JAERI-M
82-129

BIRTH: A BEAM DEPOSITION CODE FOR
NON-CIRCULAR TOKAMAK PLASMAS

September 1982

Michio OTSUKAT M asayuki NAGAMI and Toshiaki MATSUDA

B X B F Hh B R M
Japan Atomic Energy Research Institute



Ty

T? A IJ_H'L]L- LT J ﬁ]f%'"t?l’inla
[

1# R M"’EE {19115 S

JAFRIM U H— L, 4 rhirs

NToflddrald, B 7040 T e e
M) HT, BHRLILCKES v, Ak, o BEE AT S iR (MLSH:*/ 57—
TG S AEWNA A D T

(319 13 okl L0 E ) s i A A A B R TE i
B ET,

JAERI-M reports are Issued irregulsrly,
Tnguiries aboul availability of the reporis shauld be addressed to hformation Section. Division
af Technical Information, Japan Atomic Energy Rescacch Distitute, Tokabmura. MNaka-gun,

Iharaki-ken 319-11, Japan,

. ].mcw Aromic Energy l{e.-;u,tr(h [ tute, 1982
i 8 A AT H A - 97 8F 92 #r

11 b Wadn UF s W EDL




JAERI-M 82-129

BIRTH: A BEAM DEPOSITION CODE FOR NON-CIRCULAR TOKAMAK PLASMAS

*
Michio OTSUKA, Masayuki NAGAMI and Toshiaki MATSUDA

Division of Large Tokamak Development,
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A new beam deposition code has been developed which is capable of
calculating fast ion deposition profiles including the orbit correction. The
code incorporates any injection geometry and a non—circular cross section
plasma with a variable elongation and an outward shift of the magnetic flux'
surfaée. Typical cpu time on a DEC-10 computer is 10 —20Aseconds and 5 —ld
seconds with and without the orbit correction, respectively. This 1is shorter
by an order of magnitude than that of other codes, e.g., Monte Carlo codes.
The power deposition profile calculated by this code is in good agreement with

that calculated by a Monte Carlo code.
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1. INTRODUCTION

Many experimental studies to investigate beta limits have recently been
carried out in Tokamak devices [1-4]. In these experiments, a high power
neutral beam is injected into the plasma in order to achieve higher beta
values. Recent experimental results in the ISX-B [1].and PDX [2] show a
decrease in energy confinement time for higher injected beam power. The
cause of this decrease is not yet well known. In order to study beam heated
plasmas effectively, it is of primary importance to analyse the data from
hundreds of plasma discharges and carefully investigate the parameter
dependence of traquort‘phenomena. It is therefore desirable to have a fast
data analysis. code subject to reasonable simplification., Since one of the
most time consuming elements of .the data analysis code for beam heated. plasmas
is the calculation of the beam deposition profile for the plasma, it 1is
particularly important to develop a fast beam deposition code in order to

analyse the data efficiently.

Several computer codes have been developed to calculate the beam
deposition profile for a plasma. Rome {5] developed a computer code for
tangential injection into circular plasmas; Fowler [6] developed a Monte Carlo
beam deposition code, NFREYA, which was designed for non-circular plasmas.
Both codes take the shift of the fast ion drift orbits in the plasma from the
magnetic flux surfaces into account. The Monte Carlo code is capable of
calculating the beam deposition profile for a beam injected with any
injection geometry into a plasma which has any configuration of the

magnetic flux surfaces. However, from a practical standpoint it is difficult
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to use the Monte Carlo code as a part of the data analysis code since the

Monte Carlo code consumes a great deal of cpu time in order to reduce the

statistical error,

Our object here is to develop a fast computer code (less than one minute
DEC-10 cpu time per case) which is capable of calculating a beam deposition
profile with an orbit correction for a neutral beam injected with any

injection geometry into a non-circular Tokamak plasma with displaced magnetic

flux surfaces.

