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A structure analysis program based on finite
element method for toroidal coils, developed in
JAERI, and its example application to a medium-
size tokamak are described. In this application,
the effects of material anisotropy, poloidal field
and spring constant value were studied, and also

the influence of toroidal coillfailurelon the peak

stress. ,
The following were revealed. The effect of

anisotropy on the peak stress in reinforcement

must be considered. The éffect of poloidal field
on the peak stress is small compared with that of
toroidal field. The spring constant value between

coil and support does not much influence the peak

stress value. The peak stress in reinforcement
rises with increasing number of failed coils.
In the case cof 20006 nodes on the structure,

CPU time with the program is about 40 min.
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1. Introduction

The absence of applicable computer programs has been a major obstacle
to the performance of detailed structural analyses of toroidal coils.
This obstacle has recently been overcome by the development of the finite
element method and its applications.l=2’3) JAFUSAC (JAERI Fusion Structure
Analysis on Coil), a computer program developed in JAERI for three
dimensional stress calculation by the finite element method, is available
to estimate the stress distribution in a toroidal coil. As this program

is-able to run not only batch mode but alsoitime ehating mede in conjunc-—

tion with a graphic display terminal, it is possible to get graphic ocutput

data by plotter, computer output microfilm.(COM) in batch center or hard
cbpy on the graphic display terminal. Thoughuite capebility and an

example toroidal coil analysis was already discqssed,”) more detailed

results are presented in this'peper.

2. Computer Program JAFUSAC

The program JAFUSAC is actually a set of programs-that are related =

to each other ‘and must. be execute in. the proper order as shown in Fig.I.

The f;vehlndependent computer programs are structured to be compatlble

with respect to input and output. . Each of the five-prqgrams:has.a separate
identity and can be run indepeﬁdeﬁtly. Eecﬁ program has been set.up‘so
that;:when.applicabie, it canlbe also run with edited output data
generated~by one of the other programs. The.functions_of these programs.

are described briefly in the following paragraphs.
2.1 Input Generater

-The first program, the user must execute, is IG (Input Gehérating.

'.program) which is used to describe the geometry of a toroidal coil ghaped
circular,'oval or D-shape. By means of this program IG, it is not

necessary to assemble a deck of tYpically hundreds or thousands of cards

in order to sepcify the toroidal coil geometry. Becauee this program

'_generates almost -all node and - element data of the coil geometry

automatically 1tse1f except several data-cards of key-points. ~ And
magnetic field is calculated by volume current integration method.
Furthermore, electromagnetic, gravitational and seismic forces on the

center of gravity in each element are given simultaneously. Then, other
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data, for example, support condition, thermal force, and anisotorpy, must

be added to the previous data.

2.2 Input Data Check Program

The second program is IDAC (Input Data Chéck program) which is used
to check-up the data generated by the program IG. According to the data,
this program plots the toroidal coil structure on the paper of plotter,
film of.COM or cathode-ray tube of graphic¢ display terminal so that
debugging work is easy. An examination of the picture plotted by this

program makes easy to find whether the data are good or not.

2.3 Matrix Solving Program

The third program is MESA (Member, Element, Solid Analysis program)
which is general purpose finite element method program for static load

andlysis of linear elastic structures. This program is permitted

.consideration of isotropic and/or anisotropic materials and calculation

of principal stresses and Von Mises stress in each element. The wave front
method is used in order to solve a giantic size stiffness matrix equation
in this program. At the present time, size 6000x6000 matrix equation

can be solved by less than 40 minutes‘CPU'timeﬂ

2.4 Plotting Program

One of the outputting programs for résultant:data of the MESA is
called MQOP (MESA OQutput Plotting program) éhat can plot induced nodal
translational displacements magnified by a specified scale factor and
superimpose on a plot of the toroidal_coil structure. The user select
the view to berplofted;

Another outputting program the user must execute;ié_SPP (Stress

Printing and Plotting program) that can print and plot stresses, Von

Mises stress and other principal stresses, .in any elements, the user

specified along the toridal coil perimeters. In a:figure plotted by
this program SPP, a longitudinal axis .and a: transversal axis signifies

the Von Mises stress and a fraction of the perimeter, respedtively.
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3. Toroidal Coil Analysis

