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1. Introduction

When energetic ions are incident on the solid, those ions not
directly backscattered can penetrate a solid surface. They will slow
down to thermal energy by elastic and inelastic stopping processes and
eventually come to rest near the projected range as trapping impurity
atoms. Depending on the solubility, the diffusivity and the barrier of
the surface, they may diffuse into the bulk of the sclid, they may partly
leave the surface or they may be trapped in the implanted layer. Such
behaviors of the thermalized impurity atoms are solid state problems:
diffusion, evaporation, ségregation, binding with defects etc. It is
noted, however, that most of these properties are influenced by
radiation. Thus, the basic processes of trapping(retention) and
detrapping(re-emission) of implanted gas are complex mixture cf the
various thermal processes and radiation induced processes in solid. The
detrapping(re-emission) play a role in the recycling of plasma at the
wall of fusion research plasma device; the trapping(retention) of
hydrogen has important economic and safety consequences with respect to
the tritium inventory holdup.

The purpose of this present report is to compile the experimental
data depending on the varicus parameters, which relate to the trapping
and detrapping mechanism. A survey has been made of the literatures upto
end of 1980, by dividing it into following seven sections: 1) Dose
Dependence, 2) Target Material Dependence, 3) Time Dependence, 4) Target
Temperature Dependence, 5) Incident Energy Dependence, 6) Damage Effects,
7) Ion-Induced Release. The experimental data for helium, however, is
cited only in limited cases, because of the lack of experiments.

The experimental data compiled in the present report are stored in
the AMSTOR system of JAERI, and further addition of new data is in

progress. The references for each experimental data are shown in the

-1 -
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figures, and all the literatures concerning trapping and detrapping of
hydrogen isotopes and helium are listed chronologically and

alphabetically in each year at the end of the report,

The authors are grateful to Dr. T. Shirai for his cooperation on the

AMSTOR system. They are also thankful to Miss N. Komatsu for typing the

manuscript and preparing the tables.
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2, SECTION A: HYDROGEN ISQTOPES

Hydrogen trapping and detrapping can be studied by gas
re-emission(GR), thermal desorption spectroscopy(TDS), nuclear reaction
analysis(NRA) and secondary ion mass spectroscopy(SIMS). The experi-
mental data as a function of fluence is typically given as the
re-emisgion rate(R), expressed as a fraction of the incident flux(Ji), or
as trapping coefficient(n), where n = 1-R, or as total retention(n),
where n = fn(Ji)dJi. In the following, we review the existing data and
examine the characteristic features of the trapping and detrapping

processes.

A - 1 Dose Dependence

Retention studies in several materials exposed to energetic hydrogen
ions are shown Figs. A-l, A-2, A-3 and A-4. In these figures, retention
of deuterium in the samples are plotted as function of incident fluences.
At low fluenrces (<1016 ions/cmZ), 21l the dincident deuteron is-retained
in the sample apart from a small fraction (typically 5v10 %) which is
kinematically reflected. As the incident fluence is increased, the
trapping efficiency gradually decreases and a maximum hydrogen
concentration(saturation) is reached in each of these materials. The
saturation concentration depends not only on the surface material and
temperature but also on the energy of the incident particles, the damage
history and the concentration of the gas left in the lattice as shown in

the later sections.



RETENTION (D/cm®)

1021

10

JAERI-M 82-118

I |FIIH| Pl I!IIH] [ II!HI] | I[IIII” LR

© RE-EMISSION

@ PROFILING

& DESORPTION

1007 TRAPPING
— TOTAL RETENTION

I
[N

[

\

mERIL
Lol

--=-- FIRST 0.5 wum
6 keV Dy
e
10" & 304N S5 =
- 295 K 3
10" = =
0" & =
IOIS — ,//// ; =
= :
10" Corood rond roonl vl
] 015 ] 016 ] OI? ] OIB I OIQ ] 020
| ON FLUENCE (D*/cm®)
Fig. A-1 Retention cf 6 keV D * in 304LN SS as a function of fluence at

3

295 K. The ion flux was 5 x 10i% D+/cm2'sec. Total retention
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A - II Target Material Dependence

The trapping efficiencies for energetic hydrogen ions in molybdenum,
titanium, zirconium and tantalum are shown in Figs. A-3 and A-6 as
functions of ion dose and energy, respectively. It will be seen that Mo
has initially a high trapping efficiency, but that the trapping
efficiency rapidly decreases with dose and saturation 1is reached at about
10l7 ions/cm2 at room temperature. In Mo which do not react exothermic—
ally with hydrogen, the surface will act as a sink for diffusing atoms.
Since the ion range will be very much less than the thickness of the
target, the concentration gradient will be much steeper towards the
surface than into the bulk. Thus the gas flow will be predominantly
toward the bombarded surface and an equilibrium gradually sets up between
the incident ions and the outcoming gas.