Section 2 describes the assumptions and equation employed in the code:
Section 3 presents a comparison of theé calculated results using the present
code with those derived from a Monte Carlo code and discusses the orbit

effect on the beam deposition profile. The summary is presented in Section 4,
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2. CALCULATTONAL METHOD

2.1 Assumptions

The beam deposition code described in this paper has been developed
primarily to analyse the data from neutral beam heated discharges in the
Doublet ITI Tokamak (a device capable of generating non—-clrcular dee-shaped
plasmas with elongations of up to 1.8 [7]). Figure 1(a) shows the magnetic
flux contours of a Doublet III plasma calculated by the free boundary
equilbirium code [8]. The outer flux contours are dee-ghaped but the inner
flux contours {(r < %-a) {the region in .which the transport phendmenon-is
important because the hot plasma 1s. -contained in this region) have elliptical
shapes with variable elongations. The flux contours are not all concentric
but shift ocutward and this shift becomes larger in high beta plasmas. These
features are common to non—circular dee-shaped plasmas. Because of these
considerations, in order to simplify the calculation the magnetic flux
contours are approximated as ellipses with variable elongations and outward

shifts both of which depend on the plasma minor radius.

In general, the beam deposition profile can be simply calculated with a
so-called pencil beam approximation, However, with this approximation the
beam deposition profile .diverges near the point at which the injected beam is
tangent to the magnetic flux surface., In the present code, the so-called
diffused beam which has a finite beam radius 1s considered to eliminate the

divergence and the beam cross sectional shape is approximated as ellipse,
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This approximation is quite reasonable since almost all the neutral beams
extracted from several types of ion source have a circular or elliptical cross
sectional shape. The beam current density is constant for each concentrié
ellipse and depends only on the radius of this ellipse. The neutral beam
usually has a divergence angle of 1 -2 degrees. 1In this code, the beam
divergence is neglected, i.,e., the parallel beam is considered because of the
expansion of. the beam radius in the plasma due to the beam divergence being

negligibly small in comparison to the beam radius itself,

Drift orbits of fast ions created in the plasma by ionization and charge
exchange are divided into two groups, transit orbit and banana orbit. In
general, the fast jons distribute non-uniformly in both the poloidal and
toroidal direction, especially when the fast ions move along the banana
orbits. -However, from the viewpoint of energy transfer to the plasma from the
fast ions, it is a reasonable approximation that the fast ions distribute
uniformly in both the poloidal and toroidal direction and that their birth
rates depend only on the minor radius of the magnetic flux contour, since the
plasma iong and electrons move uniformly on the magnetic flux surface in which

the fast ions transfer their energy to the plasma through classical coulomb

collisions.

The shift of the fast ion drift orbits from the magnetic flux contour is
~ 2 =5 em in Doublet III for the transit orbits; the banana width is ~ 5 -10
cm for banana orbits under typical experimental conditions (plasma current
300. kA -1 MA, beam energy : 60 -80.keV). These shifts and widths although
not very large cannot be neglected, especially in the case of a near-

perpendicular Iinjection as in Doublet ITI, since a large number of fast iomns
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move along the banana orbits for the near—-perpendicular injection,

Therefore, in the present code this orbit effect is taken into account in the
following manner. A fast ion created on a magnetic flux surface moves along
a particular orbit crossing the magnetic. flux surfaces, The fast ion
deposition profile is then weighted by the fraction of bounce time which the
fast ion spends in each differential volume between the magnetic flux

surfaces.

The fast ions usually diffuse across the magnetic flux surfaces due to
pitch angle scattering during the sloﬁing down process. However, this spatial
diffusion of fast ions can be neglected for all practical purposes since the
characteristic time of pitch angle scattering is usually long compared to the
typical slowing down time., The calculated results given by a Monte Carlo

code show that this diffusion can be neglected. (See Section (3.2)).
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2.2 Equations

2,2,1 Magnetic flux contours

Each magnetic flux contour calculated by the free boundary equilibrium
code is approximated as an ellipse which is shown in Fig. 1(b), and then
expressed by the following equations in cylindrical coordinates (R, ¢, z) (see

Fig. 2).

p2
~— (cos’s + sinze) = 1 (1)
r2 Ck(X)2 . N
Ro(X) = R, + AX) S
z = psing (3)

where r 1s the minor radius of the magnetic flux contour in the midplane,

X = Yfa, a is the plasma minor radius (i.e., the minor radius of the
outermost magnetic flux contour), k(X)) 1s the elongation, Rp is the plasma
major radius (i.e., the major radius of the outermost magnetic flux contour),
A(X) is the outward shift of the magnetic flux contour and R,(X) is the major
radius of the magnetic flux contour, «k(X) and A{X) are approximated with the
appropriate functions so that they fit the calculated ones by the equilibrium

code.
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«(X) = Ckl + CpoX? + Cp3x? ' (4)
A(X) _ _.
= Cq1 + CqoX2 + CgaX4 ' : (5)

where Cyj, Ck23 Cx3s Ca1s Cd2 and Cd3 are constants.

