomials (say N) and the number of

mesh points on the rectangle with a point at each vertex. For N=2,

we may choose eight points or nine points as shown in Fig.1l. Bilinear,

cubic and biquadratic polynomials correspond to these cases with

four, eight and nine points, respectively.



JAERI — M 5793

N = 1 N =2 N =2 N =3
NL= 4 NL= 8 NL=9 NL=16
Fig. 1 Mesh point arrangement of a unit rectangle for a

few low-order Lagrange polynomials.

The formulation becomes more complicated for nine points than
for eight points, but the eight-points-algorithm may fail to simulate
angular flux distributioné with é steep peak near a center of the
rectangle. Oncé the formulation has been performed, fhese two cases
do not differ much in a labor needed for programming the algorithms.
From these points of view, the nine-point-algorithm may be preferable

to the eight points.
3. Solution Algorithms

We describe here the solution algorithms for solving Eq.(4),
in which the source term S&(r,z) is assumed to be given. In the

beginning, we define the inner products in (r,z) geometry by

(5040 =<Fra), b)) "——‘ﬁwf(nz)ﬁ(nz)drdz , (8)

where Vij stands for the rectangular cell which is bounded by the
i-th interval in r-direction and the j-th interval in z-direction,

i.e.,

TLETEY , %, 6255}

t

Vi = {(r2)
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N = N =2 N =2 N=3
NL= 4 NL= 8 NL.= 9 NL=16
Fig. 1 Mesh point arrangement of a unit rectangle for a

few low-order Lagrange polynomials.

The formulation becomes more complicated for nine points than
for eight points, but the eight-points-algorithm may fail to simulate
angular flux distributioné with a steep peak near a center of the
rectangle. Oncé the formulation has been performed, fhese two cases
do not differ much in a labor needed for programming the algorithms.
From these points of view, the nine-point-algorithm may be preferable

to the eight points.
3. Solution Algorithms

We describe here the solution algorithms for solving Eq.(4),
in which the source term S%(r,z) is assumed to be given. In the

beginning, we define the inner products in (r,z) geometry by

(§:4) =<frz), 40D Eﬁvﬂf(nz)ﬁ(nz)drdz , )

where Vij stands for the rectangular cell which is bounded by the
i-th interval in r-direction and the j-th interval in z-direction,

i.e.,

TL&TEY, , 2, S 252} |

3

V,; = {2
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According to this definition, we prepare several kinds of the
inner product of Lagrange polynomials which we will use later. The

explicit expressions of the inner products defined below are given

in Appendix III.

{1, Lz =“v"rl(_n(r,2)drdz ) (9-1)
(1 ':‘-" Lirz)) = JS _Iffr,z)drdz , (9-2)
Lo, Cra) = ﬁ K()rz)lf()rz)drdz (9-3)
<lf(’rz), rmrz» SL ‘rz) lff()rz)drdz O (9-a)
<f()r2); 2"ty = ﬂj L(rz)(%l(_ ZJ)erz (9-5)
<L(ffr2); LN, SSTI:K()rz) (251 z) drdz, (9-6)

s

KJK = {12) “tTy NL.

Additional four special expressions which turn out the line integra-

tion are defined as follows:

) = S_’l_"?r.z)olz , (9-7)
L(_KETZ)> S;TEEFZ)dF » (9-8)

K K) x) '
<L(()T ’)'—Ii(r; z)) S L(T.Z)l(_(n 2)dz , (9-9)

« W Sb K) )

(L(rz.) L(rz)) TLrz) L(rz)dr , | (9-10)
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where 1, and Z, take some fixed values.

As illustrated in Appendix III1, if the symmetric properties of
these inner products are taken into consideratiocn, the number of
(E,k) combinations, for which the explicit expressions must be

prepared, can be reduced considerably.
3.1 Continuous Method

We develep here the solution algorithm which gives the con-
tinuous solution to Eq.(4)} over the whole system. Now we define a

residual R*(r,z) as follows;

RE(cz)= W Mle{f"" [ Z(rltrz)) +¥ nmz il a2 ‘3L‘”-J sba ]y
2 ¥ - ) [ Lz 11 2wl [ L]

- WaSHTE) (rz)eVy, GO

and we seek the solution which satisfies the relations

«’ 9 '
<W(ﬁ2),[Rm(r,z)> = { (K=12-.K) (11)

where W(r,z) are appropriate weight functions which are chosen to
be linearly independent low order polynomials in r and Z, and K is
so determind as to accord with the number of unknowns. We can
develop different algorithms'depending upon the selection of the
practical form of the weight functions., Substitution of Eq. (10)

into Eq.(11) gives
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W3 W S 3z v, Wiy, 2Ll
X)

Z (A ¥, mjf} Kig.ss :tﬁ)(WEF)Z) T L(r-Z)> + O W ;W:%W(m’!),lfftzb -

)

-wnl Wi, S W) =0, (BeVy, (K=iz-K). g

Note that we assumed herefyf(r,z) are constant in each subregion.
For the calculation of the source term S}(r z) from Eq.(5), we
assume that also(} %r z}, 96}(r z) and Qn%r z) are constant in
each subregion. The inner product contained in the first term of

Eq.(12) can be rewritten as the sum of two inner products:

&) 8) (ﬁ)

(K)
Wieey+5( rl%ez)) =W+ L(r2)}+(W(rz),3r ;D) (3)
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3.1,1 Continuous Method using Balance Equation

To solve Eq.(12), we can choose a constant function or
zero-degree polynomial as the weight function. Putting K=1
and W(r,z}=1 over the whole system, we can write a single equa-

tion which is equivalent to the balance equation obtained by

integrating Eq.(4) over each subregion. The inner products in

the first and second term of Eq.(12) in this case are given by

1, rL‘.’frZJ>+<f;3rlfzrz)> and, <7’az|_((r2) ,

respectively. These types of the inner product however, have not
been prepared in Eq.(9), so we rewrite them with expressions used
in Egs.(9-7) and (9-8), i.e., |

(1 120y = n(t, 1% ) e 2

(1, ) = (1, Ly =<1, L zw)

Now, we can write the full expression of Eq.(12) explicitly;

w,,ué IR Ay — 81T L 2] +
+ Ww’bn; W (1 % z;)) *-(1 lilzrz“)>]

