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Numerical analysis has been made of the time evolution
in density profiles of the impurities in a Tokamak. The

diffusion and atomic processes of impurities are treated
simultaneously. Two different numerical methods were used;
the results are in good agreement between the two. Calcu-
lations are made in the case of a constant spatial distribu-
tion of the plasma. The impurity concentration in the plasma
is revealed. The procedure may be useful for analysis of the
time evolution of a Tokamak plasma in computer simulation

and for analysis of the impurities by spectrum measurement.
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§1. Introduction _

Impurities, small amounts of multiply charged ions, play an
important role in Tokamak devices. It is well known that impurities
enhance the radiation losses of a plasma and that the impurity-plasma
ion collisions produce an inward diffusion of the impurities into the
interior of the plasma. It is considered that impurities have serious
effects on the confinement and heating of a plasma. Therefore, it seems
to be very important to examine the behaviour of impurities in a plasma
precisely. The impurity behaviour is a very complicated process
which includes interactions with a plasma, wall interactions such as
sputtering or recycling as well as the diffusion and atomic processes
such as ionizations or recombinations .of impurities.

In the present paper, we analyze numerically the time development
of density profiles of impurities in a Tokamak plasma under a rather
simple boundary condition. In this problem, the diffusion of impurities
across the magnetic field and atomic processes such as ionizations or
recombinations should be treated simultaneously in the analysis. For
this problem, Tanaka et. al.l) obtained an analytic solution under the
aésumption of the unifofm.plésma. Tajima et al.z) have given é station~
ary solution taking the distribution of plasma into account. However,
these works neglect the term of inward diffusion of impurities.

On the other hand, impurity problems are treated in one dimensional
Tokamak plasma simulation codes. However, it seems that the treatments
of impurities are insufficient in almost simulation codes. In reference
[3], the diffusion and atomic processes are analyzed separately.
However, under an actual condition, the atomic process, especially the .
ionization time varies widely with the impurity state, and further it
depends strongly on the electron temperature. Accordingly, the
characteristic time of atomic process varies on a wide range and as a
matter of course it sometimes becomes comparable with diffusion time.
Therefore, the atomic and diffusion terms should not be analyzed
separately. Since ionization and recombination rates depend on the
electron temperature and the density gradient of plasma ion causes the
inward diffusion of impurities, it is important that the spatial dis-
tributions such as density or temperature are included in the analysis.

In this paper, considering the plasma distributions, we present a

mmerical result of the spatial and temporal development of impurities



FAERI-M 6143

analyzing the diffusion and atomic processes simultanecusly. Two dif-
ferent numerical methods.are adopted. Although the_tiﬁe variation of
plasma profiles is not considered in the present work, it is not dif-
ficult to remove this restriction. A simplified particle flux is
enployed for the diffusion term in order to obtain an essential point of
impurity concentration. However, the present procedure could be easily
developed for the more complex diffusion process. Recyclings or
sputterings are left as future problems and the analysis is worked out
under a rather simple boundary condition.

In §2, we give the model for the computation, in §3, we present
two different numerical procedures and in §4, numerical results are

shown. Conclusions and some problems are summarized in the last section.

§2, Model for the computation

In this section, we present a simple model for the computation of .
the time evolution of the impurity concentration in the Tpkamak plasma.
Densities of impurities averaged over the magnetic surface are governed

by the following conservation equations of particle numbers;

ol R ) (r0,) +n (o, .1 - o, 1)
at r 5r k e  k-1"k-1 k'k
- e (1T~ Bylyr) | (1)
k=1, 2, ..., K
with |
G T B =g T F =0 e

In Eq. (1), Ty is the number density of the impurity with (k-1)e electric
charge(s), I; and Ig being densities of the neutral atom and fully
stripped ion with (K-1)e electric charge, respectively. Ty is the
particlé flux of the impurity Iy, me is the electron density, oy is the
collisional ionization rate coefficient at which the state with k is
ionized to the state with k+l and Bk_represents the radiative recombina-
tion rate coefficient from the state k+l1 to k. The first term of Eq. (1)
gives the diffusion process and the second and last terms are the creation

and annihilation per unit time of the impurity Ik due to the lonization
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and recombination process, respectively.