The toroidal plasma volume, V(r), enclosed by an magnetic flux surface is

expressed by

V(r) = 7 r2g(X) * 2Ry (X) (6)

Therefore, the differential volume, dv(r), between the magnetic flux surfaces

is expressed by

R ' Cde(X) ' dR,(X)
av(r) = 272rdr | 2«(X) * Ro(X) + X Ro(X) + X = «(X) —— |(7)
T er : A ax



JAERI — M 821289

2.2.2 Fast ion deposition profile

In this section, the fast ion deposition profile without the orbit
correction is described. The fast ions created on any magnetic flux surface
distribute uniformly on thils surface, 1In this case, the fast ion birth rate
at a minor radius in the midplane of r, due to a small beam element injected
into the plasma, 1is calculated by dividing the number of fast ions created
between a magnetic flux surface of the minor radius, r, and the minor radius,
rfdr, with the differential volume between these surfaces (see Fig. 3).

That is, the fast fon birth rate due to a small beam element, dﬁB(r), is given

dng(r) = « ds * (Rytpcosd)dé | ;n . gz | J(p,0,4) = d2 * ng(r) * oplr)
av(r)

where ne(r) ahd'Et(f) are the electron density and tﬁe total ionization cross
section at the minor radius of r, respectively, ;n is the normal wvector of
the magnetic flux surface at the point (p,8,¢) and gg'is the unit vector in
the direction of injection. Here, J(p,6,¢5'is the.neutral.beam curfent

density at the point (p,8,4) on the magnetic flux surface and is expressed by

2(976:¢) .
J(p,8,¢) = J (p,8,9)exp { - ne(r)op(r)ds
lp(p’e:‘b)

where J,(p,8,¢) is the neutral beam current density on the outermost magnetic
flux surface before attenuating, Ep(p,8,¢) is the distance from an arbitrary
point (e.g., lon source) to the point at which the béam element crosses the
outermost magnetic flux surface and 2(p,08,¢) is the distance from an arbitrary

point to the point (p,8,4).

(8)

(%)
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The total fast ion birth rate due to the total neutral beam injected into

the plasmé is given by integrating Eq.'(8) inside the region on the ﬁagnetic
£flux surface defined as the intersectional area of the neutral beam and the

magnetic flux surface.

'ﬁB(r) ) ng(r) op(r)

2 d« dR,
0
2mr (ZKRb + X HX'RO + Xk = )

EIN ¢ (9

f ds(Ry + pcos®)dd | ey « ey |+ J(p,8,6)(10)
X
dr
6, 6,08 an

Figure 4 shows the injection_geometry in a cartesian coordipate system
anchored in the center of the torus. The point (x4, 0, 2,) defined on the
(x,:z) plane is the cross point of the beam center line aﬁd thé'(x, 2) plane.
91 1s the angle between the x axis and the unit vector, gl’ in the direction
of the Injection projected on the (x, y) plane. §; is the angle betweeﬁ the
unit vector, ZR and the (x, y) plane. The orbit of the beam element parallel

to the beam center line is expressed by

X = Xg - icosez cogfq

y = Zcogezsinal - - (11)
z = Zg ~ »QSi'[’lez
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where % is the distance from the intersecting point (xs, 0, zg) of the beam
element and the (x, z) plane to a point (x, v, z). The relation between the
minor radius, r, and the distance, %, is obtained from Egqs. (1) and (11) using

x = (Ry + pcosB)ecosd and y = (R, + pcosf)sing.

1 1/2 2
r2 = (zg-2s1n67)2 + { (22cos20y + %42 - 2xg4cosfycosfy) = Ry(X) }  (12)

K(X)2

dr/d2 in Eq. (IO)Iis then obtained by differentiating Eq. (12) by r.

dr pzsinze dx pcosH dRg
— [ + . + .
d2 3 v oa dx a dXx
: 1
= pcosB cosfy (singsinby - cos¢ cosby) - 'j; psinBsinby (13)

+ >
The unlt vector, ey, and the normal vector e,, are expressed by

eg = ( - cosBy cosBy, cosby sindy, - sinby)
o (14)
> ap do ap deé
e, = -l sinB + pcosB ] cos¢p ™ - | T sinb + pcos® | sing T
a0 ds , 36 ds ,
3p 46 :
-~ c080 - psing|— (15)
38 ds

_10_
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Thus,
> > - dé
| en " eg | = [ H| (16)
ds '
where,
ap ap
H = |—— sinb+pcosd | cospcosbycosty - sin6+pcos® | singcosBysindy
a8 3d
ap
- — ¢o0s8 - psing sinfy {17)
38

Finally, the following equation is obtained by substituting Eq. (16) in Eq.

