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4 matrix method is developed to solve numerically the kinetic high-n
ballooning mode. This method approximates directly the difference -
differential eguaticn by a finite difference method. Torocidal mede
coupling effects and full electron and ion responses are described in the
correct forms. CFerformance, convergence property and accuracy of the

method are investigated.
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1. Introduction

We have recently reported on electrostéticl) and electromagneticz)
drift wave ballooning instabilities in toroidal plasmas by means of the matrix
method to solve the difference - differential equations of the high n
ballooning modes. In this paper, we present the detailed description of the
matrix method, and report on performance, comvergence property and accuracy
of the method. This paper is mainly concerned with the equation which
describes the electrostatic ballooning mode. However, our method can be
applied to the ballooning modes which retained the trapped particle effects
as well as the electromagnetic drift wave ballooning mode with the straight
forward extentions.

The perturbed potential, @(;,t), of the elctrostatic drift wave

3)

ballooning mode is described by the equations

§(,t) = Lo fr)exp(-int + ind - i{¥)

2 EwWw
d 2 2 * 1 d
{ 2 Kpy + P}, () - {(1- o ax Yo _1 (¥
X 1
1 d
HO o e 0, (1)
_ 1 g UJ*—UJ T 1
PG = ZEiZ(Ei) - T WTHY,, z (Ee) -z (Ei)} (1.2)

¥

in the (r,8,9 ) coordinate system (6,{ are poloidal and toroidal angles).

In Eqs.(l), the following notations are used : x = (r—rs)/pi, q(rs) = n/f,

k = m/r, § = m/(/ff[%"|vt), k, = (m-{q)/(qR), T==Te/Ti, w, = cTek/(eBLn), K=
1/Ln = an/dr /no, £ = Ln/R and Z is the plasma dispersion function. Other
notations are standard. The right hand side of Eq.(1.1) denotes the mode
coupling due to toroidal effects. The high - ¢ (I »>> 1/¢) vallooning mode

approximation reduces the set of coupled differential equations {1.1) to

a one dimensional difference - differential equation3



JAERI-M 82-080

d?. 3 2 EUJ* 1 d
{ dxz - ko, F P(x)} ¢o(x) = —_— {@- —Eag I ) ¢ (xt+h) +
1 d
{1+ —EBE'—E;—)¢(X—ﬁ)} (2)

with qu(x) = ¢ (x-jA) where A = ll(kois) (s=rq'/q), j = m-mg, and x is
redefined as g(x=0) = mO/{. We concerned on solving Eq.{(2) numerically,
This ig one of the generalized eigenvalue problem with the boundary

condition, $(x) » 0 as |x| + «= . Several numerical methods have been used

5! 4' 5’6)

to solve Fq.(?). The weak and strong coupling approximation limit

the available parameter regions of the analyses, The Fourier decomposing
X . . 8 10,11 it s .. .
ballooning representatlon7’ ,9,10,11) has difficulty in including the

correct forms of electron andion responses. The drift wave theory in a slab

moéel has clarified that the wave is stabilized by magnetic shear and the

correct treatment of electron response is important to dictate the
12,13%)

stability . The method treated by this paper is a finite difference
method which approximates directly Eq.(2). Therefor, the mode coupling
aifect and the full electron and icn responses are kept in correct forms,
The finite difference method reduces the eigenvalue problem of_the
differerce — differential eguation to that of a linear eguation. It is
solved by three procedures ;
(1) matrix renumbering to save CPFU time and Core lMemory,
(2) contour map to seek the eigenvalues, and
(%) Newton's method to obtain them by iteration,

In Sec.?2, we describe the method in detail, In Sec.3, we investigate

the performance, convergence bproperty and accuracy of the methed. Summary

and discussion are given in Gec.d.
2. Numerical Method

Matrix Formulation

nD
.
)

The derivatives that appear in Eq.(?) are appreximated by
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a2 2 2 & Wy 1 d
{ P - kTl + P(x)} d(x) = — {@a- *EE; ) O Gxta) +
L _d 540} 2)

