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by Non-Linear Programming
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In large tokamak devices in the next phase of fusion
research, it seems that equilibrium of the toroidal plasma is
maintained essentially by the external control loops and an

air-core transformer is used instead of a conventional iron-core

|

transformer. Under this situation the methqd based on the
optimization process using the algorithm of a non-linear -
programming has been applied in determination of the optimum
design of the external magnetic field coils including the

control loops for maintaining magnetic field and primary

windings of the air-core transformer. It is found that the
method is useful for design of the control loops and primary

windings in a practical tokamak. The results obtained so far

are presented and the procedure of optimizaticn is given in

detail and comprehensively.

* Present address: Institute of Plasma Physics,

| Nagoya University, Nagoya.
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1. INTRODUCTION

In a converitional tokamak device an equilibrium of a
toroidal plasma is ﬁaintained by the interactions of the
plasma current with its image current in-the conducting
éasing and with the current in several control ldops
excited by_an external pdwer supply. In future 1arge
tokamaks with_long duration time of the_plasﬁa current,
however, the céntributioﬁ of the conducting casing to
equilibrium will be considerably reduced because of
finiteness of the decay time.qf the.image currént. Tﬁeﬁefore,
the control loops will have an éssential role in maintaing
the equilibrium of the plasma, aithough a thin conducting
casing may be, still, equipped in the devices from the
viewpoint of the stabilization of the fast growing mhd
instabilities. Moreover, the primary current for the ohmic
heating will be coupled with the plasma current through . an
air-core transformer in contrast with the conventional jron
core transformer. In these cases, the effect.of the
discreteness of-the external ﬁagnetic field'coils (the
control loops and primary windings) which introduces
irregularity of the magnetic field over the plasma region
becomes more pronounced, e.g., the irregularity causes the
possibility of deforming the plasma boﬁndary considerably[i].
Therefore, it is very important to désign external magnetic

fields carefully.
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Some numerical methods ere developed to obtain the
optimum configuration of the control loops and primary
windings, e.g., the virtual casing principle{2,3] and the
method based on a linear pfogramming[4]. " These procedures
determine the value of current in each coil, the position
of the coil being fixed beforehand. In these cases the
problem is, essentially, reduced to-ﬁhe solution of a
linear simultaneous equation because of a linearity of the
relation between the current and ﬁhe-magnetic field. As a
natural result ofrthe methods we have not any information
on the value of current in each coil before solving the
equation. Consequently we cannot allocate theimagnitude of
current in a prescribed value of ratio to each coil, though
it is often the case that the ratio of -the current is
determined beforehand to be, for example, equally distributed
among the coile. Moreover by the above methods, the value
of current in a certain coil may become, somefimes, extremely
large from the practical viewpoint. The following procedure
is proposed to overcome the drawbacks of the above-mentioned
methods[5]. By the method the optimization of the design
- of the external magnetic field coils is carried out with
respect to the positions and total ampere-turn for the
control loops and only the positions for the primary
windings, the ratio of current in each coil being.fiked at
the prescribed value. 1In the numerical calculation, the
non-linear programming has been succesfully.applied‘to the

following simplified model.
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In the model the positions of the external magnetic field
coils are searched on a toroidal surface with a circular
cross section to minimize the 6bjective function composed of
the sum of.the sqﬁares of difference between the desired
magnetic field and the field due to the coiis. In the case
of the control loops, for simplicity the expression for the
external maintaining magnetic field by Zakharov[6] and
Mukhovatov and Shafranov[j] is adbpfed as the desired
magnetic field, that is, the magnetic field is one for the
plasma eéuilibrium’with a.slight-ellipticity and large
aspeét ratio and it is given on the median plane of tﬁe
toroidal plasma. . Therefore, the‘objective:function td'be
minimized can be constructed on the medianlplane, though
generally it should be constructed on a toroidal Surfaée
which encloses a region of interest, e.g., a plasma surface.
In this articlé, we devote ourselves to explanation of
the practical procedure of the method Shéwn in Réf.S. From -
above reason some remarks on execution of Opﬁimizétion with
constraints, and the flow chart and input data format of the
computer code are presented in Appendices A and B, resﬁectively.
Section 2 describes the metﬁod-how to make the dbjective function
for the optimum design of the external magnetig field coil such
as control loops and primary windings. In séctioh 3, the
procedure of optimum design of control loops and'the'results
are illustratively shown. Problems to be solved concerning
the method and the future extension of the.méthod are

discussed with some examples in the last section.
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2. PROCEDURE FOR THE OPTIMUM DESIGN OF THE EXTERNAL

