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The JMTR (Japan Materials Testing Reactor) was designed to provide
suifable facilities for conducting nuclear irradiation experiments
neceésary for the research and development of power reactor in Japan.

The JMIR consists of a 50 MW high flux reactor, irradiation facilities and
a multi-cell hot laboratory. The available irradiation facilities are
various kinds of capsules, hydraulic rabbit facilities, neutron control
facility, high temperature and high pressure water loops, and high
temperature and high pressure gas loop.

The aim of this publication is a representation of the information

concerned with the irradiation facilities.
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1. Introduction

The JMTR (Japan Materials Testing Reactor) was designed to provide
suitable facitilies for conducting nuclear irradiation experiments necessary
for the research and developments of'powef reactor in Japan, and is owned
and operated by the JAERT (Japaﬁ Atomic Energy Research Institute). The
JMTR is located in the Oarai Establishment, which is one of the four
establishments of the JAERT.

The JMTR consists of a 50 MW high flux reactor, irradiation facilities
and a multi-cell hot laboratory.

The construction wofk of the feactor was started on June 1965, The
reactor went to the first criticality on March 1968, andlpower operation
of 30 MW for irradiation experiment started on January 1970. The reactor
power was increased to 30 MW on November 1971 with a miﬁor'change of
reactor core configuration.

The available irradiation facilities are various kinds of capsules,
hydraulic rabbit facilities, special facilities such as neutron control
facility, and water and gas loops. The capsules are loaded into irradiation
holes and cooled by reactor coolant. The loops have individual high
temperature and high pressure water or gas circuit mainly for the irradiation
under the similar condition to power reactor.

The hot laboratory was completed at the end of 1970, and has been
continuously improved its ability. The laboratory is connected to the
reactor with water canal, and is capable of conducting a wide variety of
PIE (Post irradiation examination).

The aim of this publication is a representation of the information
concerned with the irradiation facilities. After brief explanation of a
configuration and characteristics of the reactor, imﬁortant information
are given on irradiation facilities, which are used for fissile and non-
fissile materials irradiation as well as for radioisotope production.
In-core instrumentation and data acquisition éystem, which play important

role for irradiation experiments, are also described,
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Fig. 1.1 Panoramic View of the JMTR

Fig. 1.2 1Inside View of the Reactor Building
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Fig. 1.3 JMIR Core

Fig. 1.4 JMTRC
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2. JMIR

2.1 Reactor description

The main part of the JMTR is a 50 Mw highly enriched heterogenous
reactor, which is cooled and moderated by light water, and reflected
by beryllium.

The core, 1560 mm in diameter and 750 mm in effective height, is
divided into a fuel region and reflector region. The fuel region is a
7 x5 array (540 mm X 386 mm) containing 22 fuel elemenfs, 5 control rods
and 8 experiment positions. These positions are served mainly for testing
structual materials which require the irradiation of fast neutron flux.
The reflector region consists of the inner reflectors of beryllium and
the outer reflectors of aluminum. The reflector region, because of
producing relatively constant and high thermal neutron flux during
operation, is served mainly as space for irradiation of fuel materials.

About 100 capsules irradiation can be carried out in the core.
However, instrumented capsules will be less than 20 due to the limited
number of reactor vessel nozzles available for penetration of the instru-
ment leads, On the grid plate, are provided 10 insertion holes for loop
experiments, one in the fuel region and 9 in the reflector region. The
maximum diameter of loop is 6 inches,

The fuel elements (horizontal cross section 77 mm x 77 mm, height
1200 mm) are of the modified ETR.type. Each element contains 19 fuel
plates of 1.27 mm thick, 71 mm wide and 768 mm long. The fuel meat is made
of about 23 w/o 93 % enriched uranium aluminum alloy, which results in
about 279 g of 235-U per element.

Each control rods consists of a box type hafnium section on top of
a fuel section. The fuel section contains 16 fuel plates with a total
weight of 195 g 235-U. Their drive mechanism is situated below the
reactor. The control rods are moved on a vertical direction. When a
control rod moved upwards, the fuel section moves into the core displacing
the hafnium section.

All of reflector element used have a same outside dimensions as a
fuel element. Each element is eduipped with a irradiation hole drilled
along its axis. The hole is filled with a solid plug of same material as
the element when mnot in use for irradiation experiment. Diameters of the
holes are 32 mm, 38 mm and 42 mm for beryllium reflectors, and 32 mm, 38
mm, 42 mm, 62 mm and 67 mm for aluminum reflectors. Reflector element

with desired hole could be inserted into a desired core position.

— 4 -
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The reactor vessel is a stainless steel tank of 3 m in diameter and
9.5 m in height. Its wall thickness is 34 mm. It is designed to
withstand an internal pressure of 18 kg/csz. The top head flanged to the
shell has openings for the access to the core and many nozzles for experi-
ments. The bottom head also provides the holes for through-loops as well
as for control reods,

The reactor core is cooled by circulating demineralized water in a
closed circuit, consisting of the reactor vessel, three main pumps and
the tube side of the three water to water heat exchangers. The water flows
downward through the reactor core. The velocity along the fuel plates
is 10 m/s. The flow rate thrbugh the core is 6000 m3/h. Max. water inlet
temperature is 47°C. The corresponding outlet temperature is 56°C. 1In
the heat exchangers the reactor power is dissipated to the secondary
coolant, which is circulated over cooling towers. The flow rate of
secondary water is 3900 m3/h. Number of operating towers are to be
selected according to wheather conditionm.

The reactor vessel is situated in the reactor pool of 6 m in diameter
and 13.7 m in depth. There is a water layer of 4.2 m above the reactor
vessel during power operation. The water level in the pool is lowered to
the top level of the reactor vessel for the handling of fuel elements and
irradiation facilities during the shut down periods. Connecting the
reactor pool, there is a canal of 3 m width and 6 m in depth to the Hot

Laboratory adjacent to the reactor building.

Description of the JMTR

TYPE «vevacsavosnereasesnssnssasss Lank type

POWET sevvervesacensssosnsnnnasass 20 MW
Moderator/coolant .......ce0e--... H20 (14 kg/cmZG, 50°C)
Reflector ......... Chieaes e .« Be and Al

Fuel; material ....ceeeseeevess-a. U/AL alloy

enrichment «eerceorecesvense
loading et irereeeereieeeaes
EVPE s icvisnorrsnccnsssrsncse

Control rod cvveveeevernansssnonna

93 %

6.5 Kg of 235-U

Modified ETR

5 Hf rods with 5 fuel followers

Neutron flux (X1014 n/cmz-s), (max.):
fast ( -1 Mev) thermal
fuel TEEIOM veveveroerensnnneeas b cvenvivens 4

reflector region ..evevevvenn

e
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2.2 Operating schedule

The operating mode of the JMIR is a 26-day operation (one cycle)
followed by a shut down work.

Main shut down works are refueling, installation and reloading of
the irradiation facilities, and maintenance on the reactor and the
facilities. The shut down works needs 4 weeks generally. Additional 2
weeks in spring and 12 weaks in summer are required for annual inspection
according to the national reactor regulation. Another 10-day shut down
is scheduled for the new years holiday.

