JAERI-M
17126

FORMALIZATION FOR OPTIMAL FEEDBACK
CONTROL OF PLASMA CURRENT AND POSITION
IN A TOKAMAK

June 1 977

Atsushi OGATA, Hiromasa NINOMIYA and Yasuo SUZUKI

B = B ¥ Hh & % m
Japan Atomic Energy Research Institute



T T e AR

TOESE:, BEBETFHFEARAS JAERIM VE—F & LT, TEBICFATL T3
FreBeErd, AR, WL roBehEl, BEETHFMRAEMEHI (KR
MBELHEWA ) HT, HHFLIL (230,

JAERI-M reports, issued irregularly, describe the results of research works carried out
in JAERL Inquiries about the availability of reporis and their reproduction should be
addressed to Division of Technical Information, Japan Atomic Energy Research Institute,

Tokai-mura, Naka-gun, Ibaraki-ken, Japan.



JAERI-M 7126

Formalization for Optimal Feedback Control
of Plasma Current and Position

in a Tokamak

Atsushi OGATA, Hiromasa NINOMIYA and Yasuo SUZUKI

Division of Large Tokamak Development, Tokai, JAERI

(Received May 26, 1977}

Simultaneous control of the plasma currént and position
in a tokamal is formalized to apply an optimal feedback
rule, The optimal feedback rule is first explained. A
physical model of the tokamak system is then modified to
be combined with the feedback rule: A linearized state
description is derived from circuit equations of plasma,
air-core transformer coil and vertical field coil, with
equilibrium equation. Possible extension of the method to

a more complicated system is also described.
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1. Introduction

A few studies have been made on the control of the plas-

ma position in a tokamak.l) 3) Most of them applied the

classical control theory. Though optimal control model 1is
formalized for the plasma position control of the ORMAKsz it
does not suit to the real-time feedback ;ontrol. However,
recent control requirements come to point the application of
the optimal feedback controi theory. A reason is that the
plasma current has also become a control object as well as
the plasma pnsition, and the two quantities, plasma current
and position, are related each other. The system thus becomes
multivariable system. The classical control theory cannot
afford a design principle for such a multivariable problem.
Recent develupments of mini-computers are also helpful to the
implementation of the optimal control law, because they have
made it possible to carry out on-line real-time calculations
of matrix algebra.

There exists, however, a border between plasma physics
and control theory which hinders us from applicating the op-
timal control theory on our problem. This paper aims to
translate physical requirements and constraints of the plasma
current and position control into the control language.

Once this crucial translation is accomplished, the optimal
control theory will readily afford the details of the control
system design.

In section 2 the rule of the optimal feedba;k control

is briefly described. This secction must be helpful in under-

standing an outline of the control process. Section 3 gives
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basic relations between the quantities to be controlled,
plaéma current and position, and related variables, coil
current, voltage and plasma parameters. In section 4, the
basic relations are modified and the rule in section 2 is

applied. Section 5 contains discussion.

2. Optimal feedback rule

In this secfion, the optimal feedback control rule is
outlined for plasma physisists. Those who are familiar to
the optimal control rule can skip this section and have only
to refer it just occasionary. All the procedures given here
are available in the control literature4). The emphasis is
on the application to our problem and no proofs are included.

The rule outlined does not actively take into considera-
tion uncertainties of the control object, such as actuator
errors, Sensor errors,“parameter errors and external dis-
turbances. It is proved that the rule is optimal even in the
existence of the uncertainties, in spite that it is con-

4) The stochastic control

structed on the neglect of them.
theory can afford the design procedure taking the uncertainties
into account more positivelyd), but its description falls
outside the scope of this paper.

We make further assumptions to simplify the treatment
1) actuator dynamics are neglected ; 2) sensor dynamics are
neglected. We denote the state vector by x(t)=(x,;(t), x2(t),
---, xn(t)), tke control vector by u{t)=(u,(t), u(t), ---,
u (t)) and output vector by y(t)=(y:(t), y2(t), e,y ().