On the basis of the neo-classical theory, the particle flux of
impurity Iy is obtained by Connor in the banana regimes), by Hinton
and Moore in the banana-platean regime7) and by Tuda and Tanakaa) and
by Rutherford?®) in the Pfirsch-Schliter regime. Although, it is
necessary to use the results of the neo-classical theory properly in
each regime, in the present paper, we restrict ourselves to the case of
Pfirsch—Schliiter domain in order to get the essential point of the
impurity concentration. The present method of the numerical calculation
would not become difficult if we considered the generalization of the
particle flux I'y. Further we consider only impurity-plasma ion colli-
sions in the result of Tuda“and Tanaka in the Pfirsch-Schluter regions).

Then,

Ty = =Dy b + W Iy (2)
ar
with \
I T (2-2)
K = (1+2g%) we? , &k # 1) (2-b)
my . 2T
i (klji) Ze:sg ’ t? (2-c)
e = % V21 (k—1)2z§j:niznf\ (2-d)
ey Ty

Here, Zj, ny, Ty, m; are the electric charge, density, temperature and
mass of the background iom, Bg the toroidal magnetic field, gnp the
Coulomb logarithm, e the electric charge, mk the mass of impurity Iy
and mgj the reduced mass of mj and mp. Eq. (2) is derived under the
assumption that all the ions have the same temperature Tj. The difffusion
coefficient for the neutral atom D is different from Eq. (2-b). This
is estimated simply by taking the charge exchange between the neutral
atom and proton into account in the reference [13. The first term is
the usual diffusion by the density gradient of impurity itself and the
second term represents the so-called imward diffusion of impurities
oriented to the direction of the density gradient of background ion.

Impurity ions have the tendency to accumulation in the plasma center

_3_
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due to this effect»5).
It is difficult to estimate rate coefficients for ionization and
recombination ¢, P, correctly. Here, we employ the approximate estima-

tion given by Hinnovl0). That is,

o = 5.9 % 10-8qk(E§+l)“3/2J§;'Kl(xk), [cmd/sec]
(3)
B = 5.2 x 107Mekexd/2ky (), [em?/sec]
X = EE+1-XH/TE , (Te: in eV unit) (3-a)
_ o -t
Ki{z) = [ < dt , _ (3-b)

z

where 9 is the number of valance electrons in the outermost shell,
Ek+1
k

! to k+1 and Xg = 13.6 eV. Only ground states are considered and the

is the ionization potential in rydberg unit to ionize the state k

dielectronic recomblnatlonll) has not been included in Eq. (3).

In the present paper, we slove Eq. (1) numerically when the particle
flux and rate coefficients are given by Eqs. (2) and (3), respectively.
We neglect the effect of the diffusion and atomic processes of impurities
on the background plasma, assuming that the impurity density is
relatively small compared with that of plasma. Further, for simplicity,
we assume the spatial distributions of plasma dénsities ng(r), ni(o),
plasma temperatures Te(r), Ti(r) and toroidal and poleidal magnetic
fields Bz(r)f Bgl(r) to be constant with time. The present procedure could
be easily extended to the case when these time variations of plasma were
taken into account. If we consider the effect of impurities such as
diffusion, atomic process or radiation loss on the plasma ions and
electrons, we must use the Tokamak plasma simulation codelZ) on the

basis of one-dimensional conservation equatiocns.