A 26-day operation, with 2-day mid shut down work for refueling,
produces a integral power of about 1050 MWD. Averaged integral power
annually produced is 4725 MWD.

Eight fresh elements containing 279g of 235-U, ten falf cycle used
elements containing about 245g of 235-U and four one cycle used elements
containing about 210g of 235-U are loaded into the core at the beginning
of the operation to obtain a relatively uniform neutron flux and enough
reactivity for operation. During the mid shut down, ten elements contain-—
ing 245g of 235-U at the beginning are replaced by fresh elements and
four elements containing about 210g of 235-U at the beginning are replaced
by other one cycle used elements for futher operation.

In case of unscheduled shut down during operation, the reactor can
not restart within 40-50 hours, if a restart up within 15-30 minutes have

been failed, due to a Xenon build up.
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50 MW Operation
(21 effective full power days) Next cycle 50 MW Operation

A
™ - N

AL

Shut down work
(normally 4 weeks)

Mid shut down work
(2 days)

Fig. 2.2.1 Standard Operation Schedule of the JMTR

Table 2.2.1 Standard Fuel Loading in the JMIR Core

C B| F | B c o A|F*|A C
B A B A B B B A
A B F B F A B F*| A F* 1 A F*| B
B A B A | B B B 1A
Cc B F B C C A F* | A C
At begining of a cycle After refueling during mid
shut down work
note A; Fresh fuel element
B; Half cycle used fuel element
C; One cycle used fuel element
F; Fresh fuel follower
F*; Half cycle used fuel follower
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2.3 Neutron flux and spectra

Typical thermal and fast neutron flux distribution at 50 MW are
shown in Fig. 2.3.1. Neutron flux for each operation is calculated by
complex neutronic code in advance to loading. Nuclear heating or neutron
fluence for each experiment can be estimated with this calculated flux.
Proposed loading may be changed if a results of the estimation could not
satisfy a requirement of the experiment.

Neutron flux distribution is changed as the operation proceeds due
to mainly control rod movement. Horizontal distribution is relatively
unchanged during operation except for one day after start up. However,
vertical distribution is considerably changed. Fig. 2.3.2. show a change
of vertical distribution accompanied with control rod movement.

Neutron spectrum in the fuel region and beryllium reflector region
are shown in Fig. 2.3.3. Neutron flux in the core is presented in energy
integral basis. So-called fast neutron flux contains neutrons having
energy above 1 MeV and thermal neutrons having below 0.625 eV. Table
shows spectrum indices, which are used to obtain fast neutron flux having
lower limiting emergy below 1 MeV.

Fluence monitors, such as Fe wire for fast neutron and Co-Al alloy
wire for thermal neutron are placed in irradiation facility close to
specimen when exact fluence are desired.

Neutron flux measurements are carried out in the JMTRC for some
special experiments, which calculation can not give precise and/or detail
neutron flux distribution. The JMIRC is a nuclear mock up of the JMTR and

is located in the same building.

SPECTRUM INDICES

Region s | i
Fuel Region 2.00 2.02
Be-1 Reflector 2,31 2.08
Be-2 Reflector 2.62 2.29
Al-1 Reflector 2.77 2.44
0OGL-1 Loop 2,80 2.48
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2.4 Hot laboratory

The hot laboratory of the JMTR, adjacent to the reactor building
and connected with a water canal, have been in operation since 1971. The
laboratory has a capability with a wide variety of work such as dismantling
of irradiated capsule and loop assembly, post irradiation examination of
fuels, and post irradiation testing of structural materials,

The concrete caves, mainly used for dismantling and fuel examinationm,
are equipped with cutters and saws, milling machine, welder, press,
apparatus for dimensional measurement, sStereo scope, peri scope, X ray
apparatus, gamma scanner, liquid metal disposer, FP gas analyzer, eddy
current tester, profilometer and microscopes.

The lead cells, used for material testing, are equipped with temsile,
compression and bend test machines, Sharpy impact tester, pipe rupture
test facility, hardness tester, microscopes and furnace for heat treatment.
An electron probe micro analyzer with shielded beam tube has been recently
installed in the hot laboratory.

Another 5 iron shielded cells were completed in June of 1982 and will
be equipped with PCI-SCC tester for LWR fuel cladding, creep machine and
etc..

The hot laboratory can accept materials irradiated not only in the
JMTR but also in other reactors. Forxeign materials are loaded through

top openning of the cave.
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Fig. 2.4.2 Concrete Caves

Fig. 2.4.3 Lead Cells
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Table 2.4.1 Working Flow Diagram of the Post-Irradiation
Examinations

TRRADIATION IN THE REACTOR

CISCHARGE FROM THE REACTOR

COOLING IN THE CANAL,.,.....3 MONTHS FOR FUEL SPECIMENS
’ 1 MORTH FOR QOTHER MATERIALS

1OADING INTO THE HOT LABORATORY CONCRETE CAVE

YISUAL INSPECTION

X-RAY RADIOGRAPHY

DI§MANTLING

FUEL SPECIMENS

YISUAL INSPECTICN

DOSE MEASUREMENT

X-RAY RADICGRAPHY

GAMMA SCANNING

PROFILOMETCRY

INSPECTION ON CLADDING,..LEAK TEST

EDDY CURRENT
RESIDUAL GAP

FP GAS ANALYSIS

CUTTING AND REMOVAL PELLETS

Y

© VISUAL INSPECTICN
WEIGHT MEASUREMENT
DENSITY MEASUREMENT
CERAMOGRAPRY

HARDNESS TEST
REPLICA PRODUCTION
AUTORADIOGRAPHY
MICROSAMPLING
MICRCGAMMA SCANNING
X-RAY MICROANALYSIS
S -

ey

CAPSULE MATERIALS

OTHER MATERTALS

b

DOSE MEASUREMENT
LOADING INTO CASK
TRANSFER TO MATERTALS TESTINGCELLS

MECHANTCAL STRENGH TEST
HARDNESS TEST

IMPACT TEST

HEAT TREATMENT

DIMENSICNAL MEASUREMENT

METALOGRAPHY

TRANSFFR TO THE RADTOACTIVE WASTE DISPOSAL FACILITY

{ INCLUDING DUCTILE FRACTURE AREA )
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3. Capsules

3.1 Low temperature irradiation test

Some materials, such as a target for a production of neutron sources
(ex. Sb-124) and surveillance test specimens, are irradiated at coolant
temperature (50°C).

Test pieces/specimens are held in an open-type basket made of
aluminum, which is loaded in a core, and cooled directly by reactor
coolant. This type is so called "Leaky capsule" which is the simplest
capsule in JMTR. All the parts in the capsule, which comes in contact
with coolant, should not be corrosive or high potential materials such
as Cu, Ag, etc. in order to avoid the iInjury to the reactor fuels covered
by aluminum and the increase of. coolant activities.

Characteristics of the low temperature irradiation capsule are shown

in the table.

