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‘Transient variation of the heat transfer coefficient is
involved in accident analysis of a power reactor and thermal
design of a pulse reactor. In these cases, however, the heat
transfer coefficient is assumed to be equal to the steady-
state one. Validity of this 'quasi-static assumption' is
examined.

‘ The transient energy equation .is solved numerically for
turbulent annular flow. Variations of the heater temperature
and the heat transfer coefficient are obtained in stepwise
increase and decrease of the heat input.

Variation of the heater temperature is obtained with the
quasi-static assumﬁtion. The quasi-static assumption is valid
if the wall heat capacity is large compared with that of the
effective thermal boundary layer in the fluid.

Applied in a pulse reactor, the quasi-static assumption
results in a higher fuel surface temperature during pulse heat-

ing when the gap is filled with sodium.
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1. Introduction

When reactor power changes with time, heat transfer coef-
ficient deviates from its steady state value. The transient
heat transfer coefficient is required fro accident analysis of
power reactors and thermal design of pulse reactors. The
transient value is, however, assumed equal to its steady state
value in all the analyses and designs. This is called quasi-
static assumption. The present purpose is to examine validity
of the quasi-static assumption by analyzing the transient heat
transfer for turbulent flow. ‘ '

Many works have been made for the transient laminar heat
transfer, but relatively few works for the transient turbulent
heat transfer. The present author made analyses(l’ ) and an
experiment(s) of the transient turbulent heat transfer for a

stepwise power input with a constant flow rate. '
| He found three non-dimensional parameters relevant to the
transient heat transfer. The first is a non-dimensional. time
Z defined as

2
_ 0Lst t '
ij(xpc)f y | | 1)

The heat transfer coefficient reaches the steady state value
roughly when Z ~ 1 for a stepwise heat input. The second

parameter 1is
o, H. ' ' '
‘ _ st . _
A P <t ’ | (2)

where H is the wall heat capacity per a heat transfer area.
The variation of the wall temperature is nearly quasi-static,
jf 8 < 10. The third is y defined as

(AC) -
]pf. o (3)

(Ap c)

This depends on physical properties of the wall and the fluid.
' " The wall heat capacity H in Eq. (2) is expressed ‘as
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H = dw* {p cp)w , | o - (4)

*
where dw is the equivalent wall thickness defined as

v

¥ e .2 - B/, | (s)
W . 1 [ Ll §

The third parameter Y appears often in solution of the
transient thermal conduction equation for a composite solid.
The parameters Z and B are rewitten as

Z = Qet/(4 d;"%) | ' (6)
d P .

P A 1 QN
dg (0 c))g

where df* is kf/ast and the dimension of length.

If the fluid is assumed a semi-infinite solid with a
- uniform thermal conductivity Af, df* is the thickness of the
temperature-varying layer which gives the heat transfer
coefficient of Uy in the steady state (see Fig. 1); Thus, 2
is interpreted as the Fourier Number where the characteristic
length is the equivalent thermal boundary layer thickness df*.
The time for the temperature variation to develop in the equiv-
alent thermal boundary layer is an order of Z v 1, and it has
been found(l) roughly equal to the steady-state time of the
heat transfer coefficient for a stepwise heat input.

Equation (7) shows that 8 is the ratio of the heat capa-
tity of the wall to that of the equivalent thermal boundary
layer. When B >> 1, most of the heat generated is stored in
the wall; when 8 < 1, more heat is transferred to the fluid
than that stored in the wall. So, the transient effect in the
heat transfer is prominent when g8 < 1. '

2. Formulation

2.1 Assumptions

Figure 2 shows the co-ordinate system. Assumptions are (1)
a very long tube is assumed, so the flow is fully developed; (2)
the inner surface of the heating tube (r=rc) and the outer
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surface of the annular channel (r=r0) are thermelly insulated;-
(3) properties are independent of the temperature; (4) turbu-

lent eddy diffusivities, €y and ey, are constant with time.

Validity of the last assumption were discussed in Ref. (1).

2.2 Two-dimensional equations
The flow is assumed constant with time, The momentum

equation is

8. 2P 1 37 QU o
"é‘,;"g"i‘— ?-a—y_'[(EM-f“l))r-a-—;- . (8)

The energy equation for the fluid is

2% , , 9% _ 1 2[(€H+af)r'§—;ffj.

et 2L T r pr (9)
The thermal conductiop equation for the heating wall is
97z { 21 _ola1. &
_— = <4
ot 4y ar[r m—J+ s (10)

where dg is the heat generation rate per a heat transfer area
and is a function of time.
Boundary conditions are

3T, /3T = 0 Catr =T,
Ty = T, A, (3TR/31) = A (3Tg/37), u = 0
‘ ‘ at ¥ = T, (11)
BTh/Br = 0,.u = 0 : | at r = 1
Tf=0 ' atX-O.

