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§1. Introduction

As is well known, an ohmic heating of a tokamak plasma is hardly
effective when the temperature of this plasma becomes higher. Hence, in
addition to the ohmic heating, other heating methods available for high
temperature plasmas are required in order to obtain thermonuclear plasmas.
In these situations, a major effort of controlled thermonuclear research
ig devoted to study and find out methods of additional further heating of
high temperature plasmas.

Among various types of wave heating methods, LHRH (Lower Hybrid
Resonance Heating) seems prospective because it possibly supplies the
requisite power for a further heating and possibly couples to a plasma
without any exciting coils. A number of theoretical analyses have been
reported in connection with LHRH. However some discussions are based on
very idealized models and disorganized. The purpese of this note is to
provide an investigation on LHRH of a large scale tokamak plasma with
realistic and systematic analyses.

First of all, the requisite power for an additional heating of a large
scale tokamak: JI-60 [1], is introduced and the amplitude of an incident
wave which characterizes the phenomena is estimated. In this situation,
all the nonlinear processes are ignored.

The evolution of an incident wave energy is analysed in §3 within the
framework of linear mechanism. The dispersion relatjon of lower hybrid
wave in a homogeneous plasma is reviewed and the validity of an electro-
static approximation is justified. Then the effects of a density gradient
and a magnetic field gradient are considered. Propagations, reflections
and the damping of the wave is summarized. By tracing the incident ray,
we will estimate the toroidal effects on the propagation of the wave in
the last of this section.

This energy density of incident wave may be so large that nonlinear
decay processes, especially parametric excitations, prevent the propagation
of the wave energy towards the tﬁrning point. Since the wave number of
a lower hybrid wave may become large, the usual dipole approximation is
not applicable in our situation. A general dispersion relation for four
electrostatic wave coupling in a homogeneous plasma is derived in §4.

Then the effects of the finiteness of the pump wavelength on the para-

metric decay processes are analysed.

_1_,
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In 55, the formation of a2 high energy ion tail is analysed.
This tail formation is attributed to an applied high power wave propagat-
ing perpendicularly to a magnetic field and is described in terms of
"stochasticity". The threshold of an incident wave energy for the tail
formation at a certain ion energy is obtained. The results are compared
with numerical simulations

The results are summarized in the last section and discussions on

the results are presented.

§2. Estimations of requisite power and frequency for a large scale

tokamak

In this section, we evaluate basic parameters roughly for RF heating
near lower hybrid frequency in JT-60 Tokamak [1]. Based on the evaluated
parameters we consider the accessibility condition, position of turning
point, changes of wave-numbers, intensities of electric field, potential
of lower hybrid wave propagating towards the center of a plasma, and
effect of impurities. It should be emphasized that the aim of the present
evaluation is not to determine the parameters for designing the apparatus
of the RF additional heating of JT-60, but to grasp the theoretical
concept of lower hybrid resonance heating in a tokamak. The following
parameters estimated roughly are ncthing but one example.

Design parameters of JT-60 are as follows:

major radius R=3m
minor radius a=1m
toroidal magnetic field B =5 Wh/m
number density (averaged) n = 5x1019 m 3
plasma current Ip = 3 MA
ion and electron temperature
(at the center) T = 10 keV
energy confinement time ntp = (2v6) %1019 sec/m?

First, we estimate the requisite power for RF heating in JT-60.
Assuming that .all the input power W is absorbed in the plasma,we consider

the energy balance equation

d 3 I |
205 (G NeD) = W - 25 NeT/rg (2.1)

(N = 2n2Ra’N)
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3
iNtT/TE + (2'1)

(Nt = 272Ra?N)

d .3 _ i
2 (G NT) =W -2
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where Ny is the total number and N is the number density. We have assumed
in Eq. (2.1) that confinement time of energy produced by RF irradiation

is the same as plasma energy confinement time. Frqm Eq. (2.1), assuming
g = 1 sec in the steady state, we obtain W = 10 MW to achieve the in-
crease of T = 7 keV. The intensity of the externally applied electric
field outside the plasma, Eg is estimated by calculating the Poynting
vector through the surface irradiated by this electric field:

W o\ 1/2
o8 ) , [Volt/m] (2.2)

Eg = {
where ¢ =2.998x10% m/sec is the light speed, co = 8.854185x10"12 F/m is the
permittivity of vacuum and S is the surface area (m?). If the RF field
is irradiated all over the plasma surface, then, S =2ma*27R and we obtain
E =5.6x10% V/m. However, in reality, the surface is localized and the
intensity of external field is determined by the condition of discharge
break down. It is expected that Eg = (2%2.5)x10° V/m can be generated [2].

The lower hybrid frequency, wpyg, is given by

D= (2.3)

w =
pe e

where wpg = (Nceé/mosg)llz is the plasma frequency and {; = eoBolm0 is the
cyclotron frequency for the species 0. We assume that the plasma density
of JT-60 is parabelic and that the pump frequency fp is adjusted to the
lower hybrid frequency at Xyeg=0-2a. (a is the radius and Xypag is called

a lower hybrid resonance point. See Fig. 2.1) Assuming Ny = 5x10%19 m™3

at
the plasma center, we obtain fg = 1.33 GHz. (w0==8.34X109/sec). At the
lower hybrid resonance point, mpe/981=0.44 (w%elﬂz =(0.2), then wp=uwpy(Xreg)
= wpi(xres)' Later, it will be noted that the presence of impurity ions
alters the condition of pump frequency. The accessibility condition is
given in terms of the index of refraction in the z-direction {(the direétion

of the toroidal magnetic field),

k2 ¢2 02
2 |
N, = —o— > 1+ P2 . (2.4)
: wh Qe

where k,, is the wavenumber in the z-direction of the pump field and
Wper = Wpe(Xres). The validity of Eq. (2.4) will be given in §3. It is
preferable that N, is smaller, since, otherwise, the lower hybrid wave will

experience an electron Landau damping during propagation. In the present

_3_
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example, the right hand side of Eq. (2.4) is equal to 1.194, and we
choose N, =1.53. Then, we obtain ky, *42.47 m ! and Xg, =27/kg, * 0.15 m.
Using the parameters estimated above, we calculate numerically the
fluid equations in order to know the behaviour of the propagation of lower
hybrid wave excited externally. The numerical calculations were performed
under the conditions that the density and temperature aﬁ the center
Np = 5x10'9 m™3 and Teg =Tig =5 keV. The results are shown in Fig. 2.1;
(a) the perpendicular wavenumber ky versus position, (b) the electric
potential field ¢ versus position, (c) the intensity of the electric field
Ex versus position. It is seen from Fig. 2.1 that the turning point where
the group velocity of lower hybrid wave changes its sign appears near
x=0.5a. The modes of cold plasma wave and warm plasma wave are designated
by superscripts of "cold" and "hot'", respectively, in Fig. 2.1, Linear
conversion occurs near turning points which is far from the center of plasma
in the present case. Fig. 2.1(a) shows the increase of perpendicular
wavenumber, ky, and kxpi becomes larger and exceeds unity. According to the
linear theory which will be discussed in the following section, if kypj
increases enough, then the warm plasma mode is converted further into ion
Bernstein wave and it suffers collisionless damping heavily to heat plasma.
However, the heating of plasma bodily is not expected since the wave does
not penetrate deep into the plasma in the present case. Fig. 2.1(c) shows
the increase of the perpendicular component of electric field intensity, -
Some remarks are given on the effects of impurity ions which are
present in the plasma. It is noted in [3] that the presence of impurities
alters the pump frequency slightly. If Q; < <| Qel for cold plasma, then

the transverse dielectric constant, ey, is given by

2 2 2.
. =l+fps_i’£;_22221

(2.5)
2 2
T Q2 w jow

where the sum is over the impurity species. Lower hybrid resonance occurs

when eT==0. Then, the frequency becomes

2
w
m2=—‘—"‘“‘5‘e~"‘zzil—n':“(l—s) , (2.6)
l-+wpe/9e i
which recovers Eq. (2.3) when s=0. In Eq. (2.6), s is defined as

img
§ = T CiZsi{l-—=t2) , (2.7)

j 171 Zim-

i J
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Spatial evolution of an incident wave mnear
the lower hybrid wave. Plasma density and
temperature have parabolic profiles which
vanish at the plasma edge (r/a=1.0).

At r=0, N=5x10'% n3 and Te=T1i=5 keV.
Incident frequency fp=1.3 GHz and refrac-
tive index parallel to the uniform magnetic
field N, =1.53 (parallel wavelength Agz =
0.15 m). The arrows indicate a lower hybrid
resonance layer.
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where Cj is the fractional concentration Cj==nj/ne and Z; and nj are the
charge number and density of the j-th impurity species.

T1f the impurity species are not of high atomic number and are fully ionized,
then iji/Zimj =1/2 and s = (1/2) Z_Cij.

From Eq. (2.6), the lower hybrid frequency becomes lower when impurities

It is obvious that 0<s <1,

are present if we fix the position of lower hybrid resomance. In other
words, for a fixed pump frequency, the lower hybrid layer shifts towards

the center of the plasma when impurities exist. If there is 5 Z fully
ionized oxygen, then in the case of Fig. 2.1, the frequency becomes f;=
1.06 GHz at Xypeg=0.2a. With 4 % fully ionized oxygen and 4 % fully ionized

carbon, f7=0.96 GHz. The accessibility condition becomes [3]

w3 _
N o> (- 7= Qe;i) ! (2.8)

In the case of Fig. 2.1, if f0=l'.33 GHz (wp= 8.34x10%/sec) and there is & %
fully ionized oxygen and 4 % fully ionized carbon, then the minimum of N%
is 1.3, whereas in the absence of impurity it is 1.2.

In the above discussions, we have not considered nonlinear phenomena.
The parametric threshold will be shown to be (2v5)x10% V/m for JT-60 in §4.
It is seen from Fig. 2.l that the electric field predicted by the linear
theory exceeds the parametric threshold before it reaches the turning point.
If parametric instability is driven, there may be some fears that the
propagation of the wave energy towards the center of plasma would be
prevented which would result in peripheral heating. Some discussions about

parametric instabilities will be presented later.

§3. Linear phenomena

Many authors have been studying linear phenomena of lower hybrid waves
such as dispersion relation, damping, propagation, accessibility, linear
mode conversion and ray trajectories [4-26]. Also, some experimental
works have been carried out [33-40]. The purpose of the present section
is to review and advance the linear theories of plasma waves near the lower
hybrid frequency for the purpose of the investigations of the additional
heating by LHRH in tokamaks. Especially, we clarify the linear processes
of the waves in JT-60 device. The work presented here will also serve the

investigation of nonlinear phenomena which will be discussed in the sections

_6_
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fﬁ_
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§4 and 5, since the analysis of the evolution of an incident wave energy
in this section will be useful for studying the possibilities of the para-—
metric instability and ion tail formation.

The dispersion relation of the lower hybrid wave in a homogeneous
plasma is reviewed and the validity of an electrostatic approximation is
justified in &3-1. Then the effects of density and magnetic field inhomo-
geneities are considered in §3-2 and £3-3. The results will be applied to
a large scale tokamak, JT-60, to clarify the propagation, reflections and
dampings of an incident lower hybrid wave in JT-60. Finally, we will

estimate the toroidal effects on the propagation of the wave by ray tracing.
§3-1 Dispersion relation in a homogeneocus plasma
(1) Cold plasma approximation

The local properties of plasma waves in a weakly inhomogeneous plasma
can be explainéd to a great extent by means of a dispersion relation in a

homogeneous plasma. Section §3-1 deals with the local dispersion relatiomn

of plasma waves near the lower hybrid frequency.

Fig.3.1 Magnetized plasma of slab geometry.

We shall consider a magnetized plasma of the slab geometry jllustrated
in Fig. 3.1. The plagma is uniform in the y~z plane, while the plasma
density N increases in the x direction. The applied static magnetic field
has two components (C,Bgsiny, Bycosy). It is assumed that the émplitude
of the plasma wave is small enough for a linear theory to be employed and
that the wave has a form of a stationary plane wave, exp i(kyx +k,z-wt);

the quantities which can be determined externally such as w and k, are

i'(_

A
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assumed to be real and only ky is considered to be complex.

In the cold plasma approximation, the dielectric temsor ¢ takes the

form,
1-h iah cos ¢ —-ich sin ¢
% =.|-ichcisy 1~h-8h sin? ¢ -Bh sin ¥ cos ¥ , (3.1)
ich sin ¢y —-Bh sin ¢ cos ¢ 1-h-Bh cos? 1]
where
wd W 3
h = Pe Pi
mz—ﬂg w2-0%

oh = wgze wlla + wEZi wi{

1]
w2 Qez-mz w? Q‘?:L-wz
. 2, 2 > (3.2)
_ Wpe He w51 11
Bh = + > 3 .
UJ2 Qz_wz w Q-_wz

e 1 4
The wave number vector and the frequency of an electromagnetic wave must

satisfy the dispersion relation,

D(w,ﬁ) = det *ﬁ(m,i}) =0, (3.3)

where the dispersicn tensor D is defined ty

e 2 — -
D(w,k) = = (kk - k2D + ¢ . (3.4)
w
The dispersion curves in the typical plasma frequency regions are shown in
Fig. 3.2 for k,=0, Fig. 3.3 for kz =0 and Fig. 3.4 for finite kg,
respectively.
When the waves propagate perpendicularly to the static magnetic field
(k =0, ¥=0), they can be split into the ordinary and the extraordinary
modes. The latter mode
kZc? €2, - €%
XC” _ Exx T txy (3.5)

2 L]
EXX

w

shows hybrid rescnances when ex};= 0, 1.e. h=1; and it has two branches
the resonance frequency of which are called the upper hybrid frequency

wyy (wyy > |9e|) and the lower hybrid frequency wpy (Vﬂilﬂel >wpg > 94),

respectively. While the ﬁpper hybrid resonance is mainly related to the

,8_,
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motion of electrons, the lower hybrid resonance (LHR} with which we will
be concerned has relationm to both electrons and ions. If we assume that

11 € w <|Qe[, the LH frequency, wrp, can be approximated by

17 wie , . o (3.6)
and in the other way for a given frequency w <vQ;|{;[ , LHR occurs where

the plasma density satisfies

2 2
Y]
2= BE = g, (3.7)
e Qe
where
w? n2 w2
CaAE %
1 1 1
q = 3 o S (3.8)
Py ) e
Me Q% my

and the suffix r indicates the wvalue at the LHR. However, as is shown from
the dispersion curve in Fig. 3.3, the extraordinary wave cannot propagate

in the plasma where Wpe <

wper; therefore a wave cannot reach the LHR from

outside of a confined plasma.