Characteristics
Item Specification
Outer diameter of capsule 29,2, 35,2, 31.4 and 41 mm
Active diameter for specimens 23.7, 36 mm
Active length for specimens 750, 850 mm
Irradiation temperature 50 — 100°C
Coolant pressure 14 kg/cm? -G
Neutron flux max. 3x101% n/cm?.sec
(<0.625 eV)
max. 2x1014 n/cm?.sec
(>1 MeV)
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Basket

Specimen holder

Target for neutron source

Specimen holider

iy
$41

Section A

Fig. 3.1.1 Neutron source preduction capsule
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3,2 Radio-isotope production

JMTR is a suitable reactor for production of radic-isotopes due to

the high thermal and fast neutron flux.

about 25% of irradiations in JMTR.

Radio-isotope production occupies

The following table shows radio-

isotopes produced by using open baskets, aluminum capsules and hydraulic

rabbits.,

Radio-isotope Target Reaction Half life
32p S 30 g 324 (n,p) 14.3 d
355 XC2 Jg 35Cz(n,p) 87.9 d
51Cr Cr 5 mg 500r(n,y) 27.8 d For medical use
6000 Co 1.5 g 59Co(n,Y) 5.26 y
198, A 1.5g | Pau@,y) | 2.694
qu AN 175 g 14N (n,p) 5730 y
355 KC2 3g 35Cz(n,p) 87.9 d
634 Ni 3¢ | Nita,y) 92 y
115mCd cd 0.5 & 114Cd(n,Y) 43 d For industrial use
1701‘111 Tmp03 0.3 g lﬁg'l‘m(n,Y) 134 d
1920, r 36 g | v,y | 7424
45Ca CaCO5 10 mg 44Ca(n,y) 165 d
5800 Ni lg 58Ni(n,p) 71.3 d For other uses
652n Zn 20 mg 642n(n,y) 245 d
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a) Open basket

Middle lived radio-isotopes: such as phosphorous 32, chromium 51 and
iridium 192, are produced by using the open baskets. Maximum five
aluminum capsules carring targets for radio-isotopes loaded in an aluminum
basket are irradiated in the reflector and/or fuel regions. The capsules
in the open type basket are cooled directly by the primary reactor coolant.

Characteristics of the open basket type capsules are as follows.

Characteristics

a) Open basket in fuel regions (Figure 3.2.1)

—— producted radio-isotope phosphorus 32
— target nuclide sulpher 32
— outer diameter of open basket 29,2 mm
--— available length in open basket 750 mm
~— outer diameter of aluminum capsules
loaded in the open basket 25,7 mm
—— length of aluminum capsule 134 mm
—- maximum number of capsules loaded
in an open basket 5 capsules
— center line temperature of capsules
adjusted by regulation of their max. 444°C (boiling point
axial positions in the open basket of sulpher)
14

— neutron flux 3x10 n/cmz-sec(>l MeV)
b) Open basket in reflector region (Figure 3.2.2}
— producted radio-isotopes : iridium 192, chromium 51 and others
— target nuclide : iridium 191, chromium 50 and others
— oputer diameter of open basket : 41 mm
— available inner length in open basket : 850 mm

— outer diameter of aluminum capsules loaded
in open basket : 34 mm

— length of aluminum capsules : 150 mm
— maximum number of capsules loaded in a open basket : 5 capsules

— neutron flux : 2.5><1014 n/cmz'sec (<0,625 eV}
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b) Capsule type

Five aluminum inner capsules that hold pelleted targets of aluminum
nitride (AIN) for production of carbon 14 arve enveloped in an aluminum
capsule. Capsules are irradiated in the fuel and/or reflector region in
the reactor core. The inner capsules are designed to sustain sufficient
mechanical strength to endure pressure increase due to gas generation

from AIN during irradiation (Fig. 3.2.3). Characteristics are shown in

the table.
Characteristics
Item Specification
Outer diameter of capsule 30 mm (in fuel region)
35 mm (in reflector region}

Outer diameter of inner 23.2 mm (in fuel region)

capsule 28.2 mm (in reflector region)}
Length of inner capsule 134 mm
Number of inner capsules 5

loaded in the capsule
Neutron flux O.5-—2x1014 n/cmz-sec (>1 MeV)
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3.3 Temperature measurement and control

The temperatures of specimens in the capsules are measured by thermo-
couples. In the case of measuring temperature of less than about 1100°C,
the sheathed thermocouples of Chromel-Alumel (CA) have been used. In the
case of measuring temperature above 1100°C, tungsten-rhenium (W/Re)
thermocouples are applied, but several problems are encountered, such
as durability of thermocouples themselves, their compatibility with
measured objectives, drifting in their outputs with the neutron exposure.

The temperature of specimens in the capsules are controlled by vacuum
method, mixing gases method and/er heater method.

The temperature control by the vacuum control method is made by means
of regulating the heat transfer through the gas gap by varying degree of
vacuum in the capsule. The flow diagram of the out-of-pile control equip-
‘ment is shown in Fig. 3.3.1(a). In some cases, the purified helium gas
in a plenum volume in the capsule is directly evacuated from the surround-
ings of specimens through an evacuation tube connected to the out-of-pile
control system., Thermocouples are inserted in the specimens or dummies
for measuring and contreclling temperature.

The temperature control by mixing gases is carried out similarly
to the vacuum control methed, by varying the composition of mixed gases of
helium and nitrogen to regulate the heat transfer through the gas gap.

The flow diagram of the system is shown in Fig. 3.3.1(b). This method

is used not only for temperature control, but also for keeping the helium

gas pure by constant sweeping of the gas during irradiation, because a capsule
has sometimes special specimens, e.g. concrete blocks, which vapor gases,

The temperature control using the electric heaters are made by
regulating the electric power of sheathed electric heaters wound on the
heat diffuser holding the specimers in the capsule. This controlling
method is occasionally used together with the vacuum controlling method
in order to regulate the temperature at specimens more finely.

The vacuum temperature controllers and heater temperature controllers

are shown in Fig. 3.3.2 and 3.3.3, respectively.
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Fig. 3.3.2 Vacuum Temperature Controllers
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Fig. 3.3.3 Heater Temperature Controllers
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3.4 Reactor vessel steel irradiation

Specimens for the Charpy impact test, tensile test, compact tension
test and other tests for pressure vessel materials of light water reactors
are often required to be irradiated at the temperature of about 290°C with
an accuracy of +10°C. Since the axial distribution of gamma heating rate
along the reactor core is not uniform and gamma heating varries during
irradiation, several irradiation techniques are ap?lied to maintain the
temperature of specimens to be 290°C+10°C.. The electric heater controlled
capsule is availaﬁly used in JMTR to accomplish the requested irradiation
condition. A fine temperature control can be obtained to make the axial
temperature distribution uniform on specimens, by regulating electric
heaters arranged along axial direction of the capsule. The vacuum
controlling method is often used together with the electric heaters in
order to reduce a lbaﬁ obliged to the heaters. :The tonfiguration of the

capsule is shown in Fig., 3.4.1. Characteristics are shown in the table.