MAGNETIC FIELD COILS

In general the optimum design of the set of the
external magnetic field coils is obtained by choosing as
an objective function (F) a surface integral of the "length"
of the difference vector between the magnetic field

produced by the coils and the desired magnetic field and

then minimizing the aobve objective function. As the above
objective function has, generally, a non-linear dependence

on the parameters to be determined, it will be most convenient
to use a non-linear programming for the miﬁimizationprocedure.
It is practical and intuitive to choose as the measure of

the "length" a square of the Euclidean norm and to represent.
the integral by a sum of the "length" over J given obser-
vation points in the region for the ébove integration. Thus

the objective function to be minimized is derived as,
(1)

where w., B. and Bj are the weighting coefficient, the
vectors of the magnetic flux densities of the magnetic
field produced by the coils at the j-th observation point:

and the desired magnetic field at the same point.
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3. OPTIMUM DESIGN OF THE CONTROL LOQPS
(.3--1) THE OBJE-CTIVE FUNCTION AND INTRODUCTION OF CONSTRAINTS
In this subsection, we diécuss the procedure fér the
optimum design of the control loops in a tokamak device.
In subsections 3-2 and 3-3, the results of calculation for a
practical device are shown with some illustrations. It should
be remarked that as shown in the last section the generali—
zation of the procedure of this section is straightforward,
As mentioned in the introduction, the'observatibn points are
chosen on the median plane of the toroidal plasma in the
model of this section. Therefore, Eg.(l) is reduced to the

simpler expression as,
(2)

where 3¢j.and'ﬁlj are the yertiéal_compohents of the above-
‘mentioned magnetic fields at the median'plane.‘ Here we
restrict during the course of iteratiqns the motion of the
2M control 160?3 on a toroidal surface with a circular cross
section (M loopé on the upper half surface and'M'loops_on |
the‘lower half surface at the mirror images of ﬁhe upper
loos) as shown in Fig.l. The restriction.greatiy.simplifies
the expression of the objective'function‘because in this
case the position of i-th control loop is represented by
only one parémeter, Bi. It is.not, however, the essential
restriction on the problem and can be removed if necessary.

The current in the i-th control loop is represented aS'aiI,
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where o,I, is the prescribed ratio of current in the i-th

: M
control loop ( Z a. = 0) and I is the total ampere-turn
M i=1
divided by £ |a,|. Thus, the objective function F for
i=1

the system of 2M control loops is expressed by (M + 1)
variables, that is, the M poloidal angles, eiis ( i=1, 2,
cec, M) and the normalized ampere-turn I. As the number of
the observation pointsd(J) should be sufficienfly larger
than that of the unknown parameters (M + 1), about 7M
observation points have beéd prepared through all the
calculations presented in the paper. As the computer code
for the minimization, we used the non-linear programming
code published by Van der Voort and Dorpemaf8]. In the
code the'minihization of the objective function is carried
out by one of tﬁree methods, that is, the gradient method,
the modified Newton Rapﬁsod method and the Newton Raphson ‘
method depending on the property of the Hessian matrix of
the objective function. For the clear demohstrdtion of the
applicability of the methdd to the problem,_the following
two quantities, the lbcal_and_méan deviationS'of the designed

magnetic field from the desired one, are defined as,

/2,0
/Bo )

ti

~ ) : ~
6B, /B, = [{ I [BJ(R)) = By(R)IZI/(I = 1)]

ij=1

e md o e e et
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where it should-be remarked that the'position of the j-th.
observation point is R = Rj and Z = 0 and %Lo denotes the
value of the .desired magnetic field on plasma axis. In the
problem of this kind, where the magnetic fieid is optimized
on the median plane, the spatial variation of the decay
index (n = "(R/BL)'(dB¢/dR)|z=o) is also one:of the stringent
measures of fitness of the thimizéd magnetic.field. In the
subsequent subSéctions‘we-exaﬁine the above three parameters,
i.e., AB¢ij)/%L(Rj)' GQL/QLO and n, to investigate the
applicability of the method to the optimum design of the
control loops:

Basically the optimﬁm design of the control loops can
be obtained by minimizing the above objective function.
In the course of analyses_of this paper, however, the
optimuﬁ positioﬁs énd ampere-turn of the control loops have
- been obtained straightforwardly only when M is small (M < 6).
When M is 1arge (M > 6), the above-mentioned procedure meets
a difficulty,.that is, the convergenbe‘of the solution is
remarkably deteriorated. It is found that the deterioration
of the convergence results from the repeating exchanges of -~
the positions émong adjacent control ioops; The difficulty
is, therefore, overcome by introduqing appropriéte constraints
which forbid the exchange of the positions 6f £he control

loops. The constraints are expressed, in this case, as,
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9; < el - emin >0
g'i =ei bl ei_l > 0 (i=2’3f-..fM) (5)
gM+l = emax _:eM >0

where the first and laét conditions are introduced so that
all control loops exist in_a region between amin and emax.
It should be noted that such constraints as gi-and Im+1

are introduced for arbitrarily chosen groups of control
loops and forbiddeh regibns for the control loops can be
provided at any region on the toroidal surface. We solved
the constrained minimization problem by "Sequential
Unconstrained Minimization Technique" (SUMT) [9], introducing
a penalty function P and transforming the objective function

F with above constraints into the objective function without

the constraints %, as,

1 .2".-'16M-f I) + P(elfez_a"'reMi"Ys)' (6)

where the penalty function is expressed as,

o ' M+l
OgrrmreByi Yg) =g L
i=1 (gi)

P (9.

1’ {(7)

K
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where K is the given positive integer and y; is the

perturbing parameter which is decreased in a prescribed

manner as the wvalues of the variables approach the optimum
ones. Practically the modified objective function Fis
minimized for é fixed value of Yg by using the above-mentioned
computer code. After the minimum of ¥ is searched within

the prescribed accuracy, the perturbing parameter is

reduced by a decreésingryate ; and the minimization of F

is carried out again for the new parameter Yoe1 = YS-?.

In Appendix A, some remarks on execution of optimization

with constraints are shown.

(3-2) MAGNETiC FIELD PRODUCED BY LINE CURRENTS QN A
| CYLINDRICAL SURFACE

For the examination of the convérgence of thé.solﬁtiOn
and the deviation of the dgsigned magnetic field.prodﬁCed
by the contrQl'ioops from thé desired one after the’above.
optimization, a set of"control.loops“composed of line currents
on a cylindrical_éurface which produces a uniform vertical
magnetic field inside the cylinder is desigﬁed by the method
described in the previous sﬁbsectioh. .The calculations
are carried out for the followin§ parameters; the radii of
the cylinder on which the line current exist and the |
cylindrical‘plasma are r_ = 0.5 m and ap.=.0.4 m, respectively,

and the observation points of the magnetic field are chosen
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on a diameter of the plasma.

First, the objective function F without the penalty

terms has been minimized. As stated in the previous subsection,

in the cases of large M (M > 6), the solution has not
converged on the optimum point but oscillates around a
certain point. As the result of the phenomenon, the mean

deviation of the field from the desired uniform magnetic

field also oscillates and is not lowered below a certain value.