(10).
. 1, (r) Gp(r) 8 op(8)
ng(r) = ./~ d8d¢(Ry+pcosd) [H|JI(p,0,4)
21121‘(2KR +x % 4 oxe ER_O) f ] o
0 dx © dx dr
Ba $5(9) dg

(18)
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2.2.3 Intersection of the neutral beam and the magnetic flux surface

The cross sectional shape of the neutral beam is approximated as an
ellipse whose axis is parallel to the (x, y) plane. In this case, the
boundary surface of the neutral beam is given by the following equations with

notations in Fig., (4).

(x - xo)2 + y2 + (z - 20)2 = 22 + sz
L= —(x-xo)cosaz cos®; + ycos6, sinBy — (z—zo) sinB,
(19)
sz 1 ‘
coszy + sinzY = 1
ag? KB
Pg cosy = (x-x3) sinel + (y - yg) cosfj
Xg ~ X5 = - lcosez cos by
yg = Rcosez sinf

where ap is the length of the ellipse axis parallel to the (x, y) plane, kg is

the ellipticity and pB is the radius of the ellipse.

_12__
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The intersection is calculated by substituting Eq. (1), x=(Rotpcos@)cos¢
and y=(Rytpcos6)sing in Eq. (19). The fast ion birth rate on any magnetic
flux surface is then given by integrating Eq. (18) inside the obtained

intersectional area.
2.2,.4 Tonization cross section

The neutral atoms injécted into the plasma afe ionized through
electron impact-iénization; ion impact ionization and charge exchange.
The éleﬁéfoﬁ-impéég ianizatioﬁ croés section, the hydrogenié io£ impact
ioniiafion érosélsecfion aﬁd therchérge exchangé cross setion with hydrogenic
iong are well—k;own and céléﬁléted ffém.féfmuias given by Riviére [9].. The
impurity ion impact ifonization cross section and chargé exchénge ﬁross sefion
with the impurity ions in the plasma are described as oj, = zl.4 (o1 T+ dcx)
by Olson [10]. Here: o4, is the total electron loss cross section with the
impurity ions, Z is the charge number of the impurity ions, oji is the proton
impact ionization cross section, and o.x is the charge exchange cross section
with protons. In order to calculate the total electron loss cross section
with the impurity ions, it is necessary to know the charge numbers and density
of all kinds of impurity ions. However, at the present time, it is impossible
in practice to have this information. Therefore, in the present code we
assume that there is one species of impurity ion whose charge number is Z and
that the effective_chafge number, Z.¢f, is spatially uniform. Under these

assumptions, the total electron loss cross section is expressed by

Gp(r) = 030(r) + [ 035(r) + ooy(r) £+ (1 - £)06 ¢ (z5¢ - £)0.4 (20)

_13_
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ny (r) Z - Zeff
£ = = — (21)
ne(r) z -1

where'gf(r) is the total electron loss cross section averaged over the
Maxwellian distribution, oie(r) is the electron impact ionization cross
section averaged over the Maxwellian distribution of electroms at the local
electron temperature, Eii(r) and Eéx(r) are the proton impact ionization cross
section and charge exchange cross section with protons averaged over the
Maxwellian distribuﬁion of ions at the local ion temperatﬁre, respectively,
and ni(r) is the plasma ion density. In the present code, the temperature and
density profile in the plasma can be approximated with the appropriate

functions (see Eqs. (33) and (34)).

_14_
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2.2.5 Orbit correction

In the cylindrical coordinate system shown in Fig. (2), the drift orbits
of the fast ions are calculated according to the following equation under the
assumption that the magnetic field is static and axisymmetric and that the

toroldal magnetic field is larger than the poloial magnetic field [11].

2mm

p + vyR = constant (22)

where ¢ 1s the poloidal magnetic field flux and m, e, and v, are the mass, the
charge, and the gulding center velocity of the fast lons parallel to the

axisymmetric magnetic field, respectively.