Characteristics

Item Specification
Quter diameter of capsule 40 and 60 mm
Length of capsule 600 mm
Irradiation temperature 290°C+25°C (by vacuum control only)

290°Ct10°C (by vacuum with heater
control)

Neutron flux 0.05—l><1014 n/cmz-sec (>1 MeV)
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3.5 In-pile creep measurement

Mechanical creep rates and rupture times during neutron irradiation
at elevated temperéture can be measured for some reactor structural
materials such as fuel cladding materials for LMFBR (ex. 316ss) and
pressure piping materials (ex. Zr-2.5 % Nb) for the advanced thermal
reactor (ATR).

Lower end of the specimen for creep testing is fixed to the outer
tube of the capsule and the tensile force is loaded on its upper end.

The pressurized bellows by helium gas pulls the specimen through the yoke.

The temperature of the specimen is maintained uniform by the use of electric

heater rounding the specimen. The creep strain can be obtained by the
buffer and the needle type of helium micrometers shown in Fig. 3.5.1 or
can be measured by a linear valiable differential transformer (LVDT) .

Characteristics are shown in the table.

Characteristics
Item Specification
Outer diameter of capsule 40 mm
Tensile load on the specimen 10 - 120 Kg
Temperature at the specimen 750°C max.
Number of specimens in a capsule 3 specimens max.

{(for creep rupture test)

Temperature at bellows 500°C max.

Creep strain detector

(a) buffer type helium micrometer 0-0,25 mm
(¢) needle type helium micrometer 0-10 mm
(c) LVDT 0-10 mm
Neutron flux (0.5—1.0)><1014 n/cmz-sec(>1MeV)
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3,6 Graphite irradiation

Graphite specimens for the high temperature gas cooled reactor

(HTGR) are irradiated under unstressed or stressed conditions.
a) Graphite specimens irradiation capsule (Figure 3.6.1)

The graphite thermal bonds, surrounded by rings, that hold the graphite
specimens for mechanical testings, are enclosed in the inner tube. The
outer tube cooled by the reactor coolant envelopes the inner tube with a
co-extruded aluminum thermal bond. The rings used as the variable gamma
heaters consists of materials with various densities, such as graphite,
molybdenum, niobium and tungsten. This is intending that the gamma heat
generated within the inner tube along the axial direction in the capsule
is about uniform, accordingly the temperature of all specimens in the capsule
results in uniform. The temperature of the specimens is additionaly,
regulated by adjusting thermal conduction through the gas gap between the
outer and the inner tube by means of the vacuum control method, Character—

istics are shown in the table.

Characteristics
Ttem Specification
Quter diameter of capsule 40 mm
Available diameter for specimens 25 mm
Available length for specimens 670 mm
Irradiation temperature 800 - 1200°C
Neutron flux (1.0-—1.5)X1014 n/cmz-sec (>1 MeV)
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'b) Graphite in-pile creep capsule (Fig. 3.6.2)

Several graphite specimens pin-jointed axially with each other in a
capsule are stressed by the pressurized bellows. The temperature of the
specimens is controlled by adjusting the electric output of the heaters
turned around the specimens. The creep strain is measured by the helium
micrometer or the linear variable differential transformer (LVDT).

Characteristics are shown in the table.

Characteristics
Item Specification
Quter diameter of capsule 40 mm
Tensile load on the specimeéns 10 - 120kg
Temperature at the specimens 850 - 950 °C
Number of specimens in a capsule 7 specimens

(for creep rupture test)

Creep strain detector

(a) buffer type helium micrometer 0 - 0.25 mm
(b) needle type helium micrometer 0 - 15 mm
(c) LVDT 0 - 15 mm
Neutron flux (l.O—l.S)lel4 n/cmz-sec {>1 MeV)

_36_
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3.7 Coated particle fuels irradiation
(a) Coated particles fuel irradiation capsule (Figure 3.7.1)

Coated particle fuels for the high temperature gas cooled reactor
(HTGR) are irradiated for investigating behaviors of the fuels at high
temperature (maximum 1600°C}.

The coated particle fuels or éompacted coated particle fuels with graphite
matrix are enclosed in the inner tube of stainless steel that is contained
in the outer tube also of stainless steel. The high temperature is
obtained at the specimens by the large temperature gradient across the
gas gap between the inner and outer tube by means of the vacuum control
method. The tungsten—rhenium thermocouples are used for measuring and

controlling the temperature of specimens. Characteristics are shown in

the table.
Characteristics
Ttem Specification
Quter diameter of capsule 40 and 65 mm
Available length for the specimens 600 mm
i d
Outer diameter of compécted coate 12, 24 and 36 mm
particles fuel
Irradiation temperature 1000 - 1600 °C
Neutron flux max. 2.5%x101% n/em?-sec (<0.625 eV)
max. 1.5x1014 n/cmz-sec (>1 MeV)
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(b) Gas sweep capsule (Figure 3.7.2)

Coated particle fuels for HIGR are irradiated to measure activities
of gaseous fission products released from the fuels during irradiation,

The compacted coated particle fuels are placed in the double walled
inner capsule of niobium-zirconium alloy (Nb-1 % Zr)}. The irradiation
temperature of maximum 1600 °C is obtained by adjusting the temperature
gradient across the gas gap between the double walls of the inner capsule
by using the vacuum control method.

The purified helium gas sweeps the fuels and carries fission products
released from the fuels to the gas analysing system. The gas sweep capsule
holds three inner capsules and the each sweeping gas from each inner
capsule is independently carried and analysed. Characteristics are shown

in the table.

Characteristics
Ttem Specification
OQuter diameter of capsule 65 mm
OQuter diameter of compacted
: 24 mm

coated particle fuels
Available length for specimens

. . 80 mm

in an inner capsule
Irradiation temperature 1000 - 1600 °C

Number of inner capsules

, max. 3 capsules
in a capsule

Material of inner capsule (a) Nb-1 % Zr L
(b) ss-316 2)
Neutron flux max. 2.5><1014 n/cmz-sec {<0.625 eV)

max. 1.5><1014 n/cmz-sec {(>1 MeV)

1) Irradiation time is limited to be less than sbout 2000
hrs, and temperature at each inner capsule is adjustable
independently.

2) There are no limitations for irradiation time, and temperature at

an inner capsule of three ones can be controlled.
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(¢) Temperature ramping capsule (Figure 3.7.3)

Coated particle fuels for HIGR are irradiated to investigate tramsient
behaviors of the fuels at very high temperature (above 2000°C) by tempera-
ture ramping.

The compacted coated particle fuels are held in the graphite holder,
which is placed in the inner capsule. The fixation of the graphite holder
is made by being hanged on the upper plug of the inner capsule, by three
tie-rods, the guide tube and the pressurized chamber. The holder is
surrounded by the gaphite thermal bond which has the high thermal
conductance during stationary irradiation condition of from 1000 to
1600°C.

The temperature ramping to above 2000°C is performed by changing the
gas gap size between the graphite thermal bond and inner tube of capsule.
The change of the gap size is made by displacing the thermal bond by means
of pressurizing the bellows in the pressurized chamber. The displacement
of the thermal bond is detected by means of the output of LVDT and the
gas pressure of gas supplying system. The temperature of the specimens
is monitored by the thermocouple placed in the center hole of the specimen.
The inner capsule is enveloped by the outer capsule cooled by the reactor
coolant and temperature regulation is made by adjusting the temperature
gradient across the gas gap between the outer and inner capsule. Character-

igtics are shown in the table.