An example of the results is shown by a cross in Fig.2

for the case of M = 8. In the next place as it is known
that the pheﬁomenon results from the repeating exchanges of
the control loops, the constraints (Eq. (5)) is introduced
and modified objective function ¥ is minimized. 1In this
case, however, the "forbidden region" is‘not set up, i.e.,
emin = 0 and emax = m. By introducing the constraints and
choosing the perturbing parameters appropriately, the
exchanges of the control loops'afe éuppréssed completely
and the convergence of the solution was attained favourably.
Figure 2 shows the mean deviation of the designed magnetic
field from the desired one for the cases of M = 2, 4, 6, 12,
and 16. Among them , the 'solution for M = 16 did not
converge, on the optimum point due to the truncgtion and
cancellation errors though the calculations were executed
in double precision. It is seen, however, from the figure
that the deviation of the designed magnetic field_from-the

desired one is small encugh for a practical problems.
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For the case of M = 12, the optimum positioné of the control
loops and the deviation of the designed magnetic field at
fhe observation points on the diameter.of the plasma (Eg. (3))
are shown in Fig.3. Figure 4 is the magnetic lines of force
for the same case, where the siight aéymmetry of the pattern
of the field lines is due to the fact that the field
calculation for the plotting is carried out not for_a
strictly cylindrical case but for the very thin toroidal
case (Ro/rS = 100). It is very useful to know how much
extent the designed magnetic field is-deviated from the
uniform magnetig_field at the region except the diameter
where the observation points are located, becaﬁse there
remains a possibility that the magnetic field is distorted
considerably at the region except the diémeter as expected
when the solution of the problem is obtained by solving‘a
differential or integral equation. One of measures for the
ekamination of the possibility is to plot the magnetic lines
of force as seen in Fig.4 and another is to plot the following
two-dimensionai pattern of the deviation over the region of
interest. 1In the case of uniform field the deviation of the

designed magnetic field from the desired one is expressed as,

|B - B I “ - r
_ o! _ / 2 - :
£ I —— Z_ = (BX/BLO) + [(BZ Blo)/Blo]

8|

2 (8)
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where B and Bo are the vectors of the magnetié flux densities
of the designed magnetic field and desired uniform magnetic
field, respectively. 1In Fig.5, the constant e lines

(e = 1.0 %) ére'shown for the various values of the mean
field deviation (Eg.(4)) and it is seen that the region
where the deviation is less than 1.0 % spreads considerably
with decreasing the mean field deviation at the observation

points on the diameter.

(3-3) OPTIMUM CONFIGURATION OF CONTROL LOObs IN A PRACTICAL
TOKAMAK DEVICE |

In this subsection, we describe the design of the
control loops in ‘a practical tokamak-device'in'some detail.
Strictly speaking, the maintaining magnétic field required
for the equilibration of the tokamak plasma should be
optimized over the whole plasma surface of the toroidal
plasma as stated in the introduction. For tokamak plasma
with the slight ellipticity, large aspect ratio and uniform
current density, however, the required maintaining magnetic
field is well represented by the values on the median plane
of the tofoidal plasma[G,?]._ The mainﬁaining magnetic

field on the median plane is expressed as,



=N

~ _ ~ _ p .
BJ._ Bio[l'o _— no] {9
R
P
where
~ u I
- . op 3
B = [in(8R_/a_ ) + B8, ~ ——1
1o 41R PP I
P
3,0 17 " 2,2
. T Rn(SRP/ap) -1t (1.0 'EZ/ER)Rp/ap
o ' ; ' 5
R:n(SRp/aP)“"‘ SI —_‘-:4-
and Ip' BI,.RP} 3y Lp1 fps R and M, are the plasma chrent,

the ratio of the gas-kinetic pressuré to the-poloidallmagnetic
pressure, . the major and mean'minor radii of.the plasma., ther
vertical and hofizontal semi-axes of the ellipse, the

distance of the observation position from a symmetric:éxis

of the plasma and the permeability of the vacuum; respectively.
The decay index of the magnetic.field on the plasma axis

is denoted by n,. It should be also noted that:Eq.(9) is
valid over the whole plasma region up to the first.ordéi
ofrthe'inverse aspect ratio[6] and, therefore, the'radial

component of the maintaining magnetic field is expressed as,

By = -B, *n_ 2 . o S ao
R o
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" The optimum design of the controlrloops afe obtained