3t 1) 1)
+% (a“"iw;m& d’"‘ &Wm-—&)( 1 r L(r Z)) 1 O} wmz ‘F 1 Ii(r Z)
- Wa 1 .S:(r,z)> =0 . (14)
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If we use here the "diamond difference" scheme for the angular
variable;

) _ $e) 9
won = 2 = Yo as)

then the substitution of the relation into Eq.(14j gives
N o
W‘Mé‘}; (<15 +1%,2)) - E.(ir’;t‘.’f\g_,..zﬁ] +
NL n :
T WWTLMZ lr;:m [( {, ‘:‘?’f Z&)> —<1 ’ li?r; Zj-‘)> +
=1
NL _ ML
1t 2(;(,,[%% IEQZ i, Jflfffr z)) + 0;3 W"‘é 1K‘m( 1 ,Lu()r.z)> =

‘ N ¢
= () ljxyj‘fo,-‘fﬂfn )+ 1,Srz)
=

g
where \F:_(}&st are assumed to be known.

(16)

Eq.(16) can be solved only when N=1 (NL=4) because in this

case a single unknown is remained to be determined for each sweep

of the space-angle mesh (Fig.2).

SWEEP4

SWEEP 1 SWEEP 2 SWEEP 3

3 4
Vi.j

1 2

T

22\

to be determined for each sweep for N=1;

a black pdint indicates the location with an un-

known coefficient.



JAERT-M 5793

In the case of the sweep k (k=1,2,3,4), the unknown coefficient

S'W:m)which is calculated from

=X
Ko = et (2 [ 42D — 1, L )] -
- wmqmily:"’[(i,lffr,zjb (L)) -
20 S, Hr) e S LK ) ¢
A, M)ZIV o, Dy + w1, Sk
Y‘,’— ,,#,l[ (1 H T el )] +

{K)

+ WH\YLm [< 1 L(r z )> - <1, E()T:Zj_l)>] T Z“m+)5< i ) thxzt Z)> t

K)
ot w1, Ltz » (0B eVy , (§=1~g,m=t~MT) . (17

‘VUsing‘Wﬁs}given above, we can obtain'WfS; from Eq.(15).
The term <j f;s(r,z)> which is contained in Xﬁg is calculated from

Eqs (5}, (6) and (7) Refering to Eq (7), we can write

<l:‘§n(r2) ZW.-. n.(/un :5",.)24’%“)‘ tr2)

The contlnuous method described here may be the simplest omne.

Some other algorithms of the continuous method will be discussed

in the following section.
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3.1.2 Continuous Method with Galerkin-type Scheme

We return to Eq.(12) again. If we do not use the diamond
difference equation (15), the number of unknowns contained in
Eq.(12) is two for NL=4 (N=1), six for NL=8 (N=2) and eight for
NL=9 (N=2). Consider the direction of the sweep 1, for example.

m

and \]fi‘“;’ @=1,2,4,5)

The unknown coefficients to be determined are\ysuﬁnd‘Wﬁ:Sfbr
Z

g

N=1, méndl}fj‘”(ﬂél,z,m for NL=8, and Y3

n ¥z

for NL=9 (see Fig.3). The other coefficients can be assumed to

be known from the previous step of the sweep over the space-angle

mesh,

NL=4 (N=1) NL=8 (N=2) NL=9 (N=2)

< S
3 4 6 7 8 7 8 9
4 5 4 5 6
| 2 f 2 3 i 2 3

: & 0—
Fig. 3 Unknowns to be determined for the direction of the

sweep 1; black points indicate the location with

unknown coefficients.

To determine these unknowns, the appropriate number of the
weight functions is selected probably to be low-order polynomials
in T and z. In this case Eq.(l2) are represented as a linear
system of algebraic equations whose order is the same as the number
of the unknowns. Next we show a little different appfoach to the

determination of the unknowns. Let us consider the case of NL=9,

—-13-
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The number of the unknowns is eight as mentioned above. If we use
Lagrange polynomials themselves as the weight functions (there are
nine Lagrange polynomials in this case}, then Eq.(12) for the sweep
1 can be expressed -as follows;

)

pe W“”[Ww“nﬂ_(rz); L2 (r[fra)) +unld ey L oy +
=245
K’ L H K
7 Wal Lr2), Ls)] + iy Z.fj’(ﬂ(éz), 1) -

K, g ] K
i Sty S0 i HLe) -

) ¢)

-Z q{:w[w‘ﬂm< I:K()yz) lralr(rﬂ”» Al W"Q-<L(LZ); 22 L(Y 2y T
136739
. ‘ o .
+ 073 Wﬁt( t(,FZ) li!()l'z) ] W Z 1Il"“‘J(L('&IZ) rli(m) ,

{=36789
(K'=1~9).

In Eq.(18), the number of equations is larger than the number

(18)

of unknowns by one. To take this redundancy away, the least squares
method may be applied. B)} making use of the matrix representation,

Eq.(18) can be rewritten as

AW:E , (19-1)

— —
where A is a rectangular matrix of order 9x8, quand up are the column

vectors of order 8 and 9, respectively.‘ If we write
) . 3R He 3(5) IO N [ I (0 ‘lli)) (19
_2)
\“r (\Kn » IY \P’m )Y \V-m»y, IYIM)’, )'q‘:m'/; miys
then the elements a;,j of A and bi. of Ib are easily defined by making

—
comparison between Eqs.(18) and (19). The vector\ufcan now be ob-

tained in a sense of the least squares method;
—— — . .
BY=C , (20)
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—h

where B=A' A is a square matrix of order 8 and € =A{p is a column

vector of order 8, where A" means transpose matrix of A.
' 3.2 Discontinuous Method with Galerkin-type Scheme

In this section, we describe another method to obtain the
solution to Eq.(4). This method can be compared with the dis-
continuous method fofmulated in TRIPLET. We first redefine the
residual Ri(r,z) in a form different from Eq.(10) on the rectan-
gular Vi; . To take account of the possible discontinuity of the
flux along the boundaries of Vij » we assume a(r,-, ,2) ,ﬁ-(r,zj), e(r._l,z)
fa(r,gF,) to be the flux at the left boundary of Vhtj , bottom
boundary of VL}H , right boundary of Vng and. top boundary of VL}1,
respectively (see Fig.4).