Characteristics
Item Specification
Quter diameter of capsule 40 mm
Outer diameter of compacted 12 mm
coated particle fuels
Irradiation temperature 1000 - 1600°C
(before temperature-ramping)
max. 2200°C
(after temperature-ramping)
Temperature at bellows max. 500°C
Neutron flux . max. 2.5x1014 n/cm?.sec (<0.625 eV)
max. 1.5x1014 n/cmz-sec (>1 MeV)
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3.8 NaK bonded capsule

Some materials such as mixed-oxide fuel rods (fuel pellets of Pu0,-UOg
with 316 stainless steel cladding) and tensile test specimens of 316
stainless steel are irradiated in NaK bonded capsule.

The mixed-oxide fuel rods are enveloped in the inner capsule with
NaK which forms the thermal bond between the fuel rods and the inner
capsule. The NaK has a good thermal conduction and a high boiling point,
consequently the removal of the high heat rate is possible to perform the
high power test for ILMFBR fuel rod. The outer capsule envelopes the inner
tube with co-extruded aluminum thermal bond. The outer capsule prepares
the second shell for NaK to the reactor coolant. The temperature of the
fuel cladding is regulated by varying the heat transfer through the gas
gap between the outer capsule and the aluminum thermal bond with the

inner capsule. Characteristics are shown in the table.

Characteristics
Ttem Specification
Fuel rods

Quter diameter of capsule 40 mm
Available fuel rod length 500 mm
Cladding temperature 500 -750 °C
Power of fuel rod max. 800 w/cm
Neutron flux (O.l-l)XlO14 n/cmz-sec (<0.625 eV)

Non-fissile materials

Outer diameter of capsule 40 mm
Available diameter for test 29 mm
pices
Available length in capsule 600 mm
Nak temperature max. 800 °C
Neutron flux 1x1014 n/cm?-sec (>1 MeV)
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3.9 Boiling water capsule

The BOCA (Boiling water capsule) has been recently developed for a
irradiétion test of fuels under the conditions of LWR.

A fuel pin to be tested is placed in a capsule filled with water,
The water is pressurized by a out-pile pressurizer. The nuclear heat
produced in the fuel pin is dissipated through the pressurized water and
a capsule pressure tube, and is removed by the JMTR cooling water or the
shrould cooling water. The surface temperature of the fuel pin is almost
constant over a wide range of linear heat rate because of a subcool beiling
at the surface.

The fresh demineralized water is continuously supplied to the capsule
at very small flow rate for maintaining the water quality. The draining
water from the capsule is monitored for fission products to detect fuel
pin failure. Some equipments of the out-pile control circuit for the
capsule is shielded with leads and 1s installed in a glove box for radio-
active materials treatment. An automatic reactor power reduction system
acts in case of pressure decrease in the capsule.

Some self-powered neutron detectors and/or micro-fission chambers
and a LVDT type fuel pin elongation detector are equipped in the capsule
for fuel pin power estimation and elongation behavior measurement.

A specially designed boiling water capsule is able to acéept a pre-
irradiated fuel pin. The fuel pin is loaded into the capsule in the hot
laboratory.

The capsule is usually inserted into a gas screen of He-3 power
control facility for power ramp and/or power cycling test.

(See section 5.2)

Characteristics of the boiling water capsule

Max. fuel TOd POWEL .vvcvvvrveassannsaes 590 W/cm

Usual fuel rod enrichment .............. 2.8%2 for BWR size fuel
4.5% for PWR size fuel

Fuel rod diameter +o.eesseceesssseonssss 9 to 12.5 mm

Max. active fuel rod length ............ 400 mm

COOLlant PIESSUTE sessensovssrasscnsnnses 13 Kg/cmZG

Cladding temperature ...eeocessrascnesns approximately 295°C

Rinsing rate of capsule water .......... 1 CcC/s.
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Fig. 3.9.4 He-3 Power Control Facility
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4, Hydraulic rabbit facilities

Two hydraulic rabbit facilities have been installed in the JMIR;
HR-1 and HR-2.

The facilities are hydraulic transfer devices for small capsule,
rabbit, The rabbit containing test specimens is of 32 mm in outer-diameter
and 150 mm in length. As the specimens can be easily inserted and remove
during reactor operation, it is convenient for the short term irradiation
of radioisctope producfion and baéic research.

The in-pile tube of the facility enter into the reactor core through
the nozzle provided in the top head of the reactor vessel. Their in-core
parts are doublg concentric and housed with an aluminum block having the
same outer shape as the fuel elements. Both iﬁ-pile tubes of the facilities
are in the refleétor regibn and can be Chargéd with up to 3 rabbits.

The rabbit station is located by the side of the canal. The rabbit
is sent to the ractor core and irradiated, then sent back to the canal
or put into a transfer cask at the station.

The facility is of closed water circuit. The flow of demineralized
water assure simultaneously the cooling of the rabbits and the injection
and return (by flow inversion) of the rabbits., Two pipes connect the
terminal station with in-pile tube; one for convey the rabbits and the

other for circulating the water.

Characteristics of the.hydraulic rabbit facilities
HR-1 ~ HR-2

Core position ..eeeseesseensssescass D=3 craseeseasness M-11
Thermal neutron flUX cesvenrnceesns 1.l*10l4n/cm2-s .. 1.3%101%n/cm? - s

Fast neutron fluX .eiveeevsssansses 8.8*1012n/cm2-s . 2.1*1013n/cm2-s
Gamma heating veseevecesevrersosess L1 Wg ciiaiaea.. 2.2 Wg

Coolant flow rate .isesessnsevssres 11 m3/h P - Y m3/h
Coolant_teﬁperature ceieeereenassas 40°C Cheesereeeaen 40°C

Max. heat generation per rabbit ... 20 KW ............ 9 KW
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5. Special facilities

5.1 Neutron control facility (NCF)

The facility has a capability of moving a instrumented capsule in
the in-pile tube in order to adjust nuclear heating or temperature of the
specimens in the capsule.

The position of the capsule is changed by the driving mechanism
installed on the top of the in-pile tube. The in-pile tube enters into
the reactor core through the nozzle provided in the top head of the reactor
vessel,

The max. length of the capsule is limited to 270 mm for 32 mm in
diameter for smooth traveling in the curved tube. The capsule is connected
to the driving mechanism with a flexible tube, which also serves as a
protecting tube for instrument leads.

The capsule is cooled by a individual closed circulating water and
is charged into or discharged from the in-pile tube during reactor
shut down.

The position of the capsule is adjusted manually or automatically to
control nuclear heating or temperature in the specimen. Control parameter

such as position or temperature is changable sequentially using computer.
Characteristics of the neutron control facility

Core position ....scvevresenarenns M-7

Thermal neutron fluX ..c.ceeeeesnns 0.3-—2.4*1014n/cm2-s-(variable)
Fast neutron flUX ...vecevecaconnns 0.1-—7.7*1013n/cm2-s-(variable)
Camma heating ..eeeesessesvaraseees 3.5 W/g (max.)

