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The implosion processes caused by laser-heating ablation has been
studied by self-similarity analysis. Attention is paid to the possibility
of existence of the self-similar solution which reproduces the implosion
process of high compression.

Details of the self-similar analysis are reproduced and conclusions
are drawn quantitatively on the gas compression by a single shock. The
compression process by a sequence of shocks is discussed in self-similarity.
The gas motion followéd by a homogeneous isentropic compression is

represented by a self-similar motion.

*) QOffice of Planning, JAERI
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I. INTRODUCTION

Tt is well known that extremely high pressures and temperatures can
be achieved by focusing an intense laser pulse on a solid surface.

Several plans have been in progress to compress the pellet of thermonuclear
fuel to fusioning condition.1)™5) _

A fraction of the laser light irradiated is absorbed by electrons in
the tenuous and hot outer region of the pellet, by the process of inverse
bremsstrahrung and various anomalous absorption mechanism. This absorbed
energy is then transported inwards to cooler dense region by classical
thermal conductivity and is transferred to the pellet ions by classical
electron~ion collisions. The high pressure is derived from violent
ablation of the strongly-heated surface matter into the vacuum and also
from the temperature increments in the thermal front. Being thrusted by
the "ablation" piston, shocks are launched toward the pellet center and
the unablated portion of the core is compressed to high density.

To achieve extremely high pellet conpression it has been proposed
that the laser power should be time-tailored so that the pellet compression
takes place nearly isentropically.l)’s) The high temperature, required to
provide an adequate rate of thermonuclear reaction, will be obtained
during the compression by a combination of shock heating and compressive
work. These phenomena have been inspected by using computer codes based
on the detailed hydrodynamic description of plasma Fluid,2),5)

The behavior of the imploding shock wave was idealized by assuming
its dynamics as a self-similar motionz)ss)-7). In this idealization, use
is made of a purely hydrodynamic model without transport processes, that
is, with negligible viscosity, thermal conduction, collisional energy
exchange and so on. Since monentum, energy and mass flow near the center
of the pellet are concentrated in a very small region at the final stage
of implosion, the shock intensities should increase greatly. So the shock
condition on both the surfaces of a shock may be described approximately
by the Rankine-Hugeniot relation for large shock velocities. Extremely
rapid changes, caused by the appearance of shock front, in the thermo-
dynamic state of the plasma fluid is approximated im the simple theory by
mathematical discontinuities. The total neutron production predicted by
the similarity analysis gave an excellent agreement with that obtained
from a hydrodynamic computer codeZ).

The physical circumstance predicted by the self-similar motion

accompanied by a single shock, however, seems to correspond to a spherical

_1_
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shock tube problem rather than to an implosion process by strongly
accelerating piston. In the former problem, before the spherically
contracting shock is reflected at the fluid center, the fluid particle
behind the incident shock is moving towards the center. After the
reflection, the reflected wave travels in the opposite direction, which is
shown to be also a shock. The overall density, pressure, and temperature
ratio, produced by the reflection at the center, are considerably increased.
This process is known as the so-called "shock and rarefaction wave
interactions".6)»7)s8) '

On the other hand, for the problem of the strongly accelerating
piston, adiabatic compressions will be continuously and unboundedly
possible in addition to the shock compression. That is, momentum, energy
and mass flow near the fluid center are concentrated in a very small
volume at the final stage of implosion, due to the strongly ablating pres—
sure and the spherically focusing effect. Adiabatic compressions lead to
much higher densities and much lower temperatures than the corresponding
shock compressions. Actually all the computer results show the increasingly
growing profiles of density for the shocks which approach the pellet center.
However, the compression by a single shock can not lead to higher density
than the density at infinity before the shock arrival at the center. Here,
it should be noted that the single shock problem can be treated also as a
problem of the gas compression by piston moving together with gas. The
compression of a pellet may, practically, be accomplished by either of
these processes individually, or by some appropriate timed sequence of
theml*) .