3 4
Vi.j+1

‘ i 4 o §F 20 4

g 3 a3 413 4

‘ Vi-1,j € Vi, | 3 Vien
»* % »

1 211 211 2"
Zia 7Y Lg° 2 R T

| Vi, j-1 |

| fo po l

21_2_1' _____ —f ~T— I
Ni-2 Fi-1 Fi i+
Fig. 4 Allocation of the fluxes on the boundaries and

the numbering of mesh points (N=1).
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Note that 3(1“-’ ,z) is the flux calculated on the rectangular
thi,‘f(r,zj) is the flux calculated on the rectangular th, and
so forth. For each direction of the sweep, only two of them are

assumed to be known. Now we define the residual by

R (r2) = Walkn | qu’“’ffm 9 r0)5t-v) [ Su+ 8] *

+ W Z O e~ farm) Stz-z) Su+ ) ¥

+ wmﬁ.l [ Z‘FWIi”(r 2) e:(n)] S(r-t.‘)[gaz”f i

W [Z V%~ Faon)] Sz v 8l ¥

" w.,;t,,ZW’ [——9; | Loez)] + Wm’lmZ‘I’m ERNER
+ 3 (20 T (s O JE ) +

=1

q@),
WnZ ( L(rZ) —_Wm.Sm(TZ) 9 [ %’1"’6’ » mziNMT); (21)

where 8(1‘—11) and S(Z-ZJ-) are the Dirac delta functions and
SdP (p=1,2,3,4) are the Kronecker deltas in which d takes the .

value 1,2,3 or 4 corresponding to the direction of the sweeps,
i.e.,

1 for sweep 1,

2 t " 2 ,
a=
3 1A 1t 3,
4 t 2] 4

@ e ol i o o 3l e T
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Some remarks on the discontinuities introduced above are
pertinent here. According to the numerical experiments by Reed
et 31(6), the discontinuous finite element method has been shown
to yield an accurate solution of the discrete ordiﬁate equation

and to be much more stable than the continuous method. Mathemati-

cal foundations of these experimental facts have not been given yet.

For proceeding the formulation, it should be noted that the

) (ﬂ.)( T,

functions L”kri,z), L (r, J), bl,z) and ﬁ”(r,z ) are identi-

cally zero unless the f-th point is leccated on the line r=1,, z=Z;,

r=r;, and z=z;, , respectively. More explicitly (refer to Fig.4),
® @) &)
K no=Len=Len=LEy=0

1 (22 3 ")
L(rz) L(rz)—tzrzg =L“('r23)=0 ’

{2)
2 =Lt 2 = L ...,z)_Lcr,. 2=0,
(z)
1 2,0 =Ltz = N z,)= Lz =
Taking account of this situation, the first term of Eq.({(21),
for example, can be written as follows;
FEINT)] 3(L) @)
Wkl 2 ¥y L2y~ 2, W Lo 8010 [+ )
=3
For the residual defined by Eq.(21), we insist that the
solution satisfies Eq.(11) in which Lagrange polynomials take

. (x} .
the place of the weight functions W(¥.z) (Galerkin method) :

() ,
<L(T‘.Z),)R:l(tz)>=0 ’ (L=1,2,-,NL) . (22}
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From Egs.(13), (21) and (22), the equation to be solved is

now given by
)

N L e, ) (® W ()
T,,,,% + Wmﬂmg‘ﬂ [ L(r2) ,";L(r,zﬁ T (L(r.z) ,sa'fl_(r,z) ] *
NL gy, (2D ) N 3() §)
+ Wm’l“;‘ﬂ {Lire), ZLaa)+ %[206,.% At )Y )X

: L . .
) 1,0 ¥ jw, W 0 ) _
x{frn, TLen) + 0% WMQZ‘{,, {Liray,Lirz) - Wl Lea),S,00) =0,
=l
(=1.2-,N), (23)
where T;4 is the term resulting from the discontinuity along the
boundary.

For N=1, _
T q(x) (R‘) K YRRy K"
Tng = “ﬂmn[éﬁm (_L(n.z.),f:»'liiu.z)> ‘Z‘jﬁa(Iiin.z»irli()n,zﬁ](8],+&3)+
. . =1.3 . )
k), (0 ¥ ' K
Wl | Y (1 2)), ﬁft-iﬁ) ‘K,Z,,z‘}f@(ﬁ?nzj),ﬁ(’n Z_;)>](8dl+3:lz +

K=3%
3&H )

$(K), () (K _ y
IVRAPA KK FIR HEEDED A (RER N ) (R AE
§(0), () ) &9, ()
Wl [Z ‘4{" <L(Y, Zi4) L(( lZ;., )> héol‘{m K< L(.( LZ.), l(_()li 23-|)>] (Sda'l' 8&4).

k=12
' (24)

Since, as readily seen, we have following relations;

N ) “r (37
Lieo=Lta , Leon-Lay ,
(3) S} (%) (D
Cirzyp =Lz , Lirgy=Lez ,

(3 4"

m ey,

Lo =L , Leo=Lkn,
0] 3% ) @)
Lizo=-Lirz) , Lozo=Lozy,
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all the inner products contained in Eq.(24) have already been
defined by Eqg.(9).

For N=2, we consider two cases depending upon the number of
points located on the rectangle (see Fig.3).

In order to unify the expression,T;A for these two cases, we

renumber the points in the eight points scheme in such a fashion

as shown in Fig.5 instead of the numbering in Fig.3,

NL=8 (N=2)

Fig. 5§ Renumbering of the eight

mesh points for N=2.

1t should be noted that T,':l_3 is not affected by the Lagrange
polynomials originated at the interior points of the rectangle,
because the value of these polynomials vanishes along the boundary.