§3. Method of numerical calculation

The spatial difference equation for Eq. (1) becomes

3 4k -2 .1 k_ .k )
3t j-1/2 r.+r. Ar T3 1-1" §-1
j-1/ PReTo i] j-173
k-1 kel k Kk e k-1 [k k K+l
+n - a, I, - n, B, 1
R 1/2(a3 /2t i-1/2 = %-1/2 3—1/2) nj—l/Z(BJ 1/2%-1/2" Y5-1/2 3-1/2)

(4)
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k k 1 ,.k k w3
—( I ) + ot (1F + 1% )

'y = P 3-1/22 T2 Byaag0 T s (4-2)

3 j Ar IJ+1/2 -
The subscripts j and j-1/2 stand for values at integral and half
integral mesh points, respectively. The boundary conditicn at r=0 is
k k k
31 /3r=0, that is 11/2 = 13/2. As an another boundary condition, we
give impurity densities IJ+1/2 at the outermost mesh point (J+1/2) which

lies outside the plasma boundary r=a corresponding to the mesh point

J-1/2. (See Fig. 1)

- — -— integral mesh
b 66— 44— half integral mesh
1*2 3 -1 ] F-0§ I
r=o r=a

corona equilibrium
Osolutions to rate equation

Fig.l Diagram for numerical calculation

At the moderate electron temperature at the plasma periphery the low-Z
particles such as Il, 12, ey I2 may already disappear by ionizations.

Then, Eq. (4) hold for

=2, 3, <oy J,
1, 42, ... » K . (220

=
i

If we replace I? by y;, where i = (k-1) (J~1) + j-1, Eq. (4) becomes

-1/2

2 -> >
3%= AY +b . (5

-
Here, y 1s a vector with components yj, ¥z» -++s» ¥y (N = (X-£)(J~1)),
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A is an NxN matrix and b is an N-components vector which is the boundary
value at J+1/2. 1In general, b is a function of time.

We consider a simple boundary condition to solve Eq. (4). Neutral
atoms of impurities, emitted from the wall and/or limiter by the bombard-
ment of plasma particles and hot neutrals, are ionized quickly to

produce the first few ionization degrees, then the impurities get dig~
tributed around the plasma periphery in a layer with a depth of the

order of neutral atom mean free path (a few centimeters). In this layer,
the ionization times are shorter than the particle confinement time

only up to a limiting ionization degree13). We consider the following
conditions; .

i) The total particle flux of impurities vanishes at the plasma

surface, that is,

(6)
Tk

ii) The corona eguilibrium is established at J+1/2.

R4k

L+
J+1/2 Yot TT41/2 ° n

LHk=1 24k-2 2+1

a B o

J+1/2 J+1/2 J+1/2 (7-2)
YE+K B2.+|<—1 BR+K-2 et BE,+1

J+1/2 J+1/2 J+i/2

(pp = 1)
k=1, 2, ..., K-&. L z20

The condition i) means that the total amount of impurities does not
change with time inside the plasma. The second condition ii) is based
on the consideration mentioned above. However, it takes long time to
reach the corona equilibrium (Fig. 2) which is assumed only for

simplicity. It would be better that we solve the rate equation at J+1/2.

Under the conditions i) and ii), from Eq. (5) and (6),

Kol D2+K w£+K K-8 D2+K WQ+K
Py o M (- L— + Ly (8)
~1/2

J+1/2 =1 Ar 2 J-1/ =1 Ar 24

-6 -
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K

Thi/2 (¢ 2 2) are determined by Eq. (7). Thus, the boundary values
Iﬁii/z are represented by a linear combination of unknown variables
I§t§/2' Eq. (5) becomes to the following form;

3y >
_a% = Aly . (%)

Numerical calculations of Eq. (9) are performed by the following
two different ways; 1) Hamming's predictor-corrector methodlu),
2) solve the eigenvalue equation A = A'g of Eq. {9). In the latter
case, we transform A' to a Hessenberg's form by the method of Gaussian
elimination15) and get eigenvalues Ay (m =1, 2, ..., N) by the double

N
QR methodls). We write eigen vectors £ in the form;

-3 Amt >

E = e Xy . (10)

We seak ;m by the inverse iteration method17). If eigenvalues and

eigenvectors of the system were found the solution could be written as
Yn T I CpFm © (11)
(nzl, 2, se sy N)

whole Xin)‘s are elements of the vector ;m. The initial condition gives
the coefficients cy's. We obtain cp's solving the system of linear
equations by getting the inverse matrixla).
1f the boundary condition is arbitray, we must solve Eq. (5).
The solution to Eq. (5), satisfying the initial condition ;(t=0) = n, is
given by
t ->
y(t) = yp(t) + e(v)/S v~ (s)b(s)ds , (12)
o

where §L(t) is the solution to 8;/8t==A§‘, satisfying the same condi-

tion §h(t=0) = n and ¢ is a basic matrix of A.