(L+ kpi dx

with ¢j(x) = ¢ (x~jA) where A = l/(ins) (s=rq'/q), j = m-mg, and x is
redefined as g(x=0) = moff. We concerned on solving Eg.(2) numerically.
This is one of the generalized eigenvalue problem with the bouncary
condition, §(x) > 0 as [x| + » . Several numerical methods have been used
to solve Bg.(2). The weak and strong coupling approximation3’4’5'6) limit
the available parameter regions of the analyses., The Fourier decomposing
ballooning representation7’8’9’lo’ll) tas difficulty in including the
correct forms cf electron andion responses, The drift wave theory in a slab

model has clarified thai the wave is stabilized by magnetic shear and the

correct treatment of electron response is important to dictate the

stability? 1%, The method treated by this paper is a finite difference
method which approximates directly ©g.(2), Therefor, the mode coupling
effect and the full electron and ion responses are kept in correct forms,
Mhe finite difference method reduces the eigenvalue problem of the
difference — differential eguation to that cof a linear eguation. It is
aolved by three procedures ;
(1) matrix remumbering to save CFU time and Core lMemory,
(2) coniour map to seek the eigenvalues, and
(%) Bewton's method to obtain them by iteraticn.

In Sec.?, we describe the method in detail, In Sec.3, we investigate
the performance, convergence property and accuracy of the method. Summary

and discussion are given in Sec.d.
2., Numerical Fethod

Matrix Formulation

[
.
-t

The derivatives that appear in Eq.(2) are approximated by
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o ¢y = 7h ’ 70l = 2

Y

introducing even mesh Xy o= in {j=0, 41, +2y «..s;. Thes the finite

aifference approximation of Bg.(2} is given by

Ely 1 h + 2 h 1
TW (- kpi 2 q),j--n-l h ¢j-n * 2z kpi ¢j—n+1)
222 2

- + h - -

¢j“l + (2 K'p. - b Pj ) ¢j ¢j+l

1
Ely 1 h 2 __h _
t 70 ( kpi 2 ¢j+n-l +11¢j+n 2 kpi ¢j+n+1) 0, (3)

where n =4 /h and P, = P(xj). The boundary condition of the sclution are
J

b(x) + 0 as |x| » «» . Therefore the system of Bg.(%) is truncated at
x,. = hi where the solution ¢(x) exponentially damps off, Rg.(2) conservs
the parity ; ¢(-x) = ¢(x) (even mode) or ¢{-x) = -¢(x) (odd mode). DNoticing

. FAT) e
this fact, we can rewrite Bg.(3) in a matrix form

and the matrix A has the following structure ;

" \

. -
‘as . 2., 2 ‘ X
where tridiagonal terms arise form ¢ /dx and the slab potential

and off-diagonal temrs appear for j =1 +n, i t4n+1and i +n-1due to
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the torcidal coupling., The (i, j) = (i, n - i}, (i, n = i + 1) elements
arise from the parity. The eigenvalue w is determined by the eguation

D(w) = det(R) = 0 (6)
which is the necessary and sufficient condition that %g.(4) has non trivial
golution.

2.2 Newton's ¥ethod and Matrix Henumbering
To.{6) needs 1o be solved by iteration because D(w) is a transcendental

function of W . We adopt Newton's method ia which ¢éD /dw is approximated

as

ml - UJ2

where uﬁ_ and wz are clese to the sclution D(w) = 0. Then the better
approximation of the true solution wO is given by

D(wz)(wz—wl)
3 y D(mz)—D(wl) .