. - 2 . s
Now, we can write the expression for ngv explicitly as follows;

7 8’ 9
¢4 o(5) 6%
1’ 2 3
_‘ * A.i # f —e ad “ .n 4*_
7 8 9|7 8 97 8 9
x % o 9 .
¢4 o(5) 694 V o(5) ce 4’ o(5) 69
e [
- 2 31 2 3’+_
—Y—.——? 4 . \ 4
7° g° h 9;:
4° o(5°) 6
| 4% 3
Fig. © Allocation of the fluxes on the boundaries and

the numbering of mesh points (N=2).
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W (K)

Tms W“/““[Z‘Y?{L(rzlr ) Z\I& z) L 2)>] (atop) +

k=36, =1 '7
Ky

T Wallm [Zl}’wzlﬁrm Lirz)) ~ Z‘FN) [(_!()rz ), \izﬁzsb](&* * )+

k=78.9
$0) o) . o
+Woflal, | Z}FM Ll o) *KFZ;% (Ii() 2, o)) i)
¥, (F K
T ¥a T [; :y: m( \if()r 7.0 lig()r z.)) ~ Z < Lo Z), li(;‘ W (IRIINY

(25)

Thus for any N, the definition of T:4 is quite straightfor-
ward. Generally, Eq.(23) together with T;} leads to NL linear
algebraic equations for the coefficients Wﬁ“). We write this
system of equations as

A¥ =b | (26)
where A is a square matrix of order NL, and W andE are column

vectors of order NL;
— e
/\ _'((113) ’
0 3@ GOL) T
V= (86 )
— m's‘ mg" ’ . m’g T
“7 (.bl 7 bz,"";bm.)
It must be emphasized here that the elements a;‘;ﬂ and b‘:* take
different values depending on the direction of the space-angle sweep

because of the existence of Kronecker deltas éﬂk (k=1~4) in Eqs.(24)

and (25).

-20-
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We write here the expression of all elements explicitly only
for N=1. The expressions for N=2 are presented in Appendix IT.
The types of the inner products used in the discontinuous method
are those defined by Egs. (9-1), (9-3), {(9-4), (9-5), (9-6}, (9-9)
and (9-10). The explicit expressions for these inner products are
given in Appendix III for N=1 and N=2,

By the use of the definitions;

(I} a)

CIZ}= Won M K|_(I()EZ),_:‘E()V»Z)> *<L(TZ), ar L(r2)>] Tw rlm<|_("3J, azL(rZ)> T

(1) (J}

n (I
< + 20m,L(r2), ¥L2) * oiwWanl Liry, Lir))

\ bT'ﬁ:(d“*yz+(x“'yz)Z Mk<lfjrz) Y’L(rz)> + Wm(‘il()nz),szfg> , (27)
| €

21l elements of A andﬁ;.for N=1 can now be written down for each

direction of the sweep as follows.

(a) Sweep 1 ((})
mg _ ms
Az = Ry,

(s = axz T W pln T, Z <L s _1r"|—'2()ﬁz)> SIK

=
az; = W1~;<L(rz,) 1 rzi)> b1k
a’;"i ='&’ T Won e V; KZz’(ﬂlf()r z),*{- L(c.2)) A ’lmé@?rz f()rz)> Six
b""“ + wm,umrz KZI <L o 2), rl\_K()r 2) \VW) Oxe T
3 3 (Lo, Coap W80,
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(b) Sweep 2 (Q))

(n

@ = @+ Wadnte > (e ) F LR Sae

K=13

-,

00 = Q2 + Wl 2L, Lz bt Wm’bagl(li?r ), 02 b
@ = 0 + W@%(L(rz ), ez, ) O

bt =B+ et S (2, + R 3 A

K=4.3 K*': 2'4*

¥ wmquZ L) ﬁﬁz)}q_f“_‘.’ Six | | (28-2)

k=34 k=12’

(c) Sweep 3 (12,)

Cl —all T WMQMZ<L(r2 )at‘znzj-l)> 5\IK »

K=12

axlz = a?? * Wm/u'ﬂ Yt\. Z‘r< !_(_?EZ) ) lr \:E)EZ)> SIK * W"’r{";<[(r 1)) \:z()rzr‘)> gIK,
a-:%s "’\‘i)f ’

m ()

" w,,,uer<L“(’r 2), 7L 7y S

K=2.4

Waotl T, > 2 <LK; 2) ¥ l:K()r )Y, s

k=24 K=1"3

+ Wa Q“ZZ <L(r Zri) lik()fZJ.))]Yf“‘) 81{( . (28-3)

K= 1.2 K%=3%¢

‘U‘
lt
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{(d) Sweep 4 (er)

m

3 T (K) n \ *
A = an% T Wl 17, KZ.}< t( 'E—'.Z);lrli(r{-|.2)>éxk T W“TZ"'ZL.<E(;:Z}J: Ezczj-')> &K
. k=12 ’
m4 '\»’n K )
(yz = aqg ¥ erlmz ( L((f: Z) li;r 23-4)> SIK P

k=12
mq Nm,g L) 1 (3)
an = aIS T WM/“mE-.Z(L(&,Z); “FL(T{.‘,Z)> 6\IK »
K=1{,3 .

: mg ﬁ"y’m}
g = a14 »

ny The S S RN TC
b:r. = b,_ + Wn/“mn-:z Z <L(R—|,Z),JFL(G-|,Z) \K, ).:OIK

xeb3 *=774"

K (KOJ 3¢k%) ‘
+ W’"Tl""Z Z <L(r,z.i—l): L(EZ;,..)>% K dITIK . (28-4)

k=12 k234"
From Eqs.(5), (6) and (7), the second term in the definition

of b:’s‘, Eq.(27), is calculated by

<lf()r,z),5:(n2)> =§ gtmﬂ) o é, R:(}ln.‘fm)@tznz) , EIL:?H» +

+ 4 gvo{<f2m, (9 +§:czn+1'>éﬁiw-.s°m)@?<1,t‘i’r.z>> :
where | (29)
<Luzr,z),§:?;2) = ‘2—% 2 Wm'R:(/um’,Tm') [% ‘tidz ﬂ)ﬁ), Lt_lzr,a) ] ] (30)
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4, - Discussions

We have used a regular arrangement of the rectangular space
subregions in our algorithm (regular in a sense that vertices of
adjacent rectangles must coincide). More generally, it is also
possible to use an irregular arrangement of the rectangular ones.
However, the specification of irregular arrangement is much more
complicated than that of regular one.