We start from the physical model which is described by a pair
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of equations:
£(x(t), x(t), u(t))=0, (1)
y{t)=g{x(t)). (2)

where "+" denotes the operation d/dt.

We interpret the control problem as to find u(t) and the
resultant x{(t) which minimize a scalar-valued cost function
appropriately selected. Several techniques are available to
solve the problem by off-line computations. The representa-

11)

tives are the Pontryagin maximum principle and the dynamic

programming.lz)

We assume that we have somehow obtained the off-line
solution and denote them by u,(t) and its resultant by Xo (t)
and yo(t). In general, we cannot expect the application of
u(t)=u,(t) leads to the results x{t)=xg(t) and y(t)=yo(t) in
the real system. The reasons are that : 1) xo(t) and yo(t)
were computed using a mathematical model of the physical
process, which was arrived at through some approximations ;
2) the values of the parameters used in the mathematical
model are nominal ones and the true values may be different ;
3} the actual initial condition x(tg) may be different from
the assumed one X, (te) ; 4) the uncertainties are not taken
into consideration.

It then follows that errors in the model may by them-

selves contribute to deviate the true state x(t) from the

nominal one x,(t) so that small initial deviations may get
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larger and larger as time goes Omn. So the actual input u(t)
must be different from the precomputed input ug(t). The
control correction &u(t)=u(t)-uo{t) should be calculated
based on the state'perturbation vector &x(t)=x(t)-x,(t) and
the output perturbation vector 6y(t)=y(t)-yg(t). The control
problem then becomes a problem to find the control correction
su(t) in real-time operation.

To solve the problem we have to know the relationship
between 6x(t), 8y{t) and su(t). We again start from the egs.
(1) and (2) which are assumed to give the relationship between
true quantities; x(t), y(t) and u(t), because we have no other

ways. Let us remember nominal quantities are related by
£(%o(t), Xo(t), Uo(t))=0, (3)
Yo (t)=g(xo(t)). (4)

Expanding f(x(t), x(t), u(t)) and g(x(t)) about xo(t), Xxo(t)
and ug(t) in the Taylor serles, we obtain
F(x(t), x(t), ul(t))

~ F(Xxo(t), xo(t), uog(t))

3 £

25 sk 25 sx (o2 su(e), (5)
o X 0 a X 0 9 u 0
g(x (1)) ~ g(xo(t))+[2B-] sx(v), (6)

3 X 0
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where

5x (1) =x () %o (£)
Sy (t)=y (t)-¥o (t) (7)

su(t)=u(t)-us(t)

and [ 1, denotes a differential coefficient at (Xo(t), xo(t),

Uo(t))
Defining nxn matrices D(t) and E(t) by

D(t)=-[2E] , (8)
ax °

E(t)=(-25) , (9)
ax ¢

and an nxm matrix H(t) by

2, : (10)
u

H(t)=]
we have
D(t)&x () =E(t)éx(t)+H(t)su(t). (11)

If D(t) is regular, we can ef fect D_l(t) on both sides of eq.

(11) to obtain
Sx(t)=A(t)sx(t)+B(t)su(t) , (12)

where A(t)=D"L(t)E(t) and B(t)=D 1(t)H(t) are nxn and nxm



matrices, respectively. Treatment of the case where D(t) 1is
not regular is discussed in ref. 13.

Similarly, defining an rxn matrix C(t) by

ciry=[2&] (13)
ax °
we have
sy (t)=C(t)éx(t)
(14) .

We assume rank C=n in the following treatment.
The pair of equations (12) and (14) is a standard state de-
scription of a linear time-varying system.