Coolant Flow TALe .eveesnossonssass b m3/h

Coolant temperature ....eseesesssss 40°C
Capsule dimension ..eecesserevraass 32 mm 0.D.x270 mm L
Driving speed ...vivsvessssesnnes-s 1 emfs-0.5 cm/h

Driving StroKe ..ovecsassnssscnscas 500 mm (max.)
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5.2 He-3 power control facility

The He-3 power control facility, recently developed for power ramp
test of LWR fuels, consists of a in-pile gas screen and a out-pile
pressure controller, The He-3 gas screen has an annular gap between
two concentric tubes filled with He-3 gas which possesses an important
absorption cross section for thermal neutrons. By varying the He-3 gas
pressure, the neutron flux in the capsule loaded into the central hole of
the screen can be changed. A small gas flow is maintained through the
annular gap for purifying the He-3 gas from Tritium produced by neutron
capture.

The gas pressure is varied by means of a pressurizer equipped with
a super flexible metal bellows. The He-3 gas screen is comnected to the
one-side of the bellows, and Nitrogen pressurizing gas 1is supplied to the
other side. The He-3 gas pressure in the screen can be varied by charging
or discharging Nitrogen gas into/from the pressurizer. The small
thermal-expansion type gas pump is used for a circulation of He-3 gas
through the gas screen and the Tritium trap. The Tritium trap is a
column of Titanium grain heated to a operating temperature of 400°C. Max.

Tritium production rate in the gas screen 1is estimated to be 60 Ci a day.

Characteristics of the He-3 power control facility

Range of He-3 pressure variation ......oceeees 0.5-40 Kg/csz
Range of neutron flux depression factor ....... 2.4
Required time for pressure variation;
40 to 0.5 Kg/csz tietsrseensasesess 1 min.-100 h.
0.5 to 40 Kg/csz tevessenressssesss 10 min.-1 h.
Rate Of POWEL TaMP +reorevcsasronsvsns 1 % of max. power/s. (max)
1 ¥ of max, power/h. (min)

Flow rate of He—3 885 .essesssasvennsarssanscss 1 cels.
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5.3 Shrould facility (OSF-1)

The facility has a straight in-pile tube open to the reactor peol
and a individual cooling water system. A heavily instrumented or
complicated capsule such as a beoiling waﬁer capsule can be charged into
or discharged from the in-pile tube even during reactor operation.
Charging or discharging is carried out with remotely operated capsule
exchanger.

Flow separator of the in-pile tube has a He-3 gas screen on its core
region. Power ramp tests are to be carried out for fuel pins contained
in boiling water capsules combining with a pressure controller of the
He-3 power control facility.

The facility will be completed in 1983.

Characteristics of the shrould facility

Core pPosSition ..vsveveirrnencecssnononss D-9

Thermal neutron fluX .veeeeseccareserace 2.6*1014 n/cmz-s (max.)
Fast neutron fLUX ...veeceanreassarsaens 2.2*1013 n/cmg-s.

Garmma heating .e.eeescossrvvesnnasnarens 2.2 Wig

Coolant flow rate .....veeceescss e 2 m3/h

Coolant temperatuUTe ....essvesvnsnnssses 40°C

Max. heat generation in a capsule ...... 30 KW

He-3 gas screen dimension ......c.cvevcus 34 mm I.D.%x540 mm L
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6. Loops

6.1 OWL-1

OWL-1 (Oarai Water Loop No.l) was installed as experimental facility

for following items in JMIR on 1970.
(1) Irradiation experiment for several kind fuel elements and
materials used in BWR, PWR and ATR,
(2) Compatibility of materials and compatibility of fuel element,
corrosion test in coolant,
(3) Thermal and hydraulic performance test for fuel assembly,
(4) Several kinds of experiments for failed fuel.
OWL-1 is consisted with primary cooling system, secondary cooling system,
auxiliary system, safety system and control system. An outline flow
sheet of OWL-1 is shown on Fig. 6.1.1.

The in-pile tube is constructed of coaxial straight tube, the tube
has been mounted on the top of reactor pressure vessel of JMTR, and has
been inserted in core position D-7 as shown on Fig.6.1.3. Coolant flow
is formed in re-entrant type. Experimental irradiation specimen is
inserted from the top closure to the in-core test section.

The in-pile tube was renewed because of radiation damage on August,
1973.

According to the experiment purpose, an inside atmosphere of test
section as like as PWR or BWR condition is performed. High temperature
and high pressure operation of the loop is usually continued for approxi-
mately one month with‘matching to reactor operation peried.

Qut-pile equipments of the facility has been installed in the loop
cubicle (room) that was consisted with thick biclogical shielding
concrete.,

OWL-1 has three out-pile test sections in the primary cooling system.
The No.l test section has been installed in the inlet of the in-pile tube,
the No.2 test section has been installed in the outlet of the in-pile
tube, and the No.3 test section has been installed in the steam line,
These test sections are located in the loop cubicle, and are usually
used for a corrosion test.

Table 6.1.]1 summarizes the pertinent OWL-1 design and operating

parameters.
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Table 6,1.1
OWL-1 LOOP
Loop Type : Pressurized water

Re-entrant Type

Core position D-7
Thermal Flux l..4><1014 n.cm_z.s_l (max.)
Fast Flux 2.9:<1013 n.cmuz.s_l {max.)
Heat Generation of Specimen 200 KW (max)
Test Section (in-pile tube)
Material Stainless Steel
Effective Length 750 mm
Diameter 39.7 mm
Coolant Water
Operating Condition
Pressure 150 Kg/cmz.G in P-mode Operation

115 Kg/cmz.G in B-mode Operation

Flow 250 Kg/min.
Temperature 320°C
Steam Quality in B-mode Operation 20 % (max)

Fig. 6.1.2 Control Desk for OwL-1
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6.2 OWL-2 ‘

OWL-2 (Oarai Water Loop No.2) was installed in JMIR on 1971, this
facility is mainly used for the irradiation experiments of fuel element
and component materials for a light water cooled reactor.

OWL-2 is consisted with primary cooling system, secondary cooling
system, safety and control system. Both primary and secondary cooling
gystem are closed-circulating system, and heat exchanger for heat transfer
is placed between the primary cooling system and secondary cooling system.
Secondary coolant is cooled by the water of utility cooling line (UCL)
through the heat exchanger.

In-pile test section (tube) is the straight tube passing through
the reactor core from the top of reactor pressure vessel to the bottom
as shown in Fig. 6.2.3. The stream of primarj coolant is up-flow type,
and the irradiation test specimen is inserted from the top closure to
the core position. An outline flow sheet of OWL-2 is shown on Fig. 6.2.1.

According to the experimental purpose, an inside atmosphere of test
section is formed by out-pile equipments (electric heater and high
pressure injection pump, etc.). High temperature and high pressure
operation of this loop is also same as the OWL-1.

Out-pile equipments of this facility has been installed in the loop
cubicle (room) that was consisted with thick biological shielding
concrete.

OWL-2 has three out-pile test sections in the primary cooling system.
The No.l test section hss been installed in the inlet of the in-pile tube
the No.2 test section has been installed in the outlet of in-pile tube,
and the No.3 test section has been installed in the steam line. These
test sections are located in the loop cubicle, and are usually used for
a corrosion test.