Another advantage of the regular rectangles over irregular
ones is related to the discrete ordinate approximation applied
to angular variables. For solving the discrete ordinate equation
it is necessary to sweep the mesh in the direction of the neutron
flight. There must be therefore a definite order of the rectangles,
which is simply defined on the regular mesh but cannot be easily
defined on the irregular one.

,The'triangularization of the system is generally used in
two-dimensional (x,y) geometry. One of the advantages of
triangular subregions is that one can simulate any complicated
geometries. But the sweep through the triangular mesﬁes is not
simple even if the mesh is regular, because the orientations of
the triangles to a direction of the sweep must be distinguished.
On the rectanglar mesh, the orientations of the rectangles are
irrelevant to the sweep directions. The fact makes the sweep on

the rectangular mesh much simpler.
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In two-dimensional cylindrical geometry, we rarely have to
solve neutron transport problems with a complicated geometrical
arrangement, Therefore, from the geometrical and practical points
of view it is sufficient to use the rectangularization. Our al-
gorithms can be said to have taken advantage of a higher order
approximation.

We have not tried to make discussions on the merits and
demerits coming from the choice of the weight functions used in
our formulation for eliminating the residual. It is known that
the Galerkin scheme is more general and straightforward. However,
the lower order shemes may be convenient and accurate enough for
practical purposes. It will be one of our further research items
to analyse this problem.

We are now developing a new computer code based on our algo-
rithms described in this article. Our efforts will be continued
to develop our algorithm so that we shall be able to solve space

dependent kinetics problems in two-dimensional cylindrical geometry.
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Appendix I Lagrange Polynomials

The explicit expressions for a few low-order Lagrange polyno-
mials are listed below. As the order of the Lagrange polynomials
become higher, it is not so easy to obtain the expressions of them
intuitively. The systematical procedure to obtain the expressions
is therefore also given in the following. In the beginning we give
explicit expressions of the Lagrange polynomials for N=1 and N=2

{see Fig. A-1}.

N=1 N=2 (NL=8) 7 N=2 {NL=9)
Zj Zj & Zj —
* *
Z; Zj b
Z_, Z]_| ._ ZJ_| 4
J % %*
Ti-q T Ti-y T F Fi-1 r ri

Fig. A-1 Arrangement of the mesh points on a unit rectangle.

(1) N=1 (NL=4)

@ (r-%)(z-2;) @ (r=%q)(Z-%)
L(r'z)= (ﬁ—u‘ﬁ)(%q"%) ’ L(Y,‘Z) (T;. 'E—i)(Zj-\-zi) 2
@ r-%)Z-Z) w (R (Z-Z)
Lea) = g 2 Len= (a2 -

(ii) N=2 (NL=8)
We define I:=(Ibl+11)/2 and Z;=(Z}’+Zj)/2. Note that the
numbering of the points is in such a way as shown in Fig. A-1,

instead of one in Fig. 3.
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@ (r-r)(z-7) [ - z—zx_.J @ (r=LIr-K)(Z2-3;)
>

N (R e ] P ol B C A G T3 A AN

RSN (r—n..)(z-zu[ r-n z—z;-.] @ (r=R) (E-Ea)(Z-3)
D= o0 T 22, Lea)= 0 E-a 032

1544 r-Tu{Z~Za{Z-25 ) Y225 1 Z-2Z
_ £ X NZ-Z) , ey = (r-r( )[ B jJ ’

L) = (e )z (G ENG-ZIL ol 2 -7,
”( (r-r)(r-ry(z-2.) @ (r-r.-,J(z-zj_,)[ r-v -3
"2 (52 0 LB T @ g L R z}*-zs] .

(iii) N=2 (NL=9)

Lo - G aray , Lo (ERGREREa,
Lo = R sy - Lo (CRERERES,
Lom - Er s araaasy |, Lo - (e a-m)
trzy = AL=EDO-K) (2-24)(2-F) 1y = (-0 (2 -2:) (22

e

(F~RI(-ENE -3, )(B-7)

o

(LB G-RE-2.) (- 2T)

() ¢ +* *
{rz) = =B ) (=B (2-F)(2-%)
(c2) = (=TG- )(Z - %) (3-2))

In order to explain the systematical procedure for the con-
struction of the Lagrange polynomials of any order, it will be

sufficient to show the procedure for a low-order case. We take

N=2 (NL=8) for the example.

Let represent ﬂm(r,z), the Lagrange polynomial generated at

the k-th point, by

Loz = Rt bl +CeZ + deTZ + €, + 5 2%+ 472 ﬁJZZ .

The coefficients a,,q,---,ﬁxcan readily be determined by the

Cramer's method.
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" The following abbreviations are introduced;
' | K . _71: = 8 ’
ae=%s b=, G 0p 4T,
| — ‘q/ - ck = G’K
. fk.— yD 7 g‘g._' /D 7 ﬁ'& /D P

£
_ |

o
N

wherel
R - S - AR S - A v
1 % Z % %Oz G4 A
1 % Z 0 0 0
D=1 oz 0
B R - /A R A N B
LR Zor oo
B - T N R N
1 % Z RN Z WA NG

= (XK L an j"rjkzr. + SKEZK“* 6an+ QKZ: + ';Kr:zk Al eKHZi .

r, and Z; (i=1,2,3,4,6,7,8,9) stand for the coordinates of the i-th
point.

ThenTthe coefficients dk,ﬁw-u,acare.calculated in cyclic
scheméléslfolloﬁs, (k,1,m,n,q,r,s,t) being the cyclic permutation

of (1,2,3,4,6,7,8,9).
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Q=" |5 &4 %AW Z GL g
To 2Zn Vudw Ta Zn Toin Yo

! I i
| } |
| . i

| a

i |

| l

L Z %A T Z L LA

ZGR N X %W

@K=.(_1)K 1 - % 2 2|
1 Zn Win Yo Zm TuZe ToZa
| | | | | }
1 | | | | co |
] I, | Iz I i |
1 Zo %& W Z TE WE

Y= |l WA N A4 %A G
1 B %k Yo Za Toke Tudo
| [ I ) | ! |
| | i b | | i
i i I | | | |
1 % 5 &k Z %Z& n

SK=(;1)“ 1 % Z % % on o

| Ul % Za L Ze GEa ToZa
| | I | [ i
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B =(-1)"
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Appendix II Matrix Elements used in Discontinuous Method

In the algorithm of the discontinuous method, we must solve
the linear algebraic equations given by Eq.(26). It has been
shown already that the elements of the matrix A and the vector
depend on the direction of the space-angle sweep. The coefficients
for each direction are listed below for the case of N=Z.