The primary object of this paper is to discuss the possibility of the
existence of the self-similar solution which reproduces the implosion
process with laser-heated ablation. The impoding shocks were analysed by
Guderlyg) but the literature is not available in this country yet. Hence,
the actual details of the self-similar analysis will at first be reproduced
in the next section by following Sedov®). WNext, discussions will be made
on the correspondency to the practical implosion processes and also on the
possibility of the existence of the self-similar solutiom. Additionally
the problems related to the way to produce extremely high compression will

be touched on from the standpoint of the self-similar motion.
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IT. SELF-SIMILAR MOTION

We assume that the the target plasma is fully ionized and the
relaxation time between the electron and ion collision is so short that the
plasma can be treated with one-component neutral perfect gas. Moreover,
the disturbance 1in fluid induced by the fusion reaction is assumed to be

negligible. Then, the equations of motion, continuity and energy take the

form:
%%-+ v %¥.+ %‘%% = 0,
By oo, )
é%.(ﬁ%a + v é% Cﬁ%) =0, |

where vy is the adiabatic index; v = 1 for plane flow, v = 2 for flow with
eylindrical symmetry, and v = 3 for flow with spherical symmetry.
From dimensional analysis for the velocity v, density p and pressure

P, We can Writes)

a

= — = 2 S N—

T
t
where V, R and P are arbitrary quantities depending only on the non-~

dimensional combination of r and t, and

r
A= . (3)
blt|

Here, the constants, a and b have the following dimensions, respectively:

[a] =mpkr® | and  [b] = LTS, W
Substituting Eq. (2) into Egq. (1) and introducing the new variable

Z = YP/R, (5)

we obtainE)
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Z{[Z(V¥1)+v(y-l)V](V¥6)2 )
dz  _ - (y=-1)V(VFL) (VF¥8) - [2(VF1) T (y-1) 12 6)
dv (VE8) [VIVTL) (VT8) - (vWik) Z]
dinh _  2-(v¥8)? . -
AV W(VT1) (VF8)-(wVik)Z
—oydinR _ _ V(L) (VF8) - (vVFK)Z
<V+6)EEEX = *§ + (k-vt3)V 2o (Vi8) 2 , (8)
' with L - S*2 j § (k+1) , (9)

where the upper and lower signs correspond, respectively, to the implosion
(t<0) and explosion (t>0) processes.

The two parameters, a and b, and the nondimensional comstants, k, s
and § are determined depending on the physical problem under consideration.
For the example of the implosion process (spherical shock tube problem),
an infinitely strong shock wave is contracting in an undisturbed uniform
medium of density pg and zero pressure. The medium within r < rg is
assumed to be at rest before the instant t = -ty (tp > 0) the shock arrives
at ¥ = rp. By letting k = -3 and s = 0, we have a = py and § remains to
be determined later, but the choice of b is not essential in this problem.

Now, the fundamental problem reduces to the integration of Eq. (6).

If Eq. (6) is integrated, then the relations of V and R to A are determined
from Eqs. (7) and (8) by using a numerical integration. A certain curve
obtained in the (Z,V) plane gives the field of one-dimensional

unsteady motion at eachlinstant. Points of discontinuity on this curve
will represent the shocks in the presence of strong explosions or
implosions. From Eq. (7), a certain A-value will correspond to each point
of the discontinuities. Hence, the surface of discontinuity in physical

space is given by
A = Xg = const, r = J\Ob|t|6 . (10)
That is, fixed values of the wvariables l,'V, Z, R and P correspond to a

shock in self-similar motions.

The magnitude of the shock velocity c is given by
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dr _ . r '
¢ = 4 = ) t (11

For the present problem, the shock coordinate can be written as

follows:

* *
I (_Iii_)é A or T = 1 (_I.F_I.) A (12)
o’ Ao coto 5 Tt Ao

T
with Ag = ;DE
0

where \” is Ao for t < 0 and a constant determined by shock conditions for
t # 0.

