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Algorithms have been developed for calculating the ionization and
charge exchange cross sections required for aﬁalyzing the neutral
transport inrplasmas. In our algorithms, the integration of the expres-
sion for reaction rate of neutrals with plasmas is performed by expanding
the integrand with the use of polynomials. At present, multi-energy-group
sets of the cross sections depending on plasma temperature and energy
of neutrals can be prepared by means of Maxwellian averages over energy.
Calculational results are printed out in the FIDO format.

Some numerical examples are given for seve;al forms of spatial
distributions assumed for the plasma ion temperature and source neutral

energy.
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‘1. Introduction

An analysis of the transport of neutrals in plasmas is a fundamental
problem concerned directiy with the heating of plasmas and the diagnosis
of the plasma ion density and temperature.

The present work intends to develop numerical algorithms to cal-
culate the cross sections required for analyzing the neutral transport
in plasmas. |

We refer the microscopic data for neutral-plasma interactions to
M. Gryzinski (1] and A.C. Riviere { 2 ), and average these data with a
Maxwellian plasma energy distribution of an assumed plasma temperature
in each regiom.

The integration for obtaing the average cross section is performed

by expanding the integrand With the use of _polynomials.

2, Fundamental Equation

When the neutral particles are injected into a plasma for the
purpose of plasma heating or they diffuse into a plasma as impurities,
the transport of these neutrals can be analyzed by making application of
neutron transport theory, as was first tried by Greenspan (3.

The reaction cross section in the neutral transport equation can be
defined in a way similar to those used in neutron transport equation.

In the present work, we assume neutral particles to be of.the same
type of isotope as for the plasma jons.

The neutrals are ionized by plasma ions and electrons, or exchan o
their charges with plasma ions. These processes can be written

schematically as feollows:

n(E) + e —_— n+(E) + 2e, (1)
a(E) + nT(E") —— n'(E) + 0 (E") +e, 2
a(E) + nT(E') — n(E') + n' (E), (3)

where n(E), n+(E) and e denote the neutral particles, plasma ions with
energy E, and electrons, respectively.

The ionization reactions (1) and (2) result in the loss of neutral
particles. They can, therefore, be treated analogously to the absorption
(capture) reaction in neutron transport phenomena. In the charge—exchange

reaction (3), there is no net change in the number of neutrals but the
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energy changes from E to E'. This reaction has, therefore, a close
analogy with the energy transition scattering of neutrons.
The reaction rate of meutrals with plasmas can be generally expressed

as
' . = Fapt 'IRYL
2y(ry E,2)-¢(r, E,2) = [ dE" [ ae" |v-v'|
o 1
t D d
X cj(Er)Nj(r, E',2") T $(r, E, 2), (4)

where j stands for the type of interactions, that is, j = 1, 2 and 3 mean
respectively the ionization by electrons, the ionization by plasma ions
and the charge exchange with piésma ions. In addition, E is the energy
of neutral particles, ¢(r, E,# ) is the neutral flux, cj(Er) is the
microscopic reaction cross-section of neutrals with energy Er corres-
ponding to the relative velocity of |V-V'| and Nj(r, E', Q") is the plasma
density distribution.

Wheh the plasma distribution is isotropic, Eq. (4) can be ﬁritten as

. = Papt 1 1 Xl 2 _ vy o 1/2.
z3(r, E) fg dE' 5 f_ldu (1 + (v) 2(v Iu')

x o5(Ep)N4(r, EV) , (5)

where u' is the cosine of the scattering angle (£-2').
We now assume that the plasma density distribution is a Maxwellian:
—-E!' .
Ny(r, E') = Ny() ;%: (kT5(r)) Ve /kTJ(r?, (6)
T

where Tj(r) is the plasma témperature distribution. The assumption of
the Maxwellian distribution may be inappropriate for some problems. But
the use of the Maxwellian distribution as weighting function for averag-
ing cross sections may not be so bad even in such cases and we have no
evidences what distributions other than the Maxwellian we have to take.
The present calculational algorithm can be improved further as the plasma
characteristics become clearer through the increase and refinement of

experimental data.

vy
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3. Calculational Algorithm
The integration of Eq. (5) can be performed by using several
numerical methods such as Chebyshev quadrature and Gaussian quadrature.

In this report, however, we have adopted a different algorithm stated

below.

3.1 Change of Variables

In the beginning, let E = ;E vZ2 and E' = gi-v'z, where mp, mj, v
and v' are mass of neutral particles, mass of j-particles (ioms or
electrons), velocity of neutral particles and velocity of j-particles,
respectively. Using these relations, substitution of Eq. (6) into Eq. (5)

gives

1 -3/2 , g'fl Gt LB+
Zj(r, E) = Nj(Y‘) _J.'—?—' (ij(r)) fod -1 weC

my E'? my E /2 -E'/kTj(r)
— — - 2E' [——=— ") - e
BIj E mj E

m ms l
x oj(E’ +-;i-E -2 E% EE'u") . (D

by noting that Er = Er(|v-v'|)= %i—|v-v'|2.