On the other hand, when there exists nonzero k, determined by a wave
source the LHR is accessible to the wave from the lower density side. The
condition for the accessibility is obtained in the following. The dis-
persion relation Eq. (3.3) is a quadratic equation with respect to kxz;

and the coefficients (3.2) may be approximated by

2 3

W
h = ‘-‘P‘—z = ﬁy— ’
2 - 2z
- Sper =8y + 1 Yper . 0(/22) } (3.9)

o= 2.2 B 0 m, ’ '

w Qe -0 @ whla e

2.

g = vper” =74 + 917 wper? 0GL)

w2 02-02 o2 w2 Me” 2 )

in the frequency range i «tu<<JQe . Except the extremely low density
region wpe v w, the solution to Eq. (3.3) can be simplified on the assumption

that 8h>>1 to
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[ 2.2 -
2 z & .7y 2
cos® ¢y~ (1-h+gh) * /{ - G0s< - (1-ht+qh) }# - 4(1-h)qh
w

(3.10)
and the branch related to the LHR takes the upper sign. In order that the
wave can propagate without considerable reflection, the r.h.s. of Eq. (3.10)
must be real and positive. The sufficient condition for such a solution to

exist can be easily obtained from Eq. (3.10),
kyc —
]—ET"COSIDI > ¥Y1-h + /qn , (3.11)

and for 0 <h <1 the r.h.s. takes its maximum value /1+q at h = E%E .

Therefore the accessiblity condition of the LHR from the lower density side

is given as

2.2 2 .
kte? 2l 1 Cpert L Malfel (3.12)
LU2 = 1+q Qez Qi 1QE|_w2

Near the plasma boundary wpe“bw, the solution to Eq. (3.3) which leads to

the LHR is approximated by

kyc? k,2c? '
X — = (8hcos? y-1) ~F5— - (gh-1). (3.13)
w W

It should be noted here that the wave which satisfies the accessibility
condition is evanescent where Wpe < -

When the wave approaches the LHR, the x-component of the electric
field E; increases as well as ky, so that the solution obtained from the
electrostatic approximation,
ky2c? h k_2c? (3.14)

— _8_ 2 z »
3 i-h Ccos .w m2

can be a good approximation. Comparing Eq. (3.14) with Eq. (3.10), we get
a condition for the electrostatic approximation.

k,c

[~ cosy|» VI-h + Vqh . | (3.15)
i

Therefore if the accessibility conditionm Eq. (3.12) is well satisfied,
the electrostatic approximation can be employed in the investigation of the
LH waves.

The comparison of the exact real solution to Eq. (3.3) with the

k]

¢ e by S
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solution from the electrostatic approximation is illustrated in Fig. 3.5,
for an example of w/f04{=230, ¥=0 and a mass number A=1; in this case the
accessibility condition (3.12) shows k,c/w=1.3998., There still exist a
narrow evanescent gap for k,cfw=1.4, nevertheless the figure shows that

the approximated analysis Eq. (3.12) gives a good criterion.

10%

7%

ﬁi=30 H

3

4

L

— cold electromagnetic

-- cold electrostatic

kS _y3998

W min,

fool 1226

| L " L L |

c 05 z 10

Wpe

02

Fig. 3.5 The comparison of the exact real
solutions to Eq. (3.3) with electro-
static approximation.

(2) Electrostatic approximation in a hot plasma

(2)-1 Dispersion relation in a hot plasma

With an increase of kxs the effect of a finite Larmor radius becomes
important in the dispersion relation of plasma waves. Assuming that the
electrostatic approximation can be applied, we shall investigate the

longitudinal dispersion in a magnetized collisionless plasma composed of
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electrons and one species of ions with Maxwellian velosity distributions.
The longitudinal dispersion relation derived from the Vlasov and Poisson

equations is [30]

> - >
= kD k '
where . 2 n - u
o
X = — [1+ (W (Z. )-1DA(05) ] (3.17)
G k2 TU n=-—« (O_HQO on nhre ’
;= w=nQy - kJ_2vTO2
on anTo ’ o] 902 4
k% = kx2 + k2 sin?y , k, = kz cos y ~

and the thermal velesity vry = vIy/my. The properties of the plasma dis-

persion function W(z) and the function Ap(A) defined by
hg(A) = In(aye™? , (3.18)

with the aid of the modified Bessel function In{}) are summarized in
Appendix A,
In the frequency range m~«|ﬁe|, the terms except n=0 in the summation

of the electron susceptivity X, may be neglected. The electron Landau

~damping caused by the imaginary part of W(w/k”vTe) prevents the effective

ion heating; therefore we shall consider only the case of small electron

Landau damping,

€ s 1, 3.19
B, vre . ( ‘ )

Making use of the ion Larmor radius pi='mrilﬂi, we may rewrite this con-

dition as

T
k,,pi(ﬁ)”z(—l-sﬂ)”z « 1 (3.20)

s

where q v 0(1) has been defined in Eq. (3.8).
Ifkyps» 1 and k,py; »1, the summation in the ion part x; can be

approximated by the integral and the unmagnetized ion susceptivity,

e s o TS
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2
Wr1® M4
s - i PR

: (3.21)
k_z Ti va]_

is derived. Though this assumption is inadequate to the following
analysis as the condition (3.20) leads to k,p; < 1, a discussion about it
will be given in (2)-4 of §3~1 in connection with the effect of rare
colligions.

On the assumption that k,p; « 1, we may neglect the terms involving
W(Zin) except a new integers of n nearest to w/%;; the rest terms in Xj
are summed up to a function,

oo w*

£aa(i) = T o A, (0), (3.22)

n=—DD

where w*==w/Qi. The behavior of this function is investigated in detail in
Ref. [29]. When w*» 1 and A{ » 1, with the aid of the Hadamard expansion

fw*(ki) can be approximated by

wk *
Y} + ImW ) cot wkm (3.23)

f 4(As) = 1-R =
# D) = 1 ReW (i G

while when A; < w* and w*>» 1, f,x(Xi) can be expanded to

' ¥] 3Ki2

£ A;) =1 + + , 3.24
w*( 1) w*Z_l (w*Z_l)(w*Z_Q) ( )

which corresponds to the asymptotic expansion of 1-Re W(w*/k,p;).
Since ImW (w*/k pi) is considerably small for w*» k,py, Eq. (3.23) is a
good approximation as long as w* » 1. Furthermore the fcllowing approxima-

tion is valid for k p; <« l<uw*.

m*

kip

) . (3.25)

* %
Re W (Z5—) + W) Ap(k %p42) = ReW (-
Pi k oy

i k, i

As a result of above discussion, provided §i; « w ¢C|Re|, kpj <1

and Eq. (3.20), one may approximate Dy by the following expression;

2
w m
Dp =1+ _E—g-—f [1+W(zep -1 Ag(Rg)]

w¥ w¥k—-n

.2 M .
UJE]. i UJ* UJ*- .
* T, -1 *n+ I 270 2,.2
K2 Ty [ReW(kpi) mw kmi) cot wkn L W(k,,pi)An(k‘L p; )1,
(3.26)
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here the summation £' in the last term was taken over the few integers
near wk., If w* is particularly close to an integer ng, cotw*m and the
terms for n=ngy in I' behave singularly in Eq. (3.26); however the

corresponding terms in the exact equation (3.16),

=) - 1] Ano(kﬁoiz) , ' (3.27)

shows no singularity because W(Z;,) -1 tends to zero faster than w*-mn;.

Therefore a more appropriate form of D near the ion cyclotron harmonics is

2
D = 1 + 5’? —?‘3 [1+M(Zy) - D] (3.28)
e
wk UJ*—D
+-Lw-—[R Ll e ")+ {w( )—mn (k, 2042)]

k2 Pi w*-ng k, P

On the basis of these approximatioms of Dy, the nature of the wave near the

LH frequency is analyzed in the following subsections.

(2)-2 Warmplasma approximation

We shall ghow in this subsection that the cold plasma mode Eq. (3.14)
change the sign of its group velocity near the LHR by means of the warm
plasma approximation (kpj <« w¥®). Since k;pj is not small compared with
unity, we assume that Re k; > Im k.; otherwise strong damping takes place
before the waves propagate a few ion Larmor radii; therefore Re ki may be
derived as a solution of Re Dp =0.

Ag long as kipi,ém*llz, the effect of the ion cyclotron harmonics may
be neglected since Ano(kizpiz) in their terms is fairly small compared with
unity, Moreover assuming that i, = ksziz(Te/Ti)(me/mi) « 1 which is

<UJ*1/2

compatible with Kk;pj 3 , Wwe obtain a warm plasma approximation;

((J’r—

Rely, = -
Qe?
(3.29)
The dispersioﬁ relation Re Dy =0 shows
2 2
Wy ‘ ms k k, vy
w? = —pi 1 4oL 3._i_;££H] (3. 30)
o 2 K, 2v. 2 me k2 w2 ’
1+ Re g 35 Tey =
Qe 4 02

<z 2 2
i W
+-L*—%kL-(1+‘W f%ﬂ@ —u-J%ﬂ#}.
e W )

st = e e AL
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and this dispersion curve ig illustrated in Fig. 3.6 as well as that from
the cold plasma approximation. It is clear that for smaller k;p; than some
critical value the phase velocity w/k, and the group velocity 8w/8k, per-
pendicular to the magnetic field have opposite signs, i.e. a backward wave,
and that for larger k,p; they have the same signs, i.e. a forward wave.

On the other hand the waves are always forward waves along the magnetic

field.

50

—ggho.s
k.2 =01
I .
40 T, =10
3G
)
\\
30 \\ cold
\\\/
R S
Fig. 3.6 Dispersion relation
2 i . . .
% 0 20 derived from Eq. (3.30)

k.

We may transform Eq. (3.29) to a dimensionless form;

g4 _1-h T 1 37 M2 1 2 .
where
T, n4la,] T 2
2 - qdtg 17 9,5y 5 TitYel 1 e w
s 3¢ q + G T, 1+q) 3¢ 2 + 4 T, W), (3.32)

in order to obtain the density dependence of k,p; for given w* and kypg-

At the critical density wpetz smagller than wperz, the cold plasma mode joins
with the mode of larger k,pj and changes the sign of its group velocity.
Where the density is lower than wpet2 there exists two real positive ksziz,
while in higher density there are only complex conjugate solutions which
means spatially damped oscillations. The density and k,p; at the critical
point (turning point) can be easily obtained from the double root of

Eq. (3.31);

2
“per  _ 8 w?

Qez - l+2(l+q)k7',pis - 2 Q;T(l'fﬂkﬂpis) w2 (3.33)

- 16 -
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my k,pq
T I RN Bl (3.34)
The w* and k,p{ dependence on mpetzlﬂez is illustrated in Fig. 3.7 for

Te/Ti==l. When k,pi increases and/or w* decreases, the turning point shifts

to the lower density. Since w? must be smaller than 0 le|, the electron
tempera ture does not considerably change the location of the turning point

unless T, » Ty.

k-Pi

Fig. 3.7 kypy vs. w/Q; for the case To =Ty
Accessibility conditions are satisfied above
the solid lines for a given temperature.
Dotted lines show the densities at the turning

Point.
(2)-3 Disgpersion relation in the vicinity of higher harmonics
In this subsection, taking account of the ion cyclotron harmonics we .
shall make an qualitative analysis of D;. In order to make an analysis

clear, DL is devided into two parts; the first part is

D—1+5P-e—2-m31+(wz DigO +9P£miwa*) (3.3
[ 1(.2 Te [ ( eo)_ ) [)( e)] k2 Ti e (kpi ) . 5)

and the second part D; is composed of the singular part of fw*(li) and the
terms which involves W(Zin) in Eq. (3.16). TIf w* falls halfway between
the two successive integers, ng and ng+1, the term in Re D; on each side
of w* cancels one another, so that Re D; is almost zero. On the contrary,

if w* is close to an integer ng, Dy is approximated from Eq. (3.28) as

follows,
22 me. * *—
_Ypi” Wi W w™ng 2 2
b, = (W( ) - 1) k,“p1%) . 3.36
1 k2 Ti w*—no ki py Ano( L P1 ( )
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The w* dependence of Eq. (3.36), i.e.

w¥=r1p

an(w*) - L)::fno [w(k P ) - 1], (3-31)
T .

is illustrated in Fig. 3.8. The real part of who(w*) is an odd function

with respect to w*-ny and takes its maximum value at about ng-1.3 k,p;.
(U\)*_n
k,04 .
summation of Im wn(m*) over all integers n. However, with k,pi « 1, only

Since ImW ) is an odd function with respect to w*-n, Im D; must be a

the ng-th term is dominant because

In wp(u®) = [T o ng) (3.38)

It should be noted-that when k,p; =0, the following approximation

.2
Wwpi mi .
D, = - —i—z—»f; wh GOt (W) Mg, (k, 2052) (3.39)
leads to the usual ion Bernstein wave [27] propagating perpendicularly to
the magnetic field. On the other hand in the case of k,p; > 1, Re D) is
averaged to zero and Im D; are summed up so as to make up the ion Landau
damping (Appendix B); therefore we recover the unmagnetized ion approximation,

Eq. (3.21).

Re w (w*) . Irrhwn(w')
r n E&l
3k

i n+13k,f} x ¥
T (€% > LW
n—3kf N ! n

__n_ i
13k P

Fig. 3.8 Properties of Eq. (3.37).

The function Dy is approximated by Eq. (3.29) for k;pj < w¥;

and when k, pj » w¥, Dy approaches

2 2
[ m W m+ .
Dg > 1+ EF -2 3 (3.40)

Knowing the behavior of Dy and D; with respect to kkzpiz, we can

cbtain the root of Re Dy, =0 from the intersecting point of the curves
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y==Dg(klzpi2) and y==D1(kL2p12). vFig. 3.9 shows the qualitative results

in the cases a) w*=ng+6 (0<8§ «1), b) wk=ny+1/2 and ¢) w*=ng-o.

It can be seen that there exists the second turning point between the

first turning point in the warm plasma approximation and the plasma boundary
and that its location shifts toward higher density when w* approaches
ng~1.3k,p; and toward lower density when w* approaches ng+ 1.3k,pj. The

numerical example will be given in (2)-5 of §3-1.

14
?g“ a b o
i Fig. 3.9 Shifts of the second turning point.
iz —, (a) wk=ng+6, (b) w*=ncil/2,
0 et Woe (c) wk=ngp - 3.