As an example of the JAFUSAC calculatiom, a medium size full
toroidal coil system is chosen. In this systems,.it can be taken into
account four types, inner poloidal coils and cbntinuous support type,
inner poloidal ceils and two points support type, outer poloidal coils
and continucus support type and outer poldidal coils and two points
support type. The inner poloidal coils and the outer poloidal coils
means that poloidal coils de and do not inter-link with toroidal coils,
respectively. And a comparison of the‘continuous‘éupport with the two

pointS'support is shown in Fig.2. A detailed drawing of the two points

support is shown in Fig.3.

The size and disposition of the coil systems are shown in Fig.4.
and Fig.5§ i.e., vertical field (VF) coils are not drawn explicitly.

Positions and cross section .of the VF coils are shown in table 1 with

-the-ohmiCQheéting {OH) coils.. - A toroidal field_ihduced by the coil

Sysfems'is shown in Fig.6. The electromagnetic force calculation on

“a point in the conductor area gives average value.

3.7 'Parameters
The parameters used thisICal;ulation are as follows:

Toroidal Coil

number of coils 18

external height 4450 mm
~external width : 2729'mﬁ
winding ‘cross section 480x100. mm?
overall cross section approximately 540X100 mm?2
cufrent dénSity | 24,5 A/mmz
weight - - ‘ ' '7.03'ton

OH Coil

number of coils 100
.winding créss section 100%40 mm?
current density ‘ 25.0 A/mm?
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VF Coil
number of coils 88
winding cross section 40x20 mm?
current density 26,SfAﬁmu2

The program JAFUSAC can solve theoretically any problems on stress
in ‘a toroidal coil. But, at the present time, as our computers are not
so fast enough to give proper answers to complex problems, a coil
structure of this numerical analysis must be modeled more simple than

the actual coil structure, as shown in Fig.7.

3.2 Effect of Poloidal Field

In this analysis, the OH coils and VF coils are called as the
poloidal coils. From Fig. 8 to Fig,12, the field and force distributions

are shown, and the total field is a vector summation of other fields.,

. The tbroidal_field is a field parallel with a toroidal direction. And

the normal field and the tangential field is a field perpendicular to
current directions and a field parallel with cufrent directions,
respectively. The hoop force is a force perpendiculér to current
directions and makes hoop stress in windings. 'The compressive force is

a force caused by the pinch effect on windings. And the tangential force
is a force parallel with current directions and must be always zero as
far as this caleculation is exeéuted without errors. With these figures,
it is found that force distributions are not so different each other
without reference to types of the coil systems,

With the poloidal field, out-of-plane forces are generated in
windings of toroidal field coils. However vector summation of these
forces is smaller than that of in-plane forces that are generated by
the toroidal field and act on a center core. The values of these

vector summations are.

out-of-plane force (FO) 1093 ton
in-plane force (Fi)
in case of outer VF coils 110 ton
inner VF coils 98 ton
outer OH coils 90 ton

inner OH coils 150 ton
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Total vector summation F is
F= F0% + Fi?

When FO>>Fi, the equation can be rewritten as
F = FO + Fi?/2F0

The second term is very small as compared with the first term, so that
the effect of the poloidal field on forces can be negligible. And. the
effect of the poloidal field on stresses in winding of toroidal cdils is

not very significant, too.

3.3 Effect of Support

It is evident that the stress concentration with the two points
support differs much from that with the continuous support. In case of
this analysis, the former value is about four times greater than the

latter value. The detailed maximum displacements and maximum stresses

~are as follows:

' two points sup?ort ‘ . _
by.electfomagnetic force 4.89L mm 22.8 kg /mm?
by gravitational forcé_:O.OQIImmf'0.102_kg/mm2
by seismic (16)  force . Q,Uﬁi~mm-_o;09o,kg/mm2

continuous support . .