Initial temperature is zero except in Section 4.

The momentum eddy diffusivity used is the Kay's(4) corre-
lation multiplied by the damping factor [1 - exp(-y+/A+)],
where y+ is a non-dimensional distance from a wall and AT is
a damping constant. The thermal eddy diffusivity ey is cal-
culated referring to Mizushinacs). The eddy diffusivity ratio
EH/EM is about 1.0 to 1.2 for the normal fluids.

2.3 Quasi-static Equation

By integrating Eq. (9) from r = r; to T = T, one -obtains

" the one-dimensional energy equation:
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A 97‘;._ P |
ot T Y 5% T § Cp)y v~ 0((7- 7'—‘) (12)

where T is the mixed mean temperature of fluid. Boundary
condltlon on the heat transfer surface is

A, 7 < = o(T,~ Tf) | at v = 1y (13)

If o's in Eqs. (12) and (13) are assumed equal to the steady
state value, these are called ''quasi-static equation" and their
solution is "quasi-static solutiomn'. The solution of the two-
dimensional equation is called "transient solution™” in the

followings.
3. Heating Phase

The two-dimensional energy equation Eq. (5) was solved(1 2)
for a stepwise increase in power ag- Numerical solution of
Eq. (9) is compared with the quasi-static solution in Fig. 3.
Wall temperature by the quasi-static solution is higher than
that by the transient solution.

Variation of heat transfer coefficient is shown in Fig. 4
for .various axial positions. The heat transfer coefficient is
very high at early times, and decreases down to the steady
state value with elapse of time. ' |

The conduction solution in Fig. 4 is a solution of the

equation: _
% _ 1 2 ok
52 =7 s LG+ ar 55, (14)

which is obtained by neglecting the convection term uan/Bx
in Eq. (9). Equation (14) is hereafter called the "conduction
equation'. The heat transfer coefficient in fully developed
region (x/De = 25} agrees well with that by the conduction
solution., The lines for x/De = 25 and for the conduction
solution cannot be drawn separately in the region plotted.

. The reason why the convection term is negligible was dis-
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cussed in Ref. (1). Briefly; it is because the fluid tempera-
ture is axially uniform at small times; so, an/ax is nearly
zero and the convection term is neglizible.

Steady state time for wall temperature is shown in Fig. 5.
It is defined as the time required for AT, = T, - Tf to reach
90 - 95 % of the final value. _
i) When the quasi-static heat balance of heating wall is
dominant.

This case is a heating wall with relatively large‘heat
capacity and small thermal resistance. The steady state time

is given by

Z o~ 2.5(8/4),01 tst’w't 2.5(H/a ), (15)

and is shown by the line 2 in Fig. 5.
ii) When the thermal resistance is dominant.

This is the case of a wall with large thermal resistance.
The steady state time is dependgnt on By and gixgn by

Zop y ™ 0.4(8Y)% or I N (.16 -%‘:";—- . (16)

This is shown by the lines 3 - 6.
iii) When the transient variation of heat transfer coefficient
is dominant.

If the heat capacity and the thermal resistance of wall
are small, the steady state time for wall temperature is nearly
equal to that for heat transfer coefficient; i.e.,

or t n 4Z

Z ~Z st,w st W

2
st,w st? (hp c )f/ast ’ a7

The line 1 in Fig. 5 shows . Z st,w calculated analytically in
Ref. (1). Experimental Zst, obtalned in Ref. (3) was nearly
half of the analytical one for 8 less than 1.
The steady state time for wall temperature is maximum of

Eqs. (15) - (17). It is illustrated in Fig. S by hatched line
for vy = 0.1. ' '

" With the quasi-static assumption, the steady state time
for wall temperature becomes infinitesimal with decrease of
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walllheat capacity (see line 2). In fact, however, the steady
It is because the heat

state time is never less than Zst,w'
capacity of fluid adjacent to the wall is not zero even if the
wall heat capacity is zero.