§4., Numerical examples

First, we solve the rate equation which is given from Eq. (1) by

neglecting the diffusion term. This equation is
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DTy
e - el Ty e ) - one(B T - BT L) (13)

The stationary solution to Eq. (13) gives the corona equilibrium. As
deseribed in §3, Eq. (13) is solved both by the method of Hamming's
predictor-corrector and by solving the eigenvalue equation. These two
different numerical procedures have given the same result. The numerical
result is shown in Fig. 2 for oxygen impurities. At t= 0, the density
of 0TI (oxygen neutral atom) is 1019/cm?® and others are zero. The curves
show the time development of the density of oxygen in each ionization
state.

Two different approaches to the numerical calculation have also
yielded a fairly good agreement for Eq. (1). Fig. 3 shows the result
for oxygen impurities (K = 9). We have assumed that Ol and OIT have
already ionized to vanish until they reached the plasma boundary (2 =.2).
The numbers of mesh points are 20 (J = 19). Fig. 3-(a) shows the dis-
tributions of plasma demsity n{= ng, = n;), electron and ion temperature
Te» Ty, current density J, and safety factor q. It is assumed that these
do not change during the time development of impurities. In Fig. 3-a,
we have given the distributions approximated to the result measured in
the impurity experiment of JFT-2 Tokamak19) . Fig. 3-(b) shows the
initial distribution of oxygens which is given properly on the assumption
that the impurities with low-Z charges are distributed around the plasma
periphery at the early phase of the discharge. At the plasma boundary
(the outermost mesh point), the corona equilibrium is given. Fig. 3-(c),
(d), (e) and (f) show the distribution at 107" sec, 1073 sec, 1072 sec
and 0.6 sec, respectively. Impurity iomns of low-Z are lost successively
with time and accordingly, high-Z impurities appear and diffuse toward
the plasma center. At 0.6 sec, Fig. 3-(f), a steady state is completely
established. At the steady state low-Z ions have disappeared, and OVII
OVIIT and OIX have accumulated in the plasma center. The peaking 1is
shaper as Z increases.

The computations were performed by using FACOM 230/60 of the data

processing center in JAERI.
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§5. Conclusions and summary

Exact numerical computations have been performed for Egq. (1), which
is frequently met in the Tokamak simulation code or in the spectrum
measurement. Although, we have solved Eq. (1) under several assumption
considered. We can easily include the banana and platean region, the
effect of temperature gradient and impurity-impurity cellisons on the
particle flux T, in the neo-classical theory. As a boundary condition,
the sclution to rate equation is preferable than the corona equilibrium.
For heavy elements (Fe, My etc.), it is necessary to consider the
sputtering and recycling instead of the first boundary condition given
by Eq. (6). The initial condition given here is rather unsatisfactory.
It is one of the way that we give an initial condition by solving the
Boltzman transport equation for the neutral atom of impurity considering
- charge exchanges as well as ionizations and recombinations. Considering
these, we should develop the computer code to treat the time variation
of plasma distribution. A numerical analysis of the spectrum measurement
of carbon and oxygen impurities in JFT-2 Tokamak1®) is now being per-
formed by extending the present method. A further investigation of the
effect of Tokamak impurity will be expected by using the Tokamak computer

code with the impurity routine based on the present procedure,
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Fig. 2 Solutiens to rate equation given by Eq. {13) for

oxygen impurities. _
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