for.a large tokamak with the following parameters; Ro = 3.05
m, r, = 1.25 m, Rp = 3,00 m, ap = 1.00 m, &, = %, and BI = |
1.0, In the calculation, the modified objective function ()
is minimized and two different cases with and without forbidden
region are investigated. The mean deviation of the designed.
magnetic field (Eg. (4))} for the case without forbidden region
is about the same as the results for the cylindrical case

shown in Fig.2. The mean déviation-for the case with forbidden
region is, however, much more larger than for the above case.
The deviation reasonably increases with increaéing extent of
the forbidden regiqn. In the followings the results for the
cases of M = 4, B8 and 12 are shown with some illustrations.
Figures 6-(a), (b), (¢) and (d) show the optimum pésitions of
the control loops and the deviation of the designed magnetic
field from the aesired one (Eq.{(3)) for various values of M
and ui's. The profiles of the magnetic fields.and decay
indices are also shown for the case of M = 12. The two-
dimensional patterns of the magnetic lines of fdr;e corresponding
to Figs.6-(a), (b), (c) and (d) are shown in Figs.?-fa), {b),
(c) and (d), respéctively. From the variations of the radiaL
and vertical components of the magnetic field along.the radiai
and vertical directions, it is éeen that the designed magnetic
field has the distribution given by Egs. (9) and (10) over
almost whole plasma cross section, though the optimization of

the magnetic field is carried out only on the median plane of
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the toroidal plasma. Figures 8 and 9 show those of the case
with forbidden regions near_e = 0 and 8 = m corresponding to
Figs.6-(c) and 7-(c). 1In Appendix B, the flow chart of the
above optimization calculation and the input data format of
the code are presented for users of the code.

The results thus obtained can be compared with those’
with continuous surface current distribution in a conducting
casing located at the to;oidal surface on which the contfol
loops move by Fourier-analyzing the discretized current
distribution. Figure 10 shows the distributions of the
surface current obtained by summing the Fourier components

to the sixth harmonics for Fig.3 and Fig.6-(c).
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4. DISCUSSION

It is shown in the previous sgctions that the procedure
based on the non-linear programmihg is successfully applied
to the determination of the optimum configuration of the
control loops which produce the maintaining magnetic field
in a tokamak device. Though intﬂﬁj;arﬁiclé.the applicability
of the method to the optimization of tﬁe maintaining magnetic
field is investigated under several.re#trictions, this
procedure is straightforwardly applied to more general
prbblemé without such restrictions.

For example, the "direct equilibrium problem“[Z]* of a
tokamak plasma which has not a conducting casing but a set
of control loops can be solved without approximation by
the above optimization procedure in conjunction with the
virtual casing principle[2,3]aé followsf Firstly,the distribution

of the maintaining magnetic field on a plasma surface is

* In general an mhd équilibrium of an axisymmetfic
toroidal plasma is expressed by a non-linear differential
equation of the flux function of the poloidal magnetic field
where the distribution of the tbroidal current density is

- an arbitréry'given function. The problem of determing the
vacuum field outside the plasma on the basis of the flux
function which is obtained by solving the non-linear
differential equation for a fixed boundary plasma is called

the "direct equilibrium problem” in Ref.2.
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obtained by the virtual casing principle. Then the parameters
concerning the control loops is determined so that the
magnetic field produced by the control loops should be
bestfit for the magnetic field. We show schematically the
above procedure for the optimum design of control loops in
Fig.ll comparing with the method in Ref.2. Determination
of the optimum configuration of primary windings is another
example of the applicatiqn of fhe method. As all the
windings are conected in series in the case of primary
windings, the ratio of the current allocated to each coil
must be determined before the optimization. ‘Therefofe,
the optimizations with respect to the positions of the
windings by fixing the current in each winding are more
desirable than those with respect to the current in each