Now, let

= 7! oy - _ mi '
n(u') = E' + 3 E - 2 }mn EE' u' . (8)

Then, we have

n-1) = OE + g ®2 = gEN , (9)
= OET-[Em2 oz onan (10)
Tt
and
e o L [m_an
R A (n

Substituting Eqs. (8), (9), (10) and (11) into Eq. (7), we get

1 -3/2 M, 1 * —E'/ij(Y‘)
; E) = N —_ . L) 7t
zy(r, E) = Nj(r) o (kTJ(r)) my E f, dE'e
(E")
« 10 an oy(m (12)
L (E")

-3 -
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We now deal only with hydrogen atoms as the neutral particles,

though our method can be applied directly to other atoms.

An analytic

expression for each Uj(n) is given by Gryzinski (1) and Riviere [ 2 ) based

on the class

‘ol(n)

where

g(x) =

a,(n)

oz(n)

03(n) =

3.2 Domain

In order to integrate Eq. (12), we must examine the range of

n
13.605-

ical theory:

' 14
_ _6.56 x 10 2(x) cn?

b
(13:605)

~1.3/2
-% &2 (1 +-§ (1 - %;g log (2.7 + /x-1)J ,

x+1
3.6 x 10?12-% log ,(0.1666n) cm® ,
for n > 150 keV ,
10734833, 8156, 1,-0.8712(log 4n)?

for n < 150 keV ,

0.6937 x 1071% x (1-0.155 log,,n)?

1+ 0.1112 x 10714 x p3-3

of Integrations

cm

cm

2

2

H

(13)

(14)

(15)

(15)

integrations for the ionization by electrons (j = 1) because of the

restriction

We have

ny(E")
which gives

E' =2

On the

n > 13.605 coming from Eq. (13).
from Eq. (9) the following relatiomn:

m-
= (/E' + |—L E)2 =2 13.605,
( Imn )

mj 2
{¥13.605 - fﬁ; E) = E'y .

other hand, from Eq. (10),

(16)
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1y = _2ipy?
n, (E7) (VET = E) 13.605

which gives

E' 2 (v/13.605 + fgi-E)z = E'B .

(17)

The domain of

integration for j

Fig. 1.

TulER)

'Fig.‘l The domain of integration for j=1

=1

is thus obtained as the

shaded region shown in

Noting that x(E') = n(E')/no, xU(E') = nU(E')/no, x(E') = nL(E')/no

and dn = n.dx, Eq. (12) can be rewritten as follows:

E'g  -E'/KTi(r) xu(E") 44,
i dxno

T1{r, E) = Ay(r, E)- (S dE'e Vx 07 (x)
E'

1

| ” -E'/kT1(r) Fu(E")
B dxnglzt@_cl(XJ}

E'B XL(E')
where

O, 1

1 - —_—
m

- o -3/2
Aj(r, E) = Ni(r) e (kT3 (r))

(18)

(19
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It may be worthwhile to mention that the first term of Eq. (18) is
almost negligible for hydrogen atoms with relatively low energy. In fact,
for hydrogen atoms, m,/m, = 1/1836.14 and hence E'y, = (/ﬁo - VE/1836.14)2,
E'g = (/ng + /E/1836.14)2, and xy(E'g) = (/ng + 2/E/1836.14)2/n,.
Therefore for E << 1836 eV, E', = E'B, X
Eq. (13).

Uri 1 and cl(x)1x=l = 0 from

3.3 Approximate Expressions

Since the integrand cj(n) has a complicated expression, we expand
Vn aj(n) by uging polynomials of degree n P;(n) so as to minimize L, norm,
nvn Gj(n) - P;(n)llz. This approximation can be achieved by the least-
square method or function minimization algorithm.

Then, Eq. (12) becomes

@ “EVRTH(N) ny g
zy(r, E) = Aj(r, E)ﬂ}dE'e s ~dnPz ()
n,

©  -E'/KTy(r) ng ml o, 4
Aj(r, E)S dE'e f dnSa,n . (20)
0 * - L
nL 2-]

where Aj(r, E) is defined as Eq. (19), and the coefficients ag, & = 1,

n + 1 are known quantities.