In estimating the performance of the control, we employ
three quantities : final state, integrated squared error and
integrated squared transient responce. These correspond to
the first term, the first and the second terms in the integral

of the following equation, respectively:

Je=6x (t1)Féx(ty)

t
+u5 (8x' (£)Q(t)sx(t)+su (tIR(t)su(t)]dt, (15)
to )
where F=F' > 0 (an nxn matrix), Q(t)=Q'(t) > 0 for t€(to, t,]
(an nxn matrix) and R(t)=R (t) > 0 for té[t,, t1] (an mxn
matrix), and T denotes transposing operation.
We have now arrived at the following mathematical opti-

mization problem : Given the system described by eq.(12) and

(14) and given a fixed time interval telty, t1), find the
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control correction su(t) for tgf[to, ti] such that the quadratic

cost function eq.(15) is minimized.

It is known that the optimal control correction vector
is related to the state perturbation vector by the linear

time-varying feedback relationship:

-G (t)sx(t)

Su

)c Tty () (16)

“where G(t) is an mxn time varying control gain matrix. The

value of G{t) is given by
s(0)=R (1B (K(D) (17)

where the nxn matrix K(t) is the solution of the Riccati

matrix differential equation:

f—K(t)= CK(t)A(E) -A (£)K(E)-QCt)
t '
+K(t)B(IR L (L)B (IK(t) (18)

which subject to the boundary condition at t=t;:
K(t,)=F . {19)

If the system is time-invariant or stationary, A, B, C

becomes constant matrices. Equation (11) becomes

Daitt)=Eax(t)+H5u(t) . (20}
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The standard state description is given by:
§x (t)=A8x (t)+Bsu(t) , (21)
Sy(t)=Csx(t) . | (22)

The cost function is

o0

J=H5 (6x (t)Q6x(t)+su (t)Réu(t))dt , (23)
te

where Q and R are constant matrices. The optimal control

correction vector 1s

su(t)= -Gd&x(t)

- -ac sy (o) (24)

where

g=R"1

BK , {25)
and K is the solution of algebraic matrix Riccati equation:

_KA-A'K-Q+KBR™IB k=0 . (26)

A time-invariant system is controllable and observable

when eqs.(27) and (28) are applicable, respectively:

rank [B, AB,-+++, A" "B]=n (27)
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1 t

rank [¢, A'C ,eere, AT DE a0 (28)

It is verified that there exists the unique stable solution
of eq.(26) under the conditions given by eq.(27) and (28).4)
A few computer algorithm are available to solve eq.(26) by
off-line computers.7) Controilability, observability and
stability of a time-varying system are discﬁssed in ref. 4).

Let us summarize the calculations necessary in the design
stage : 1) We start from a physical model given in egs.(l) and
(2) ; 2) we determine the functions ug(t) and X, (t) by se-
lecting the cost function and solving the resultant optimal
control problem ; 3) we obtain the standard state description
of the functions 6x(t), sy(t), su(t) (eqs.(12) and (14) or
(21) and (22)) by computing the matrices A(t), B(t) and c(t)
4) We select the weighting matrices Q(t), R(t) and F to define
the cost function ; 5) we solve the Riccati equation (18) or
(26) to obtain G(t) or _a(t)C  (t) defined by eq.(17) or (25).

Necessary real-time calculations are as follows : 1)
Measure the true output y(t) and obtain 8y(t) ; 2) Compute
-G(t)C_l(t)Gy(t) : only a matrix-vector multiplication is
required in real time, because —G(t)C'l(t) has been precom-
puted in the design stage. 3) Compute the true control out-
put u(t)=ug(t)+8u(t).

It is clear in the preceding description that, once the
standard state description is made, the design can proceed
straightforward., The following sections aim derivation of
the standard state description for the control of the plasma

current and position, starting from the construction of a
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physical model.

3. Physical model

The first stép nécessary in the formalization of our
control problem is to obtain eqgs.(l) and (2). We follow the
procedure given in ref. 5 in this step, introducing some sim-
plifications just to make understanding of the outline of the
formalization intuitive.

Following the model in ref. 5, we regard a tokamak as a
transformer with the secondary circuit of a plasma to de-
scribe the plasma behavior by equivalent electrical circuit
equations. We take into account only the horizontal plasma
displacement A and neglect the vertical displacement.