Thus, for the self-similar motion, we can obtain particular solutions
by the integration of a single ordinary differential equation (6). It may
turn out that by varying the arbitrary constants of the fundamental
equations, (6), (7) and (8), it is possible to construct a variety of
solutions describing all possible motions of the gas. It should be noted

that self-similar solutions provide a physical rather than a mathematical

picture.

II.-1 SHOCK CONDITIONS

In the problem under study, discontinuities or shocks occur in the
flow; consequently, we must know the general relations between V, Z and R
on both sides of a surface of strong discontinuity. On doing so, we
simplify the structure of shock front by a mathetical discontinuity
neglecting its thickness.

The conditions for comservation of mass, momentum and energy must be
satisfied when the fluid crosses a surface of discontinuity. Let the sub-
scripts 1 and 2 denote the states on one side and the other side of the

discontinuity, respectively. Then, we can write:

pl(V1 - C) = pz(Vz - C)

p1(vi = )% + py = pp(vy - )2 + py [ _ (13)
1 oy P _ 1 2 .Y _F2

> (vy e) + 1o, - 2 (vyp - ) + 1 oo
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Especially for the case where the state 1 is an undisturbed gas

(vi = 0, t < 0), we have

Y2 . Z 1 L2 Pr . xil 2 y2y=1
2= Sga-mh, Ao S a+snd
(14)
P 2 -1
= 1 ——'—_M
p1c” 1 ¢ 2Y R
where M is the Mach number defined by
YP
M = = with ¢ = —= (15)
Cs s n1

By replacing the quantities v, p and p in Egs. (13) and (14) by means
of Egs. (2), (5) and (11), the relations of Egs. (13) and {14) at a shock

front become, respectively,s) as

Rl(V]_; 5) = R2(V2 ¥ 6) N

2 Z, - (Vy % 8§)?

Vo 36 = (Vp ¥8)[1 + v R TR 5)‘2 s (16)
iz 1 : 8 __Y_ T 5)2
A = v LAl 8 - Z
2 St lymearorll (A ][ (V) 7 8) ]
and
~ _ 28 - Y¥l
V2 = Y+]— ’ R2 = 'Y_l
) (17)
2 ~1)8& i
ZZ ~ _‘LE_L.._).E_ J
AY+1)

where the terms of the order of M; % are neglected in deriving Eq. (17)
under the assumption of extremely strong shock.

Knowing the state 1 on one side of a surface of discontinuity, we can
find from Eq. (16) the state 2 on the another side. In other words, the
integral curves in the (V, Z) plane are discontinuously connected,
corresponding to the states of both the sides of shock, by the relations
of Eq. (16). It should be noted that the subscripts 1 and 2 in Eq. (16)
can be interchanged from the symmetry of Eq. (13).

From Eq. (16), the following useful transformations exist between the

states 1 and 2 in the (V, Z) planee)"

(i) The points on
= (v 78?2 , (18)
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transform into themselves.

(ii) The points on Z = 0 = Z = i%%-(viié)z. (19)

(i11) The points on V = 0 => Z =7 §(VF8)(1 ¥ l%} v . (20)

v 2-22 wzew, 8 >0 (21)
v 01 Rl 1 2

The figure 1 shows the possible transformations, for t > 0, given by
Eq. {16). The transformation of Eq. (17) is a special case of Eq. (16).
That is, Eq. (17) corresponds to the jump from the origin (V =0, Z = Q)
to the (Vy, Zs) that is the intersection of two parabolas of Egs. (18) and

{(19) with positive sign.
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ITI. INTEGRAL CURVES IN (V, Z)-PLANE FOR SPHERICAL SHOCK-TUBE PROBLEM

For all the problems concerning the implosion process followed by an
explosion process, we must look for the unique solutions of V, Z and R
that are in one-by-one correspondence with the A-values in the ranges from
the initial value Xg to e for t < 0 and from « to 0 for t > 0. Under the
assumption of the strong shock of Eq. (14) or (17), the stafe of pellet
core in the (V, Z) plane corresponds to the origin (V= 0, Z = 0) before the
instant when the shock arrives at the space point of observation.
Immediately after the arrival of the shock, the fluid state jumps to a
point given by Eq. (17), which is the initial condition of the ordinary
differential equation (6).