{(2)-4 Linear damping mechanism

The linear damping mechanism of the LH wave contains the electron
Landau damping,-the ion cyclotron damping and the modified jon Landau
damping which occurs when the cyclotron damping overlaps each other because
of k,py larger than unity or when small but considerable collisions randomize
the cyclotron harmonics component of the ion motion, in addition to the
ordinary collisional damping.

The electron Landau damping which results from Im W(w/k,vre) has a
negligible dependence of k; as long as Ae==k¢2pez « 1. Therefore the large
electron Landau damping which is almost independent of the plasma density
causes strong damping of the waves near the plasma surface. The condition
of the small electron Landau damping has been given in Eq. (3.20).

W n
The ion cyclotron damping originated in Im W(k d?)strongly localizes
I i

in im*-n@Lﬁk”pi in as much as k,pj <<1; since it includes the factor

Ang(ksziz): the damping substantially appears when kzpiz,{no. As is
mentioned in (2)-3 of &3-1 for k”pig;l the width of the cyclotron damping
is broaden and overlaps each other to form the Landau damping.

Though we have assimed that the ion-ion collision frequency is small
enough for the collisional damping to be meglected (viy < Qi), small
collisions which cannot cause the considerable damping can restore the
Landau damping. When kLhi » 1, the wavelength is short compared with the ion
Larmor radius; so that the memory of the collective motion of an ion can

be lost by a small-angle scattering due to the Coulomb collision. In other
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words if the velocity variation Av within one ion cyclotron period ﬂ;lgives
rise a phase mismatching k;Av/§; which exceeds unity, the ion feels no
successive acceleration and the energy obtained in the last acceleration
dissipates into the thermal motion of ions. Therefore the collision

restored Landau damping can occur under the condition [28,5]

2
= (_V__) Vii = kj_zpiz\)ii > Qi . (3.41)

Veff Av

In this case the unmagnetized ion approximation can be applied. The ion-
ion collision frequency used above is given for an ion of a charge number

Z and a mass number A as [31]

Z2gnh.- N
vis = 3.46x10713 1

-1
ii A172 Ty 3/2 [sec™ ] , (3.42)

3 and ev,

where the ion density Nj and the temperature Tj are measured by m~
respectively.

As a result, the dominant damping mechanism of the LH waves is con-
sidered to be the collisional damping for v;;>{;, the collision restored
Landau damping for Qi:>“ii>'ni/k¢zpiz and the cyclotron damping for

(2)~5 Summaries of dispersion

In this subsection, we summarize the numerical calculations of the
dispersion relation on the assumption that Re k py » Im k,;py. Two models
are utilized in calculations; in the unmagnetized model, the ion suscepti-
bility x; is approximated by Eq. (3.21); and in the magnetized model only
the nearest integers, i.e. np and ng+1 with ng <w* <np+1, are taken into

account as contributions of the ion cyclotron harmnnics; that is,

Y __,_‘*_’P_i..iilli_ ReW(—“—’j‘—-) + ¥ [ w* W(.‘t’i:‘l)_l},\ (k:%20:2) I. (3.43)
1 k2 Ti kpi n=n0’ UJ*"n k”pi n L 1

ng+l
Figure 3.10 shows the w* dependence of the dispersion curve in the

unmagnetized ion model, and Fig. 3.1l shows the k,p; dependence. The arrow
in the right direction means the damping rate before the turning and the
arrow in the left direction after the turning. The mark + in the figure
indicates the turning point predicted by Egs. (3.33) and (3.34), which
fairly agrees with the numerical result except for large k,p;. The dis-

crepancy is considered to be due to the higher order terms of kszizlwz in
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Fig. 3.10 Dispersion curves for various w/Qi in
the unmagnetized ion model.
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Fig. 3.11 Dispersion curves for various k,pj
in the unmagnetized ion model.
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Eq. (3.29). With the decrease of w* and the increase of k, 0y, the
Location where the stromg ion Landau damping appears after the turning,
approaches the turning point and at last strong damping occurs before the
turning. The dependence on Te is shown in Fig. 3.12., 1Tt can be seen
from Egqs. (3.32) and (3.33) that the change of T, affects the location of

the turning point only if

2y 2
Te 14 “0g
— ———————
T, A 4 " . (3.44)

Since for the parameter of Fig. 3.12, the r.h.s. of Eq. (3.44) equals 12.6,
the shift of the turning point for T /T; =10 is reasonable. One more dis-
tinction for larger T,/Tj is that the large electron Landau damping spreads
to the lower density region.

In Fig. 3.13, the results from the magnetized ion model is plotted,
which agree with the qualitative result in Fig. 3.9. The cyclotron damping
appears near the harmonics; the location where Im k, p; exceeds 107! is
indicated by a circle in Fig. 3.13. On the other hand, no significant
damping appears in the frequency ]w*—n|€;3kupi and therefore after the
twice turning the short wavelength wave propagates into the high density

region.
§3-2 Effects of density gradient
(1) W.K.B., approximation

In order to calculate the local power absorption of the wave energy
or to evaluate the nonlinear effect of the wave, it is necessary to know
the spatial variation of the wave amplitude. This problem may be solved
by the W.K.B. approximation except near the turning point.

The one dimensional energy conservation for a single wave is expressed

as
W

3 _ _
et ax () + 2% = 0, (3.45)

where W denotes the wave energy density, vi; the energy flow velocity and v
the damping ratio (real and positive). The W.K.B. approximation of the
first order shows that the energy density and the energy flow velocity are
approximated, with the aid of the dispersion tensor D defined by Eq. (3.4),
by [23]
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Fig.3.12 Dispersion curves for various Tg/Tj
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Fig.3.13 Dispersion curves for various w/Qy
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model.
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o
W o= " 5 , (3.46)
gw BD/BkX
vw=—a£;—-m=vg. | .(3.47)

Provided that w» v, the damping rate y can be obtained also from D =det D

as follows:

y = %ﬁ? . (3.48)
ow
Deriving the group velocity Vg and the damping rate as a function of x by
means of the local dispersion relation D(w, kx, k,; x) =0, we may easily

calculate the emergy density.

Wxg)vg(xp) (xo) (x
W = ey j - —I—l(x) (3.49)

In the case of an electrostatic wave, the energy density of the electric

field Wy has the following relation to W:

2
~ gp sglE[7 0 5p
Weug = =eg b - (3.50)

Therefore the absolute values of the electric field ]E| and the potential

|$| = |EI/k can be calculated. Moreover we may obtain the absorbed power
density
x
2y (x
Pabs(x) 2Y(xIW(x) = vg(xo)W(xo) ;Exi exP.f (- v E ;)d . (3.5
X

It may be noted that Y(x)/vg(x) is equivalent to Im ky as long as vy « w
and Imky < Reky.

The W.K.B. approximation is valid only if the inequality

1 dkyg

kx dx

< K, (3.52)

is satisfied. The weakness of the inhomogeneity compared with the wave-
length is not sufficient for this condition to be satisfied, because near
the turning point dky/dx goes to infinity. Using Eq. (3.31) to calculate
dkx/dx, we find that (3.52) is equivalent to .

-4 -
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N (x) N (x) N (x)
(kL) 2 (1 - —N—t—)(l T 250 7L, (3.53)
where
Wty e | (3.54)

and Ny and N, is the plasma density at the turning point and the LHR,

respectively.
Far from the turning point, the solution to Eq. (3.31) can be

approximated. by

m=+
2 - “ipag B2
ki1 me (1T T kS (3.55)
o ,
2 1 1 1-h 1

The first solution corresponds to the mode before turning (cold plasma mode)
and the second to the mode after turning (warm plasma mode). Using Egs.
(3.55), (3.56) and the W.K.B. approximation, we find the density dependence

of the wave potential in the case of negligible damping;

1 | 1
o 3.5
2 hl/%(1-n) L/4 " x1/u(xr_x)1/u ’ (3.57)
nlfu x1/4
¢2 =4 EW 4V m : . (3-58)

In the last expression we have assumed the linear density profile and
wpe? =0 at x=0.

(2) Asymptotic soclution near the turning point

The W.K.B. approximation fails to describe the mode conversion at the
turning point and the solution diverges at X =xt since vg(xt)= 0. It comes
from the fact that the phase correlation between the two waves has been
neglected in the W.K.B. approximation. This section deals with this

problem from another approach [17-21].

(2)-1 Differential equation near the turning point

The dispersion relation near the turning point Eq. (3.31) has a form
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kM- (k2 + koD)k (2 + k1 %k,? = 0, (3.59)

and this algeblaic equation in a homogeneous plasma is a reduced form of

the forth order differential equation in a weakly inhomogeneous plasma:

a4 o2 2y 49 23,2y = S
It + ax (k1 + ko ) dx + (k17ko7) 0. (3.60)

This equation can be derived from the MHD equations and Poisson's equation
on the assumption that k vp; <<w and kivp, «i,. In'Eq. (3.60), terms in
the first and the third derivatives are neglected because these are less
important in a gentle inhomogeneity, i.e. kjly>> 1. In the neighborhood of
the turning point x =x, the spatial variation of Re_(k12+k22) can be

approximated by a linear dependence on x. By the following transformation:

2 2
3 = Re'EEEﬂ;jjﬂi"l I
dx XK=X¢ ’ :
!
W = Re k12k22|x=Xt/K” , - (3.61)
|
e = Imla )|, /67 j
u = k(x-x'p ,
where

= 2 2 3
x'y = x, - Re(ky“+k; )|x=xt/K

Eq. (3.60) becomes a dimensionless equationj

d's 4 (o) 4¢ -
s + ia (u+ig) du + u¢ 0. (3.62)

Here we have neglected the spatial variation of Im (k12+k,%) and the
imaginary part of k12k22 in Eq. (3.59). The validity of these assumptions
will be discussed in (2)-4 of §3-2. ' '

Comparing Eq. (3.59) with Eq. (3.31), we obtain the relations between

the transformed and the real quantities:

m{ 1""'2(1'*(1)1(‘@]'_8 1

K¥ = — e
mg  (l+q)s? piZLN ’
2, 2
my 2 K,703° 1
H (me 52 quiq ] (3.63)

w,26 —_
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e = (-«Np)}) ImD; ,
where Ly is the scale length of the density gradient at X =X¢.

(2)-2 Asymptotic solution
By the general Laplace transformation, the integral representation

of the solution to Eq. (3.62) has a form (Appendix c),
3
5 () =f T exp (B +(utie)p - Sldp =f Lty | (3. 64)
¢ P P c P

where the contour C in the complex p plane is chosen such that the dif-

ference of the wvalues

3
V(p) = p exp [% + (utiedp - = 1, (3.65)

o=

at the end points of C is zero.

The contour integration in Eq. (3.64) may be carried out approximately
by the method of steepest descents (the saddle point integration technique).
The integration along the contour through the four different saddle
points (f'(p)=0), which are shown in Fig. 3.14, corresponds to the four
linearly independent solutions. In Fig. 3.14(a) for u:>2p1/2 and £ =0,
the contours C; are selected so that V(p) at the end points may be zero
and Im f(p) be constant along a contour. Thesé contours Cq which have the
gsame end points are deformed as illustrated in Fig. 3.14(b) for —2u1/2 <u
< 2p1/2 and in Fig. 3.14(c) for u'<—2u1/2. Here we have assumed a positive
but infinitely small ¢ to make a discussion definitely. By denoting the
integral along the countour C; by Iji and the contribution from the saddle

point Pj by Jj, we obtain the following relations,

_11\ a1 Jatdb| [Jat %Jb + %—JC + %Jd]
L 1% Ja Ja - —%Jb + %Jc
| = - e : (3.66)
I3 \ Je| 3. L 3 - %Jb - %Jc
FI“J LR ;Jc+Jd, gt %Jb - %Jc - %Jd_
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Re P
Cs
. | Im P
2pT>u>-2u2
Fa
# =N
(b) 5 Re P.
RS \%
Pe
7
T2y Fig.3.14
g
(e) = Re P
R R Po [R
g

Contours of integration:

(a) u >%u1 Z

(b) ZUI VN u:*—Zul/Z,

(c) -2pH/2>u.

Contours Ci in (a) are
deformed in (b):
Cl(_msPa:O’Pbsi)! CZ(‘msPasO)p
CB(_msPc;O)g Cu('w,PC:O,Pd,Q')-

And also in (¢):
Cl(_m’PaQPc;gst,Pd;l),
02(”m,Pa.Pc,gst,0),
CS('wsPasPc!g'st;O)s
CQ(—msPasPcsg"Pb,Pd’2')°
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The first column of the r.h.s. is for 2u1/2‘<u, the second for —Zullz <u <

2p1/2‘and the last for u‘<-2u1/2. Since the general sclution which contains
four arbitrary constants A; has a form LA;14; the connection formulae are
i

found to be
AyJg + A,Jp + AjJe + ALdg
= (A1+A)T, + (FA1) Ty + (Ag+AydT . + (FAy) Ty (3.67)
1 1
S (A1+A2+A3+A4)Ja + 'Z-‘(AI—AZ—A3+A1+)J~D“+ ‘E(A1+A2—A3—A;+)JC
+ L)
2 1 4 a’

The constants A{ are determined from the boundary conditions. The boundary
conditions are so chosen that i) for u» -« (high density limit) ¢ wvanishes
and ii) for u>« (low density limit), there exigts an incoming solution
which corresponds to the cold plasma mode. The properties of the contribu-
tion from each saddle point shows that for u-<—2p1/2, Ja and J are

exponentially growing mode; therefore their coefficients must be zero;
Al = —A2 and A3 = ;-Aq. (3.68)

And that for u X>2u1/2, J, is the outgoing warm—plasma mode, J;, the incoming
cold-plasma mode, J. the outgoing cold-plasma mode and J4g the incoming
warm-plasma mode. Using Egqs. (3.68), we conclude that the incoming wave of
one mode is fully converted into the other outgoing mode. The contributions
from the saddle poinﬁs have been calculated in a usual manner [32] on the
assumption that ualui» 1. With the aid of the boundary condition ii),

we obtain the asvmptotic solutions,

+ T

1/2_ ¢z-1y1/271/2 | iz
_ L) M2 g1y 12 exp[i_z.g W34 (241) 3 24 (2-1)3/2} e 6

23/4,3/8 (5 1)1/ % (z41)1/H

¢

1/2 ¢o_1y1/271/2 i
¥ ggi::})q I)%Ti)( +131/L+ exp [i;’-_g W) 32 (1) 3 2110 4
z- z '