Eq. (22) is independent of the d— dlrection because of the assumption _
of axisymmetry. Thus, the fast ion drift orbit defined by Eq. (22) represents
the projection of the drift orbit onto the (R, z) plane. Furthermore, we may
calculate the drift orbit on only'the half plane over the horizontal line

since the plasma is symmetric against the horizoutal line.

The magnetic moment and the kinetic energy of the fast ion are conserved
under the assumptions of a small variation In the magnetic field within the
area of the Lamor radius and in the gyration time of the fast lons as well as

less collisions and the lack of an electric field in the plasma.

~15-
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Eq. (22) can be rewritten by using these assumptions,

2 T . 1/2 . :
R, z) + a R(R - R™) = K(R, z, R") -(23)
e
2
. Vib
where R* = Ry 5 Ry, 18 the major radius where the fast ion 1Is created,
v

vy 1s the fast ion velocity perpendicular to the magnetic field at the birth
point of the fast lonm, v is the fast ion velocity, and o = 1 or -1 when v 1s

in the same or opposite direction as the plasma current. K(R, z, R*) in Eq. (23)
is the coustant determined by the fast ion birth point and the related

pitch angle. (R, z)}, required to solve Eq. (23), is given by calculating

the free boundary equilibrium code [8] for each plasma discharge and is
approximated as an appropriate polynomial function which depends only on the
minor radius of the magnetic flux contour which 1s approximated as the ellipse

given by Eq. (1) according to the equilibrium calculation. That is,

YX) = Cpo *+ CppX? + Cpaxd + cpux? (24)

where Cpo’ sz, Cp3’ and Cp4 are constants. The magnetic flux contour is

rewritten in the cylindrical coordinate system shown .in Fig. (2) by

(R - Rg(X))2 = 12 - —— (25)

k(X)2

_16.;
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This approximation described above for the poloidal magnetic flux
simplifies the caléﬁlation of the fast ion drift orbits and consequently
reduces the cpu time for the calculation of the orbit correction

significantly.

The fast ion drift orbit is calculated by solving Eq. (23) using Egs.
(24) and (25). The fast ion deposifioﬁ'profile ﬁith‘the orbit correction is
obtained by weighting each fast ion birth rate by the fraction of bounce time
which the fast ion spénds in the related differential volume between the
magnetic flux surfaces. The fast.ion birth rate at the minor radius of rj,
AﬁB(ri), which originates from the fast ion created on the magnetic flux

surface of the minor radius, £y, is expressed by

Anﬁ(ri).=“ﬁn3(rj) "dV(rj).' Wij(Pj’ 3j,-¢j, ri,—rj)-f dry
k dV(ri)

where dﬁB(rj)‘given by Eq. (8) is the fast ion birth rate due to a -small beam
element, dV(ri)'and dV(rj) are differential voluems at the minor radii of rj
and Ty, respectively, and Wij(pj, ej, ¢j, Ti, rj) is the fraction of bounce
time which the fast ions created at the point'(pj, Bj, ¢j) on the magnetic-
flux surface of the minor radius, i spend in the unit length of the minor
radius at the minor radius of rj. The total fast ion birth rate with the
orbit correction at the minor radius of rj is obtained by integrating Eq. (26)

with Bj, ¢4> and r; using Eqs. (7) and (8).

_17_

(26)
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1
I:IB(ri)
anri 26(X IR (X, )+X, :K)((_Xi) R (X3) + Xge(Xg) dl;;cxi)
rz(ri) eB(rj) ¢B(ej)
x - .drj daj d¢j dr: j
dg
rl(ri) Ba(rj) ¢a(6j)

X {ne(rj)—gt(rj)(RO+ijOSBj)lHj’ . J(pj,ej,d)j) . WiJ(pj,Gj,cbj,ri,rJ)}

Fast ions which are able to travel across the magnetic flux surface at
the minor radius, ry, are created inside the area surrounded by Ba(rj)—es(rj)
and ¢a(aj)'¢8(6j) on the magnetic flux surface of the minor radius, Ty, and

also created between the minor radius,'rl(ri) and rz(ri).