Validity of the quasi-static assumption is examined in
Fig. 6. The ratio of the transient solution to the quasi-
static solution for the wall temperature is plotted against
the non-dimensional time Z. The ratio is a function of B and
Y. | |
' The ratio is dependent on y at small times. It is known
from the transient heat conduction solution for a composite
SOIid that the wall temperature variation at small times is

expressed as

.1 Y
Tw(t) = Ty T t, t>0 (18)

that is, the adiabatic temperature rise devided by (1+v).
The quasi-static equation gives

4G
Tw(t) =7t t+0. (19)
The quasi-static assumption thus results in an error of (1l+y)
at small times.

So, the quasi-static assumption is valid roughly when
y < 0.1. This condition holds for gas coolants and fails for
liquid ones.

The ratio at large times is mainly dependent on B, and is
near unity if 8 is large. It has been found(l’z) that the
quasi-static assumption is valid for wall temperature variation
when y < 0.1 and B < 10. '

Mean temperature of heater at small times is expressed by
Eq. (19), too. Correct mean temperature is obtainable with
the quasi-static assumption when g > 10 or By > 1.

4. Cooling Phase

. The transient energy equation is solved for a stepwise
decrease of power. The heat generation rate qg is reduced to
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zero at t = 0, Figure 7 shows variation of wall temperature.

The quasi-static sclution is lower than the transient solution.

The difference is large for small B's and it is nearly negli-
gible for B % 10. ‘

Transient heat transfer coefficient is shown in Fig. 8.
It decreases less than the steady state value. For B 3 10,
however, the transient heat transfer coefficient is roughly

~equal to the steat state one.

5. Some Applications to Pulse Reactors

Numerical results for pulse heating are shown in Figs. 9
and 10. These are numerical solutions for the same cooling'
condition with different heating wall thicknesses. The wall
is heated by a square pulse of width 0.1 msec. The wall

material is U-Zr alloy and the coolant is sodium. All the

temperatures are normalized by the inner surface temperature
(T ) at the end of the heating period.

The transient heat transfer coefficient is much h1gher
than the steady state one during the pulse heating. The trans-
ient solution for wall temperature is given by Eq. (18);
quasi-static assumption results in a serious error. The ‘inner
surface temperature (TC) is calculated correctly with the

quasi-static assumption during the heated period. This 1is

because the pulse width is so short that heater temperature

rises adiabatically except near the heat transfer surface.

The heat transfer coefficient in the cooling phase is
first higher and soon becomes lower than the steady state one.
The ratio a/aét decreases down to 0.3 for the thin heater (Fig.
10) and 0.7 for the thick one (Fig. 9).

A large difference exists at small times in the cooling
phase between the wall temperatures by the transient and by the
quasi-static calculations. This is due to the error in the
quasi-static calculation during the heated period.

With lapse of time, the difference in the wall tempera-

‘tures becomes small for the thick wall (Fig. 9), but stays

still significant for the thin wall (Fig. 10).

Y
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The inner surface temperature with the quasi-stutic assump-
tion is roughly exact for the thick wall (Fig. 9) at both small
and large times. This is because the inner surface temperature
at small times is determined by the transient heat conduction
inside the wall; so, it is only slightly affected by the condi-
tion on the heat transfer surface,

The value of B for Yayoi-type air-cooled reactors is very
large; for example, B of Yayoi is an order of 105. It is so
large that the quasi-static assumption is valid for transient
condition of these reactors.

In case of SORA-type repitive pulse reactors, B is about
10. From the conclusions in Section 3 and 4, one can expect
that the quasi-static assumption will not bring a serious error
éxcept at small times. As B = 10 is critical, however, further
study is preferable. Condition at small times is discussed
‘below. , | |
When a clad exists between a fuel and coolant, Eq. (18)
should be applied to the fuel-clad interface not to the clad-
coolant interface. If the fuel is assumed in perfect contact
with the clad, temperature at the fuel-clad interface rises as

- 1 46, p | '
Tf_c(t) = 1+Yf—c H t, (20)

where qG’p is the heat generation rate of the pulse and 7%-c
is

. (A p c) 1ad
Te-c © ] By (21)

(e Cp)fuel

The fuel does not contact perfectly with the clad,
actually. If the gap is assumed an idial annulus, temperature
at the fuel surface is given by Eq. (20) with replacement of

Te.c DY

| (A pc.) |
= p-gap 2
Yf-g ) j (A o Cp) fuel ' ' _(2 )

' With the assumption of a constant gap conductance, one

geté.roughly
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Te g (8) ™ —Rt, | (23)

so an error of (1+Yf_g) is introduced by the quasi-static
assumption. The temperature distribution is shown in Fig. 11
for U-Na interface. | ‘

When the gap is filled with gas, Yi-g is an order of 10 °;
so the error due to the quasi-static assumption is negligible,
When the gap is filled with sodium and the fuel is U-Zr alloy,
Yg.g is 1.45. It means that the fuel surface temperature rise
is only half of that expected from the quasi-static assumption.
This might have a significant effect on the thermal stress
inside fuel during pulse heating.