In this section discussion is made on various singular points, that
is, discontinuities of the integral curves of Eq. (6) and on the correspondency
with the physical state of the imploding or exploding fluid. A set of the
unique solutions are obtained for the quantities V, Z and R, which satisfy
the physical condition of the spherical shock tube problem. Some of the

conclusions drawn are applicable also to other types of implosion process.

I1T.-1 CONTINUITY OF PHYSICAL STATE AT t = 0

From the definition of the parameter A by Eq. (3), the quantities V, Z
and R at A = o represent the state at infinity (r = ) or t + *0. For t = *0,
i.e., A + o, all the physical quantities must be bounded, possibly except
for the center of symmetry {(r = 0). For an example, from Eq. (2) the
integral curve of V(}) must satisfy the following condition:

v(y) ~ ch for X - oo(t - *0), (22)

O | b=t

where Cg is an arbitrary constant. The above equation shows that the
physical state at t » +0 corresponds to a point on the Z-axis (V = 0).
The point 0 (V = 0, Z = 0) 1s a singular point of Eq. (6)2)’10). That

is to say, for V> 0 and Z - 0 simultaneously, we have

2z
& . . (23)

dv K
4+ =
vV % 5 Z

The general solution of the above equation can be written as

<
-+,

Kz czl/2 (24)
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the shock point and arrives at the point O passing through the saddle
point exists only for one special value of §. We obtained the special

value of 6 by an iteration method based on try-and-error procedure. On

this method, starting from an assumed value of &, the slope at the saddle

point is determined and a numerical integration starts along the slope
towards the shock point. The &-value sought is that for which the integral
curve passes just through the shock point.

Generally, an integral curve which starts from a certain point near
any singular point cannot be calculated by a usual numerical procedure
such as the Runge-Kutta method, because the function Z(V) is not always a
single-valued function of V. We adopted a numerical method to find the
next mesh-point on the integral curve by the use of the tangential line
and the curvature, as shown in Fig. 3.

As the special value of §, we obtained & = 0.6882% for v = 5/3. A
typical example of the family of integral curves near the saddle point is

shown in Figs. 4 and 5. At this step, the constant C, in Egs. (26) and

(29) is already fixed.

III.-3 INTEGRAL CURVE FOR EXPLOSION PROCESS (t > 0).

According to the continuity condition at t -+ 0, the integral curve
for t > 0 starts, in the negative half plane of V, from the point O along
the parabola of Eq. (29). Before intersecting the parabola of Eq. (20)
with minus sign, the curve encounters a discontinuity corresponding to the
reflected shock. The image point of the discontinuity transforms into a
certain point in the region where V > 0 by a jump given by Eq. (16). This
point can be determined by considering the final state of the explosion
process, and the procedure of the determination will be shown below.

The final state where t >+ or r + 0 is expressed by one cetrtain

point in the (V, Z) plane which corresponds to A = 0. The point

(V= —, Z = + o) {36)

is a saddle point, where Cg is a constant defined by

K(K—U)(K—Vﬁ)?

vk (24vy) -~ v(2+v8)]

(37)

which is obtained by substituting Eq. (36) into Eq. (6). The following

asymptotic formulas are valid near the point D:
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S C#* -C%
Vs SH G, z=cp" %, (38)
k (k=) {k-v8) - v”CB k[24+v(y-1)] - 2v
with C* = 3 = R (39)
' v CB K - v6
_ ek % = K :
R Ceh R where C Y (40)
= -2
P = Cph . (41)

Here, the comstants Cy, Cz, Cy and Cp can be determined later by the
numerical integration of Eqs. (7) and (8).