(for z>1) (3.69)
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1 -1
175 €O0s z
YR 3/8‘(/11_r 175 ey 1/e P gg_i “3”(1'2)3/2*12‘3@ W3y 32768
H -2 z
(for -1<z<1) (3.70)
1/2_ 1/211/2 -in/2
o = 1;;%(4 {;-/18)(_24_1() 17/41() — ])1/1.; expl _;2£ UB/Q{ (-z+1) 3/2+(f2—1?3/2}]e
Lz M2y 212 23 3 / /
>3/ 3m exp[ - =5~ w3/ M {(-2z+1)° 2.(-z-1)3/2}],
u -z ~z-
(for z <-1) (3.71)
where
z = ?—1117'5 . (3.72)
U
When u>>-2u1/2,;the r.h.s. of Eq. (3.69) 1is approximated by
_ 2 3/2 _i% v 9 1/2,1/2 iz
_-u—sﬁexp[ 1§u Je +Wexp[12p u le

=7 * ~17 % +il
= us‘/i exp J. —1|k |dxe 4 4 1//15 7h expj —i|k1|dxe b 0 (3.73)
ut/Tp

where we have assumed |k1| ¢<|k2[; therefore k; and ky; are the wave numbers
of the cold-plasma mode and the warm—plasma mode, respectively. It is
noted that since the cold plasma wave is a backward wave the second term
means an incoming wave. Using the relation u<«= (xr-x), we find that the x-
dependence of the wave amplitudes in Eq. (3.73) coincides with those in
Egs. (3.57).and (3.58) as long as x » Ixr—x];,hence the sclutions (3.73)
join smoothly with the W.K.B. solutions. The amplitude ratio between the

incoming and the outgoing waves are obtained by comparing each terms:

|d’out:' Mllh
e (3.74)
|¢]_n| u

(2)-3 Solution at the turning point
Since the solutions (3.69) and (3.70) depend on u as (u—2].11/2)_1/_LlL
near the turning point u= 2p1/2, they diverge at the turning point. It

may be noted that this x-dependence (x-xt)_llL+ can also be obtained in the
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W.K.B. approximation. However the asymptotic method is able to derive the
solution at the turning. The divergence near u==2111/2 is due to the
smallness of f''(p) at the saddle point where two saddle points are very
close to each other; therefore instead of the usual "two-legs" saddle point

method, the "three-legs" method must be utilized. With u==2u1/2, f£(p) is

expanded near the saddle point p0==iu1/”, as follows:
" (p'Po)a
f(p) = f(pg) + £"' (py) ““‘;;——— . (3.75)

The integral Jy along the contour determined by the boundary condition

illustrated in Fig. 3.15 is obtained;

1 fllf - 3
I, = f JLef@o)+6 (py) (p-pg?

= dp
COPO
fpp) O grd iZa -if
) oflpg IEET dre[e 3 - 813“}
P [fll!(p)]1/3 o
0 0
LA o (18 3y (3.76)

31/622/3u1/4 3

where T is the Gamma function.
As we have seét A; =1 in Eq. (3.69), it is easy to see ¢(2u1/2)=.10.
. Since the solution in Eq. (3.69) approaches

N vy
ullq(u_2u1/2)1/4

exp (i3 /%), (3.77)

with u-+2p1/2, the "two-legs" saddle point method breaks down in the
region,
22/332/3,2

[u—2pl/2| « 22T n 2,52 , (3.78)
r(1/3*

(2)-4 Conversion rate

The damping near the turning point is important because the energy
density becomes large there; therefore Im Dy must be included in the
invéstigation. With positive £, the contour of integration is deformed
near the turning point as illustrated in Fig. 3.16. For certain critical

value u=u., one contour intersects another contour at the saddle point
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1
u=2pu2
m m
./
—\\< Po
m’ m’
Co: m»Fp»-0>Pa>m = ComsP,>m

Fig.3.15 Contour deformation near the turning point
for €=0. The contour Cy (m',Pp,-~,P5,m)
for u>2ut/? ig deformed to Ceg' (m'",Pp,m)
for u=2]_11 2,

U>Uey U=Uey UeSU <Ug,

Pq/_ / Y

A

U=uUe u<<uc.

Fig.3.16 Contour deformation near the turning point
for € > 0.
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of the latter. Since Im £(py)= Imf (py) at the critical points, it is

easy to obtain

cx

u., = 2ui/2 1% . (3.79)

Without & discussion about the behavior of the wave for'u<:uc+, we may
estimate the conversion rate which is the ratio between the amplitudes of
the outgoing wave ¢,,,; and the incoming wave ¢in'

Even if finite ¢ is included, Eq. (3.69) is valid for u Zu.4 by the

new definition,

u+ic
z = oul 2 (3.80)
Then, we can calculate the conversion ratio R at u=u_, for u »e?,
| b0yt | 25/2
= —outl - 3/2
exp( 3775 £ ) . (3.81)

It may be noted that R? means the conversion rate of the wave energy, as

long as ki *kp at u=ugy. The potential at u=u.y is also obtained;

J= 31/8 3
o] = sapty e (utlie w130 JReg o Q)
u £

There are two limitations on the result Eqs.(3.81) and (3.82); that iss
first, for small e the "two-legs" method breaks down under the condition

(3.78). Therefore when

22/337/6,2

4.3 3.83
T(1/3)" ® (3.83)

Eq. (3.82) is not correct but Eq. (3.8l) is still useful because the
conversion rdatio is independent of the phase defference of the waves,
Second, for large e the critical point u., is far from the turning point;
hence the x dependence of e and the imaginary part of k12k22 becomes
considerable, In fact a numerical calculation shows that the inequality
kyi/k1 < koi/kyr takes place near the turning point; this corresponds to
that the imaginafj part of k12k22 cannot be neglected. However, for large
£ the wave strongly damps before arriving at the turning point in a weakly
inhomogeneous plasma. In this case, it is unnecessary to consider the

turning.
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(3) Summary of wave propagations

The numerical calculation is carried out for two cases, that is,

Case A : a/pi = 100, mpezlﬂez = 1.0, at x=a ,-

(linear density profile)

Case B : afp; = 1500, wpez/Qe2 = 0.4, at x=a ,

(parabolic density profile)

where a is the distance from the plasma boundary to the maximum density.

These conditions correspond to, for example,

Case A' : Npoy = 107 n3, By = 1T, a=10"! m
T; = 100 eV, py = 1073 m s

Case B' : N . = 1020 ™3, By = sT, a=1m,
T; = 1 keV, pi = 6.5x107" m .

First, the unmagnetized ion model is employed. Fig. 3.17 shows an example
of spatial variation of electric field E, and potential ¢ in Case A. The
variation of ¢ is small except near the plasma boundary and the turning
point; therefore Ey is almost propotional to kLpi' After the turning E4
and ¢ are strongly damped by the ion Landau damping. The conversion

ratio R at the critical point is calculated to be 70.5 %; however the
reflection ratio of the energy flux vgxW 1s 58 %, which is more than R?.
This is due to the difference of 3D/3w between the incoming and the out-
going waves at the critical point. The energy absorbed at the critical
point is considered to be dissipated into ion not only at the critical
point u=uqy but in the region Un.. <U<u.y, for the wave amplitude remains
considerable there. The lowest curve in Fig. 3.17 shows that the reflected
energy is absorbed between x/a=0.48 and the turning point. The absorbed
power demsity Pahg which is the gradient of VgxW takes its maximum value

at x/a=0.54,

w347
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'Fig.3.17 An example of spatial wvariations of
electric field Ex, potential ¢ and
energy flux vgxW in the case A

(unmagnetized ion model).
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The spatial distributions of P,y for various kyp; values are described
in Fig. 3.18 and Fig. 3.19. As k,py decreases, the turning point shifts
toward the high density side. For k,p;= 0.15 power absorption spreads over
a wide region in addition to near the turning point. For 0.08 2k,p; =0.12
the absorption is highly locaiized in the.vicinity of the turning point;

the upward arrows indicate overscale of Pgpg. With the further decrease

of k,0y, some of the incident energy flux is reflected and absorbed

after turning as indicated by the broken line. It should be noted that

the location where the absorption occurs after turning is almost independent
of kyp;, which is a property of the warm plasma mode. With Te/Ti==101/2,
the electron Landau damping appears for large k oj; however for smaller

k, pqy the change of electron temperature has no influence on the phenomena.

r
§ b %:_30
s | Teoip
4 | \ i
a° J H"
015 i ' L

012
0_10\ . R (%)

“pe X
QY " a

Fig.3.18 The spatial distributions of absorbed power
Pabg for various k,pi in the case A
(unmagnetized ion model).
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Fig.3.19 The spatial distributions of absorbed power
Pabg for various k,p; in the case A
(unmagnetized ion model, Ip= lOl/zTi).
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The lower limit of k,py is determined by the accessibility condition; in
the case A' at w/Q4 =30, the minimum k,p; equals 0.013.

_. Next we consider the case B. It is shown in Fig. 3.20 that because
of the parabolic density profile E, and ¢ changes more gently near the
turning point compared with Fig. 3.17. TFor the parameter of Fig. 3.20,
the wave energy is almost absorbed before turning. The location of power
absorption is demonstrated in Fig. 3.21 for various frequency. The para-
meter kypj is so chosen that the turning occurs at x/a=0.8. The spreading
of absorption region for large w* and kycy is considered to be due to the
large a/pj as well as the parabolic density profile. The minimum kyoq in
the case B' equalls 0.0316. When T./T; is large, the electron Landau damping

appears in a similar way to Fig. 3.19. Furthermore the effect of shear is

examined on the linear shear.
a-x (3.84)

1
osv <373 o -

However only a little decrease of the electron Landau damping is observed.

10r T T
az | b
< L J
) |
i
1 1 :
10 T T [
= ?
x :
>
o 4
-
L
< 0 -
x F Ex b
i =3 ]
S J
L = J
1 1 I
= -
T 1
;‘ Vg W
= ==
2
3
= 05_
Ei
D L

10

=27, kp=0065, £=10

CASEB: &

Fig.3.20 An example of spatial variatioms
of electric field Eyx, potential
¢ and energy flux vgxW in the
case B (unmagnetized ion model).
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Fig.3.21 The spatial distributions of
absorbed power Pghg in the case
B (unmagnetized ion model).

The results of the magnetized ion model in the case B is summarized
in Fig. 3.22. The parameters are selected so that the wave first turns
at x/a=0.9. The end of the horizontal line which starts from x=0 indicates
the first turning point; the oblique line means the wave after the first
turning and énds at the second turning; the wave after the seconq_turning
is shown by the horizontal line which starts from the second turning point.
The thick line denotes the location of power absorption. For small kgpq,
there are wide pass bands, where the waves propagate beyond the maximum
density. With the increase of k,r4 the width of the pass band becomes
narrower and finally the pass band vanishes at k,pj=0.1. When the frequency
approaches of the harmonics, the power absorption first appears near the
second turning point and spreads between the first and the second turning;
then it is localized in the vicinity of the first turning point and at last
the wave is absorbed before arriving at the first turning point. The width

of absorbed baﬁd is approximately
lw* -n] < 4kyoyg : (3.85)

in the case B. ‘It may be noted that the damping rate just at the cyclotron

harmonics is (Zﬂnlﬂcnpi)“1 times larger than that of the ion Landau damping.
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Fig.3.22 The results of the magnetized
ion model in the case B. The
thick line denotes the loca-
tion of appreciable power
absorption.

In the cases A' and B', the main damping process is considered to

be the ion cyclotron damping; because

Case A' : 4 9.58x107 [sec™?], Vii 4.97x10% [sec”!] ,

1.83x10% [sec™!] ,

Case B' : Qi = 4.79x109 [sec”1], Vi



JABRI-M 6964

therefore the collision restored Landau damping is not expected to take

place.
§3-3 Effect of magnetic field gradient

As we have seen in §3-2(3), the waves in the pass Band traverse the
plasma without significant damping if a magnetic field gradient is not
taken account of. However in an actual low B torcoidal machine like a
tokamak the magnetic field is almost proportional to R™! where R is the
distance from the toroidal axis; hence there exists a magnetic field
gradient perpendicular to the magnetic field. In this case the LH wave
which propagates across the ion cyclotron harmonics suffers a localized

damping. We shall discuss on the effect of the magnetic field gradient.
(1) Damping through the passage of cyclotron harmonics

The contribution of the singular part Dj to the dispersion relation
is small when k;p; «w*., If we assume the solution of the form k, =k, j+k;¢
where kio is a solution of Do(k¢)==0. the correction kLl due to Dl(k4) may

be expressed as

_ Dl(kio)
1 8D (ky ;) / 3k ’

ky (3.86)

which is valid only if lkL1|'« lklo . Using Eq. (3.36) as D, we find

that the dispersion curve is distorted near the cyclotren harmenics.

n+

X

|
|
|
L L L
% om0 0 Im

Fig.3.23 The illustration of magnetic

field gradient.
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In the rest of this section, we shall calculate the damping rate when
the wave goes across one of the cyclotron harmonics. The magnetic field

is assumed to satisfy the resonance condition Qi==w/n at x=0, i.e.

_w X
Qi = E—(l'+i? , . (3.87)
as illustrated in Fig. 3.23; we consider the propagation from -L/2n to L/2n.
Moreover we assume that n>>1 and k,pj < 1l; therefore the change of Dy
during the propagation is negligible and the cyclotron harmonics are
sufficiently separated from the neighboring harmonics. By the use of Egs.

(3.36) and (3.86), the imaginary part of k,; is found to be

-2 mi (m-—nQ-)2
-1 TUpi ML w i T 2.2
Im kLl - aDO P k2 Ti k”VTi exp ( ZkHZVT'Z)An(kio pi ). (3.88)
_8_.12: i

Denoting the averaged damping ratio by i;} we may calculate the damping

during the propagation to obtain

L
— n [.2n
2n

2 .
1 wpi mi 2 2

- m — n Ank, %0, 2| _3) - (3.89)
8D0/3k1|xzo ke Ti i 'x=0

Here the integration has been extended to infinity on the assumption that

k,pj «1. Comparing this result with the unmagnetized ion approximation,

2
_ 1 Wpi”™ Mi 1 wkx 1 wk, 2
Im k, = 3D, T2 'fEIJEE'kpi exp ( 2(@;;) ) (3.90)
k.

and using the approximated form of An(l) in Appendix A, we conclude that
for k,p{ » w*l/zthe two expressions coincide and for k¢pi/§ w*llz the
averaged cyclotron damping exceeds the Landau damping.