. by electromagnetic fqrce1 1;063 mm 6}2 fkg/mmz
by gravitational force 0.02L mm 0.102 kg/mm?
by seismic (1G) force_-6.030 yuvin] 0.02% kg/mm2

The appearances of disﬁlacemehts induced.bﬁ these forces are shown
in from Fig.13 to Fig.18. Furthermore, difference of a peak stresses
value between infinite spring consfant and practical value of spring
constnat, which is called 'differénce of étréss' herein, depends on the
spring constant as showﬁ in.Fig;lg.‘ The péak stfess with infinite spring
constant is 15.36 kg/mmz, énd it_is £ound that.the_effect'qf the spring

constant is small.
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3.4 Effect of Anisotropy

In fact, ﬁhe conductor shown in Fig. 7 consists of insulating
layers and cooling helium channels, therefore it must be characterized by
anisotropy. In this calculation with anisotropy effect moduli of .
elasticity Ex, Ey, and Ez, are assumed as 5x10°kg/mm?Z, 5x103kg/mm? and
l.lZXloqu/mmz, respectively, and isotropic modulus of elasticity E is

l.lZXlO”kg/mmz. The results of the numerical analysis are presented in

from Fig.27 to'Fig.SO. It is found that in continuous support type the

values of peak stress are not different between isotropic and anisotropic
moduli but in two points support type they are different as followings:
with isotropic modulus 19.9kg/mm2 and with anisotropic moduli 22.8kg/mm?.
Therefore, the calculated value with isotropic modulus is not enough for

a design of practical coil whlch has anisotropy.

3.5 'Sudden qu] Fai]ure

The stress dlstrlbutions are changed when some coils areé suddenly

in failure.' In thlS case, the analysis is assumed as a static problem;

i.e., some c01ls in failure have no currents and other colls have nominal
currénts. Examples of toroidal fields and electromagnetlc forces distribu-
tions in w1nd1ngs of neighboring failed or break down coils are shown in
from ‘Fig. 20 to Fig. 24. The failure is explained in Fig.25,

Stresses and electromagnetic forces are shown as a function of

number of breakdown coils in Fig.26. It is found that increasing’in.'

'number_of breakdowri coils results in rising unbadlanced force and stresses

in the parts of reinforcement, inner, outer and side plane. " The values : .

of centripetal force and unbalanced force are

‘number of centripetal unbalanced
failed coils (out-of-plane) ~ (in-plane)
force force

0 1093 ton 0 ton

1 954 ton 550 ten

2 845 ﬁon 795 ton

3 761 ton . 922 ton

4 701 ton _ 984 ton
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Then, some strength margin of reinforcement should be taken as a margin

against this sudden coil failure.

3.6 Detailed Data

Finally, other detailed data concerning principal stress and Von
Mises stress distributions are known in from Fig.27 to Fig.50. The cases
of no poloidal coils under other given conditions are shown in from Fig.27
to Fig.BO; The stresses caused by seismic or gravitational force are '
shown in from Fig.31 to Fig.34. The case of inner poloidal coils, OH
coils or VF coils, are shown in from Fig.35 to Fig.42, The case of
outer poleidal coils are shown in from Fig.43 to Fig.50. And in Fig.51,

the data are summarized with maximum Von Mises stress.

4. Conclusions

The usability of the three dimensional stress analysis program
JAFUSAC, which has room for improvement of saving CPU time and core
memory in order to solve more complex problems still as far as our
conventional computers are uséd hereafter, is demonstrated by its
application to an example, a medium size full toreidal coil system.
And from this analysis following conclusions are obtained.

The effect of poloidal field on the peak stress is small as
compared with that of toroidal field.

The variation of spring constant value does not give an important
influence on the peak stress.,

The peak stress value in reinforcement increases with growth of

failed coil number.
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Table and Figures Captions
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electromagnetic
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gravitational force on two points

'difference of peak stress' as a function of the spring

constant (the stress with infinite spring constant is

15.36 kg/mm?)