6. Conclusion

~ The transient heat transfer coefficient becomes higher
than the steady state one for step increase of power input;
while it becomes lower for step decrease. The quasi-static
assumption is roughly valid for calculation of wall temperature
if 8 > 10 and vy < 0.1 for step power increase; and if 8 > 10
for step decrease.

The fuel surface temperature obtained with the quasi-static
assumption is high by a factor of (1+y). If the fuel contacts
with gas, vy is an order of 10-3; so the error due to the quasi-
static assumption is neglibile, If the fuel contacts with
metal or liquid metal, y is an order of 1, and the error is

serious.

Nomenclature

o

thermal diffusivity
specific heat capacity
equivalent diameter of an annulus, = Z(ro-ri)

(=T I ¢
£ o

¢ thickness of heating wall
standard acceleration )
wall heat capacity per unit heat transfer surface

o
(g}

o~

pressure
Pr :  Prandtl number = v/af
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qg ¢ heat generation rate per unit heat transfer surface
q, : net heat flux to fluid

Re : Reynolds number = u D_/V

r : radius

T ¢ temperature

AT ¢ T - Tf

W W
time

: velocity
mean velocity

: friction velocity, = ’gCT/p

axial distance

*

distance from wall

+

nondimensional distance
nondimensional time
: heat transfer coefficient, defined by Eq. (13)
: nondimensional parameter related to wall heat capacity,
- Eq. (2} |
Eq. (3) _
€, : thermal eddy diffusivity
momentum eddy diffusivity

R NN K e e

-2

: thermal conductivity
kinematic viscosity of fluid
density : .

N T o ZC »>»om

shear stress

Subscripts

¢ : inner surface of heating wall
f fluid

g : gap between fuel and clad

e

h : heater

o ¢ outer wall

quasi : quasi-static solution
st : steady state

tran : transient solution

w : heat transfer wall

0 : initial state

1. ;' final state
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Fig. 1  Equivalant thermal boundary layer thickness.

- ( r
Tin "9% e
-—3-»( N X0 \
\ \ .
Unheated - Heated

section ~ section

Fig; 2 Co-ordiﬁate'system.



JAERI-M 6597

988 .} - awly
| £ oz

"UOTIBINDTED DIJBIS- Isenb

Y3TM uosTIB2dWOD UT 9SBIIOUTL HmZOQ osTmdols 1037 onﬁpﬁpo&&ou TT8M JO UOTIBTIETA ¢ 814

(o 0

b

| —T"
| §980:¢
0=" ‘Ypw/10oy O}="°
wg'0=23 *0l=k/o
J0=1d *,0l=8Y

S BIS-ISENY) e —m

UoIINJOS juaisuel]

70

e o ~{osgi

I 9

I
O
0D
sinjeiadwa} jem

O
o

|
A




JAERI-M 6597

| "aseoadutr somod 8sTMdLlS I10F JUSTOITIFO0D ISFSUBI] IBOY JUSTSUBIJ y 81y
|n|F. - _ ImymE: - _ e S
0Z R R ¢ A G0 0
_ - I ] |
| } 3
— SNJeA 9je}s-Apesls  UoIN|oS UOHPNPUO) ¢ =
o
IIIII mmllllillgklll 3
G'Z ———————T €@
60 —— e — — = )
€9°0 —————— . i
It m/mr—————eoun o
=
S
— arsx . Yol
| .. 5 R
Wl T.>>_u ME
| m%NE:@_ 3330 =H =1 \173
| Wz00=2q ‘2= "4/° 3
- L=1d ' 01=2Y 14
_ 2
3 |

P e _




JAERI-M 6597

10 | | | '
@ 2= Zst,cx |
@ Z=25(R4)
10k @ z-040B72 @=1)  —
@ (?=0.4) '
| ©® (7=01)
0 @ (3=001) T

HNNZ=Zetw (¥=0.1) ‘

| |

10 ] } ’

Il e —
16" — /=
- @ R/ @ ®
-2
10" -
10 10 1 10

Fig. 5 Steady state time for wall temperature.
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