We take into account the fqllowing tokamak components,
which are identified by the subscripts given in the respective
parentheses : plasma (p), ohmic heating coil with air core
(f), vertical field coil (v). These components are assumed
to be located on the toroidal surface whose major and minor
radii are denoted by R and r with their subscripts, respec-
tively. Effects caused by the toroidal coil and the vacuum
chamber are neglected.

We now write circuit equations for the tokamak components:

For the plasma channel,

d L ()1 VM Tl | a I
?( p(t) p(tJ) £ ” (Mpv(t) Lt
+np(t)lp(t)=0, (29)
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JAERI-M 7126

for the ohmic heating coil with air core,

d1_(t) dIf(t)
prw—gt—~+Lf " el (8)-Ve(1)=0 , (30)

and for the vertical field coil,

d dIV(t)
—E;—(Mpv(t)Ip(t))*LV———E;—“"+WVIV(t)'Vv(t)'o »  (31)
In the above expressions, I 1is current, V is applied voltage
on the coils, L and M are self and mutual inductances, and

n is registance. Inductances are expressed as follows in the

first order approximation of the expansion in the inverse as-

pect ratio e=r/R:5)
8R_(t) Ei(t)
Lp(t)=uoRP(t) (2n Tp(t) + . -2) (32)
uoﬂzR N2 '
L = vy .o, (33)
v 4
2 8R¢
Le=u ReN{ (&n T -2) , (34)
uoerNV SRV rz(t) 1
M (t)= —2——>—{2n -1+—P (A4 (£)+—)
pv 4 T rz 1 2
ZRV
—s A(t)} ,
r
v
8R
Mpf=uoRfo(2n N -2y, (36)
f

where f_\.(t)=Rp(t)—RV is the horizontal plasma displacement, N

is turn number of a coil and
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) L (1)
Ay (=6 (1) o (37)

where Bp is the poloidal beta and Ri is the internal inductance.
The equation which governs the horizontal plasma moticn

6)

is given by Mukhovatov and Shafranov:

SRP(t)

UoIp(t) 1
[2n +hq (£)-—=—)- 2R (t)B, (t)=0, (38)
2 rp(t) 2 P

The vertical field BZ is related to IV by the following

equation:

Bz(t)=vvlv(t) ) : (39)
where
_ uoNv
)
V. 4r

Current in the plasma and coils are readily detected
by the Rogowskii coil and current detectors. _Magnetic probes

are often used to detect the plasma position. After integra-

tion, the magnetic probe signal becomesﬁ)
u I _(t)
Zmr
m
C, (t) I_(t) 8R
+(cos w) (i (c (1) -—2—m)-MEP " yn—Y},  (40)
2 2
ZmR T 4mR T
v m v m



JAERI-M 7126

where
p I (t) 2R A(t)
Cl(t)=—‘—o'£———r2(t) (“_\Zf—'_+A1(t)+ L ) ’
2 P rp(t) 2
w I (t) S8R
0, (0) = OB (e (£) )
2 rp(t) yi

where w is the poloidal angle of the probe position, and L
is the minor radiusof the probe position. The difference

signal of probes at w=0 and w=7 becomes

U(t)=HO(t)-Hﬂ{t)

v I (1) 8R C,(t)
s tetp g T e L e,y
2R T mR T
v m v m
I.(t &R
= - uO p ) Fvn v
21R T
v m
w I (t) 8R
el Pelp Y ()
TR 2 r_(t) 2
v p
Z
u I (t) ro(t) 2R A(E)
__o’p p v 1
; " e rreRE T b )}, (A1)
m p

Equations (29) to (31), and (38) give the state equation
and eq.{41) gives one of the output equations of our case,
which correspond eqs. (1} and (2), respectively. Control
parameters in those equations are Vf(tJ and Vv(t), SO we

define

u' ()= (uy (£), u,())=(Vg(t), V (t)). (42)
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Variables in those equations are Ip’ Iv’ If, Rp, npf Ayv 250

rp and Bz' Among them, Rp, np, Al, li and rp characterize
the plasma. R_ and Ip are quantities to be controlled.
There are two ways in the treatment of the rest quantities,
np’ Al’ Ei and rp. The first is to regard them as time-varying
parameters. The matrices A(t) and B(t) in the state equation
(12) contain the parameters in this case. The second is to
adopt them as one of the state variables or components of the
state vector x in eq.(12). Henceforth, we select a compromilzing
way ; we regard np and rp as parameters and Al and Qi as state
variables.