Note that the index number 5 should be suppressed when NL=8.
(a) Sweep 1 ()

mg  mg
an(:a;g ' f&’b K=124;5 ,

mg  m (3)
Ays = 133 + Wm}l’"‘rz <L(T‘ 2,7 r L(r, Z)> SIK ,

€=369

~. (K}
a:z = -aI: + Waln T, §q<LF(r 2), rL“()r ZJ> gJ.K ’

7

Ard = Q5+ e > Uz, LCnz) S

k=739

CLIB “ar'S*Wmfl Z(LU‘Z) tz()r2)>gxk ;

Aalﬁl = an 1_[' m}ler,SE()E,Z),_‘fE(R.ZD ‘I'WnTMK:Z;SL‘E)rZJ lj)l"l) OIK ,
Bl = s = 3 (o, ey g
=369 K= 00T
+ Wl 2»‘“2‘2 3( li?r z), \K(i" zJ)> W%W
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(b) Sweep 2 {1,

aff=aff , for k=2356
m, o, {x)

0 =T+ wolr, é( Lt ), +L 2y SIK ,
g 3] 4)

ar:f = axi + WM}L““T;-tZ <L(n|2),_1}: (r Z)> SIK 2

k=147

m ~n n k) cn
Ris =0y +[\M~K--Z<L(r 2), 7L, 2) t > {Lirz), (rz)} -

K=L+T
-0+ WMQMK_Z“: ez Kirz)) Sue ,
m m’ (k) :
axq =alq T W'“TL'"Z <L(r2) liz)rz )> 8\Ilt
=7ia

) (<)

b = by +[wmn2 > (Lo, L)

k= |.4.? Ki= 3‘: ‘fq*
k) ()

W S > RUEIRRUES

£=7%9 K= rz.a

(c) Sweep 3 {23
m3 Mg :
Qrl =05 oL k=4573
4 Nm,g )
Ry =0y +WmTl:ﬂZ QL(TZ ), LU‘ZA)} 81& ,

k=123
mg m, 2)
Ad - axf +_wmqm23<ur SHNTR2 Y
a‘ (k) 3
Ass = [Wm,umszu (L (r,.2), rli()r 2) +Wlm

k=734

T

ALY

I_(F:”Z,.) L(?r -u)>] X,
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0l =G5 + T = e, EL k2 B

Ke3,69

Q=+ W, JZ<“) AN I

k=369

R =B [ 3 S (oo, Hika) g™

K=3.69 Ka10407"
®

+ Wally_> > (LANEY, \(_K(anjq)fﬂ“q '

k=123 (=778:9°
(d) Sweep 4 (Q,)
) ) for k=589
a’;‘f = E:f +[Wv»/umr Z?( L(ru 2, rl_(ﬁ z)> T W %Z( I_“()nz,-,.) Ltz ] Sk
=g . K=i2.3 o
au ~a3 W Tl > <l:k()rz,,) !ﬁrz,.)) 81.;,
K=L23
a:'.’. = a?a’ T Wa 'Zﬂgj li?r 2, L(Y .)> gxk Y
Q32 =052+ Wlbo, %1( (), rlf?r ) 6,
A =an t Woldn I, %ﬁ L(rﬁ 2),7 LT z)) 81!(

(9!

b’ ~ B+ [w,..,umr > S il z))W{?(”

K=1.47 K= 3*6’?*

S S (e, ™) 8

K=123 K‘s‘ns ?
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Appendix TII Explicit Expressions for Inner Products

Several kinds of the inner products related to Lagrange pol-
ynomials have been defined by Eq.(9). - Confining to the inner
products used in discontinuous method, we present tables of the
explicit expressions for these inner products obtained on the
rectangular cell Vﬁ [Eqs. (9-1), (9-3), (9-4), (9-5), (9-6), (9-9)
and (9-10)]. For each inner product there are two kinds of tables.
One is a table which shows the correspondence between a integer
(we call it the pointer) and the expression, and the other indi-
cates the correspondence between the pairs (E,k) and the pointers.

If the integer (pointer) is negative in the second table, 1t means
that the minus sign must be attached to the expression in the first
table corresponding to the absolute value of the integer.

In the tables for <L(K’j(r° yZ) ,‘—:;Lm T, ,z)> and <L‘K')(r,zo ), Lm(r,zo )>
, only non-zero values are indicated in the second tables. Thus the
values which are disappeared in those tables are all zero. We use
the following abbreviations;

Ar=Ti Ty s

Z.:=2.~Z.
AJ J J_]-s

Sijzﬂri X AZJ. .
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(A) N =1 (NL=4)

POINTER VALUE

1 L (r+2r)asy K o

POINTER| 2 | 1

2 "1'1'2"(2ri.1+ri )AS”

(k) (k)
<L (r,z).L (r.z)>

POINTER|  VALUE NEBREE
' ;.,-'—s(l'i-a"fi)ASii {13164
2 |35(n-r3n)Asij 2 2| als
3 315?(3Ti-1+ri)ASij 3 3
4 | 5(n-*n)ASH] 4
5 | =Z5(ri-rt3n)A8); (SYMMETRIC )

6 '-(1—2(3ﬁ-|+ri)ASij
(k) (k)
<L (r.2),+L tr,20”
POINTER|  VALUE NE 3|4
! 5 ASj tj1121213
L Ag::
2 TB—AS” 2 3 2
i
3 36 ASij 3 1|2
4 1