Consequently, the differential equation (6) is integrated starting
from the point D of Eq. (36). After intersecting the parabola of Eq. (20)
with negative sign, we can construct a curve in the region of V < 0 which
is the locus of the image points made by the transformation of Eq. (16)
for the points on the integral curve. "~ This locus will intersect the
integral curve startiﬁg from the point O at a certain point in the region
of V < 0. It is the intersection that we seek as the jump point correspond-
ing to the reflected shock. The integral curve thus obtained is shown in

Fig. 6.

IIT.-4 NUMERICAL RESULTS AND DISCUSSIONS

We can obtain the A-dependence of the quantities, V, R, Z and P by
integrating Egs. (7) and (8) along the integral curves obtained in the
previous subsections. The Runge-Kutta method was used for the purpese of
the numerical integrationms.

Now, let us consider a shock wave that passed the point r = ry at
t = -ty < 0 and assume A = 1 at this shock point (V,, Z;). Then, starting
from the this point with A = 1, Eqs. (7) and (8) are integrated up to the
point near 0, along the integral curve of Fig. 5. It is useful to use the
asymptotic formulas of Eqs. (22), (29), and (30) in the vicinity of the
point O.

For the explosion process {t > 0), the integration starts from the
point O along the curve given by the analytic expressions of Eqs. (22) and
(30) and is accomplished, along the curve of Fig. 6 (V < 0), up to the
shock point of the reflected wave. The value of X corresponding to the
reflected shock point determines the magnitude of the reflected shock

velotity (see Eqs. (11) and (12)). For the jump to the region of V > 0,
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the shock condition of Eq. (16) for R is used. Here, the value of A must
naturally be treated as a smoothly increasing variable.

The integrated results are shown in Figs. 7-10. From these results,
the dimensional quantities v, p, and p can be calculated by using Eq. (2).
In thils case, the following non-~dimensional representation of these

quantities is much convenient for the general discussions made later:

v .11
% 5 T V(A), (42)
E‘?a = R(}N) , (43)
1.2

——_ _17-2. E e, (44)

PyCh )

r
with ey = 6(—t—Q) , (45)

0

where r' and t' are the reduced distance and time, respectively, defined by
r' = r/ry and t' = t/tp . (46)

Figures 11 ~ 15 show the various profiles of the reflection of a shock
at r = 0, as function of time: The reflected shock needs about 1.5 times
as much time for the distance O and rp compared with the incident shock.

The fluid follows slowly after the reflected shock. The passage of the
incident shock gives a density increase of a factor of four by the shock
compression, followed by adiabatic compression of the inwardly moving gas
to a density ratio of about 15. The density ratio produced on the
reflection is increased by as much as a factor of 33. This is the maximum
compression that can be achieved in spherical geometry by passage of one
single shock.

The spatial distributions of the various quantities for t > 0 are
shown in Figs. 16 ~ 18. The distribution for t < 0 may be inferred from
Figs. 7 v 9. TFor example, the density distribution is an properly shrunk
profile of the curve for t < 0 in Fig. 9.

It should be noted that for t < 0 the density ratio of the contracting
gas to the startionary one is élways lower than that of the gas at infinity.
Hence, this gas motion corresponds just to that after the passage of
the shock in the shock tube. Figure 19 shows the radius of the gas particles

versus time until the reflection. The gas moves towards the center of
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pellet along the comparatively straight particle-lines. This gas motion
can be represented by a gas motion derived by a piston which moves along
one of the particle lines. Other motions of piston may derive non-
self-similar motions.