The adoption of Al is due to practical reasons: The
plasma position depends on Al according to eq.(38) and, in
addition, we can detect the magnetic probe signal which 1s a
function of Al. The quantity Ly is included in Al’ S0 we
introduce an assumption aﬁioﬁﬁl in their perturbations, which
simplifies the following treatment. Contrary to Al, np has
little influence on our problem, at least explicitly. So we

introduce another state equation in addition to eqs.(29) to

(31) and (38):

dAl(t) Al(t)_AlO(il

+ = 0. (43)

dt TA(t)

Here TA(t) is the time constant of Al, which is introduced
for convinience sake. Discussion on TA(t) is given in section 5.

Let us examine the nature of our state variables ; Ip, If,

I., R, A and Bz. Because eq.(39) tells us BZ depends on

v p 1’ _
Iv, we can get rid of BZ from the state variables. Equation
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(38) tells Ip, Rp, Al and Bz(or Iv) are dependent each other,
so three of the four can be independent variables. We take
a standpoint that the plasma position is a function of Ip’
Bz(or IV) and Al so that we recognilze Ip, Iv(lnstead of BZ)

and A, as independent variables.

1
In short, we adopt the state vector

X' ()=(xq(t), e, X, ()
S(1,(8), Tg(t), I,(8), Ay(2)), (44)

and the output vector

y (0=l (1), 00 v,y (8]
=(1,(1), Tg(t), I,(8), U(e)). (45)

where U(t) is given by eq.(42).

4, Formalization

We start this section assuming we have obtained somehow
the nominal time variation of the control vector ug(t) by off-
line computations. One method to obtain u,(t) in our problem
of controlling the plasma current and position is found in
ref. 5. The next step ié to deduce the standard state de-

scription of the system for the following perturbations

sx | (£)=(8x (2), 70+, x4 (1))
=(81 (1), 8T(t), ST (1), & (1)), - (46)
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4., Formalization

We start this section assuming we have obtained somehow
the nominal time variation of the control vector uo(t) by off-
line computations. One method to obtain u,(t) in our problem
of controlling the plasma current and position is found in
ref, 5. The next step ié to deduce the standard state de-

scription of the system for the following perturbations

s (£)=(8x, (1), 00+, §x,(£))
-(8T (), SI(8), S1,(1), &4y (0)), (46)
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sy (£)=(8y, (t), 0+, 8y, (t))
S(5T (1), SIg(t), ST,(6), SU(E)), (47)

su' (t)=(6u (1), duy(t))
= (Ve (1), 8V, (). (48)

Discharge in a tokamak is of two stages : the first is
the plasma current rising stage where the plasma radius rp(t)
and plasma resistance np(t) are time varying. We have to
take into account the time variation of such parameters and
derive the state description of the form given in eqs.(12)
and (14). The second is the piasma current flat-top stage
where an equilibrium is maintained. In other words the sys-
tem is stationary. The parameters rp, np are time-invariant
to reduce the state description to the form given in eqs. (21)
and (22). In the following we restrict our control object
in this second equilibrium stage.

The procedure of the deduction is given in section 2.