_18_
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The bounce time, 1, which the fast ion spends in the differential volume

between the magnetic flux surfaces of the minor radius, r and r”, is given by

-

r’. 172
(drR2 + dz2)

T = - (28)
-[ (VzR + sz)l/z

r

where (dR2 + dzz)l/2 is an element of arc length in the drift orbit on

the (R, z) plane, vg and v, are the R-component and the z-component

of the fast lon velocity, respectively, expressed by the following equations
under the assumption that the toroidal magnetic .field is larger than: the

poloidal magnetic field.

Vi 1 alLl‘
B 27R az
v 1 Y m 5
v, = a—, + (2v2 - v, %) (30)
B 27R  9R 2eBR

where v

]
<
“ [
i
Wfa_
e S
—
S
o]
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The fraction of the bounce time, Wij, is given by

T (p3, 9y, dis TH, r:)
Wij<pj’ ej’ ¢J, Ty, 1']) = ] ! ] : (31)
Tt(ﬂjs ej, ¢J’ rj)

where Tt (pj, Bj, ¢j, rj) is the bounce time with which the fast ion

created at the point (pj, Bj, ¢j) on the magnetic flux surface of the minor
radius, ry, travels along the entire length of its orbit and r(pj, ej, ¢j, Ty,
rj) is the bounce time which the same fast ion spends in the unit length of

the minor radius at the minor radius of rj.

_,20“
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3. TYPICAL CALCULATIONAL RESULTS

The fast ion deposition profile is obtained by integrating Eq. (18) or
Eq. (27) numerically, The typical CPU time for calculating the fast ion
deposition profile in Doublet TII within a computational error of 10% over the
entire range of the minor radius 1s 10 -20 seconds with the orbit correction
and 5 =10 seconds without the orbit correction on the DEC-10 computer. This
time is shorter by an order of magnitude than that of a Monte Carlo code. 1In
order to evaluate the computational model and check the program, we use the

parameter, A, defined by

a
o]

A = (32)

Nin = Nout

where Ny, 1s the neutral particle injection rate into the plasma and Ng,, 1s
the outgoing neutral particle rate out of the plasma without suffering any
electron loss collisions in the plasma. In principle, A in Eq. (32) must be 1
for all fast ion species.  In the calculation- described in this section, A is

in the range of 1,01 -0.96.

__21_
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3.1 Fast Ion Deposition Profile

Fig. (5) shows the total fast ion deposition profile in Doublet III;
Parameters employed in this calculation are: plasma curreat, I, = 530 kA,
line~averaged electron denslty, Eé = 5 x 1019 m73, central electron
temperature, To{0) = 1.2 keV, effective charge number, Z.f¢ = 1.5, typical
charge number of impurity ions in the plasma, Z = 8, central elongation, «k(0)
= 1,15, outward shift of the magnetic axis, ffgl = 5.8 x 10"2, neutral beam
energy = 80 keV, ion specles = 6 : 3 : 1 in io: current extracted from an ion

source, and injection angle, 61 = 14° and 8y = 4.3°, The temperature and

density profiles of the plasma are assumed as

4

r
nj(r) = (nj(O) - nj(a)) {l - (‘“")} + nj(a) (33)
‘ a

2
Tr
Tj(r) = (Tj(O) -Tj(a)) {l - (...._._.)} +Tj(a) (34)
a

In Fig. (5), the total fast ion deposition profiles normalized by the
averaged fast ion birth rate with and without the orbit correction for both
co-injection and counter-injection are shown. In the case of co-injectiom,
the fast ion birth rate with the orbit correction increases to a maximum of
30% at the inner plasma reglon and decreases slightly at the outer plasma
region compared to the birth rate derived without the orbit correction. The

major reason for this phenomenon is that the fast ions created in the outer
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part of the torus tend to travel inward from the magnetic flux surface on

which the fast lons are created and that near the plasma edge the fast ions
are lost to the walls due to so—called orbit loss. In the case of
counter-injection, the fast ion birth rate with the orbit correction decreases
significantly around the central region of the plasma because the fast ions

tend to travel outward.

3.2 Comparison with the Monte Carlo Code

In order to evaluate the model for the orbit correction employed im the
present code and estimate the spatial diffusion of the fast ions during the
slowing down due to pitch angle scattering, we have compared the fast ion and
the power deposition profiles calculated by the present code with those
calculated by the Monte Carlo code [12] which was developed to calculate the
complete behaviors of the fast ions in e¢ircular plasmas including the pitch
angle scattering, orbit loss, and charge exchange loss with re-ionization. In
this .comparison; the charge exchange process is excluded bacause the present
code 1s not capapable of calculating the behaviors related to the charge

exchange process.