(7)

This arsorithm works guite well as long as the start value of the iteration
is cloge enocugh to cuo because D{(w) is a regular function of w near the
zero point of it. We plot contours of zeros of Rel(w) and Im? (w)

on Re w - Im w plane. A crossing point can be taken as the start value of
the iteration. Moreover this contour map reveals much more informations,
When W is a single zerc of D, i.e., D{w) ~» Clw - wo) , then the lines
ReD(w) =0 ard ImD(w) = O cross with 90° . For degenerate case, i.e.,
Dw) ~ Clw - wo)z , two lines of ReD(w) = 0 and twe lines of TmD(w) = O
cross with 45° . The most important is that the crossing of the lines ReD(w)
= 0 and ImD(w) = O ensures the existence of the solution. 1f one plots

contours of |D(w)| , the absolute value of D(w), many minimal points will

appear ; some of them coinside true solutions and some are not. The
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accurmlation of the rnumerical error will prevent |D(w)| from vanishing.
These difficulties are resolved by the contour method.

The LDU decomposition of fhe matrizx A is used to compute D(w), where L
and U are unit lower and upper triangular matrices and D a diagonal_matrix.
The determinant D(w) is given by the muitipliecation of 211 the diagonal
elements of D. It is natural to use Time Sharing System (TSS) in order to
solve Fq.(6) by Newton's method, TS5 limits CPU time and Cove Hemory while
Newton's method requires to compute D(w) many times. It is not sufficient
for saving CPU time and Core Memory only to take advantage of the band
structure of the matrix A. We can make the matrix A narrower by means of
permutation of unknowns. This technique is known as 'Renumbering of
matrix'lﬂ). Let us consider 20 X20 matrix of n = 15. This is a band
matrix with 15 half band width as shown in Fig.(l.a). We renumber ihe

unknecwns by pest-crder rule as i

D51 @®—=2 Q>3 O->4
@">5’ @‘561' @979 @98! s

Fig.{1.%) shows the graphical representation of our rule. Aifter renumbering,
as shown in Fig.(l.c), the matrix A is exchanged into a matrix with 5 half
band widthn, This is a simple effective argorithm to renumber the matrix A
for arbitrary n. In Fig.(E), we show the band width MA after renumbering

as a funciion of the band widih Mo of the 200 % 200 matrix. The dotted line
is Pﬁ = MO . Renumbering is profitable for Pi 2_50. Moreover, it has
attractive feature that the larger NO is, the narrower the renumbered matrix
bYecomes. This feature is crucial for the matrix method to succeed. Figs.(3)
show the necessary Core Nemory (byte) and CPU time {s) to compute D(w) by

FPACCM M—200 in JAERI as a function of the mesh size h (h, = h/(KLS }) when

M

truncation length ¥h = KLS is fixed. 1 and II are the cases of LDU

decomposition without and with use of the band structure, respectively,
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TII indicates the case of the renumbered matrix. The upper limit of Core
Memory for our TSS system is shown in Fig.(3.a}. We also show in Fig.(3.c)
the convergence curves of real and imaginary parts of w and mesh sizes 1o
get 'good convergence' (see Fig.8); the parameters are g = 1, ¥P; = 0.1,

r =1, s =1, € =0.,1. HRenumbering is indispensable to solve Eq.(6) with
high accuracy by TS3 and under the IN - CORE condition., EReduction of CFU
time due to renumbering enables us to investigate the solution of Egq.(2)

over the extensive parameter space.
3. Property of the Matrix lMethod

The matrix method to obtain numerically the eigenvalue of Bg.(?) needs
convergence study. We can gei only the eigenvalue w of Eq.{3). This is
s function of the mesh size h, i.e., W = @(h). The true eigenvalue of Eq.(2)
is ziven by the 1limit of w(h) when h -» 0. This limit can be obtained vy
extrapolating the convergence curve of w(h).

The fluid limit of Eq.(2) can be solved by the shocting method with the
help of Fourier transformation. In this section, for the case of the fluid
limit, we first investigate the convergence property and accuracy of the
matrix method by comparison with the shooting method. Next, we give the
convergerce study for the general case of Eg.(3).

3,1 Comparison with Shcoting iMethod

74.{2) can be solved by the shooting methed in the fluid limit.