On the other hand, Ti, Zr and Ta exhibit markedly different behav-
ior. Trapping efficiencies as high as 0.92 are observed and these are
maintained constant up to doses of at least 101° ions/cm?. This implies
diffusion of the hydrogen into bulk without diffusion out of the surface.
Tn certain metals such as Ti, Zr, V, Nb, Ta and the rare earths, hydrogen
reacts chemically and has a large negative heat of solution. In addi-
tion, in many cases, in the group Va metals, hydrogen is known to have
large diffusion coefficients with activation energies considerably less
than heét of gsolution. Thus implanted hydrogen ions can diffuse in the
bulk of the metal without being able to penetrate the potential barrier

at the surface.
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A - III Time Dependence

Time dependence of the deuterium retention after implantation for
the various samples are given in Figs. A-7, A-8 and A-9. The decrease of
the retained deuterium in 316 stainless steel shows that much of the
deuterium rapidly moves out from the near-surface region either emerging
at the surface or diffusing into the bulk, This behavior is expeéted as
deuterium is mobile in stainless steel at room temperature.

For Ti and Ti alloy, the amount of deuterium retained in the near-
surface region is found to vary significantly with alloy composition at
any given time after implantation. Annealed pure titanium shows no
significant decrease in the near surface deuterium concentration with
time, while in the cold worked titanium retention decreases steadily.
The Ti-6A1 samples maintain nearly constant deuterium levels. But, for
the Ti-6A1-4V alloys which are mixture of alpha and beta phases, nearly
all of the deuterium leave the near-surface region within 10° sec.
Severe cold-working and presence of the beta phase considerably reduce

deuterium retention in the near-surface regiom.
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A - IV Target Temperature Dependence

Temperature dépendence of re-emission rate during hydrogen bombard-
ment have been measured on several unreactive targets such as nickel
(Fig. A-10), molybdenum (Figs. A-11, A-12), stainless steel (Figs. A-13,
A-14, A-15) and graphite (Fig. A-16). Below room temperature, hydrogen
is unable to diffuse out of the implantation zone as fast as the arrival
rate from the incident ion flux. The trapping coefficient is close to
unity and hydrogen to metal ratio in the implanted surface layer exceeds
0.9. Above 300 K, trapping decreases rapidly with increasing fluence.
The decrease in trapping is seen to be faster at high temperature. This
temperature dependence suggests that hydrogen diffggion plays an import-
ant role in the re-emission phenomenon above room temperature.

Time dependence of the re-emitted gas flux is approximately
described by diffusion model with the theoretical flux being given by:

J = Joerf{R/ﬂﬁi]
where JO is the incident flux, R the mean ion range, D the diffusion
coefficient of the gas in the solid aand t is time. Since diffusion
coefficients vary with temperature in the well-known way,
D= Doexp(—Q/ka)

an increase of temperature results in an increase of D and hence the very
much more rapid attainment of equilibrium. Qualitatively similar curves
have been observed experimentally. In order to fit the theoretical
curves to the experimental results, however, the values of diffusion
coefficient required are about two orders of magnitude below those
measured in conventional thermal diffusion experiments. The low diffu-
sion coefficient observed will be attributed to the trapping of hydrogen
atoms at the damage sites described in section A - VI. At higher
temperatures (>400 K), hydrogen release may also be controlled by

molecular recombination on the surface leading to thermal molecules being
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re—emitted. Although it is difficult to know a reliable value for the
surface recombination coefficient, the rate determing process may be
determined by comparing the bulk concentration to the near surface
concentration; a large ratio implies diffusion controlled release while a
ratio near unity implies surface recombination controlled release. 1t is
still to be determined experimentally whether the release take place as
atoms, as molecules or as ions.