In the case of the LH wave the above discussioms can be applied to
the damping before the turning; because near and after the turning, klpi is

so large that'kl1 becomes as large as k*o'
(2) Damping near the cyclotron harmonics

Since BD0/3k¢ approaches zero near the turning point, the distortion

f42 —
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of the dispersion curve from the warm plasma approximation becomes large
as illustrated in Fig. 3.23. If a cyclotron harmonics resonance OCCULs
near the turning point, i.e. wpez,ﬁwpetz, there is a possibility that the
turning occurs at the cyclotron harmonics. This condition may be evaluated
as follows. As -D; has its maximum value -D, .. a8t w = np+1.3kPy,
there exists a solution of Dy+Dy=0 if Dg <-Dy... Using Eq. (3.34) for
k;py,» we find that if the cyclotron harmonics resenance appears in the
region

wpetz--wpe2 wpet2 w* g mi Kyoi

< n =—7)

pe’ tper” 1+ #o1’ e ®

, (3.91)

w

the wave changes the sign of its group velocity. For example if w/Q4 = 30,

k,pi=0.08 and Tg/Ti=1, this condition is calculated to be

2 s
E’E_C:!_t___z_P_e._ < 0.13 . (3.92)
wpe

1t should be noted that the cyclotron damping at the turning point is

strong in this case.

After the turning, ki becomes so large that the wave which approaches
the cyclotron harmonics resonance is strongly damped regardless of the
density. Therefore the wave which experiences the turning dampé between

the two neighboring ion cyclotron harmonics.

w
9!

N+l

Fig.3.24 The distortion of the dispersion curve near
the cyclotron harmonics.

743 —
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(3) Local dispersion relation of lower hybrid waves in JT-60

In order to investigate the propagation and the collisionless damping
of.lower hybrid waves in JT-60 device, we numerically solve the local
dispersion relation of electrostatic waves, taking account of inhomogenities
of plasma demsity and magnetic field. For simplicity, we employ the slab
model, where plasma parameters depend on only x and the magnetic field is
parallel to the z-axis and has the dependence B =B, (1-x/R) (R is the major
radius of a torus). (The effects of two dimensional inhomogenity are studied
in §3-4.) We make the electrostatic approximation and assume that the
parallel wavelength is much larger than the ion Larmor radius (for example,
k,pq v 3x1072 N, in JT-60, where the parallel refractive index, N,, is of
order unity). Under these approximations the dispersion relation of lower

hybrid waves in a homogeneous plasma, Eqs. (3.16) and (3.17) are reduced to

W 21]1
Dp=1+ —if—-ﬁg [1+ (W(zgp)-1)Ap(2) ]

2
Wp{< My
tor o T g MOt v, (Hzi-D 0],
k i 2#n,nt+1 1 g=n,n+l Wl

(3.93)
where n= [w/Q4]. For given frequency Rew and parallel wavenumber Ky,
Eq. (3.93) has been solved numerically, changing the plasma parameters.
The summation of ion cycletron harmonics has been taken up to |2maxl==50.
Results are shown in Fig. 3.25. Typical parameters used in these calculations
are the followings: Ng(0) =5x101% m=3, To(0) =T;(0) =1 keV, By =5 Wb/m?2,
R=3m, £=1.4 GHz and k, = 50 w !, The plasma density and temperature are
assumed to be parabolic. The incident wave excited by an external source
propagates into the high density region with increasing perpendicular wave-
number and it is converted to the plasma wave due to the finite temperature
effect, before it reaches the resonance layer. The reflected wave has a
very short wavelength (k. pi{ *® 1) and propagates as the ion Bernstein wave.
As is well known, ion Bernstein waves are possible only within the frequency
band between two adjacent harmonics of ion cyclotron frequency (nii; <w<
(n+1)23; n is the integer). In our case, the frequency of the wave is fixed
and the fon cyclotron frequency varies spatially due to the inhomogenity
of the magnetic field, which implies that the ion Bernstein wave is

s
spatially trapped within the narrow region (A'bTE-R) between two adjacent
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Fig.3.25 Local dispersion relations of lower hybrid waves

in the presence of density, temperature and magnetic
field gradients. Dependences on (a) Na(0), (b) T(O),
(¢) k4, and (d) f are illustrated. Standard para-
meters are Ne(0) = 5x10!% @3 To(0) = T4(0) = 1 keV,
By = 5Wb/m?, R=3m, £=1.4CHz and k, = 50m '.

Dashed lines and integers demnote the ion cyclotron
harmonic layers and the harmonic numbers, respectively.
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layers of ion cyclotron harmonies (which are indicated by dashed lines and
integers). When the wavelength becomes short, the wave approaches the layer
of the higher harmonic, and suffers the strong ion cyclotron damping. The
damping rate is up to the order of the ion cycrotron frequency. Therefore,
the heating region of lower hybrid waves in a tokamak is strongly localized
near the ion cyclotron harmonic layer, The cyclotron damping is also
possible for small k;p;, but it strongly depends on the behaviour of the

dispersion curve near the ion cyclotron harmonic layer.
§3-4 Effects of toroidicity

The propagation of lower hybrid waves in an inhomogeneous plasma was
first studied by Briggs and Parker [25]}. They have shown experimentally
and theoretically that the wave excited by a point source propagates deep
into the plasma along a conical trajectory or the so-called lower hybrid
cone, which gradually bends to the magnetic field line with increasing
plasma density,‘so that it is parallel to the magnetic field at the resonance
layer. In a one dimensional plasma, the resonance layer is alsc parallel
to the magnetic field, so that the trajectory tends to be tangent to the
resonance layer and the field of the incident cold wave has a singularity
at this layer. This singularity should lead to the mode conversion of the
incident wave or the nonlinear filamentation of lower hybrid cones [56,57].
However, in a plasma with two or three dimensional inhomogeneity, the
problem is more complicated, because the resonance surface does not coincide
with the magnetic surface. The singularities of the field of an electro-
magnetic wave in a cold plasma, whose parameters depend on two co-ordinates,
were investigated by Piliya and Fedrov [24]. They have shown that
singularities are possible only at the points, where the magnetic field is
tangent to the resonance surface. Ohkubo et al. [26] numerically calculated
two dimensional characteristics of partial differential equation of
electrostatic lower hybrid wave in JIPP T-II device.

In this section, we study the propagation of waves near lower hybrid
frequency in JI-60. We employ thé method of geometric optics [22,23] and
solve the problem jin three dimensional space, taking account of two dimen-
sional inhomogeneity of plasma parameters. Finite temperature effects on
the wavé proﬁagatiOn are-also investigated.

Under assumptions of geometric optics, an electromagnetic wave in a weakly

inhomogeneous plasma propagates along the trajectory, which is described

— 47 —
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by the following ordinary differential equations, or the ray equations,

—5 - 5
dr _ , _ 3D , 3D dk _ 3D , 3D
it g 3;;/ dw ' dt ‘g,?/ e (3.94)

> >
where D=D(r, k, w) is the dispersion relation in a homogeneous nondissipa-
tive plasma. We have assumed that the medium does not change in time, so

that the frequency w is constant along the trajectory. The wave energy

g%
W= = 'ﬁ% D|E[2 is determined by the energy conservation law,

dw

+ >
ar “W(Vevg+2Y) (3.95)

where v is the local damping rate, which is neglected in the following cal-

culations.
We apply the theory to waves near lower hybrid frequency in an

axisymmetric low-8 tokamak plasma with ¢ircular cross section. Using the

. . 2
quasi-toroidal co-ordinates (r, 6, ¢) with metric (de)?2 = (dr)? + (xde)* +
(Rd$)2, where R=Rp+rcos 6 is the major radius of a torus, the magnetic

field is given by
B _R] [Bte¢ t p(r ee . P t

and the plasma density, temperature and current density depend on only r.
The deformation of magnetic surface due to teroidal effects is not essential
in our problem so that it has been neglected. Under electrostatic and fluid

approximations, the dispersion relation of waves near lower hybrid frequency

is given by

Te w e2 T{w i? wpiZ W e2 0 W e’ 2
D= -G8 Re 4 LRy (g o RE P 2 B 2 =0, (3.96)
me Q" my @b w fle w
where k, = ky + keBp/Bt and 14 = K”- KnﬁlB. The dispersion relation depends
on two co-ordinates r and 6 because of the poloidal variation of the magnetic
field. -
First, we consider the wave propagation in a cold plasma. Setting

Io =T; =0 in Eq. (3.96) and assuming that kp > Kg, ky and Bp/Bt » (k,/k1)?,

4 |
% = -sgn(ke)q(r)Rq w;e e, E-aw , (3.97)
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where q(r) = Btr/Bp(r)Rg is the safety factor and e is the dielectric

constant

wez wiz
e =1+ 25 - B : (3.98)

e W

The resonance surface ¢ = 0 shifts toward the major axis of a torus by

AR = —qﬁ£7f+@g£52%§-due to the inhomogeneity of the magnetic field.

Equation %3.97;!shows that the wave excited by an external source propagates
along the magnetic field line and penetrates into the plasma with decreasing
radial velocity Vgr/Vg ~ !E%_;.' Because of the toroidal shift of the
resonance surface, the trajéectory intersects the resonance surface and
terminates at this point. The only exceptions are the innermost and the
outermost point on the resonance surface, where the magnetic field is tangent
to the resonance surface. Piliya and Fedrov have shown that the innermost

point is the singular point of the saddle type, while the outermost point

bg
is the séggular point of the focus type or the node type for (Ei) z
1 Tgle flg 2 .
16 (q Ne mpe) , respectively.
The wavenumbers along the trajectory is given by
)
L& 1 NelN,
w dt 2 1+‘*’pe2/9e2 ’
1 d (rk.) = - qpez/ﬁez my/mg k, k¢/k? _ rgin e (3.99)
— 2 wm [ .
UT) dt 8 1+mpeZ/Qe2 1\+mi/me'k/,2/k R
1 d :
TS (Rk¢) = 0.

The radial wavenumber monotonically increases along the trajectory as in a
cylindrical plasma, while the poloidal and toroidal wavenumbers change due
to the toroidicity, which implies that the parallel wavenumber is not
constant along the trajectory. (The last equation of Egq. (3.99) shows the
conservation of the toroidal mode number which is due to the axisymmetry
of the plasma.) In the neighborhood of the resonance surface, neglecting

terms proportional to ¢, the variation of k, is given by

1 dk, wp 2 /9a2 B, sing
w dt/ = - < 2e 5 L. . (3.100)
) l+,(.upe /Qe Bt R
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Assuming '%E=10, Egq. (3.100) yields the sclution kﬂ2<r€, which implies that
the parallel wavenumber goes to zero at the resonance surface. Because
kl2==(mpe/m)2-k#2/e, the perpendicular wavenumber remains within the finite
value at £ =0, In other words, the refractive index in a tokamak plasma
does not have singularities, except at the outermost point of the resonance
surface, where the assumption-%f**O is invalid. A

In a plasma with finite temperature, the branch of the outgoing plasma
wave kl? = %%-(w“/wpiz) e appears and this branch intersects the branch of
the incident cold wave. Then the incident wave is converted to the plasma
wave and comes back to the plasma boundary. Although the theories of the
mode conversion have been restricted within a plasma with one dimensional
inhomogeneity, the mode conversion may also take place in a torecidal plasma,
because the intersection of two branches is possible even if the reflactive
index does not have singularities. Because the incident wave can not come
to the resonance surface, the toroidal effects on the incident wave are not
important. The reflected wave strongly interacts with cyclotron motions
of ions because of the short wavelength (k pi «1), so that the inhomonegeity
of the magnetic field plays an important role on this wave (see §3-3).

For the numerical analysis of the wave propagation in JT-60 device,
Eqs. (3-94) and (3-95) have been integrated by the predictor-corrector
method. Typical results are shown in Figs. 3-26 to 3-30. The parameters
used in these calculations are the following: Rg=3 m, a=1m, Bg=5 Wb/mZ,
q(a) =3, Na(0) = 5x1019 m=3 and TE(O) =Ti(0) =0.or 1 keV. The profiles of
the electron density, temperatures and the current density are taken to be
parabolic and impurity ions are neglected, for simplicity., Figure 3-26
shows trajectories of waves with different frequency in a cold plasma,
projected on the poloidal and toroidal planes. The waves are excited by
sources located at the outermost point of the torus, but initial positions of
integrations are at the points slightly inside of the plasma column, which
is indicated by asteristks in figures. The initial wvalues of poloidal and
toroidal wavenumbers are ky=0 and k¢==50 m_l,‘respectively, and the radial
wavenumber is determined by the dispersion relation Eq. (3-96). The wave
excited by the exter.al source enters the plasma perpendicularly to the
magnetic field. Then the wave propagates to the magnetic axis in the spiral
form, rotating arcund the minor and major axis of the torus, until the
trajectory intersects the resonance surface, which is plotted by the dashed
line. When the frequency increases, the resonance surface shrinks to the

magnetic axis and shiftgs toward the major axis of torus. The critical
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resonance frequency is 1.33 GHz in our parameters and the shift is ARV -0.04 m.
The off-resonance wave continues to propagate to the magnetic axis, but the
direction of the perpendicular wavenumber rotates by 7 near the magnetic

axis and the wave comes back again to the plasma boundary with k, <0. The
sign of k, does not change along the trajectory so that the wave experiences
many rotations around the major axis. When the frequency incfeases, the
average radial velocity increases and the rotation numbers around the minor
and major axis decrease. Figure 3-27 shows trajectories of waves excited

by ten sources with equal spacing. Trajectories of resonance waves terminate
only at the localized region of the lower part of the resonance surface.
Because of the symmetry of Eq. (3.94), the terminal points of waves with
initial wavenumber k¢==-50 m ! are localizated at the upper part. This locali-
zation of terminal points is due to the toroidal shift of the resonance
surface, so that this effect is strong for high frequency waves or weak
magnetic field. Moreover, it is noted that there is the concentration, or
the focusing, of trajectories near the trajectory passing through the
innermost point of the resonance surface, and the wave can not penetrate
inside of this critical surface. This focusing of trajectorlies is due to

the dependence of the radial group velocity on £. Figure 3-28 shows the
variations of ¢, k,, k; and W along the trajectory. The toroidicity causes
the variation of the parallel wavenumber, which abruptly goes to zeré-near
the resonance surface (¢=0), and, as the fesult, the perpendicular wave-
number does not have singularities on the resonance surface. The group
velocity tends to be zero when ¢ +0, so that the wave energy has the singu-
larity on the resonance surface. Therefore, we can expect that the nonlinear
effects play important roles on the wave propagation near the resonance
surface, as in a cylindrical plasma [24]. Effects of plasma temperatures on
the wave propagation are shown in Figs. 3-29 and 3-30. The incident waves
with resonmance frequency are converted to the plasma waves with short wave-
length and come back to the plasma boundary perpendicularlly to the magnetic
surface. The reflection point strongly depends on the parallel wavenumber
and the ion temperature. Because the mode conversion takes place at the
points away from tbe resonance surface, the localization and the concentra-
tion of trajectories do not occur. The off-resonance wave with f=1.4 GHz is
also converted to the plasma wave because the perpendicular wavenumber in a

cold plasma has enough large to intersect with the branch of the plasma wave.
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Fig.3.30 Ray trajectories of waves excited by
ten sources with equal spacing in a
warm plasma. Outgoing waves do not
plotted for simplicity.