Figure 9 shows that a gas compression beyond the compression ratio of
about 10 is impossible for t < 0 by a single shock. Numerical results
cbtained from a compter simulation show that the gas density grows
increasingly with the approach to the gas center. In the next section,
discussions are made on the possibility that such a gas motion can he

expressed by a self-similar motion.
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IV. SELF-SIMILAR MOTION IN IMPLOSION PROCESS WITH HIGH COMPRESSION

There are two basic ways in which laser-induced ablation pressure can
be employed to produce extremely high compression, which represent
opposite limits. The first way is to use the strong spherically convergent
shock (8), which was discussed by making use of the self-similar analysis
in the previous section. The second is based on the shockless or
isentropic compression (I). Kidder presented the analytic theory of
homogeneous isentropic compression in which every volume element is
compressed to the same degree.“) The compreséion of a pellet may, in
general, be accomplished by either of these processes individually, or by
some appropriately timed sequence of them such as'):

(s,s), (s,I), (5,5,8), (S,L,8) =--v-:

In this section we shall examine the possibility that the kinematics
of the implosion is reproducible by the self-similar motion. In this case,
we shall confine our attention to the following two sinple cases: They
are the compression accomplished by a sequence of shocks (8,5,5,--++*), and
the homogeneous isentropic compression which was discussed by Kidder in
the Lagrangian description“).

Iv.-1 TIMPLOSION BY A SEQUENCE OF SHOCKS

At first, we assume that the shocks are timed to arrive together at
the center of pellet. This compression model is similar to the Beker's
model for the formation of shock wave by coalescence of pressure pulses.a)
For a sequence of spherically contracting shocks, it is possible for them
to be united at the center by optimizing the strength on a fixed space
point of pellet. For this implosion process to be discribed by a self-
similar motion, the motion after each shock must be also the self-similar
motion.

let us assume that the first contracting~shock proceeds in umperturbed
gas and its strength is so strong that the process can be described by a
self-similar motion discussed in the previous section. Moreover we assume
that the second shock is launched toward the center in the gas flow after
the first shock. The motion of the second shock corresponds to a certain
point on the locus of the image points which are given by the transforma-
tion of Eq. (6) from the points on the integral curve (see Fig. 20). The
integral curve representing the gas motion after the second shock is to be
given by a smooth curve that starts from the shock point and arrives at

the point 0 (V =0, Z = 0), In order that both the motions are self-similar,

—_ 15_
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both the shock parameters, §'s, must be the same. In the previous section,
it was shown that only one integral curve can traverse the parabola of Eq.
(18) with a certain slope when the §-value is fixed. It will be seen from
Fig. 20 that two successive shock-motions with the same d-value can be
self-similar only for two trivial cases; the first case corresponds to
the identical transformation on the saddle point given by Eq. (34) and
the second to the transformation from the point O on which the first shock
is about to arrive at the center. Consequently, the implosion process
accompanied by a sequence of shocks is impossible to be a self-similar
motion, at least under the assumption that the gas state is uniform before

the shock arrival and the contracting shock is extremely strong.

IV.-2 BREAKDOWN OF SELF-SIMILARITY

It is meaningful to discuss the initial gas state from the standpoint
of the self-similarity analysis. Here, it is again assumed that the gas
is initially at rest. Substituting the general equation (2) intc Eq. (1)

and letting V = 0 in the resultant equations, we have for t < 0

—GA(P? - YRT) - (1-y)S +2 47)

AP = ()P, (48)
RI

) ?{ = =5 (49)

The above equations have, respectively, the following solutiomns:

p _(A-y)s+2

2. 0= ) .

R'Y CIA 3 (47')

P = Cyi (k1) ) (48")
g

R = Ccqx &, (49")

which give a relation among the shock parameters:

bl +‘§%§_ = 0 or K

fl
o

(50)

Making use of Egs. (2), (48'), (49') and (50), the density and

pressure is given by
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p = p; const. (51)

-

Hence, the initial gas state with uniform entropy and null velocity may
generally have a spatial dependence of the density. That is, the self-~
similarity requires that the collapsing pellet somewhat resembles a

hollow shell. A constant density is attainable only for the case of § = 1,
under the treatment of the self-similarity analysis. Therefore the self-
Similarity is considered to be wviclated on the boundary between shock and
unperturbed gas in the treatment of the previous sections.