(SYMMETRIC)
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<L(k)(r,z),a%l_(k)(r,z)>
POINTER|  VALUE NERERERE
|15 (h-r2MAZ | t]-2|2 |-4| 4
2 |5 (2h4+r)AZ; 2 |-111 [-3]3
3 | 3g(n+2n)AZ 3|-4{4|-2]|2
4 | gsnenAz; 4|-313 |-1]1
<L(k)(r,z)-,—§—z|ik)(r,'z)>
POINTER|  VALUE NEREAEIE:
1| g Gy tr)Ar {[=3]-1] 3]
2 | 5 (na*3n)Ar 21-1]-2]1]2
3| o5 BrtrAN 3 -3|-1]3 |1
al-1]-2]1 |2
<™ .2, .22
POINTER| VALUE N3 N2 a4
v | 3 Az, 112 2 [1]2
2 | £4Z; 3|2 4|21
(ro=rj-1) {ro=ri )
< ™rz0.% 0 20>
PONTER|  VALUE NERE: NEIE
(| 75 hetr) AT 1] 3|1 3031
2 | 5nt30)Ar 2112 4|12
3 -;'—2-(3r;-.+r;)Ar; (Zo=Zj-1) (zg7Zj)
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(B) N=2 (NL=8)
<. My 2>

( SYMMETRIC)

PONTER|  VALUE k| 3/4(6|7 |89
| Elher)asg POINTER | 4 5(3(2]4|1]5

2 | 5 (N-+2nASi)

3 —;—(Zt’i-# ri)JASj;

4 |-3ln-+2r)AS;;

5  |-g5(2n.¢+1)ASj;

PONTER|  VALUE

| (6 #1,)AS
2 | & netr)AS;
3| Fh-+3n)AS;;
<L(k"(r.z),L(k: rz)> 4|2 0nenasy
5 %(ri-ﬁrimsi;
Nit|2(3|a|e|7|8]9 6 | 25 (2n.¢-3n)AS);
1 [10]-9 /12| 8 1315|511 | 7 |Zeneenas;
| 2 W lol|7]e|s]2]s|—"| 8 -5 (F# T AS;
|3 9|14 8(11]|5]16 9 | 35(n-+2R)AS;;
a4 4|2|8|7|14 10 | 55(2Nrtr;)AS);
6 3(13{6| 8 11| 1351 )AS;)
7 10|-9]12 12 | @gln-rtr)AS;;
8 { -0 13 |-7aa(3n-#50ASi]
9 9 14 |-s(5n.430AS;;

15

-313-0(ri-1+ 3n)AS;

16

3-&5(3n-,+nms ij
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<L(k()r,z),+l£k)(r,z)>
PONTER|  VALUE Nlyle{3|ale; 7|80
1 £ Asi; 1 |2|-2]7]2|3|7|3]|6
2 o5 OS] 2 5-2 | 1] t|3]4]3
3 | -& S 3 2| 3|-2|6|3|7
4 e ASij 4 514|213
5 = 1Sij 6 53|12
6 =5 BSij 7 2 -2 | 7
7 55 ASij 8 5 |~2
9 2

( SYMMETRIC)

<L(k)(r,21,—g—rl_(k)(r.2)>
POINTER|  VALUE 9 | A2nAZj | 18 |-gglon-rnlAZ;
t | &5z 10 | A@n¢raz; | 19 | gpli-t2n)Az

-2 (r,)AZ; 11 25N1-1AZ; 20 |-g5l2n.#r)AZ;

L (r.rnAz; 12 |-a5triaz; | 2 a5 (31441, )AZ;

25 ASij 13 | dsla*3n)AZj| 22 | gglani30)AZ;

2 (3.¢200Z)| 15 |—gginm-8rlAZi| 24 al4r-r 1)AZ;

-2 ASj 16 |~o5lBR=T)AZ)| 25 |-@gl3n-r5rAZ;

2
3
a4
5 |-gcl2ne3AZ)| 14 |-ggBRrn)AZi| 23 | gEelinranlal;
6
7
8

= AS;j 17 | o5 +9MIAZ)| 26 | fag(Srt3NIAZ;

A
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U

11 ]2]3|4]6|7 |89
| 14| 6 25| 21]-21|24]| 4 |12
2 (18| 8|17(-3| 3| 4| 7| 4
3|26|5 |13 |22|-22{ 11| 4 |23
4 |20|1 [16 |-10] 10/20]| 1 |16
6 (15| 2 [19]-9] 915|219
7 24| 4 |12 |21|-21]14| 6 |25
8| 4|7|4|-3 318|817
9 [11|4|23|22|-22/26| 5|13

<M.z .??Z—L(k)(r Z21”

POINTER|  VALUE 7 | a5 (Onrran | 14 | gy (Trrtn)Ar
! 0 8 | o (3rataniar | 15 | gig(ri-rTHAT
2 -%(ri_,ﬂimri 9 %(4n-,+3n)Ari 16 -3£—0(7r5-1—ri)Ari
3 | Z@na+3nAn | 10 | gelan.aonan | 17 | ghg(n.15r)Ar
4 | EGrp2nan| 11 | geOntanan | 18 | 5ggISn. A
5 |a5tan)® 12 | 5Tt AT
6 |g5ir*OnAr | 13 | Splhi-rHTr)Ar

M




JAERT — M 5793

U
Nt |2l3|al6{7]8]59
1 |14 | 815 7 |-5 |[-18 -8 |-12
2 -1 |-2|-0| 4| 3|-8| 2{-9
| 316 9]43| 5|6 (-12{-9|-17
4 -7l-al-51[1]7] a|s
6|5(-31-6/ 1|1 (-5| 3|6
7188 (12|-7| 5 14]-8]15
8| 8(-2| 9]-4(-3[11] 2|10
9 12| 9 (17 |-5 |-6 |-16 | -9 | 13
<L{k)(ro,21,lrl_‘kzro.z)>
POINTER - VALUE NEREY AN ERE
1 e AZ; 112134 3|23/ 4
2 | &az 4 1|3 6 1|3
3| 1547 2 9 2
4 ‘%AZJ _.(ro=r;..1) (ro=ri )
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(k) (k)
<L tr,zolL (r,29)"

POINTER

VALUE

k
k' 1

!

‘i%(fpﬁ' ] )Ar;

-1-%—(1';-1)6.”