Now, Eq. (20) can be integrated termwise over n as follows:

n+l i —E'/ij(r‘) nU o=1
Iy(r, B) = Aj(r, E) & a,f dE'e S Tdnen
2=1 0 n
L
ntl o 0« -E'/kTs(T)
Sar B S A sarte gD~ nfED)
= 0
2=1
(21)
Since
m-
@) = (7 + | 52
| U g
= | 22 22-r [ T
| ]
| = 1 . :
| %“CME jm T (22)
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. N 29
nPEn = OB - [ e

24 i 28-r rﬁ—— '
=.<-Z(7)2£Cr‘/E—' (" gnl E)r » (23)
Tr=

nl!

in which ,Cy is the binomial coefficients S0

L. L,
nU(E ) - nL(E )

22 zg_r - T TH r
-, ET E/El E - (-5
=0 I M

28~1 28—-1r o+ T
2SS 5T e . (24)
r=1 Mn
(odd) -
Substituting Eq. (24) into Eq. (21) and integrating it termwise over E',
we get '
13(r, B) = Aj(r, B) & o~ * 2 gy Crfm B
=1 r=1
(o0dd)
»  -E'/kTy(r) 2r
x [ dE'e (E")
0 :
n+l a £ mz 2r-1
= JAs 2 ]
= a(r, DS T SoCor ’mn E
2=1 r=1
= -E'/kT4(r) 2-r+1/2
x [ dE'e @ . (25
]

Denoting the integral of Eq. (25) as I£ . it is written as follows:
]

@

I —r+3/2f dte~tt2—r+l/2
0

L,r

(kTy(r)) *

t+3/2 L -re3/2) (26)

Cery () 4
where T'(x) is the gamma function having a property of
r(1/2) = vYr, T(xHl) = xT(x)

For the ionization by electrons, we can derive an equation similar

to Eq. (25) from Eq. (18) as follows:
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mtl ay E'B "E'/le('(') g
I (N, B) = A (N B/ dE'e *(x (E) - D
g=1 E'y - ' .
n+l by, © -E'/krl(r) . .
+§ E—-IE';Ee (XU(E)-X.L(E))]. | 2n

where coefficients ag, £ =1, ..., m+ 1, and by, £ =1, ... n+ 1 are
P 1y = ' 1y — U
known quantities. Noting that xU(E ) nU(E )/no, xL(E ) nL(E Y/ng,

~we can rewrite Eq. (27) as

ml 3 2 28 o r
% ,1 ot
Zl(rs E) = A]_(rs E){ S —T1 =) Cr E
=1 * o % Azz. ™n
E'g -E'/kT{(7) 29-1 E'g -E'/kTq (r)
x [ dE'e VET - [ dE'e
E'a' ' E'a
ntl g . L @ 2r-1
£ 1 4
+ 2 2 (= c -y }
% L (no) %22 2r-1  my
® -E"/kT1 (1) o-r+1/2
x [ dE'e *(E") } o (28)
E'g

Denoting the integral of the first term of Eq. (28) as Il(z, r) and
the third term as 12(2, r), they are expressed by the use of incomplete

gamma function of the first kind y(x, p) as follows:

E's  -E'/kTj(N) g-r/2  E'y  =E'/kTy(N) g-r/2
11(2, r) = [ dETe (E") - f dE'e (E")
0 0
g=-1/2+1
= [ kT1(r)] Ly (r-r/241, E'g/kT1(r} )
~Y(L-t/241, E' /KTy (r) )] , (29)
o -E'/le(r),. g-r+1/2  E'g  -E'/kTy(r) g-r+1/2
12(2, r) = f dE'e {(E") - f dE'e (E")
0 0
2-r+3/2
= [ kT1(r)] (r(e~r+3/2) - v (2-r+3/2,
E'g/kT1(M))) . (30)

e
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The y(x, p) can be expanded in a series by Legendre's formula:

= x+n
Yxp) - ep% D ) G (31
The second term of Eq. (28) can be integrated analytically. And
hence from Eq. (25) or Eq. (28), we can calculate the macroscopic cross
section zj(r, E) for each j depending on plasma temperature Tj(r) and
energy of neutral particles E.
We divide the plasma region into NR-subregions with the average

temperature Tj(rk):

Tk
J dr 2rr T {r)
rk_l
Tj(rk) = s k=1,..., NR,
T(r2 - r2 )
k k-1

and the energy into NE-energy groups with the average value E; to cal-

culate the discrete value Zj(r » Eg).
4. Numerical Results
We congider here the following three problems and their results are

shown in Figs. 2 ~ 14.