On the other hand, immediately before the instant of the shock

arrival, the
i.e.,

Z1

gas state is represented by a certain point on the V-axis,

2
vP v t

Ry ey r?

Here, since the shock position and the initial density are given
respectively by Eas. (12) and (51), the Z; takes a constant value.

Therefore, the self-similarity holds for all the values of t and r
only when the §-value of the unperturbed gas is the same as that of the
gas in-motion. It will be seen from the above eguation that a constant
Zi-value means that the Mach number of the flow is independent of time.

The theory discussed here strictly applies only to the somewhat
artificial situation in which the density increases with radius according
to Eq. (51). Such a situation was already studied by Kidder, in connection
with homogeneous isentropic compression”). This problem has not been

treated from the standpoint of the self-similarity analysis and will be

discussed in a separate paper in near future.

IV.-3 "HOMOGENEOUS" ISENTROPIC COMPRESSION

Kidder studied homogeneous isentropic compression, i.e., an isentropic
compression in which every volume element is compressed to the same
degree”). It was shown that a close approximation to compression of this
type may be accomplished by light-induced pellet ablation if the light
absorbed by the pellet is properly programmed with time.

Thus, in a.homogeneous comﬁression, the volume element d3x in the
Lagrangian description is assumed to decrease everywhere at the samé rate,
i.e.,

r2dr = h3(t)rpdry
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or
r{rg, t) = rgph(t) , (52)

where h(t) is a dimensionless scale factor.

From the law of mass convervation we may write
dm = pr2dr = dmpy = opprgdry , (53)
which, together with Eq. (52), implies that
plrg, t) = oolrg)/h3(t) . (54)

Moreover assuming the relation between pressure and density of an

ideal gas, we can write

a(rg)e’(rg, t)
polrg)/miV () . (55)

p(r{): t)

The time-dependent shrinking factor h(t) can be obtained by making
use of Egs. (52), (54) and (55), and separating variables in the equation

of motion. The resultant expression can be written as follows”):
h(t) = [1- (1 - %i})2]1/2 (t <0) , (56)

where the fluid is assumed to be initially at rest and in motion at the
time t = -ty < 0.

The radial dependence of the initial density py(rgy) and pressure
pg(rp) can be obtainedlsolving the spatial part of the equation of motion

written in the form of the separation of variables“):

polre) = 0o(0)(L + Bxg)3/2 (57)
2.5/2

polrg) = pp(0)(1 + Bxq) ’ (58)

B = (Ro/cgtgd?/3, xo = ro/Rp <1, (59)

2 = ypp0)/pg(0) . (60)
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If the compression takes palce slowly (B << 1), we see that the

compressed pellet is spatially uniform, i.e.,

polrg) = »g(0), porg) = po(0) . (61)

On the other hand, rapid homogeneous compression (8 >>1), however, requires

that the density and pressure increase strongly with radius, according to

po(re) = p0(08%2x3 . po(re) = polre)s® Px. (62)

Now, let us try to describe this homogeneous isentropic compression

by the self-similar motion. Using Eqs. (52) and (56), we immediately

obtain

v(r,t) = ul(rg, t) = r = roh(t) = ﬁ?é;ﬁ
_lel
T to r
—_|t|2(1_%§]3:>_2t ’ (63)
to

where the last expression is given for t = -0. This equation shows that

the gas motion in the final stage of the homogeneous compression must

correspond to a certain point on the line V = ——%—in the (V, Z) plane.

The corresponding Z—value can be obtained from the definition of
Eq. (5), i.e.,

_oyplrg,t) €2 ypplry) 2
p(ry,t) r? po(r)h2(t) r?
1 r -2
-5 for g w1 |,
Z[Cs(to{t|)1/2]
= (64)
-fi for g » 1 |,

where the last expressions are again for t -+ -0.