Replacing the eleciron response with Boltzmann respense and expanding the

ion Z function as z'(gi) = 1/5? , we get the approximation of Eq.{2) ;
i

2 W, - W (l+T)L02 k v2
d"¢ 22 * * n V.
dxl tL-key T Wy * (1wt w,)w w21 1 #00)
S, VST SR WGP TS S SIS S
TWw kp, dx x ko, dx ) ¢(x-A)] (8)

T™.is can be solved by use of the matrix method., In this case, however, the
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ITI indicates the case of the renumbered matrix. The upper limit of Core
Memory for our TSS system is shown in Fig.(3.a). We also show in Fig.(3.c)
the convergence curves of real and imaginary parts of w and mesh sizes to
get 'good convergence' (see Pig.8); the parameteré are q = 1, ¥P; = 0.1,

r =1, s=1, € = 0.1, Repumbering is indispensable to solve Eg.(6) with
high accuracy by TS3 and under the IN - CQORE condition., Reduction of CPU
time due to renumbering enables us to investigate the solution of Eq.(2)

cver the extensive parameter space.
3, Property of the Fairix lethod

The matrix method to obtain numerically the eigenvalue of Hg.(2) needs
convergence study. We can gel only the eigenvaiue w of Eq.(ﬁ). This is
s function of the mesh size n, i.e., & = w(h). The true eigenvalue of Eq.(2)
is given by the 1imit of w(h) when h = 0, This limit can be obtained by
extrapolating the convergence curve of w(h).

The fluid 1imit of Eq.(?) can be solved by the shocting method with the
nelp of Fourier iransfermation. In this section, for the case of ihe fluid
limit, we first investigate the convergence property and accuracy of the
matrix method by comparison with the shooting method., Next, we give the
convergence study for the general case of Eq.(3).

3,1 Comparison with Shooting Method

m.(2) can be solved by the shooting methed in the fluid limit,

Replacing the electron response with Boltzmann response and expanding the

ion 2 function as z'(gi) o~ 1/5? , we get the approximatiocn of Eq.(Z) H
i
2 2
d2qb 9 9 w, - W (l+I‘)m* k,, vy
2+[—kp,+ ] ¢(x)
dx L wT+ Wy (1wt w)w 2
w
£ w
- I - e + (=
i

Thig can be solved by use of the matrix method. 1In this case, however, the

Ll
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slab potential is of the form as Cl+02x2, and therefor the eigenvalue is
obtained alternatively by Fourier transform and the shooting methed. Eq(8)

can be rewitten as the ordinary differential eguaticn ; ( k“=lkx/Ls)

2
dZQ_'- w(T w +w )T 9 W, - W 2 2 9
2 2 Wk Dy ke =
dn 1+ Tw 1
ZEw*
+ (cosAn + sAnsinAn) ]y = 0 (9)
< inx . .
where ¢{x) = j p(nle dx . Since we look for the solution which is
-0

localized in x space, Tq.{9) is solved with the boundary condition that ¥(n)

damps off as ]n| + o , The parity of ¥(n) is the same as that of $(x). We

can solve Hq.(9) numerically by means of the shooting method. Comparing the

envalue and eigensolution computed from the two different methods, we can

siger
confirm the validity of the matrixz method.

Fig.(4.a) shows the convergence curve of eigenvalue computed by the
matrix method for the parameters ; s = 1, KOy = 0.2, ¢ = 3.2, T =1, € = 0.1,
A= F and KLS = 32, The truncation length is fixed as Kh = KLS « The
eigenvalue given by the shooting methcd is W = (0.2658248,0.3%691862) Wy .

The convergence is quadratic for 3/h with positive gradient for @ = Re(w )
and negative for Y = Im{ @ ). The extrapolate values of them accord with
thoge for the shooting method with very high accuracy. Fig.(é.b) shows the
conversence curve when the truncation length N is varied and the mesh size h
is fixed to v = 6.0104.KLS ., For I > 80, the eigenvalue computed by the
matrix method converges to that computed by the shooting method. If K < €0,
the eigenvalue fluctuates rapidly because the eigensclution does not still
dgamp of at x = Nh.