Field and force distr

Field and force distributions

Field and force distr

Field. and force distributions

ibutions (no failed coils)

{one failed coil)

ibutions {(two failed coils)

{three failed coils)

Field and force distributions (four failed coils)

Explanation of the failure (in case of two coils in failure)

Stress and electromagnetic forces in a coil neighboring

failed coils as a function of failed coil number

Stresses in case of no poloidal coils, isotropy and continuous

support
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Fig. 28 Stresses in case of no poloidal coils, anisotropy and
continuous support
Fig. 29 Stresses in case of no poloidal coils, isotropy and two
. points support
; Fig. 30 Stresses in case of no poloidal coils, anisotropy and two
points support
Fig. 31 Stresses.in case of seismic force and continuous suppotrt

Fig. 32 Stresses in case of seismic force and two points support

Fig. 33 Stresses in case of gravitational force and continuous
support

Fig. 34 Stresses in case of gravitational force and two points
support

Fig. 35 Stresses in case of inner OH coils, isotropy and continuous
support

Fig. 36 Stresses in case of inmer OH coils, anisotropy and continuous
support _

Fig. 37 Stresses in case of inner OH coils, isotropy and two points
support

Fig. 38 Stresses in case of inner OH coils, anisotropy and two points

support .

Fig. 39 Stresses in case of inner VF coils, isctropy and continuous

support

Fig. 40 Stresses in case of inner VF ceils, anisotropy and continuous
support

Fig. 41 Stresses in case of inner VF coils, isotropy and two points

\ support

! Fig. 42 Stresses in case of inner VF coils, anisotropy and two points
support

Fig. 43 Stresses in case of outer OH coils, isotropy and continuous

support

Fig. 44 Stresses in case of outer OH coils, anisotropy and continuous
support

Fig. 45 Stresses in case of outer OH coils, isotropy and two points
support

Fig. 46 Stresses in case of outer OH coils, anisotropy and two points

support

Fig. 47 Stresses in case of outer VF coils, isotropy and continuous

support



Fig., 48
Fig. 49
Fig. 50
Fig. 51

Table 1
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Stresses in case of outer VF coils, anisotropy and continuous
support

Stresses in case of outer VF coils, isotropy and two points
support

Stresses in case of outer VF coils, anisotropy and two points
support

Summarization of detailed data with maximum Von Mises stress

Position and cross section of poleidal ceil
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Fig. 1 Calculation procedure of JAFUSAC
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Fig. 2 Supporting method
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Fig. 4 Size of coil systems
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T Toroidal Coif
OH:0H o

Fig. 5 Disposition of coil systems

Table 1 Position and Cross section of Poloidal Coils

Inner Poloidal-coils Type!Outer Poloidal-coils Type
Xo. Position wxh Yo, Position .th
1 |{1120, 1600);200=x150 | 1 | (1120, 2300)|200x150 -
2 | (1540, 1560)|100x 30 | 2 |(1920, 2100)|100x 30
OH-coil | 3 | (2320, 600):100x 30 | 3 |(3020, 800)| 100%x 30
4 | (2320, 600) 100x 30 | 4 |(3020,- 800)(100x 30
5 | (1540,-1560)| 100x 30 | 5 (l920,~2100) 100> 30
6 1(1120,-1600) 200x150 | 6 | {(1120,-2300)|200%150
7 | ( 970, .0} 100x3200 7 | ( 270, 0)| 100x3200
1 (1700, 1400) 100x 72 1 | (2100, 2100)|100% 72
2 (2300, 700) 48x100 | 2 | (3000, 1000)| 48x100
V-coil 3 (2300, 300) 60x100 | 3 (3100, 500)! 60x100
4 | (2300,- 300) 60x100 | 4 |(3100,- 500) 60x100
5 | (2300,- 700)| 48x100 | 5 |{(3000,-1000)| 48x100
6 | (1700,-1400)|100x 72 6 |(2100,-2100)|100x 72
7 | ( 960, 0)| 15x240Q0 | 7 |( 270, 0)| 15x2400
unit:mm
Origin is set at the
plasma center, and some
coils are gathed up. ‘1h
l cross section
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