Table 6.2.1 summarizes the pertinent OWL-2 design and operating

parameters.
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Table 6.2.1
OWL-2 LOOP
Loop Type Pressurized Water

Through Type

Core position K,L-3,4

13 -2 -1
Thermal Flux 5.4%x1077 n.cm .8 {max)
Fast Flux 5.5><1013 n.cm_z.s—l {max)
Heat Generation of Specimen 850 KW (max)

Test Section (in-pile tube)

Material Stainless Steel
Effective Length 750 mm
Diameter 117.8 mm
Coclant Water
Operating Condition
Pressure 73 Kg/cmz.G
Flow 1,100 Kg/min.
Temperature 270°C in P-mode Operation

285°C in B-mode Operation

Steam Quality in B-mode Operation 20 % (max)

Fig. 6.2.2 Control Desk for OWL-2
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6.3 0GL-1

0GL-1 (Oarai Gas Loop No.l) is a high temperature in-pile gas loop
which was developed as a testing facility for the multipurpese high
temperature gas cooled reactor (VHTR), especially designed to make
jrradiation test of coated particle fuel and graphite under the helium
flow condition of 1,000°C. This loop is not only an irradiation facility
but also a pilot plant of VHTR, and was installed in JMTR on 1977.

The OGL-1 facility comsists of an in-pile tube, primary circulating
system, secondary circulating system, purification system and auxiliary
system. Fig. 6.3.3 shows the OGL-1 in-pile tube. The in-pile tube is
of the re—entrant type, and consists of four coaxial tubes to keep He
gas temperature sufficiently high.

Direct resistance heating of the primary piping is used for the
heater. The helium purification system consists of a precharcoal trap,
molecular sieve trap to remove moisture and carbon dioxide, a cold
charcoal trap to remove the fission-produced noble gases, and a hydrogen
removal section including titanium sponge as the getter. Secondary
coolant is the air. An outline flow sheet of this loop is shown on Fig.
6.3.1.

An irradiation test specimen is inserted from the top closure to
core position.

Qut-pile equipments of this facility has been installed in the loop
cubicle (roem) that was consisted with thick biological shielding
concrete.

Table 6.3.1 summarizes the pertinent OGL-1 design and operating

parameters.
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Table 6.3.1
0GL-1 TLOOP
Loop Type Pressurized Gas

Re-entrant Type

Core position G,H-3,4

Thermal Flux 5,9x1013 n.em2.571 (max)
Fast Flux 1.3%x1013 n-em™2.g-1 {max)
Heat Generation of Specimen 135 KW (max)

Test Section (in-pile tube)

Material Hastelloy-X
(Flow Tube and Inner Barrier
Tube surrcunded by high temperature
Helium Gas)

Effective Length 750 mm
Diameter 82 mm
Coolant Helium Gas

Operating Condition

Pressure 30 Kg/cm2~G

Flow 6 Kg/min.

Temperature 1,000°C (at Test Section)

Impurity less than 10 vpm
Out-pile Test Section None

Fig. 6.3.2 Control Desk for OGL-1
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7. In-core instruments and devices

7.1 Thermocouple

The Chromel-Alumel (CA) thermocouples are available to measure
temperature of specimens in a capsule up to about 1100°C and tungsten-
rhenium thermocouples are used for measuring temperature from about 1100
to about 2100°C, occasionally 2300°C. The Nb-1 7 Zr sheathed high temper-
ature thermocouples are mostly applied to measure the temperature of
coated particle fuels specimens for HTGR up to about 1600°C, occasionally
1800°C. The molybdenum sheathed thermocouples are utilized for measuring
center line temperature of fuel rods for LWR. High temperature thermo-
couples with hafnia insulation and sheath of W-augmented rhenium are
being developed for measuring temperature above 2100°C. All thermocouples
used in JMTR are un—-grounded type (Figure 7.1.1). Specifications are

shown in the table.

Specifications

specification of thermocouples Temperature range

Chromel-Alumel (CA) thermocouples,
MgO insulation, ss-316 sheath, up to 1100°C
0.5, 1.0 and 1.6mm O.D.

W-5 % Re/W-26 % Re thermocouples,
Be0 insulation, Nb-1 % Zr or Mo from 1100 to 1800 °C
sheath, 1.6 or 1.8mm 0.D.

W-5 % Re/W-26 % Re thermocouples,
BeO insulation with Ta barrier tube, from 1100 to 2100°C
W=22 % Re sheath, 2.0mm 0.D.




JAERI-M 82-119

T~

Mineral insuloted cable

| Metal to ceramics seal

|
b
\

3000

— 1 Connector assembly

| _— Thermo element
(w-5Re /W- 26Re )

b1

Sheath {Nb- 1%
P Zr)

| Plug

Fig. 7.1.1 High temperature thermocouple



JAERI-M 82-119

7.2 TLinear variable differential transformer (LVDT)

The linear variable differential transformer (LVDT) is available as
an in-pile detector of displacement in the capsule. The combined
elongation and failure detector with the LVDT showm in Fig. 7.2.1 is
loaded in the boiling water capsule (BOCA) to measure elongation of fuel
pin and also to detect failure of the pin when occured.

The LVDT is applied as an extensometer for various purposes in the
capsule, for example, to measure the creep strain of the stressed specimen
in the in-pile creep capsule. Another application of the LVDT is a
detector for displacement of the actuating bellows for moving the thermal-
bond in the temperature ramping capsule. Specifications are shown in the

table.

Specifications

Item Specification

a) Combined elongation and failure detector

Linear range + 3 mm

Sensitivity 0.01 mm

Service temperature 350°C for econtinuous usage,
460°C for short term usage

Minimum operating pressure 0.2 kg/cm?

of bellows
Exciting current 50 mA
Exciting frequency 400 Hz

b) Extensometer for temperature ramping capsule

Measuring range 0-80 mm

Accuracy + 3 mm for stroke of 80 mm
Service temperature 350°C

Exciting current 30 mA

Exciting frequency 500 Hz

¢) Extensometer for in-pile creep capsule

Measuring range _ 0-10 mm
Sensitivity 0.01 mm
Service temperature 350°C
Exciting current 50 mA
Exciting frequency 400 Hz
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7.3 Pressure transducer
Two types of pressure transducer used for measuring fission gas

pressure inside fuel pins and other gas pressure are available in JMTR.

(1) Null-balanced ON-OFF type (Fig. 7.3.1 (A))

A bellows of stainless-steel that withstands the pressure of 70 kg/cm2
is placed in the center of the transducer as the element for detecting
gas pressure. A moving electrical contact-point is fixed at the top of
the bellows. An another electrical contact-point is fixed to the housing
of transducer. The fixed contact-point is insulated with the transducer
by alumina washer. Gas pressure is obtained as a balancing pressure
between the inside and outside of bellows by measuring the back pressure

from out—-of-pile system. Specifications are shown in the table.