Applying eq.(5) on eqs.(29) to (31} and eq.(43), we have

461 (t) dsL_(t) asI.(t) dsI_(t)
L by Ty, YT
PO ¢ PO gt P a PVO gt
dsM.__ (1)
+1 PY +n I _(t)=0 (49)
VO dt p p
dst () 81 (t)
Mg, = +Lg - 08T (1) -6V (£)=0 (50)
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dsI_(t) dsM__ (1) dsI._ (t)
M P +1 PV +L v
pvo  g¢ po dt Voodt
+nVGIV(t)—6VV(t)=0 , (51)
désA SA
1, 1.y . (52)
dt Th :

The equilibrium equation becomes

I
A(t)=———32——~{AOGIp(t)+Ip06A1(t)——;£9—A061v(t)), (53)

41
UIvo VO

_ 1 . L . )
where AO—Rn(SRV/rp)+A10 ~E~. This gives the explicit de

pendence of the plasma displacement on GIp(t), GAl(t) and
GIV(t). As li(t) is related to Al(t) by eq.(37), we make an

assumption below to simplify the treatment:
88, (t)=2adh, (¥) (54)

where o is a constant. Substitution of eqs.(53) and (54)

into eq.(32) leads us to the expression:

8R_(t) %, *6%,(t)

L, (t)=u, (R *A()) (2n i + - -2)
P

=u (R, *a (1)) (T *ash, ()

UOFOI (o]
~u0{F0RV+(aRV+———-~P——-GAl[t)
4ﬂvIVO
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u T A CouT Al
+——9—9—9—61p(t)- © 22 PCsI (1)}, (55)
4ﬂVIVO 4ﬂv1v0
where
8R Q.
P =gn(—r)+—22 -2 . _ (56)
0 T 2
p

Similarly, eq.(35) becomes

A(t)

T

Moy My Mg 80 (€)+My :

uwM LI
40027 poO )éAl(t)

=Mo+(Mol
drvr 1
v vo
uM u M I
ool o 81,(t)- 2 °2A°2p° sT. (1) (57)
4wvrvIvo 4wvrvIVO
where
b N 8R r’
Mm@ Y ¥ fon Y 1e—B v},
4 r, r, 2
2
u_mr_N u_mR
M01=__£_E,l’__ , M02=___9___L . 7 (58)
4rV 2

Substituting egs.(55) and (57) into eqs.(49) to (51), we have
the state description of the form eq.(20). These matrices

are given in eqs.(59) to (61):

D=(dij), (i=1,..., 4, §=1,..., 4) (59)
117%0" 0"0 4y I T ’
VO v
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12=pr ’
M - Yol olpo (uon)po . 02
13 "o
4ol I, Ty
u I I
- OOEO
14 “oIpo(aRo+ Arvl )+Ivo(M
VO
217 Mgp
22°Lg
23 0
24= 0 >
M HoMo2t olpo
31 o ’
drvr I
vV VO
32= 0
M A T2
_ uMo 2t o po
SS_LV_ 4TVT I2
Vv VO
u M I
347 Lo M1 LEe
4werIVO
4s1° 0 o
42= 9 >
43~ 0
4= 1 >

(60)
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H=/0 0y
|
0 1 (61)
1 0
0 0

Next, we modify the output equation given in eq.(41).

Substituting eq.(53), we have

U(t)=U0+6U(t)

Y 8R
=U *6 1 (t) O [pn—Y thyq-—
2R T 2
v P
2
8R T
1
~an—Y - —b-(g+—)]
L Ty yA
UoI 0 rZ 1'loI 0
roh ) (1) —2RO(1-—F)-a (1) —5>
ZWRV T TTo
H S8R 8R
=Ug*S1(t) O [in—Yethyg-—1— -An—>
ZWRO rp 2 T
2
T v R.I_A
) g Myo+ 1 y- o g po o ]
ro 2 ZﬂrvaVO
2
usI_ A
+51 (t) 0 po ©
v 4n2r2012
m Vo
2z
uoIpo rp uonIpo
8 (t) [1-—5— - : 1, (62)
ZTTRv ro Zﬂrvavo
where
u I 8R p I 8R
U =-—9 PO gp v 1 (o po (2n LAY __l_)
°© 2R r TR 2 r lo ,
v m v P
2
u I by
.0 po ——g—{A10+—l—)} . (63)
2 r 2
m
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We can now make the relation between &x and 8y in the form

of eq.(22), where C is given by eq.(64):