For reactive metals with hydrogen such as Ti, Zr and Ta, trapping
efficiencies for keV hydrogen ions at room temperature is greater than
90 % up to doses of at least 101° ions/cm? as seen in Figs. A-5, A-14 and
A-17. However, the effective trapping efficiency decreases at higher
temperature, where the atom has sufficient thermal energy to overcome the
surface potential barrier. Trapping efficiencies measured after large
doses as functions of temperature are shown in Figs. A-18, A-19 and A-20.
It will be noted that the efficient trapping persists to higher tempera-
tures, the higher the heat of solution of hydrogen in the metals.

At higher concentrations, hydrogen forms a hydride with the metal
and the effective diffusion coefficient may drop, thus Jleading to a
further increase in concentration. Profile measurements of deuterons
implanted in Zr (Fig. A-21) show that high concentrations (v100 at.%)
build up near the surface without significant release at temperatures in
the range 300 - 400 K. At higher temperatures the deuterium atoms
diffuse into the bulk, leaving a lower concentration at the surface. At
lower temperatures the surface reaches saturation in a way similar to the

behavior of unreactive metals.
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1018 DT /em2 of 10 kev D3+. (ref. 53)



D CONCENTRATION (7))

JAKRI-M 82-118

| | | T |
] ® 380 K )
A 425 K
e 4T5 K

100 —
10 keV D* in Zr
— e 8.8x10" D'/cm? -

0 100 200 300
DEPTH (mg/cm?)

+
Fig. A-21 Depth profiles for 10 keV D implanted into Zr, kept at
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different temperature, fluence = 8.8 x 1017 D' /em?. (ref. 39)
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A - V Incident Energy Dependence

The energy dependence of the re-emission rate in stainless steel is
shown in Figs. A-22 and A-23. It will be seen in these figures that the
re—emission rate increases with decreasing the incident ion energy. This
is reasonable if the release mechanism of atoms from the trapping site is
essentially thermal one., Because, the penetration range cf the ions
decreases with decreasing the ion energy.

The trapping of ions in targets, of course, only is applicable if
the incident ion slows down in the target and is not backscattered.

Thus, the contribution of backscattering.must be corrected for the
evaluation of trapping coefficient. Apart from the effect of
backscattering, the probability of trapping in reactive metals as Ti and
7r seems to be independent of the incident ion energy as seen in Figs.

A-6 and A-24,
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Fig. A-24 Experimental values of hydrogen trapping in Zr and Ti compared

with calculated reflection coefficients. (ref. 16 and 17)
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-A = VI - Damage Effects ..

Various experiments such as re-emission measurements (Fig. A-25),
nuclear reaction analysis (Figs. A-26, A-27, A-28) and thermal desorption
spectroscopy (A-29) revealed that the trapping of hydrogen depends
strongly on the extent of lattice damage in the target, Increase in
trapping efficiency with lattice damage is shown by damaging the target
deliberately with heavy ions i.e. He, Ne and Ar before bombarding the
surface with hydrogen. Profile measurements of the hydrogen isotopes as
shown in Fig. A-30, A-31 and A-32 provide the evidence for the‘trapping
of the diffusing atoms at the radiation damage generated by ion beam; the
hydrogen atcms segregate in the damaged region, Calculations based on
the thermal desorption spectroscopy (A-29) and nuclear reaction analysis
(A-33) indicate that there are some radiation damage traps with different
binding energies (measured with respect to the interstitial hydgogen
energy) of 0.1 ~ 0.3 eV, those are much larger than the energy for

hydrogen diffusion.

— 3.'3,
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Fig. A-25 Gas release during 20 keV D implantation of damaged and
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bombardment, where the beam current is 2.5 pA and the beam

diameter 3 mm. (ref. 10)



JAERI~-M 82-118

{ | | I I | | i i /] 1D
-~ 100% TRAPPING ,
® 2x10'° Ne/cm? /

T ® 6x10" Ne/cm’ y N
— A 1x10" Ne/cm’ ,/
~ v NO PREDAMAGE Y
= — / -
g 8 keV D* in Mo
(-]
-~ | —
O
=
D)
|_
=
Ll
— —_
L
(1

O |
0 l 2
|ON FLUENCE (10 D*/cm?)

Fig. A-26 Total D retained in the near-surface region of Mo predamaged

+ +
with 55-keV Ne , plotted as a function of 8-keV D ion fluence
for Ne+ predamage fluences indicated. Dashed line corresponds
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account. (ref. 28)
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ion fluences.
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after bombardment of 6 x 105 3He+/cm2 at 300 keV. (ref. 76)
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A - VIT Ion-Induced Release

As seen in Fig. A-22, a maximum hydrogen concentration (saturation)
is reached even at low temperature where thermal detrapping is negligi-
ble. It is probable that this saturation is due to icn-induced release.