In the result, one can see in the above calculations:

i) The resonance surface shifts toward the major axis of a torus due
to the toroidicity and trajectories intersect with the resonance surface.

ii} The shift of the resonance surface leads to the localization of
terminal points and the concentration of trajectories. These effects are
strong for high frequency waves or the weak magnetic field.

iii) The parallel wavenumber is not constant and goes to zero at the
resonance surface, so that the reflactive index does not have singularities.

iv) The wave energy is singular on the resonance surface, and the
ponderomotive force may lead to the filamentation of trajectories.

v) The effect of toroidicity is important only near the resonance sur-
face, so that the propagation of the off-resonance wave is essentially the
same as in a cylindrical'plasma.

vi) The finite temperature effect causes a trajectory to be apart from
the resonance surface and reduces the toroidal effect on the incident cold
wave.
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54, Parametric decay processes

As shown in the end of 52, the externally excited lower hybrid wave
propagating toward the center of a plasma may become so strong enough
before it reaches the turning point to drive non-linear phenomena, es-
pecially parametric excitation. Lower hybrid parametric ekcitations have
been considered theoretically [41-55] and numerically [58-61] by many authors.
Almost of the investigations assume the pump of infinite wavelength.
However, in a tokamak, as shown in Fig. 2.1, the pump is converted to an
electrostatic lower hybrid wave with sufficiently large amplitude at a point
far from the turning point. Then the pump which drives parametric instability
should be treated as a lower hybrid wave.

In this section, we consider the parametric decay of an electrostatic
lower hybrid wave with finite wavelength without the dipole approximationm.
We derive a general dispersion relation for four electrostatic wave coupling
assuming the homogeneous plasma. The dispersion relation is analysed to
investigate the effect of the finiteness of pump wavelength on the threshold.
It will be shown that the non—-dipeole approximation has an insignjificant
effect on low frequency modes (ion Bernstein wave, electrostatic ion
cyclotron wave, high and low frequency ion sound waves and ion quasi modes}.
However, the finiteness of pump wavelength affects on the high frequency

mode coupling.
§4-1 Coupled dispersion relation

We start with the Vlasov and Poisson equations,

af > > ey > > > of 4
TR T +-E; {~ V¢ + v x BO}'7§?
£(0) .
= v - £597) + ?"O—f(fc-fé hay | (4.1)
1 o
V24 = - = 3 ff Fra 4.2
b P eg [Igav . (4.2)

We have assumed the Crook type collision model (BGK model [62]) in Eq. (4.1).
Notations in Eqs. (4.1) are usual one. We expand the distribution function

fU by powers of the electric potential

£, = féo)+f{§l)+f§2)+ (4.3)
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Then; Eq. (4.1) can be solved successively. We assume the equilibrium
distribution function ﬂ$0) be Maxwellian;

v

(%) Np
f = —— exp (- Y . (4.4)
¢ (Vivyg) 3 vg”

We solve Eq. (4.1) to the second order accuracy in the eiectric potential

to derive a coupled dispersion relation for the discussions of parametric
instabilities excited by pump electric field with finite wavelength.
Fourier—expanding the potential ¢ and distribution f,;, we first obtain the
first order distribution function fél) and then f§2) is calculated. Sub-
stitution of fél) and féz) for the poisson equation (4.2) yields the equation
for the waves

Dp (k) ¢ (K,w) + Dyp (K"t KT, 0o (K0 ) o (K", w") = 0. (4.5)

Here D; is the linear dielectric constant given by Eq. (3.16);

.
DL(ksw) =1+ g Xo' (K’w) s

w+ivg
+ —— -
N Wl my L+12 wHivg—nig W(zg, ) =118 (o)
Xg(k,w) = 5 - . (4.6)
kT 4 ivg

14+ 7 ——— [W(z =1]A, (X2
n wtivg—niy [ on) ] n o)

In the limit vy - 0, Eq. (4.6) becomes Eq. (3.17). By the integration of fé2)
over velocity space, we obtain by usual method
1 e MZ o 0
T TR = 0 “pg J.
Py (k' w' k" ,0") % 2e, Top 2 OuLdui _madq
R S 1 -1(8-6") 1(8=8")y, 1_0.
* & K, U, msg-w Jm(ﬂg) [2 {Jn—l(nO)e + Jn+l(r'c)e Tk, ' Suy
Lym,mn Y
1 it srn ot k_l_" (n-m) d
+ 5 {g-1(ng)e 168 g4 (ng)et(6-87)y Tt Tn(ng)k," 5]

ky "u, + 20
(ngu) [of féﬂ)

ei(n—m)(ﬁ—é")
An-m Kk, "u, 280 0"

x JR}(I’]U")J (4-7)

where u, = va?+vy2 s Uy = V,, nU==kLul/90, 6==tan'1(ky/kx) and J, the Bessel

_57 .
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function. We have derived Eq. (4.7) assuming that the effect of collisions
is small enough to be negligible in féz). This corresponds to assuming
that collisicn térms are of the order of ¢.

We proceed to derive the coupled dispersion relation from Eq. (4.5)
together with Egs. (4.6) and (4.7). Let us retain three monochromatic
modes (i, w; iﬁg,iwo) and two coupled modes (ﬁ'tﬁo, wFwg), where modes

(iﬁo, twg) are those of pump electric field,

Eg(r,t) = 26, cos(ﬁo-é-jwot) : (4.8)
The electric potential of Eq. (4.8) is

0 (F,8) = oy sin (Kgr T -wgt) , (4.9)

U
il =-2k0f50/k02

Equation (4.5) yields the dispersion relation for four modes coupling,

- -
O,M—wo)DNL(ka,—wa,k,w)

9, Dy (ﬁ- w E i

> 0.2 L -

DL(k,w) = ( 2) { D* 0!» —
k-k

D, (

Q!w_wO)

Dy (-k Ttk , }Dy (k Kyw)
—KpgsTWps s WTW X » s W
+ ML "% 0 0/“NL“*0>%0> _ (4.10)

i
Dy, (k+k0,m+m0)

Tt is noted that Eq. (4.10) with Egs. (4.6) and (4.7) is quite general for
electrostatic waves.

Hereafter, we restrict ourselves to the lower hybrid pump. We assume
that the pump satisfies the cold plasma dispersion relation of lower
hybrid wave,

ka 2
m|2)1/2 _ (4.11)

(1 +‘Ei

w = W

Q T.H mg
0L

Then, as §i{ <uwyg «:IQei, the pump can not move ions appreciably so thatIWe
neglect ion components in Dy1,, whereas electrons are magnetized strongly
enough that kszez «1l. We simplify Eq. (4.7} expanding Bessel functions
in powers of ng. In the limit of zero electron Larmor radius, we obtain,

-+ >
after symmetrizing about (k', «') and (k', '),



=] " T
1 3 T 3 y Yy (0)

+ ' § 4.12
J_(D du“ k‘J U‘-‘- - w I auu k‘”‘u“ - UJ” k” 311” k:’U” - U.!') EH ] ( )

2

(¢) = S
o T L7
Te Te

From Eq. (4.12), it is easily proved that symmetric relations hold as

follows,
o2
> = k > > -
DyL (Fkg, fwg, kyw) = (% > )D§L(;k0,;m0,kiko,mim0) , (4.13)
. ,
: ko

where * denotes complex conjugate. Under the condition wy =wpy ® kane

and wtuwp 2wy ® k”vTe, we obtain

- > >
DNL (¥k0 s FWY, kitkg, wi—wﬂ)

I - R ARy
-t 5 — (ckg) rezB | Xe) (4.14)
Ky, (&) + Kgy)
1 = g 1 2
T f_mie Uif‘ I 5 Q (C’«E )Xe” +aiﬁ_ )) R
(wtmO) -
where
kg,  ky *kgp. kg ok, tkp K
B, = — (- LDyl sl gy (4.15)
k7 W wxwy w wtwy w ‘
w k tk
{1 =142 '12"“”__0‘ , - (4.16)
joow Wy
2
u£)=;,p§._‘i(_0ﬂ_+2_ﬂ_“£¢) , (4.17)
- K2 Wy M0 w i wg
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2 @
w /a .
= _Rg_j- du, ———iﬂL~ . (4.18)

i *ka;

Thus, we obtain the four waves coupling dispersion relation for parametric
instabilities of electrostatic waves excited by the pump of an electro-
static lower hybrid wave;

+
...).

D (kow) = 2 (§+k UG B2 x2 + (~JL) @y, + o

1
o F - 3 (4.19)
here,
> > _
Ui _ e kxgq- e, pi __ e (k“ i’kgﬂ)son % 20)
L mg 2o (w*w, o Mo (w+wgy)?

Eq. (4.19) holds as far as the pump is electrostatic and 2§ « wg < 1!,
since Eq. (4.19) has been derived without the relation (4.11). It should
be pointed out that in the limit of diopole approximation (KO-*O),

* _ *

uo = (e/me)(kysoxlﬂewo), po= —(e/me)kuewﬁuoz, By = -1, a§0) =1, a§2) = 0,
then, Eq. (4.19) recovers the dispersion relation derived under the dipole

approximation [63].
§4-2 Effects of the finite wavelength of pump

In the limit of dipole approximation, parametric thresholds of electro-
static waves excited by the pump near the lower hybrid frequency are
investigated precisely in a homogeneous plasma [45]. The lower hybrid wave
excited externally decays into an another lower hybrid wave and a low
frequency mode. Permissible low frequency modes are low frequency ion
acoustic wave, high frequency ion acoustic wave, electrostatic ion-cyclotron
wave and ion Bernstein wave. Also the importance of non-decaying jon quasi
mode is noted [43]. 1In this section, it is shown that the non-dipole
approximation has little influence om the threshold of these low frequency
modes, while it affects significantly on high frequency modes. It is first
noticed by Ott [44] that the decay of a lower hybrid wave intec two other
lower hybrid waves is permitted only when the finiteness of pump wavelength

is taken into account. The present treatment extends that of Ott's which
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is a cold plasma approximation to the case of finite temperature.

In this section, We restrict ourselves to the case when the pump is
a_.lowar hybrid wave, although the dispersioun relation (4.19) holds fer,
for example, Gould-Trivelpiece mode [64], as noted In preceding section.
Then, since ny/u, = (k° /k!‘_z;‘(wpe/ﬂe)/ﬁ;/_miﬁ and k.2 /k,? 2 mi/m, for
lower hybrid wave, we get u, » u,. We retain only the first term on the
right hand side of Eq. (4.19). Also we drop the response (§+KO, wtwg)

which is off-resonant. Then the dispersion relation becomes

kK o, n2 1
pp(k,w) = (G—5) —MZ 82y —5% , (4.21)
k"ko " DL(k*ko,w—mO)
where u, =u,, B=§_.
The growth rate is given by
=y (r-v2) = ¥¢ . (4.22)
with
E ookl 1 1
A
k“'ko e” 3 3
%;ReDL (wy) +—R8mr DL (“’rf“’U )
Y1 = -ImDy (wy.)/3 Re Dy (we) /3wy
' (4.24)
¥o = ~ImDy, (wr —wg) /3 Re D (wy - wg) /ow,
The threshold is given by putting vy =0 in Eq. (4.22),
s -k o ImDy (0,.)ImD 7 (w, - w, )
Hi Gy 2 L r L*r 0
Sl e 3 - (4.25)
k B Xe” (kswr) ‘

First, we investigate the effect of finite wavelength pump on coupling

constants when w <« wp. We approximate as
0 PP Xe,

knz U‘)Eez | W
S e for — >» ¥
Xey k2 w? ky Te °
(4.26)
¥ =, L for — <«
€y k2de2 k“ TE‘ ’

i ) i e £ e e b i T M
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where d, = (gOTe/NOez)ljz is the electron Debye length. From Eq. (4.15),

it is obvious that the non-dipole effect depends sensitively on the parallel
wavenumbers k, and kg, . When wlky E*VTe {ion Berstein wave), the coupling
constant including the effect of finite pump wavelength is‘|Bk”2/m2[.

This is shown in Fig. 4.1(a). On the other hand ]Bi shows the non-dipole
effect for modes with w/k“ <<V, (ion sound wave, electrostatic ion cyclotron
wave, ion quasi mode). Fig. 4.1(b) illustrates |8l versus w/k,. Dotted
curves in Fig. 4.1 (a) and (b) show the case of dipole limit (§0*>0). For
modes with w/kH-K VT, {(kinetic modes; ion sound wave, electrostatic ion
cyclotron wave, ion quasi mode), it is apparant from Fig. 4.1(b) that |8

is nearly unity for w/k, <vTe provided that wg/k0”3> Vgt Also there is

little discrepancy between the dipole and non-dipole approximationms in

Fig. 4.1(a) as far as 0<w/k,<wp/ky, and wy/ky, > VT,

e Y]

# ‘
hY
"/ \
..-’/ ) . N 2

_ug W, o Wa Wy K
Kon Zhon Zhou Kou

(b} w/ky < vy,

{a} w/ky > Ug,

Fig. 4.1 Coupling constant versus w/k, in the case when
w < wp. The dotted curves show the dipole
approximation. (a) for the modes with w/ky > vpg,
(b) for the modes with w/k; < Vpg-

Within the dipole approximation, parametric instabilities of low
frequency modes (low frequency ion acoustic wave, high frequency ion
acoustic wave, forward and backward electrostatic ion-cyclotron wave, ion
Bernstein wave and ion quasi mode) have been investigated precisely [45].
In the present'section, we consider a hot plasma with Tg =Tj = keV as in the
case of JT-60. The parallel phase velocity is much less than the light

velocity (equivalently, Nz » 1) for the lower hybrid wave to be electrostatic,

then,
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w1 /_E “pe -
c o i koy me o T . (4.27)

Here we have used the relation kwf/kz,ﬁme/mi for lower hybrid wave. If
T; = keV, the inequality of (4.27) can hold only when kpi » 1. However, the

following relation holds:

P fg ﬁf; f”ﬁ (4.28)
de Whe JTe me :

so that dg < py when Tg = Tj. .Even if kpgy ®» 1, electron Landan damping is
expected to be small. The conditions exclude some possibilities and the
most likely low frequency decay wave will be either a backward ion-cyclotron
wave or a quasi mede if w0<:/§ wpy OF only an ion éyclotron wave if
m0>’/5'wLH'[45]. By the results of Porkolab [42], including the effect of

density inhomogeneity, the threshold for ion quasi mode is

w2 | 12/7 n (Lt 270,02 512,

2 s (4.29)
ng R(1+5)1/2LN
and for ion-cyclotron wave,
2 2
UO 5 4*’-00 kx (4 30)
2 2 .2 * :
Cs wpi® kTLy

where ug = &/Bg, ¢g= (To/my)! 2, 8= (ky/k)2(my/m), R= /;(w/kﬂVTe)EXP
(-?/k,2vp 2) and L' = (1/N)(dN/dx). In the case of Fig. 2.1, wg> V2w gy
for x/az 0.75. Near the point x/a=0.75, N= 2.5x1019 m™3, T, =Ty =2.5 keV,
Ly = 0.357 m. Choosing 6 =1 and R=0.7, we obtain the threshold &g =
2.5%x10° V/m for ion quasi mode and € @ 3.5x10° V/m for ion-cyclotron mode,
which are below the intensity of the perpendicular electric field pre-
dicted by linear thecory as shown in Fig. 2.1¢(c).