C=(c;4) (i=1,...,4, 3=l,.0.,4) (64)
C117C22C33~L ¢
€1256137S1470 -
C,1=C23C4=0 -
C41=C357C34=0
" 8R 8R
€ =———1[2n v +A01-—l— —an—2Y
ZNRO rp 2 ro
2
. rp (A + 1l .. ”onIpo 0
7 4ol 7 ] ,
T 2 2rrovl
m m vo
4270
c = uoIpvo
43 772 ;
411' I.m\) IVO
2
1 by R I
c = Mo po [1-—E Moty po ]
44 2 7
2R T 2nrowl
v m m YO

Now that we have arrived at the standard state descrip-
tion, eqs.(21) and (22), the next step to be taken is the
selection of the cost function given in eq.(23). The first
term in the integral Qf eq.(23) should express the squared
error of the state. Remembering our control object is to

keep R_=R_and I =1
PV

p~Ipo’ or A=0 and 61p=0, we write

ax'(t)oax(t)=qlaz(t)+q251§(t) . (65)
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We square eq.(53) and express in the following form:

1
s (=ex (Dsx(t) (66)
where
2 I ohg N
A 0 A0I 0 _%"_—
© P VO
u
0,=( °© 3% 0 0 0 0
dmvl !
VO i
J 2 I;vo
AT 0 I
o po po IVO
!
T A2 1% I A
po o 0 po o ( po_o )2
L Ivo Ivo Ivo -
(67)

The second term of the righthand side of eq.(65) is readily

expressed as follows:

5I;(t)=ax (£)Q,6% (68)
where
1 0 0 0
0 0 0 O
Q_
210 0 0 o0
0 0 0 0 (69)

The matrix Q then becomes
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Q=q,Q,+a,Q, (70)
where parameters 4y, 4, should be selected appropriately.

The second term in the integral of eq.(23) should reflect
the ranges of the control inputs given by eq.(42): The matrix
R is selected according to the realizable voltage range of
the power supply.

The hoped-for contribution of this paper will be given
"in the hitherto description: Our problem has been formalized
into eqs.(21) to (23). It 1is apparent eqs.(27) and (28) hold.
The rest procedures will be readily accomplished. Main part
of the necessary on-line calculations 1is multiplication of a
7x4 matrix and 4 dimensional vector. Note that the calcula-

tion of plasma position A(t) is not required in our formalization.

5. Discussion

In this section some complements are mentioned briefly

under appropriate head-lines.

Value of the time constant T

In eq.(43) the time constant T, is introduced. Using

eq.(37) we can write

1/TA=1/TB +1/(2T2.) . (71)
P i

According to the definition, we have

4N (t)T(t)
(72)

t)=
Bp( )

2
UOIp(t)RP(t)
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Q=a,Q;+4,Q, (70)
where parameters q;, 4, should be selected appropriately.

The second term in the integral of eq.(23) should reflect
the ranges of the control inputs given by eq.(42): The matrix
R is selected according to the realizable voltage range of
the power supply.

The hoped-for contribution of this paper will be given
in the hitherto description: Our problem has been formalized
into eqs.(21) to (23). It 1s apparent eqs.(27) and (28) hold.
The rest procedures will be readily accomplished. Main part
of the necessary on-line calculations is multiplication of a
2x4 matrix and 4 dimensional vector. Note that the calcula-

tion of plasma position A(t) is not required in our formalization.

5. Discussion

In this section some complements are mentioned briefly

under appropriate head-lines.

Value of the time constant T

In eq.(43) the time constant T, is introduced. Using

eq.(37) we can write

l/TA=l/TB +1/(212.) . (71}
Y 1

According to the definition, we have

4N (t)T(t)

— 2
Bp(t) ’ (72)

2
uOIp(t)Rp(t)
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so that the time constant of Bp depends particle confinement

time governing the total particle number N, energy confinement
time governing the plasma temperature T, and Ip, Rp. The other
quantity Ri(t) is related to the current distribution. It cannot
be defined so clearly as Bp(t). Its time constant rii must

be either estimated by some simulation studies or represented by
an appropriate gross quantity such as the skin time.