The above equation suggests that a homogeneous isentropic compression

can be the self-similar motion with ¢ = %—, i.e.,

. _
s 65
cg(ty|t))1/2 ' 63

which takes values between zero and Ap defined by
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o o= A= = (82, | (66

‘The integral curve of this motion can hence be expressed by a line

with V = --%—for B « 1, that starts from Z = = and ends at Z = %—B'z,
while it corresponds to one point (V = —-%?, Z = i%) for B » 1.

The density and pressure can be represented in a the following self-

similar forms, respectively:

cstgl3
8
0g(0) 3372,3 for g <1,

(r,t)= o(rg,t) = (67)
i P EPEC

pg(0) ?ETET%E;E;E for B » 1,

et
pg (0) 5572,c2 for 8 «1,
c tgks

s
L Py (0) (2-31/2)5rt2 for B » 1,

(68)

p(r,t) = p(rg,t)

In other words, the motion followed by a homogeneous isentropic compression
1

can be rgpresented by the self-similar motion with k = 0, s = 0 and ¢ =3
in the final stage of compression. Here, it may be noted that every point
on the line V = ——%—is the singular point as seen from Eq. (6).

A more detailed treatment would be needed for complete description of
the homogeneous isentropic compression by the self-similarity analysis.
This problem will be studied, together with the problem discussed in the

previous subsection, in a separate paper.
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V. SUMMARY AND CONCLUSIONS

We have studied the implosion process induced by laser-heated ablation
by means of the self-similarity analysis. Particular attention has.been
paid to the possibility of the existence of the self-similar solution which
reproduces the implosion process. _

At first, the actual details of the self-similar analysis was
reproduced by following Sedov. The gas compression by a single shock was
analysed by assuming its dynamics as a self-similar motion. A gas com-
pression beyond the compression ratio of about 10 was shown to be impossible
for t < 0 by a single shock.

Discussions have been made on the possibility that a self-similar
motion can reproduce the gas motion accompanied by extremely high
compression. The following conclusions have been drawn:

(1) The implosion process accompanied by a sequence of the shocks can not
be represented by a self-similar motion under the assumption of the uniform
initial gas state and the extremely strong shock.

(2) The gas motion followed by a homogeneous isentropic compression can

be reproduced by a self-similar motion with k = 0, s = 0 and § = %—, in

the final stage of compression. ‘

Further studies will be needed for the following two cases from the
standpoint of the self-similarity analysis:

(1) The first is the case where the shocks proceed in the gas with a
spatial dependence of density (p = ar2/6_2).
(2) The second is the homogeneous isentropic compression which has not

completely been treated in the present paper.
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Fig. 1. Possible transformations from (Vy, Z;) to (V,, Z).
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Fig. 2- Dependence of shock, saddle and nodal points on §-value.
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Fig. 3- Numerical method for obtaining integral curves.
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Fig. 4. The family of integral curves for k=-3, s=0, v=3, §=0.68839 and y=5/3
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Integral Curves for t<0
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Fig. 5. The integral curve for implosion process (t<0).
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Fig. 7 The X-dependence of V.
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Fig. 10 The A-dependence of P.
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Shock position as function of time.
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Particle velocity as function of time.
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. 13 Distribution of dencity p (r/rp=1).




JAERI-M 6618

14 T T | T T 1 T T

12 Distribution of Pressure -
=3, ¥=5/3
10 V%=1 .

P/(RCH)

t/t,

Fig. 14 Distribution of pressure p (r/rp=1).
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Fig. 15 Distribution of temperature ( p/(pc%); r/rg=1).
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Fig. 16 Radial distribution of density for t>0.
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Fig. 17 Radial distribution of pressure for :>0.
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Fig. 18 Radial distribution of temperature for t>0.
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Fig. 19 Reduced radius r/ry of fluid particles versus reduced time t/tg.
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Fig. 20 Locus of image points cbtained from the points on integral curve
through shock transformation