- winding by fixiné the positions and total ampere-turn of
the windings. Generally speaking, in designing primary
windings.the magnetic field by the windings in the plasma
region should be reduced as low as possible, while the
necessary induced electric field at the plasma is kept-
constant. In the practical case, however, the space where
the primary windings can move during the optimization
procedure is restricted to a comparatively small region
and the coupling constant of the primary windings to the

plasma does not vary considerably. Therefore, we can obtain an
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optimum design of the primary windings, minimizing the total
magnetic energy integrated over the cross section of the
plasma and keeping the total ampere-turn of the windings
constant. Preliminary calculations concernihg the optimum
design of the primary windings are also carried out where
the magnetic energy is minimized on the surface of the “
toroidal plasma. Figure 12 shows an example of the optimum
positions of the primary windings, the two-dimensional
pattern of the magnetic linés of force and the magnitude of
the magnetic field (gauss) for the total ampere-turn of 1 MAT,
In applyihg the method to the above problems, however,
two points shoﬁld be remarked. Firstly the number of
calculation of the magnetic field for one evaluation of the
objective function is M x J times, where J is. chosen to be
several times of M, and for the one iteration of the
optimization the objective function is estimated at least
by the number of variables of the objective function.
Therefore, the computation time for the éptimization of the
system of 2M coils is proportional to more than third
power of M and the optimization will be considerably
difficult with increasing M. But in the case of the control
loops, for example, M of_more than 20 will not be required
from the technical point of view at least when there is no
"forbidden region". Even when more control loops are
required, however, we can reduce the compﬁtation time,

for exémple, by dividing the unknown parameters into two
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groups and minimizing the objective function alternatively
with respect to the two groups of the parameters. Secondly
as the expression of the derivatives of the objective
function becomes extremely complicated for the case where
the observation points of the magnetic field are not
restricted only on the median plane, the computer code of
the non-linear programming where the derivatives of the
objective function are not required is desirable. For this
purpose, "the conjugate éradient procedure without calculating
derivatives" by Powell[1l0] or "the simplex method" by

Nelder and Mead[l11l] will be more easily applied, because

of the simplicity of formulation of the problem. The simplex
method is applied to obtain the above-mentioned example on
the optimization.of the primary windings because the
derivatives of the objective function are too complicated

due to the fact that the observation points of the magnetic
field are not on the median plane. Generally speaking,

the fewer numbers of iterations are required for convergence
by a non-linear programming code which uses the derivatives
of the objective function. In this case, however, the
computation time for one iteration is very large for a
problem with complicated derivatives of the objective
function. Therefore, it depends greatly on the problem to

be solved, which kind of the computer code is desirable.
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APPENDIX A. REMARKS ON EXECUTION OF OPTIMIZATION WITH

CONSTRAINTS

The optimization problem with constraints is solved by
appropriate transformations. Two different transformations
are used, i.e., the method in which the variables toc be
determined are transformed into new ones [12] and the other
where the objective function is modified. The latter is still
divided into the followiné two kinds of methods. One is the
method where the penalty function corresponding to the
constraints is added to the unconstrained objective function
and the modified objective function without constraints is
minimized as shown in subsection 3.1 (SUMT) [9] and the other
is the method in which the objective function is modified to
take a large positive value over the whole forbidden region,
which is especially effective in the case of the minimization
by the simplex method [11].

We carried out the optimum design of control loops by the
SUMT method. In this method, it ié very imporﬁant to choose
properly the initial value of the perturbing parameter Yy and
the decreasing rate ;. We chqose Y, SO that the value of the
penalty function P is about ten to hundred times as large as
the value of the original objective function F. When the
minimum of the modified objéctive function ¥ is searched within
the prescribed accuracy, the perturbing parameter is reduced

Fad

by a decreasing rate y. For y = 0.1 - 0.5, the desirable
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~

results are obtained. If v

A

0.05, the constfaints have been
violated in the course of iterations. Fig.l3 shows the behaviour
of the ratio of the penalty function to the original objective
function (P/F) as a function of the number of iterations for
; =0,1 and 0.05. In the case of ; = 0.05, the constraints are
violated at 28th iteration. On the other hand, as seen from
the figure for ; = 0.1, when the solution converges the optimum
value of the original objective function, P/F is.almost constant
for a certain perturbing parameter Yo and decreases at the rate
of v ( ITR 2 250 ).