Contrary to the case of low frequency modes, the finiteness of the ﬁump
wavelength is important to the excitation of high frequency mode. The
typical exampleris the excitation of two lower hybrid waves which are driven
to instability only when the finiteness of the pump wavelength is taken into
account. In the cold plasma approximation, Eq. (4.23) gives the growth

rate, for the instability of two lower hybrid wave,
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2 1 e? [ixgogz]z w e2 1 W= we
YO = 2 —— T e
16 ue” 12(K-K)2 0e2 (L+upe?/aeP)?  «
(4.31)
N (kﬂn _ kﬂ"koﬂ)z(k# + k, - kg, _EL)E
uig W= g e W= wp W v

which recovers that of Ott's [44]. As shown in [44], an absolute instability
of the lower hybrid wave decay is possible in an inhomogeneous plasma. The
conditions necessary for absolute instability [65] are Vgx1Vgx2 < G.

<'(xp) =0, and
02 > lvgxivexal (273, (4.32)

Here, kox(xo)==k1x(x0)'+kzx(x0) and k= Kgx(X) - k1x{(x) = koy(x) is the mismatch

of the wavenumbers. For the lower hybrid wave, the group velocity is given

by

kyk kyk : wrpky (Mg /mg)
X%z g _ RyKz _¥gz) LH%z \i/ Te . (4.33)

K2[1+ (k,/K)2(my/mg) 11 /2

v, = (-
g Lz Sx T e By

Provided thatxmo > 2upy{xg), one can show that the conditions «'{xg) =0,

Vgx1Vgx2 < 0 and the decay conditions,

>
k0=k1+k2 R

(Lt /2 = @+s1/2 + (1+5)1/2, , (4.34)
R

k)" mg

may be simultaﬁeously satisfied at any point x=xy by an infinite number of
>
decay wave pairs, (kj,w;) and (ﬁz,wz) [44]. 1In the case of Fig. 2.1, as in

the region where x/a 0.9, &< 3, wy:(x) 2 0.5uwy, the condition wg > Zwyy(xgp)

pi
can be satisfied. Assuming that «'(x;) =0, we obtain

ek 4&0 -1 (l-'_-SO 2_ x 4@(,12_,1 1+51)2-k 4(122_-—1 (l+62)2
Ux a,t Sp ! @t 61 X H 8y
0 1 2
o 32 -
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where a=k,/k. Using Egs. (4.23), (4.33) and (4.35), we can estimate the
criterion Eq. {(4.32). TFor 85=3.4, §;=6,=0.1, estimating Eq. (4.32) at
the point x/a=0.9, we get the threshold €5 = (5v6)x10° V/m, which is com
parable with the intensity of perpendicular electric field predicted by
linear theory. Thus, we conclude that the parametric instability may occur
almost all over the region before the turning point in the present case

shown in Fig. 2.1.
§5. Tail Formation

The formation of high energy tail in a velocity distribution of ions
has often been observed in experiments on lower hybrid resonance heating
[66,67). In order to explain the tail formation, we consider a nonlinear
motion of an ion affected by a monochromatic electrostatic wave whicﬁ has a
frequency near an ion cyclotron harmonic and propagates perpendicularly to
a uniform magnetic field. In case of oblique propagation, Smith and Kaufman
[68] have recertly shown the occurrence of stochastic acceleration along a
magnetic field, which is followed by perpendicular acceleration because of
energy conservation in the wave frame. However the threshold of the wave
amplitude is so large when ky vy < @ that their results are not applicable
to a lower hybrid wave. In this section, we show that because of the over-
lapping of islands in a phase plane, irreversible change 1n magnetic moment
can take place even if k, vanishes and no spatial inhomogeneity exists; this
inhomogeneity has been essential for the irreversibility in many anologous

studies on cyclotron heating in a mirror field [69-72].
§5-1 Stochastic behaviour of a phase point
We consider a motion of an ion in a uniform field Bpgz in the presence
of a monochromatic electrostatic wave ¢ cos (kx-wt) propagating perpendicularly
to the magnetic field. The Hamiltonian of a test ion takes a form,
H(X,y,PysPyst) = {pX2+(py—mﬂiX)2}/2m+ ed cos (kx-uwt) , (5.1)
where p, and py are the canonical momenta : py = mv, and Py = mvyd-mﬂix.

Since H is independent of y, the momentum Py is a constant of motion.

Defining the magnetic moment p and the cyclotron phase 8 by the relations,
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where a==kx/k. Using Eqs. (4.23), (4.33) and (4.35), we can estimate the
criterion Egq. {(4.32). For §5=3.4, §;=6,=0.1, estimating Eq. (4.32) at
the point x/a=0.9, we get the threshold £y = (5v6)x10° V/m, which is com~
parable with the intensity of perpendicular electric field predicted by
linear theory. Thus, we conclude that the paraﬁetric instability may occur
almost all over the region before the turning point in the present case

shown in Fig. 2.1.
85, Tail Formation

The formation of high energy tail in a velocity distribution of ions
has often been observed in experiments on lower hybrid resonance heating
[66,67). In order to explain the tail formation, we consider a nonlinear
motion of an ion affected by a monochromatic electrostatic wave whicﬁ has a
frequency near an ion cyclotron harmonic and propagates perpendicularly to
a uniform magnetic field. In case of oblique propagation, Smith and Kaufman
[68] have recertly shown the occurrence of stochastic acceleration along a
magnetic field, which is followed by perpendicular acceleration because of
energy conservation in the wave frame. However the threshold of the wave
amplitude is so large when k; vy <« ; that their results are not applicable’
to a lower hybrid wave. In this section, we show that because of the over- .
lapping of islands in a phase plane, irreversible change in magnetic moment
can take place even 1f k, vanishes and no spatial inhomogeneity exists; this
inhomogeneity has been essential for the irreversibility in many anologous

studies on cyclotren heating in a mirror field [69-72].
§5-1 Stochastic behaviour of a phase point

We consider a motion of an ion in a uniform field Bpz in the presence

of a monochromatic electrostatic wave ¢ cos (kx-wt) propagating perpendicularly

to the magnetic field. The Hamiltonian of a test ion takes a form,
H(X,Y,Px spy’t) = {PX2+(Py"inX)2}/2m+ Efb cos (kx—wt) ) (5-1)
where p, and py are the canonical momenta : py = mv, and Py = mvy-bmﬁix.

Since H is independent of y, the momentum py is a constant of motion.

Defining the magnetic moment p and the cyclotron phase 8§ by the relations,
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2
_ L o2 21 o Vo
u = 2 {px +(py—mﬂlx) } = 291 . (5.2}
L T vy
6 = arcsin ( ) = arctan (- ~*} , {(5.3)
Y2u/moy Vx : :

we may rewrite the Hamiltonian after the canonical transformation from

(x,py) to (8,u),

H(6,u,t) = ufi+ep cos (k ¥Y2u/ml4 sin 8 - wt) (5.4)
= ufjtedp I JE(kVZUImRi)cos(RB—wt) . (5.5)
g=—c

here a series expansion of Bessel functioms J; is applied.
By the use of an integer n nearest to w/Q;, we again perform the
canonical transformation from (8,u) to (£,M) defined by the generating

function,
S(6,Myt) = (nB-wt)M , (5.6)

which contains the time explicitly. New variables and the Hamiltonian

are given by

=nd-wt , : ' (5.7)

WY
1

=
I

u/n , (5.8)
H(E,M,t) = (nfy - w)M
+ e¢ & Jp(kv/2nM/meg)cos{2E/n+ (2-n)wt/n} . (5.9)

£

This Hamiltonian is expressed by a sum of a time-independent part Hy(Z,M)

and time-dependent one H; (£,M,t};
Ho(&E,M) = SuM + edJy(kp(M))cosE , (5.10)

Hi(E,M,t) = ed & Jg(kp(M))cos{Rgfn + (2 -nwt/nt , (5.11)
£#n :

_66 —_
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here we have introduced, for simplicity,

Sw = nfy -w , | {(5.12)
o (M) = /2oM/umSi; = v, /9y . (5.13)

When the wave amplitude is small, the time average of H) approaches
zero because of small d£/dt and dM/dt, and its contribution to an ion
motion may be neglected [73]; therefore the motion derived from Hy alone is

considered [69,74]. The equations of motion obtained from Eq. (5.10) are

dkp _ kn °Hp  kn . ,
= - = ¢Jpn(ko)sin £ (5.14)
dt m2ip 8% mi ;o n :
oH
d
ﬁ = qé?'lg = §w + mlg;r_lp epJy' (kp) cos g , (5.15)
i

and the qualitative phase trajectories are illustrated in Fig. 5.1. Tapped

regions enclosed by separatrices can exist where kp 3 n if dw is smaller than

Fig. 5.1 Phase trajectory obtained from Eg. (5.10) for
the c¢ase (a) 6w#0 and (b) Sw=0.

b e b
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(kn/inp)e¢max{|Jn(kD)l}. With 6w approaching to zero, untrapped regions
diminish and finally all ions are trapped in rectangular cells, which are
enclbsed by separatrices : E£=%7%/2 and p =p* where Jalke*) = 0. We shall
consider the case of hot ions (vi » w/ki) and a wave near an ion cyclotron
harmonic. The former condition, kp » n, enables us to use the asymptotic

expansion of Jj:

Jo v v2/nke coslko - (2o+l)w/4} = oV2/7kpg cos Kk , (5.16)
where py satisfies.Jn'(kp0)==0 and p = p-pg % pg. The quantity o takes the
value *1 depending on kpg. Making use of the bounce frequency at the center

of the trapped region,

2
_ _kn . Yb n 2
wg = w010 ed|In(kog)| = L M———‘(kpo)”z iT (5.17)

with wb2==k2e¢/m, we may express the latter condition by dw «wg. Under

these conditions, the equations of motion

dkg/dt = cwg coskpsing , ” (5.18)

dg/dt = 6w - owg sinkp cos £ (5.19)
may be simplified for an jon in the cell,

dkp/dt = owe(q? - sin?ks)1/2 . (5.20)
The quantity.q defined by

qQ? = 1 - (kn/m300)2 (Ho/wy)? ‘, ' (5.21)
takes the value zero at the center of the cell and unity at the separatrix;
and this quantity q will be used as the parameter of elliptic functions and

elliptic integrals introduced below. Using Jacobian elliptic functions, we

can express the solution to Eq. (5.20) as follows,

1

sin kp qsn{wt(t—tg),q} . . - (5.22)

o1 dofwe(t - tg),q! , (5.23>

cog ki
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sing = qenfug(t-ty),qt/dnluwc(t-tg), qb (5.24)
cos £ = ap /l-q2/anf{we(t-tg), a} . (5.25)

The quantities o and ¢ which take the value +t1, and the time tgy depend on
the initial value; however the initial conditions are mot soO important in
the analysis that we assume o0j =0z =1 and tg=0 for breﬁity.

Taking account of the periodicity of elliptic functions, we can
express the motion derived from Hy in terms of the action-angle variables

(I, n):

d1/dt
dn/dt

0, | ' (5.26)
Qe (1) = {ﬂ/ZFO(q)}wt . (5.27)

The relationship between the old and the new variables is given by the

equat ions,

I(Hg) = — Mdg = — —= e F ( ¥d , (5_28)
0 2n T kn 0 /l-q2 olg/saq

g . 1.z
' o2 _ n F{aresin(q~'sing),q)

where compelte and incomplete elliptic integrals of the first kind are
denoted by Fp(g) = F(r/2,q) and F(y,q), respectively. It is edsy to see
from Fig. 5.2 that the phase space area enclosed by a trajectory equals to

the action I and the angle n means the phase on the trajectory, 1= constant.

)3

/

M|

Fig. 5.2 1Illustration of the relationship between the
action-angle variables (I,n) and (£,M).
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Since the time-dependent part of the Hamiltonian, H), has an explicit
periodicity of period (¢~n)w/n, the force derived from Hl is able to rescnate
with the periodic motion determined from Eq-s.r (5.26) and (5.27) and to form
islands on the resonant trajectory. When we use the asymptotic expansion of
J, and take account of only the terms, & =n+l, dominant for the island

formation, H; is approximated by
Hy = —2e¢\/§/ﬁkp0 sinkp sinf sin{{(£+wt)}/n} . ‘ (5.30)

Then using this simplified H;, we find that dI/dt does not vanish;

oH, dH oH, B8H
dar _ dr %7 "1 7o °71 (5.31)
dt ~ dH, M ot 3f oM
mip, 20p° ) Lot
= - (cos?kpsin?E - sin?kjcos“E)sin(=—) (5.32)
kn 24 . n
= 2 Igsin{22srD)ace - 25 : (5.33)
where
me : 25+l . - '
[ o= - iPo L (2s+l)r (5.34)
8 kn T Fy 1 - p2(2st]) : \

Heré we have iterated ki and g by the _solufion cieri:ved from HO apd have used
the series expansion [75] of Jacobian elliptic funétions in termé of the
nome: r=exp{-1Fy(q')/Fy(q)} where q'2=1-q%. 1In case of our interest,
n» 1, the time variation of g/nv 0{wg/n) can be neglected. Hence the

resonance condition is given by

1 @ 1

e (Ip) = m;ﬁ mﬂl (s : integer) . (5.33)

Because of the I dependénce of @ (I), this resonance leads to the island
formation on the resonant trajectory. Near the rescnance I = 1., the

equations of motion are approximated by the expression,

g sin&n | (5.36)

0

dAT/dt

dAn/dt = 2(2s+1){dQ¢ (I4)/dTiAT , (5.37)
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here the variables 41 and An are defined by

e
—
Ml

in = 2(2s+1) {0 (1) -Qe(Ip e, (5.39)

and the nenresonant terms in Eq. (5.33) have been neglected. The first

integral of Eqs. (5.36) and (5.37),
G = 2(2s+1){dQe (I,.)/dI} (A1)%/2} + I'jcosan (5.40)

gives the width of the island,

Moy = 2 | s |1/2. ;. (5.41)
STmax 2(28+1) (d2 (TIy) /d1) ’
therefore the frequency width of the island is
(dee (1) /dI)Tg 1/2 (5.42)
) = .
Ay | Torsy)

On the other hand, the frequency spacing of adjacent rescnances is obtained

from Eq. (5.353) as follows,

_ o
(s=1)_ () _ (1 ____ 1 _ymn, Aq,
t -t 2(2s-1) 2(2s+l1)" w Q4 .