_ Fig .(%) illustrates the eigensolution obtained by the shooting method.
The solid and dotted line indicate ihe real and imaginary parts of the

sclution, respectively. We show P(n) in Fig.(5.a) and its Fourier

transform, ¢(x)in Fig.(5.t). We alsoc show in Fig,(6} the eigensolution
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oy the metrix method for b = 2.2 x 107°kLs (Fig.(6.2)) end b = 5.04 x 1077

KL (Fig.{€.b)). The eigensolution ¢{x) for n/(KL,) = 5.04 x 1077 i in
good accordance with that by the shocting method., Therefore we conclude
that the matrix method works guite satisfactory.

The shooting method with Fourier transformation cannot be applied wnen
the slat potential has not the form of a pelynomial function of x as Eq.(9)

hut has the general form. On the other hand, the matrix method can solve

79.{(2) including the correct form of #(x), which is the character of the

matrix method,
7,2 CJonvergence for the General Case
Trhe comtour map gives good starting values of iteration. Fig.(?} shcows

an example ¢f contour map (parameters are : q = 3.2, kpi = 0,2, T =1,

g =1 anpd £ = G.l.) The solid and dotted lines indicate ke plw)
Im plw) = O, respectively, There are many crossing points, i.e., the
solutione of D{w) = 0. they can be used as the starting value. The contour
map zives more information about the solution. We can classify the sclution
into several branchesl) by studying the structure of eigensolution ¢(x) and
the parameter dependence of the trajectory of the eigenvalue in the Rew - Im @
plane, Eor example, the solution A is the Perlstein -~ Berk branch which is
stable in the slab limit (€ - ¢). It is almost stable in the toroidal
geometry over various parameters. The mest unstable solution C belongs to
the other branch which has localized structure and highly stable in the =lab
1imit. The solution 3 is not z higher mode velonging tc the same branch as
C, but the foundamental localized solution of the toroidicity - induced
hranch. It approaches {w,Y) — (0, 0) as € —» 0,

Fig.(a) shows the convergence curve of the eigenvalue belonging to the

C uranch, where the parametersare i g = D, kpi =0,2, 1=1, s =1 and

o
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£ = 0.1. We also illustrate the eigensclutions for h = 1072 KL, (Fig.(9.2))
0,25 x 1072 KL (Fig.(9.v)). The point 4 in Fig.(8) denotes

(&%)

fl

and for n

ize as k, (hA)ve/(U ~1/4 and B denotes k, (hB)ve/cu ~1/2,

m

such a mesh

If the mesh size is smaller than hﬂ, i.e., the potential due to the electron
response 1s described enough accurately, the convergence curve is guadratic.
Therefore, the extrapclated eigenvalue is assured to be the true value, For
larger meshes than hB the convergence curve derivates from guadratic. However,

we can get accurate eigenvaiue and eigensolution (see Fig.{9)) for those

~
é

meshes. Bven for h/ (KiLS)Qilﬂ_ , The eigenvalue approximztes tc the

extrapolated value within the error £1 % .

4. Summary and Discussions

We have presented a matrix method to solve numerically the difference=-
differential equation of the electrostatic high-n ballooning mode. 1t
approximates directly the equation using the finite difference method., Then
the torcidal mode coupling effects and the electron and ion responses are
kept in the correct forms, The generalized eigenvalue problem is reduced
to that of a linear eguation, which is solved by three procedures, that is,
(1) matrix remurbering to save CFU iime and Core Memory, (2} contour map to
seek eigenvalues, and (3) Newton's method to cbizin them by iteration. We
have investigated the performance, convergence property and accuracy of the
ratriy method in detail. The convergence of eigenvalues is shown to be
quadratic for fine meshes. This method gives accurste sclution and enables
us to study the high-n ballooning medes over the extensive parameter space
By T9% and under IN-CORE condition.

The matrix method can be applied to the electromagnetic balleoning mode.