S5 (r Ar

“6‘15( hiatl )Ari

| W | bW

'_SLotri_|+7ri )Ari

ol dlw|m

s (Thi-r AT,

(C)

N=2 (NL=

(
<1 L

9)

k)
(r.z)>

| | d |

POINTER

VALUE

k 1|2

{

£ (gt )ASjj

POINTER| 5 | 4

é—(fi-ﬂASij

—;—(r; JASj

-1'@(rH+ ri JASH]

5= (ric)ASi ]

Ol | | MP

21 )AS;j
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<I_(k()r z), I_(kzr z)>

PONTER |  VALUE
| s li-rr)AS) AR 3|ai5l6|7|8]9
2 | sasinrtTIAS); 117 13 |20]11[18 |23 |14 |21
3 | 5o5(ni-ASi 2 8 |11|5{12(14] 6 |15
4 | 525(ri)AS; 3 16 |18 |12 |19 |21|15 |22
5 | sagn-trASi | | 4 10| 3|6 [20]11]18
6 [-2el-#r)AS | | 5 tla11]s 12|
7 | s25(ri)AS; 6 9 [18(12]19
8 | 555(r;)ASi] 7 7] 7 13
9 | 25 tTrIAS) 8 2|8
10 | 255(Th-th)ASij 9 16
| 1 %(ri—i)ASij ( SYMMETRIC)
12 —2-'2—5(ri JASij
'3 -zjﬁ(r;-ﬁ rASi
14 450 ri-)AS
15 —m{ra JAS ij
16 | zm5ili-+7rIASH
17 | 255 TrertTAS;
18 |-ggpii-1+rAsi;
19 go%(ri-rf TriASj;
20 | 535(Th-tr)AS;|
21 | igeefli-rt AS;
22 |gglri-r TSI
23 'ls—o—o(Tri-1+ri)ASij




POINTER

VALUE

64 ,c..
525 DSij

16 _ e,
555 D5i]

_8 ..
525 DSij

4 e
525 D5i]

2 .
555 DSij

{ ..
725 £Sii

! .
~ 250 £3ij

o o IR RSN I e > TN (Y & T (Y - SO I PV DO Y AN

! .
900 £l

JAER!I - M 5793

-~J

i [N,

(&)}
N | N OO D
W | O | W] O],

HINO OO N

N TR WO |~

Ol (N || dD || M

(SYMMETRIC)
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(k)

- <t (r,2) -éa-li Z)>
PONTER|  VALUE

t |-52&-asi) 13 |-saelBrp20AZi| 25 | sisRsnAz;
2 |-g&r.*an)AZ; | 14 | 5E5ASy 26 |-m5(3n.t2n)AZ
3 2‘2‘55(4r Az | 15 |-sEsintanazi | 27 | ggplen#3naz;
4 l-5as ASi] 16 | =2x@nrr)AZ) | 28 | —Zagl3nt2nnz
5 | s2=GreTaz;| 17 | 5553npTRAZ; | 29 - 7253t THAZ,
6 225(?r-,+3r.)AZ, 18 ~ |-52=(T#3r)AZ; | 30 | zag(Th*3n)AZ]
7 225 ASj 19 | sera+4rIaZj | 31 | 35@n.H3nAZ,
8 225 tanAZ; | 20 |—mislanen)AZi | 32 |-zhplI3e2RAZ;
9 225(4r.,+r AZi | 21 | S=@ns3nIazi| 33 |-5a5@ee3RAZ,
10 | soelen#300Z; | 22 |—mp3ne2nlAZi| 34 | ggidniendy
| nz; | 23 *2—2'5(3ri #TAZ; | 35 |55 @nt1ERAZ;
12 | g2 M3RAZ) 24 |-saE(Me3r)AZi | 36 | goplPhr2RAZ;

Nt 2|3|a|s|e|7|8]09

1 |26| 9 |22|32|16|28 |36|20 |34

2 [18| 4 |17|24| 7|23|30|14 |29

3 21| 8|25[27|15(31|33|19|35

al32]16 |28 13| 3|11 32|16 |28

5|24| 7|23 6| 1| 5|24 7|23

6 |27 (15 [31|10] 2|12|27}15 3!

7 |36(20|34|32| 16|28 | 26| 9|22

8 |30[14|29| 24| 7|23]18| 4|17

93319 (35|27[15|31 | 21| 8|25

“.46_,
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(k)

<l_(k)(r,z).-§2-L (r.z)>
POINTER  VALUE 10 | g5(ri AT
1 0 11| g5(r)ar
2 |Ehenar | 12 | g5in.aTrAr
3 |35 (nar 13 | 35 (Then)Ar
4 |gglrar 14 | m5(h+RAT,
5 | (ny*rAT 15 | 2g(h-#Tr)Ar
6 % (Fi-gtr; JAT; 16 TéB(Tri-ﬁri)Ari
7 | & o)A 17 | gagifier 1 AN
8 | (r)ar; 18 | 555(h-rTrAr;
9 |Gy matran | 19 | gp(Thtriarn
.
Nl1i2|3]4a]5]|6|7|8]9
{ |-16|-3[14 |13 | 7 |[-9]|-19/-10]17
2 |-3|-2(-4| 7|5 | 8|-10|-6 |
3|14|-4]-15|-9 |8 |12 17|-11 |18
4 ~13(-7| 9l 1|1t | 1]13 7/|-9
5|-7|-5(-8| 1|1 | 1] 7| 5] 8
6| 9l-8[-12| 1|1 ]| 1]|-9] 8|12
7119|1047 M3 |-7 | 9| 16| 3|14
8 10| el11|-7|-5|-8] 3| 2| 4
9 |~17| 11| 18| 9|-8 [-12 -14i 4| 15

,_47ﬁw
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(K) 4k
<L (ro,z),TLI(re,z ) >
POINTER| VALUE a7 kiz|le |9
|| o5 AZ] 2 (3|4 32|34
2 | &0z 4 1|3 6 1|3
1 A
3 = AZ] 7 2 9 2
4 |-354Z] (To=Ti-1) (ro=ri)
(k) (k)
<LAr.zot L Ar, 200"
POINTER|  VALUE N2 3 kKiz 189
1 T ri* i AT 116|214 7612 |4
2 | qk(rig) A 2 {3 8 113
3 | qetrarg 3 5 9 5
4 _"é%(ri-#ri )Ar| (Zo = Zj-—] ) { Zo=2j )
5 a5 (N7 AT
6 | a5(TratnAr

48—

B i