Figure (6) shows the fast ion deposition profile which is the starting
point for calculating the power deposition profile. The fast 1on deposition
profiles calculated by both codes are in good agreement except in the region
T'/a € 0.1, This discrepancy 1in the central region is caused by the
divergence due to the pencil beam approximation which is used 'in the

Monte Carlo code.
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Figure (7) shows the power deposition profile to the plasma ions

normalized by the average energy transport rate. In the present code, the
power transported to the ions from the fast ions is calculated by means of an
analytlcal solution of the Fokker-Planck equation [13]. The power deposition
profile with the orbit correction calculated by the present code is in good
agreement with that calculated by the Monte Carlo code except for the central
region. This agreement shows that the assumption of neglecting the spatial
diffusion of the fast ions due to pltch angle scattering during the slowing
down is quite reasonable and also proves that the orbit correction is taken

into account .in a reasonable manner in the present code.

3.3 Orbit Effect

In order to estimate the orbit effect on the power deposition, the volume

a/2
integrated power, Paug , transported to the plasma inside the minor radius of

r/a < 0.5 is calculated in both cases with the orbit correction in
a/
2

co-injection and without, Figure (8) shows the parameter dependence of Papg
on the plasma current, Ip, for .each fast ion species. All other parameters

are those in Fig. (5). The vertical axis of Fig. (8) represents the variation
82 p-p 22
rate of Payg ¢ , where Py and Pg are P,yg with and without the orbit
Po
correction, respectively. The total Py, with the orbit correction increases

10 = 15% and the variation rate, EE:ES , decreases with the plasma current.
This result is reasonable because Ege shift of the fast ion drift orbit and the
banana width depend on the poloidél Lamor radius of the fast ion.” However, -
Fig. {8) also shows that ii:fg increases with the decrease of fast ion energy

P

o ,
in the same plasma current although the poloidal Lamor radius increases with

the fast ion energy. The reason for this tendency is that the deposition profile
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of the low energy fast ions of which a relatively large amcunt are created

near the plasma edge region is affected strongly by the orbit effect since in
co—-injection fast ions tend to travel inward as described in Sec, (3.1).

P,_P
Figure (9) illustrates the electvon density dependence of 1-"0 4t I, = 700kA.
P,_P Po
© increases with the electron
Po
density due to the fact that at high density a relatively large amount of

All other parameters are those in Fig. (8).

fast ions are created near the plasma edge region. Consequently, at high

a/,
electron density and low plasma current, the variation of P,y due to the
orbit effect increases up to 20 =307 in Doublet IIT. Thus, using these plasna

parameters, it is important in the tramsport analysis of beam heated plasmas

to take the orbit effect into account.
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4. SUMMARY

A new beam deposition code has been developed which has the following
capabilities: -

(1) The new code is capable of calculating the fast ion deposition profile
injected into non-circular plasmas with a variable elongation and an
outward shift of the magnetic flux surface.

(2) A neutral beam injection with an arbitrary injection geometry can be
consldered.

(3) The orbit correction for a fast lon deposition profile is considered by
weighting each fast ilon birth rate by the fraction of bounce time which
the fast ion spends in the related differential volume between the
magnetic flux surfaces,

(4) Typical cpu time on the DEC-10 computer for caleculation of a fast ion
deposition profile in Doublet III is 10 -20 seconds with the orbit
correction and 5 -10 seconds without the orbit correction. This time is

shorter by an order of magnitude than that of a Monte Carlo code.

The computational results in Douﬁlet ITI show:

(1) The fast ion birth rate with the orbit correction increases in
co-injection and decreases in counter—injection in the area of the plasma
center compared to the fast fon birth rate without the orblt correction,

(2) TIn the case of co-injection, the volume Integrated power transported
to the plasma inside the minor radius of a/9 increases 10 -207% due to

the orbit effect.
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(3) This increment increases with the decrease in plasma curreant and also

increases when a relatively large amount of fast ifons are created near
tﬁe plasma edge region since fast ions tend to travel toward the central
region of the plasma. Thus, the Increment increases with electron
density and decreases with beam energy.

(4) The power deposition profile calculated by the present code is in good
agreement with that calculated by the Monte Carlo code which is able to
describe the complete behavior of fast ions in the plasma. This
agreement shows that the orbit correction is taken into account in a

reagonable manner in the new code.