These effects are most easily observed in isotope exchange measure-
ment conducted at low temperatures where thermal diffusion is negligible.
In this process, an incident ion desorbs an atom previously trapped in
the solid lattice. Consequently, the deuterium retention is observed to
decrease when the implanting ion is switched to proton as shown in Fig.
A-34., Details of the mechanism are not properly understood, but in
practice the probability cf detrapping can be quite well described by =a
cross—-section. Release cross sections for deuterium as a function of
incident proton energy are shewn in Fig. A-36, those are evaluated from
release rate measurements as shown in Fig. A-35 assuming the exponential
decay. The variation of cross section with energy at 77 X is similar to
that obtained at room temperature, but the absolute values are about an
order magnitude lower. For low-temperature situation, thermal migration
is suppressed and the detrapping may be related to the replacement of
implanted atoms by later arrivals; in the higher temperature (2300 K),

both replacement and thermal diffusion will be operative.



JAERI-M 82-118

[

RETENTION (10" D/cm?)

l | l I ! I !
@ 14 keV

— N —
ny —
W —]
W
!

A 7 keV - °C

% 4 keV

K I keV -
---- Single Comp.

—— Two Comp.

Fig. A-34

|
5 6 7 8 9 10
(10" D+H/cm?)

|ON FLUENCE

Trapping and replacement behavior of deuterium implanted

316 88 at 150 K as a function of fluence. The thin dashed
lines in the linear portion of the trapping curves represent
100 Z trapping after kinematic reflection is taken inte
account. The break in the 7 keV curve at saturation corre-

sponds to an additional fluence of 2 x 1pl8 D+/cm2. (ref. 34)



JAERI-M 82-118

keV D*
Ll SS 77 K
|_..—
<
o
[
L N o
— 0.5 N
L
e
=

10
|ON FLUENCE (10" H'/cm?)

Fig. A-35 Release of D, from 304 SS during bombardment by protons after

2
prior implantation with deuterons. The energy cof protons and
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+
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normalized to 1 atom/ion at the maximum yield. (ref. 33)
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3. SECTION B: HELIUM

3 - I Target Temperature Dependence

Helium re-emission after high-energy helium implantation at various
temperatures has been studied in a wide variety of metals such as
aluminum (Figs. B-1, B-2), SAP (Fig. B-3), molybdenum (Fig. B-4), 316 SS
(Fig. B-5), vanadium (Fig. B-6) and niobium (Fig. B-7). From these
experiments a basic pattern of behavior has emerged. Three distinct
temperature dependent modes of the helium release are exhibited.

At a very low temperature (n0.1 Tm, where Tm is melting tempera—
ture), the re-emission data show a period of high gas retention until a
critical dose (10171018 ions/cm?) was achieved, followed by a steady
rise in the re-emission rate. The intermediate temperature regime (0.2 ~
0.4 Tm) was characterized by sudden bursts of helium. At high tempera-
ture (>0.5 Tm) the third type of gas re-emission is found. The helium
release becomes a steady and smooth curve and approaches more rapidly to
a steady-state release rate compared to the low temperature release. The

period of high gas retention shows a dependence on material and

temperature.
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B - TI 1Incident Energy Dependence

In Fig. B-8, the amount of trapped helium is shown as a function of
bombardment dose at different incident energy. At very low doses the
trapping efficiency is close to unity. As the dose received by the
surface is increased the target becomes saturated and eventually the
retention becomes constant. The saturation concentration decreases with

decreasing of incident energy, similar to that for hydrogen.
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B -~ ITI Microstructure Dependence

Helium re-emission in the intermediate temperature regime (270 ~ 400
K) is strongly dependent on microstructure of the target. In Fig. B-9,
He.re—emission data from Al samples implanted under the same condition
are shown; the re-emission of the annealed sample consists of a pericdic
series of He bursts with small re-emissicn between them.

That the trapping of helium depended strongly on the extent of
lattice damage in the target has been shown by the observation of thermal
desorption spectra. Two distinct regions of gas release being apparent
in Fig. B-10 have been interpreted as being due to two types of trapping

site related tc the different helium defect configurations.
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