80y = Q (5.43)

The explanation of the meaning of AQy. .. and &Q¢ is shown in Fig. 5.3.

. When adjacent islands overlap, i.e.,

K = <H-——2mt‘“@’-‘> B S 8B "o @ Ly o
68 we? sin h {Q;Fg(q")/wel 7 q'q? ’
1 > fobrd
' _ Fig.5.3 A sketch of the frequency
a0 180 width of islands AQ; and
s R - _ thg frequency spacing of
r Th—— t _ adjacent resonance Af.




JAERI-M 69614

stochastic instability [76] occurs and the motion of a phase point becomes
stochastic; here E; denotes the complete elliptic integrals of the second
kind. It should be noted that if q approéches unity, the quantity K diverges
provided that Q./f; # 0; therefore a stochastic layer always exists in the
vicinity of a separatrix. The ratlic R of the phase space area of the
stochastic layer (K> 1) to the total phase space area of the cell 2nI(gq=1)

can be calculated from Eqs. (5.28) and (5.44) as a function of w¢/Qy,
R(we/04) = 1~ I(q;K=1)/T(q=1) , (5.45)

and is exhibited in Fig. 5.4. It is found that the ratic R begins to in-
crease fairly abruptly when wt/Qj exceeds 0.15, which is regarded as a
threshold for stochastic behavior of ion motions being appreciable. The
saturation of R can be seen where mt/Qi{;0.5; however, if we take account of
the higher order resonance, L=ntj (j22), it is inferred that the ratio R

keeps increasing to attain unity.

1.0

w

——

Fig.5.4 The ratioc of the phase space.
area of the stochastic layer
to the total space area of
the cell.
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In order to visualize the above consideration, numerical calculations
are carried out according to Eq. (5.4). Two examples for different amplitudes
are shown in Fig. 5.5; the bounce frequencies at the center are (a) wt/Qi =
0.13 and (b) 0.25. In each case m/Qi is equal to 5 and the phase points are
plotted at intervals of At=27/{j; theoretically predicted separatrix and
the center of cell are indicated in the figures. 1In the case (a), most of
phase points move periodically. On the contrary, in the case (b), islands
at the resonance of ﬂt(l)/ﬂjﬁ=l/6 are observed and the motion becomes highly

irregular outside of the trajectory which starts from (ko,£)= (8.15, 0.0).

T

12k 1 e -

|
J
I
|
|
|
i
|
|
|
L
|

! I
; ! |
x | \- o /! '
] .\\ /// J | ]
C L AN N AL EL _
| \ N L T
L | L R 2 !
8 | | [ - [
| 1 | ° |
il l 1 —t 1 I
I r I LN
2 0 2 2 0 2

2

Fig. 5.5 Numerically calculated motions of phase points.
Points are plotted at intervals of 2n/Qy; the
initial points are indicated by circles. The
frequency of the wave is 5 {1y and the amplitude
are (a) (wb/Qi)2=l and (b) 2. The broken lines

~show the theoretically predicted separatrices.

§5-2 Tail formation and the threshold
Since the stochastic layer exists on both sides of a separatrix, it
should be expected that diffusion of phase points from a cell to another

cell takes place, when both stochastic layers in adjacent cell are appreci-
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ably wide. The values of R and wy which characterize a cell become small
with the increase of kpg; therefore, diffusion in an ion perpendicular
velocity distribution may not occur where ion energy exceeds a certain value.
Numerical calculations verify the discussions described ahove. At
first, the motion of a test fon initially at (ke,£) = (7.4, 0.0) is exhibited

in Fig. 5.6, when the frequency and the amplitude are the same as Fig., 5.5(b).

_T‘r ] Y LN 1 ] L3 I
0 2 4 6 8 10 12
Kk p—>

Fig. 5.6 Motion of a phase point. Parameters are the
same as Fig. 5.5 (b}, but the initjal point
differs from the previous case.

It can be seen that the phase points randomly wonder from a cell to an
adjacent cell., Next the motions of ten ions are traced; their initial
velocities are chosen as kp =2, the frequency of the wave is SQi, and thé
amplitudes are (a) (wblﬁi)2= 1, (b) 1.5, and (¢} 2. Figure 5.7 shows the
time variation of the mean gyration radius defined by

1 .
kE(t)e-é‘—i{i zo vact)}l/z .o (5.46)

10 j=1

where subscript j specifiés an ion. We observe in Fig. 5.7 (a) that kp(t)
oscillates with period about 200 Q{'l but changes little in the value averaged
over the time 200 Q{d . In Fig. 5.8, we then exhibit the time evolution of

the time-averaged distribution defined by

i 10
.1 2
=i, j=
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(b)
o)™ (a} 1ol
8 8
6 & !
QL 3-.
4
4 r 4 H
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0 ! ! L I 0 ] 1 ] !
500 1000 1500 2000 500 1000 1500 2000
24t Ot
(c}
10+
8
)
=1
o
4 -
2 -
! A | |

500 1000 1500 2000
ot
Fig. 5.7 Time variation of the mean gyration radius of ten
ions, initially kp=2. The frequency of the wave
is 5 94 and the amplitudes are (a) (wy/04)2=1,
{(b) 1.5, and (c) 2.

where the time interval At=t;,; -t, is equal to 2 Qj:‘l and the duration
for averaging T=ty,-~ til is 200 Qi~!. 1In the case (a), ions cannot be
diffused into an upper cell placed over kp* =8.7 where we/R; =0.13. On the
other hand, a high energy tail is formed up to kp*=12.3 (case b) and up to
kp* =15.7 (case c¢). The values of wy/{; in each cell are tabulated in Table
5.1; the cells are separated b3l,r separatrices kp = kp* where Jg(kp*) =0, It
is easy to see from these results fhat the limit of the tail is determined
by the condition wtlﬂi = (J.15.

The upper limit of the tail is evaluated in case of the LHRH in JT-60.
The frequency of the wave is about 17 @y (Qi=4.8><108 sec”!) and the amplitude
is (mb/ﬂi)2 = 3,5 near the turning points: ¢ = 5x10? V and k, = 4x103 m~ . The

condition wy/f4 = 0.15 gives the limit kp =47, i.e., the energy is about 160 keV.
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The values of w; /Q;

Table 5.1
ko' o - 87 23 157
Lo || 029 | 013 0.08 | 0.06
Wy [
(me) | 15| 043 | ou9 | o2 ]| oos
20 || 057 | 025 | 0.16 | Ol
¢ f
(b}
2 87 2.3

kp 0 . ‘

200 200 W \ -

400 400 DV\/"U‘}
600 600 L/—/\/~ ; |

800 800 L/\-/AM
1000 1060 % ;‘

1200 1200 [ : I\LA
1400 1400 "% ,
1600 1600 | —— [ S

1800 1800 : /\
2000 f :

2000

it

Fig. 5.8 Time-averaged distributions of ten ions
They are averaged over the duration 200 Qi‘{

The parameters are the same as Fig. 5.7.
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§6. Summary and discussion

Here we will summarize the results of the preceding sections. First,
it is shown that the requisite power for obtaining 7 keV plasma in JT-60
is about 10 MW. Assuming the scaling 15 « Na?, we have W/T proportional to
R. Therefore the ratio W/T for present tokamaks is comparable to that for
JT-60.

Next, linear behaviors of lower hybrid waves are considered provided
that the power is not so large. In a slab geometry, where the density
gradient is taken into account, a lower hybrid wave, which satisfies the
accessibility condition (Eq. (3.12)), is converted linearly to an outgoing
wave before it reaches the resomance point. The conversion rate is obtained
as Eq. (3.81). Damping mechanisms of the incident and outgoing waves are
clarified. The electron Landau damping is the dominant one for k, vy, "vuw,
the ion cyclotron damping near the turning point is mostly effective if
vji<ﬂi/(kipi)2, and the collisional restored ion Landau damping is effective
if vy > uii>'Qi/(klpi)2. The effects of the inhomogeneous magnetic field
are also investigated. The wave propagates through a pass band difined as
|w~nQi(x)|i>4k“vTi. The wave is damped in the vicinity of w=nf;i(x), and
the spatially averaged absorption is compared to that by the unmagnetized
ion Landau damping. The magnetic shear is not appreciable for the propaga-
tion or damping.

By ray tracing in a toroidal geometry, one can see in Fig. 3.28 that k
is changed near the resonance surface in a cold plasma. On the other hand,
the turning point shifts outwards in a warm plasma, and the effect of
toroidicity can be negligible.

Parametric phenomena of lower hybrid waves are studied without dipole
approximation. With respect to the excitation of low frequency waves, it is
clarified that the finiteness of the pump wavelength does not affect con the
threshold. The parametric thresholds in JT-60 are also calculated. In JT—60,
the excitations electrostatic backward ion cyclotron modes and ion quasi modes
dominate, of which thresholds are several 10° V/m.

Finally the posibility of the formation of the high energy ion tail is
indicated when the external wave is sufficiently large. The upper limit of
the tail is obtained by the condition w¢/Q; >0.15 (w, is given by Eq. (5.17)):
A fairly good agreement is obtained between the theoretical result and that

of numerical calculations (Fig. 5.8).
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Appendix A
I) Plasma dispersion function W(z)

The function W(z) is defined by

_ 1 x x>
W(z) = o Xz exp (- 2) dx. (Al)

The contour C is so chosen that the point z is always above C.

The convergent series for lz| < 1 is given by

2 2 n,2n
ol S B (1) 270
w(z) 1j;_z exp ( 5 y+t1l-z=+ 3 + (Zn-D)1! ° (A2)
where (2n-1)!'!=(2n-1)(2n-3) * " " 3.1, and asvmptotic series for 1arée |z| by
2
_ 4T 2y L 3 L Qo=
Ww(z) 13 ;exp( 2) 2 2 - on . (A3)
I1) Function An(h)
We define the function Ap(X) by
Ap(A) = Ip(M)e™r . (A4)
For » « 1, An(X) is approximated by
3 5 3
Ny — —_— 2,_ —_— 3 —_— L" R
A.O(A)zl AT IR + . (A5)
ALn
An(X) ¥ (“2—) /nl . (46)
If A>» 1 or n » 1, the following approximation holds,
1 1 n, [n®,..-n
A (M) & expl(m2+2)V2-21F+ [5+1
" /oT (a2 +22)L/H Pl G ety
x {1 + 0(—=se=)] 3 (A7)
Vn? +2° '

especially for A ®» n>>1, this is simplified to




— e e
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2
n
exp (- ETY

A(A)
n 2mh

The comparison between Eq. (A8) and the

below for an example n = 30.

964

{AB)

exact value A, ()) 1is tabulated

A Az () (A8)
1 - -
4 5.27x 107 34 2.76 x107°0
9 3.51 x 10717 2.56 x 10723
16 3.89 x 10712 6.09 x 10~ 1%
25 4,68 x 1079 1.22 x107°
36 3.99 x 1077 2.48x1077
49 7.01 x 1076 5.85 x 1070
64 4.74 x107° 4.41 x 1072
81 1.77 x107* 1.71 x10™°%
100 4,48 x 107" 4.43 x 107"

Appendix B

Using Eq. (3.38) and Appendix A, we

for k,pj » 1 and k;p; » 1,

obtain the summation of Imwp (w¥)

=] ] % * 2 5
w= & Imwp(w*) = £ EE@-’ exp (- (w -2-n)2 - Izl 2) . {(B1)
n=—w nN=w ,"lpi 2k” Di 2k-J_ Pq
By the following transformation,
kv va.
kipg = 11 cos 0 k,pi = L sin g . {B2)
o , 2,
1
Eq. (Bl) becomes
—~ * w4 (w-nR)2cos?s +n202sin?s
Wb e expl- 2y 2ain28c0s2 ]
n=-« 2KV “sinb cos 8 2k“vp©8in“9cos<0
o 2
W 04 w2 1. n8i-wcos 0
= I 2 exp[- —~———]Jexp[- 3 = - 321, (B3)
n=—w 2KVTi kvrising cos ¢ Zkevrg kvpisinBcosd

On the assumption that w cos? 8 > kvypieind cosb » Q) we may replace the

summation by the integration as follows,
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v o1 [ ax expl- L ¢ weos’© zy (B4)
W= exp (- x exp[- = (x -
' Zkvpg 21(.2\.?-1']'_2 f_m P 2 kvypg sin 8 ’
where
Qs nsl+
dx = = , x= - = . (B5)
kvyi81n6 cos 9 kvpisind cos @

Therefore the result of unmagnetised ion model can be recovered,

w = /EE Y oexp (- —**ﬁii——)
2 kvry ZkZVTiz
[0V]
= hnW(vai) . (B6)
Appendix C

Assuming the solution of the form
o = [ gmePiap (1)
. c |

we look for the condition that the function g(p) and the contour C should

gsatisfy. Substituting Eq. (Cl) and

ane

dull f g{p) pPeP¥du . (c2)

C

into Eq. (3.62) and integrating by part, we find

f g(p) [p* +iep? +p+pu+up?JePU du
C

f g(p)[p* +icp? +p+ujePt du+[g(p)pzepu]c—f§; p?g(p) ePUdu
c C

L[(p“+iep2+p+u)g(p) —% (p?g(p))]ePUdu + [g(p)pzepu]C =0. (C3)
Therefore if g(p) is a solution of the first order differential equationm,

(0" +icp? +p+we(d) = £ (P2e(®) (c4)
and the contour C is so chosen that the value,
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V(p) = g(p) p?eP¥

has the same value at the end points, ¢(u) becomes

a solution of Eq.

(3.62).