It should be remarked that the simplex method is effective

for the optimization problem with constraints from reason that

the introduction of the constraints is very easy.
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FLOW CHART AND INPUT DATA FORMAT OF FORTRAN

PROGRAM FOR COPTIMUM DESIGN

Flow Chart

Main Routine

START

/READ:

-
Calculation of Desired
Magnetic Field and Its
Decay Index

0

Input Data /

WRITE: Initialization /
| |

OF CONTROL LOOPS

Subroutine: MINIM

innimization of

Objective Function

"fWRITE: Results of
' Optimization

X Check of Convergence f>

) |

|

Subroutine: BVER

Calculation of
Objective Function,
Its Gradient Vector
and Its Hessian Matrix

L1

Subroutine: BCAL

Calculation of
Maagnetic Field Due to
Control Loops
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B-2. Input Data Format

Card 1.

mla | ] el | o] 2 | (o) | xarc?’

16| I6 | I6 16 I6 16 16 16 16
Card 2.

ISIGM4) IPUNCH5)

I6 I6

Card 3, Plasma Parameters.

Ro(m) rs(m) RE(m) ap(m) B BLO(Wb/m )

F6.3 F6.3 F6.3 |.F6.3 [F12.4|E1Z2.4

Card 4. Both Ends of Observing Region

Rmin(m) Rmax(m)

F6.3 Fe.3

Card 5. Forbidden Region

emin(rad.) Bmax(rad.)
E12.5 ' F12.5
Card 6.
ISICM=0 ul aM ISIGM%0 ai; i=1,...,M
F6,1 | F6.1 : _ 12F&,1

Card 7. . Initial Guess for Optimization

INITG=0 Bl(rad.) GM(raa.) INITG#0 HiTrad.): 1=1,..

E12.5 E12.5 oEl2,5

Card 8, 1Initial Guess for Optimization
I (A)
E12.5

Card 9.6)

EX EF EG IMAX NIT

EI2Z.5 [ EI2.5 [ EL2.5 I3 I3
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Card 10, Initial Value of Perturbing Parameter

Y1
F12.5

Card 11, Decreasing Rate

~

y
E12.5

Card 12.

57)

£i12.5

1)

2)

3)

4}

5)

6)

7)

INITG=0 or %0
Positive integer { In this calculation: K=2 ).
Fourier components are Calculated to the KAFC-th term.

If ISIGM=0, then [u.I=Iai+l|, i=1, 2, ..., M-1,

i M
T o.=0 ).

If ISIGM%0, then o, is given arbitrarily ( 5

i=1
If IPUNCH#%0, then the results in the course of optimization
{corresponding to Cards 7, 8, 9, 10 and 11} are punched out.

Prescribed accuracies (ex, £, and EC), the maximum number
~ ;

F
of iteration (IMAX) and gradient method (NIT) in the
minimization subroutine MINIM,

If P/F ( P: penalty function, F: original objective function

without constraints ) is less than or equal to g, then the

optimization calculation is stopped.



[11
[2]
[3]

[4]

(6]
[7]
(8]
(9]
[10]
[11]

[12]

JAERI—M 6018

REFERENCES

YOSHIKAWA, S., Phys. Fluids 15 (197é) 1683.
ZAKHAROV, L. E., Nucl. Fusion 13 (1973) 595,
SHAFRANOV, V., D., ZAKHAROV, L. E., Nucl. Fusion 12
{1972) 599.

KOBAYASHI, T., TAMURA, S., TANI, K., JAERI-M 5898
(1974) (in Japanese).

TOI, K., TAKEDA, T.,_submitted to Nucl.'Fusion.
ZAKHAROV, L. E., Soviet Phys. Tech. Phys. 16 (1971)
645,

MUKHOVATOV, V. S., SHAFRANOV, V. D., Nucl, Fusion 11
(1971) 605,

VAN DER VOORT, E., DORPEMA, B., Report of the Joint

Nuclear Research Center, EUR 4777 e (1972).

FLACCO, A. V., MACCORMICK, G. P., Nonlinear Programming:

Sequential Unconstrained Minimization Techniques,

John Wiley (1968).