Specifications
Item Specifications
Measuring range 0-70 kg/cm2
Accuracy + 1.5 % of full range
Operating temperature 450°C max,
Dimension of transducer $22 x 39 mm
Dimension of bellows g x §5 x 0.1 mmt

(2) Differential transformer type (Fig. 7.3.1(B))

The ferritic core of 403 stainless-steel located in the center of the
variable differential transformer (LVDT) is connected to the bellows of
Inconel 718 for detecting the pressure that withstands the pressure of 50
kg/cmz. The voltage induced in the secondary coil of the LVDT due to
displacement of the core resulted from deformation of the bellows is

calibrated with helium pressure.

Specifications
Item Specifications
" Measuring range : Q- 50 kg/cm2
Accuracy + 1.5 % of full range
Operating temperature 350°C max.
Dimension of transducer ¢18 x 80 mm
Dimension of bellows ¢4 x ¢5 x 0.1 mmt
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Bellows are used in the capsule for the purpose of stressing the

specimens in the in-pile creep measuring capsule, moving components

in the temperature ramping capsule., and so on.

The bellows are also

utilized as. a sensing element for gas pressure in the fission gas pressure

transducer.

transducers are described in the following.

Specifications of the bellows used in the capsules and

The molded or welded bellows

is used properly depending on each objective for application.

(1) Molded
4A) for
B) for

(2) Welded
A) for
B) for

bellows

sensing element in pressure transducer

material Inconel 718

dimension % x % x 0,1 mmt

number of plys 8

operating pressure 70 kg/cm2

operating temperature 400°C

stressing specimen in in-pile creep capsule

material Inconel 718

dimension $34 x $21.5 x (0.15 + 0.15)

number of plys

operating pressure

operating temperature

bellows
stressing
material

dimension

number of plys

operating pressure

cperating temperature

mnt, double wall
54

2
30 kg/em

400°C

specimen in in-pile creep capsule

s5-304 L

$35 x %22 x (0.15 + 0.15)
mmt , double wall

135
28 kg/cm2
400°C

displacing a thermal-bond in temperature ramping capsule

material

dimension

number of plys
operating pressure

operating temperature

ss 304 L
%24 x 912 x 0,15 umt
312
2
10 kgfem
400°C
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7.5 TFluence monitor

Fluence monitors for measuring the neutron dose exposed on the
irradiated specimens are loaded with the specimens'in the capsule and/or
loop assembly. The monitor of 54Fe sheathed in the tube of pure alumina
or aluminum are applicable to measure the fast neutron flux dose of above
1 MeV. The neutron dose is obtained by detecting the gamma ray from ~ Mn
produced by the reaction of 54Fe(n,p)sz’Mn using Ge-detector. The wire
of 0.17 w/o Co-Al sheathed in the tube of pure alumina or aluminum are
applied to measure the thermal flux dose, and the flux dose is also obtained
by detecting the gamma ray from the reactiom of 6000(n,y)6000. Positions
of the fluence monitors loaded in the capsule are arranged, in order to

obtain both radial and axial distributions of flux dose.

Fig. 7.5.1 Fluence Monitors
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7.6 Self powered neutron detector

Self powered neutron detectors (SPND) are used in order to obtain
the power of the fuel pin irradiated in the capsule and/or loop by
continuous measurement of the thermal neutron flux during irradiation.
The SPND with gamma compensation used in JMIR is shown in Fig. 7.6.1.

Specifications are shown in the table.

Specifications
Item Specification
Emitter %0.5, 5lV, lOBRh and 59Co
Insulator A1203
Sheath (Collector) $1.6 and 92.0, ss-316
Sensitivity 7.7 x 10_23 A/nv.cm (51V)
| 1.2 x 107%Y a/av.em (10%Rm)
1.7 x 10723 A/aveen (°2co)
Response time 5.4 min (SlV)-
| . 68 sec‘(lo3Rh)

<1 sec (SQCO)

Operating temperature _400°C max.
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Mineral insulated cable

Element wire for & compensation |

FT‘Z?IIT?-\ Out put
Element wire for g current
P BNC connector.

Mineral insulated
cable
Collector (§5-316)
Collector
Insulator (Af203) Emitter

Emitter (Co or Rh)

.6.1 Camma compensated self powered neutron detector
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7.7 Turbine flow meter
The turbine flow meter is applied to measure the mass flow rate of
water which gives the power of fuel pins loaded in the water loop together

with temperature rise of the coolant. The mass flow rate is cbtained by

measuring electric pulse induced in the pick-up coils with the permanent
magnets by rotation of the rotor with blades made of 17-4 PH. The hard

metal is used for the bearing on the shaft. The configuration of the

flow meter is shown in Fig. 7.7.1.

Specifications

Item Specification
Dimension of flow meter $40 x 116 mm
Outside diameter of rotor 25 mm
Number of blades 4
Number of pick-~up coils 2
Measurable flow range 100 - 200 1/min
Accuracy + 1 % F.S.
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Fig. 7.7.1 Turbine flow meter
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8. Data acquisition system

8.1 Hardware

The system is able to handle 529 irradiation data from 24 capsules
(including He-3 power control facility), 2 hydraulic rabbit facilities,
neutron control facility and 3 loops. 467 of them are analog-type and 62
of them are digital. A high speed 16 bit central computing unit (C.P.U.)
processes these data. Main out put devices are a printer, a x-y plotter
and two CTRs. Disk memory unit has a sufficilent capacity for data storage
during 40-day-operation. Data stored in disk are transfered into magnetic
tape after operation for permanent storage. An operator can access to the

system through an operator console.

8.2 Data collection and monitoring

All signals are sampled at 10 sec interval, filtered, corrected,
scaled and stored into designated memory locations in data files. Each
data is to be compared with preset values every sampling. Alarm is given
to operators if data exceeds limit value. Two standard data files are
provided, one is a 24-hour file, in which all data are stored every 1 minute
for 24 hours, and other is a reporting file, in which data are stored every
30 minutes with calculated heat generation of loop specimens for 40-day-
operation, Ancther special file, such as a reactor scram transient file
for all data and a transient file for specified data, are also provided.
All transient files have capacities for 2 hour-storage at 10 sec interval.

During a reactor power up, all data are stored in the start-up file

at every power level.

8.3 Display and printing

Irradiation data processed in the system can be displayed in two colour
CRTs, one for character and one for graphic. The data also can be printed
out in table form and plotted in graphical form for reporting. 08:30, 16:30
and 23:00 hour data of several important operating parameters are to be
printed out every next morning for operation records. Desired interval
data of selected parameters during the operation can be printed out after
the operation for reporting. The whole data of selected parameters during
the operation also can be plotted. If required, 1 minute interval data of
selected parameters for past 2 hours, 6 hours or 24 hours can be displayed
or plotted. Data in transient files also can be displayed or plotted.

Power-up-data are displayed with predicted value at 50 MW in course of power up.
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Fig. 8.1 Lay Out of JMTR Irradiation Data Acquisition System
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Fig. 8.2 Irradiation Data Acquisition System

Fig. 8.3 Operator Console
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9, Conclusions

General description are given on the various kinds of irradiatiom
facilities in the JMTR. Experimenter is able to choose a suitable
facility for his irradiation experiments.

The JMTR wishes to play an important role on not only development
of power reactors but also other field of peaceful uses of atomic energy

through a wide variety of irradiation experiments.
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