The code can easily be modified to allow calculation of the fast ion
deposition profile for plasmas having triangularity of the magnetic flux

contour.

Acknowledgement

The authors would like to express their gratitude to K. Shinya for his
help in calculating the plasma equilibrium in Doublet ITI. The authors would
also like to thank the members of the JAERI team at Doublet III, M. Yoshikawa
and S, Mori for their continuing encouragement throughout this work. The
authors would also like to thank T, Ohkawa and the staff of the General Atomic

Company for their support.

ﬁ27,



JAERI — M 82-129

References

1;

10,

11.

12,

13.

:D. W. Swaih,‘M. Murakami, S. C. Bates,'et. al., Nucl, Fusion 21 (1981)

1409.

I. Meadé, et. al.,.iﬁ Plasﬁa Physics and Cotrolled Nuclear Fusion
Research (Proc. 8th Int. Conf. Brussels, 1980) IAEA; Vienna 1 (1981) 665.

N. Shzﬁki; JFT¥2 group,'IOth Eufopean.Conferenéé oh Controlled Fusion and

Plasma Physics, 1981, Moscow.

A. Colleraine, et. al., "Preliminary Neutral Injection Experiments on
Doublet III“, 3rd Jeint Varenna—érenoble Int. Symp. on Heating 1in
Toroidal Plasmas, 1982, Grenoble.

J. A, Rome, J. D. Callen and J. F. Clarke, Nucl. Fusion, 14 (1974) 141.

"R. H. Fdwler, J. A, Holmes and J. A. ROme; 'NFREYA-A Monte Carlo Beam

:‘Depositibn'COde for Noneircular Tokamak Plasﬁas", Oak Ridge National

Laboratory Report, ORNL/TM-6845, 1979.
M. Nagami, H. Yokomizo, M. Shimada, et. al., Nucl. Fusion, 22 (1982) 3.
F. W. McClain and B. B. Brown, "GAQ — A Computer Program té Find and

Analyze Axisymmetric MHD Plasma Equilibria™, General Atomic Co. Report

GA-AL4490, 1977.
A, C; Riﬁiere, Nucl. Fﬁsidn_ll (1971) 363.

' R. E; bison, et.al., SRI Annual report; MP-77-59 (1973).

F. H. Teﬁney,."Coﬁfinement bf‘Energetic Albhas in TCT and Tritoms in

PLT",IPrihceton‘Piasma.PhySiéé'Léboratbfy Report MATT;1132, 1975,

K. Tani, M. Azumi, M. Otsuka, et, al., Proc. Joiﬁt Varénha—GfenobleHIﬁt.
Symp. Heating in Toroidal Plasmas, Grenoble 1 (1978) 31,

J. D. Callen, R, J. Colchin, et. al., in Plasma Physics and Controlled
Nuclear Fusion Research (Proc. 5th Int. Conf. Tokyo, 1974), TAEA, Viemna,

1 (1975) 645.



JAERI — M 82-129

¢
MAGNETIC
SURFACE
! ¢
\Pas 0
i )
/7? LIMITER
| 7/ Q X )l
u r
Rp i
I:!0
(a) (b)

Fig. 1 (a) Magnetic flux contours calculated by the free boundary equilibrium
code [8]. (b) Approximated magnetic flux contours employed in the

code.

Fig, 2 Cylindrical coordinate systems
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Fig. 3 Description of calculational model for the fast lon birth rate due to a

small beam element,
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Fig. 4 Injection geometry and notation of variables.
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birth‘rate calculated by the

) present code with that given
correction in co-injection,

by the Monte Carli .
At with the orbit correction Y e Monte Carlo code [12]

®.: the present code,

in counter-injection.
_ X : the Monte Carlo code,

=

o

= 10
o

e} A
o

11 -
o I
ol i
1008 L
=

o 51
Q- -
0

. -
N

= N
< L
s

O e
o

= 0.

l'/a'

Fig. 7. Comparison‘of-power—deposition profile calculated by the present code
with that given by the Monte Carlo code. ® : the present code,
X : the Monte Carlo code.
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Fig. 8 ©Plasma current dependence of ‘the variation rate of Pgpg due to the
a/2 '
orbit effect. Pgpg 1s the power transported from the fast ions to the

- plasma inside the minor radius of Y/a < 0.5.
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