POWELL, M. J. D., The Computér Journal 7 (1964) 155,
NELDER, J. A., MEAD, R., The Computer Journal 7 (1965)
308. |

BOX, M. J., The Computer Journal 9 (1966) 67.



JAERI-M 6018

i~th control loop
a; 1

symmatric axis ~

Fig.1l.

Geometry .of the control loops. (R, ?, Z) is the

cylindrical coordinate. The control loops are

‘put on the toroidal surface with a major and minor

radii R, and rs} respectively. The i-th control

loop current is aiI and the total ampefe-tﬁrn is
£ la;|I. T designates a plasma surface.
'=1_ . . . .

~27-
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88, /BLo (%)
5
1

Depenaencelof the mean deviation of the designed
magnetic field from tﬁe desired one (Eq.(@)) on M
in fhe cylindfical Casé, where the tétal.numbér

of cbnfrol loops are.éﬁ; Thé deviation of the
magnetic field for the case of M = 16 (open circlef
is larger than that expected from extrapolation of
the results of M < 16 {solid circle) because of

the truncation and cancellation errors.
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w
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The optimum positions of the control‘loops (M = 12)
and the distribution of the deviation of the designed
magneﬁic field from the desired one on the diameter
of the plasma (Eq.(3)), where I= 0,131579 MA for

~

_ 2
B_LO = 1,0 Wh/m".
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N\

2 0 0.2
(M)

[}
o

Fig.4. Two-dimensional pattern of the qagnetic lines of

force for the case shown in Fig.3.

| ’{-——— -—-~\2 _2/“_‘ N \?\
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
X (M)

Constant ¢ lines (e = 1.0 %) obtained in the course

of the iterations of the optimization for the various
mean deviations of the designed magnetic field {Eq. (4)):
1. aSBJ_/BJ_O =9,3 %, 2. GB.L-/BLO_= 0.85 %, 3. GBJ./BJ_Q =
0.10 %, 4. 63L/BL0 = 5,5 x 10f4 % (converged result '

shown in Figs.3 and 4).

—30-
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4.0

2.0

-2.0
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-6.0

Fig.6.
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The optimum positions'of the.cbntrol loops in the
toroidal caée. .The distributions of the dewviation
of the designed magnetic field from the desired one
(Eqg. (3)) are shown for M=4, 8 and 12. For M=12,

the designed_maintaining magnetic field and the decay

index are also shown by the dots, and the desired

distributions are shown by the broken lines.

(a) M = 4, where I = 1,03022 MA for §L5-= 1.0 Wb/m?
(b) M = 8, where I = 0.53102 MA for B = 1.0 Wb/m’
(c) M =12 (a,. = 1.0 (i=1, 2, ..., 6), a; = -1.0 (i=7,

8, v.., 12)), where I = 0,356456 MA for B o = 1.0

1
Wh/m2
(d).M =12 (al = 3,0, G, = 03 = 2.0,.0.4 f-as =0 =
1.0, a, = ag =-u9 = -1,0, G5 = all = -2,0, Gig =
-3.0), where I = 0,206639 MA for B, = 1.0 Wb/m2.
+1
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1

bt e T

P
S
-]

Fig.9. Two-dimensional pattern of the magnetic lines of

force for the case in Fig.B.

~

1p(6)/ (2B /o)

Fig.io; 'Poloidal distribution of the eqﬁivaleht surface
current density (i?(G)) to the current of the
_cdntrol,loopé by summing the Fourier componenté
to the sixth harmonics. The broken éﬁd solid
curves are the distributidns for the cases shown

in Figs.3 and 6-{c), respectively, where the former

coincides with a cosine curve very well,
—36—
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+1
1
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0.5 3

1.5 2.0 2.5 3.0 3.5 5.0 . 45 5.0

R(M)

The optimum configuration of the primary windings

(M = 20). The two-dimensional pattern of the
magnetic lines of force and the magnitude of the
magnetic field (gauss) for the total ampere-turn

of 1 MAT, ~38—
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