It is possible to formalize somehow the problem on A,

according to such physical concept as described above.

'However, it is not n{t), T(t) or current distribution but

Al(t) that is measurable in real-time. So we have adopted
Al(t) as one of the state variables in our formalization.

Practically, Ta value should be identified on the basis of

experiments,

System identification

In this paper we have started from a physical model ta
obtain the state descripticn. There exists, however, another
method to obtain the state description, which pays attention
to a statistical nature of input-output characteristics of
the system, such as cross-correlation or Cross spectral
density.s) This method of identification suits the on-line

data processing system.

Expansion to a more complicated system

The tokamak dealt with in this paper has only two coils:
ohmic heating coil and vertical field coil. A tokamak of the

next generation under design has, however, more poloidal

a4
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coils. The JT-60 has horizontal and quadruple field coils
to be controlled by the feedback method in addition to the
two dealt with 1in this-papergq Because the vertical field
coil has the n-value, its mutual inductances between the
horizontal and quadruple field coils cannot be neglected.
The method developed in this paper is suitably expanded for
the design of the feedback control system of the JT-60.

The JET has a poloidal field coil system different from
usual ones. It has several coils whose currents can be
contrqlled separately so that one system functions as trans-
former, position-control and shaping coils.lo) To control
such a system by the feedback, the method developed in this
paper 1is essential.

Another assumption that eddy current effect is negligible
has been introduced in the treatment of this paper. An actual
tokamak has distributed parameter components such as a vacuum
chamber. Eddy currents are induced on the components and
resultant fields affect the controllability. Such currents
can be expressed by circuit equations with lumped parameters
similar to egs.(30) to (32). The procedure for the expres-
sion can be found in ref. 5. Once the expression is made,

the method described in this paper can be readily applied.

Cost function

Just a casual description is given in section 3 on the
selection of the weighting matrices Q, R of the cost function
(eq.(24)). The selection of the matrices is, however, not a

simple matter. There is no universal agreement on precisely
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how these are to be selected for any given épplications.

We have considered only physical requirements in selection
of Q, R previously. It is also said that the appropriate
selection of these matrices can minimize the errors due to
the stochastic nature of the control object. Further descrip-

tions on this problem are found in ref., 8.

Expansion to the discrete time system

In the control of plasma position and current in a large
tokamak, combination of digital computer and phase-controlled
thyristor power supply is usually employed. These devices.
can change the coil voltage only discretely, so the concept
of discrete time system or sampled data system should be
introduced in the problem. A control rule parallel to that
given in section 2 is available for the discrete time system,
where difference equations substitute for the differential

equations.s)

Computing time

In this paragraph a practical aspect of the control,
computing ability of a mini-computer, is examined and appli-
cation of the control rule on a large tokamak such as the
JT-60 is considered. The formlof the necessary on-line
computation is given by eq.(24), which is multiplication of
a 2x4 matrix and 4 dimensional vector containing at least 8
multiplications and 6 additions. An example of a computer
proposed to be used in the JT-60 poloidal field control 1s

HIDIC 80, whose floating point computing time is 2.4~4.9 psec
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for addition and 3.8~4.4 usec for multiplication. The computing
time of 8 multiplications and 6 additions in HIDIC 80 is
44.8~64.6 psec.

As a power supply to drive the coils of the JT-60, 12-or
24-phase controlled thyristors are proposed whose averaged
controllable time interval is 1,666~833 psec. Compared with
this time interval, we can regard the computation'time in
the computer is small enough.

For a more complicated system, such has additional posi-
tion and shape control coils, use of an array transform proc-
essor must be helpful. An example is AP-210B, which has an

ability to perform multiplication of two 10x10 matrices in

630 usec.
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