(A] The interaction of hydrogen atoms with hydrogen plasmas in the

Princeton ST Tokamak. The physics data are as follows [31:
(1) Plasma density profile is given by
N(r) = N(o) [0.8(1 - r2/a?) + 0.2,

where N(o) is the peak density 3 x 1013 cm™3 and a = 14 cm is the minor

radius of the Tokamak.
(2) Plasma ion temperature is constant, 20 eV,
(3) Plasma electron temperature changes radially as

To(r) = Tg(0) [ 0.9(1 - r?/a?) + 0.1,
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The v(x, p) can be expanded in a series by Legendre's formula:

xtn

¥ (%,P) e % x(x+1) (x42) ... (x+n) ' o

The second term of Eq. (28) can be integrated analytically. And
hence from Eq. (25) or Eq. (28), we can calculate the macroscopic cross
section Zj(r, E) for each j depending on plasma temperature Tj(r) and
energy of neutral particles E.

We divide the plasma region into NR-subregions with the average

temperature Tj(rkgz

Tk
i) dr 27r T (1)
rk_l
Tj(r'k) = , , , k=l1l,..., NER,
T(rc - ¢
( k k-1

and the energy into NE-energy greoups with the average value E; to cal-

culate the discrete value Ej(r » Eg).
4. Numerical Results
We consider here the following three problems and their results are

shown in Figs. 2 ~ 14.

(A} The interaction of hydrogen atoms with hydrogen plasmas in the
Princeton ST Tokamak. The physics data are as follows [33:

(1) Plasma density profile is given by
N(r) = N(o) [0.8(1 - r2/a?) + 0.2,

where N(o) is the peak density 3 x 1013 cn™? and a = 14 cm is the minor

radius of the Tokamak.
(2) Plasma ion temperature is constant, 20 eV.
(3) Plasma electron temperature changes radially as

To(r) = Telo) L 0.9(1 - r2/a%2) +0.1),
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where T,(0) = 200 eV is the peak electron temperature.

(4) Energy of the neutral particlés (source neutrals) are 3 eV whereas
the secondary particles originated through the change exchange reaction
have energies of 20 eV,

The results are shown in Fig. 2 representing the temperature
dependence of the cross section for ionization by electrons Zy(r, E).
The plasma region is divided into 10 subregions with an average tempera-
ture T(Ty). The cross section for the ionization by plasma ions ZI,(E),
and for the charge exchange with them I3(E) are given also in Fig. 2

for E = 3 eV and 20 eV.

(B) The same problem as [ A ) except for the following assumptions.

The plasma ion temperature and the source neutral energy also varies

radially as

T4 (x) T;(0) [ 0.9 - r?/a?) +0.1) ,

E (r) E(o) [0.9(1 - r2/a2) +0.1) ,

100 eV is the peak ion temperature and E(o) = 100 eV is the

where T(o)
reak neutral energy.

The results are shown in Figs. 3 - 7 for each reaction depending on
plasma temperature T(r) and neutral energy E. Fig. 8 shows the total

cross section for this problem which can be expressed by
Et(rk’ j_"grUuP) = Ea(rk’ j) + Z(rk: Ej > Ek):

where Za(;k? j) is the absorption cross section written as
Ta(Ty, j-group) = Zy(ry, 5, T, = T(rp) + 29(Tys Eyy T4 = T4(TY),

and E(fk: Ej ~+ Ep) 1s the scattering cross section from the j-th group to

k-th group.
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rc) ' The same problem as( B Jexcept that the distribution function of the
plasma temperature and source neutral energy is 1 - (x/a)™.

The results are shown in Figs. 9 ~ l4 corresponding respectively to
Figs. 3 ~ 8 of the problem [B].

Fig. 15 shows the distribution functions of the plasma temperature

and neutral energy for the problems( Al], (B) and[ C).

A parametric servey has been performed by using these cross sections
to estimate the characteristics of neutral-plasma interactions. The

results will be shown in a separate report.
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5. Arrangement of the Cross Section Data

The absorption, énergy transfer and total cross sections calculated
in each subregion with average temperature T(;k) are printed out in the
FIDO format as shown in Fig. 16. In this arrangement, we must take care
of the treatment of the so-called self-scattering reaction.

In neutral transport phenomena, the self-scattering means the

charge exchange reaction:
H(E) + H(E) — H'(E) + H(E) , (32)

and Fig. 16 is shown under the assumption that the neutral particles
originated by this reaction fly out to other regions with a different
temperature without suffering this reaction- again. The scheme shown in
Fig. 16 is therefore called as the one-collision approximation.

In the case where the region is infinite, the reaction (32) and its
reverse arerrepeated infinite times before the neutral particles are
jonized by absorption reactions, and hence the reaction (32) has no
participation in the net change of the number of neutrals. We can there-
fore ignore the self-scattering reaction (32) and set the contribution
to the total cross section to be zero. This is called as the infinite
collision approximation.

Strictly speaking, the reaction is in between one—-cellision and
infinite collision approximation, and we can treat it in a way of chang-
ing the energy group index whenever the reaction occures.

In practice, however, we may use the one-collision approximation

by making the region with constant temperature as small as necessary.
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