Tor this case, the matrix becomes a matrix which has the seven width band

R

atvzeture in the slzb and mede coupling terms. Then, no changes need in
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£ = 0.1. We also illustrate the eigensolutions for h = 1072 kL, (Fig.(9.a))
and for h = 0.25 x 1077 KL (Fig.(2.b)). The point 4 in Fig.(8} denotes
such a mesh size as k, (hA)ve/aj ~1/4 a2nd B denotes k,, (hB)Ve/ w ~1/2.
If the mesh size is smaller than hA’ i.e., the potential due to the electron
response is described enough accurately, the convergence curve is guadratic.
Therefore, the extrapclated eigenvalue is assured to be the true value, TFor
larger meshes than hB the convergence curve derivates from guadratic. However,
we can gei accurate eigenvalue and eigensolution (see #ig.{(9)) for those

2

meshes, Bven for h/ {k Lc)ﬂg 10 , The eigenvalue approximates to the
=}

extrapolated value within the error £ 1 % .

4. Summary and Discussions

We have presented z matrix method to solve numerically the difference-
differential equation of the electrostatic high-n ballooning mode, It
approximates directly the equation using the finite difference method. Then
the torcidal mode coupling effectis and the electron and ion responses are
kept in the correct forms, The generalized eigenvalue problem is reduced
to that of a linear eguation, which is sclved by three procedures, that is,
(1) matrix remumbering tc save CPU lime and Core Memory, (2) contour map to
seek eigenvalues, and (3) Newton's method to obtain them by iteration. We
have investigated the perfornance, convergence property and accuracy of the
matriv method in detail. The convergence of eigenvalues is shown to be
quadratic for fine meshes. This method gives accurate solution and enables
ue to study the high-n ballooning medes over the extensive parameter space
by TS5 zand under IN-CORE condition.

The matrix method can be applied to the electromagnetic balleoning mode.

Tor this case, the matrix becomes a matrix which has the seven width band

atruieture in the slab and mode coupling terms. Then, no changees need in
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the basic procedures cf the method and we can compact the matrix by

suitable renumbering.
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Fig.2 Band width after renumbering MA vs. band width of the original
matrix Mﬁ for the case of N = 200, The dotied line is MA = Mb.

Renumbering is profitable for ﬁA > 50,
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Core Memory (byte) (Fig.(3.2)) and CPU time (s) (Fig.(3.b))
necessary to compute D(w) by FACCM F¥-200. (I) and (1I) are the
cazes of LDU decomposition without and with use of the band
structure, respectively, (I1I) is the case of the renumbered
matrix. by, = h/{K Ls) and h is mesh size. The truncation length
¥h =KL is fixed. The shaded line (LY in Fig.(3.2a)
indicates the upper limit of core memory for TS5. The convergence
curves of w=Re( @) and v = Im( ®) are showr by solid and dotted
lines (Fig.{3.c)). The necessary mesh sizes to get 'good

convergence' are also shown,
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Fig.5 Eigensolution ¥(n) cbtained from the shooting method (Fig.5.a) and
its Fourier transformation ¢(x) {Fig.5.b). The solid and dotted

lines indicate the real and imaginary parts of the sclution,

respectively.
H(X) $(X)
10 1.0
10 20 30 40 30 4G
Of= pr e : O ;
X X
Fig.6 Eigensolutions obtained from the matrix method for the cases of

{a} h = 2.2><2LO_2|<LS and (b) h = 5.oux10'3KLs
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Fig.7 Contour map of Reb{w) = 0 (solid line) and Imp{w) = 0 (dotted line).

Parameters are same in Figs.4. The crossing points A, B and c
denote the eigenvalues belonging to the A, B and C branches,

respectively.'
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Convergence curves of the eigenvalue belonging to the C branch

in Fig.T7, where the parameters are
5 =

:q=59 kpi=0-2,T=l,
1 and € = 0,1 . The point A denotes such a mesh size as
k”(hA)ve/w = 1/L, and B denotes k"(hB)ve/m ~ 1/2 .
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Eigensolutions for h = 10'2|<LS (Fig.9.a) and h = 0.25%x10 kL
(Fig.9.Dp) .

Almost no difference is seen,



