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Basic models and formulations, which take account of the effects
of the density dynamics (e.g. density perturbation, particle recycling,
convective energy loss, etc.) are developed for the thermal instability
analysis in a D-T tokamak reactor. The one—dimensiocnal transport
equations of ion density, electron and lon temperatures are linearized
with respect to the perturbations and an eigenvalue analysis is used to
calculate the growth rate of the instability. Critical curve of the
stable and unstable regions on the density-temperature plane is
determined for the case of the INTOR scaling law. It is also shown
that the density mode of the trapped-ion scaling case is completely
stabilized by the effect of particle recycling. They are reegxamined by
the time dependent transport code. These results show that the formula
tions developed are well effective to investigate the effects of the

density dynamics on the thermal instability.
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1. Introduction

Many works have been done so far on the thermal instability in

a D-T fusion reactorl)_lsz Especially, in tokamak reactors, the growth

time of the instability and the unstable region have been obtained12’13z
since the energy confinement scaling law has been clarified to a
certain degree. Several methods for controlling these instabilities
are proposedle_zo), while definitive methods are not established yet.
In the tokamak reactor design, the operation point on the density-
temperature plane must first be determined by taking account of many
physics and engineering requirements and restrictions, such as toroidal
beta value, total fusion power, neutron wall loading. Among the rest,
the restriction by the thermal iﬁstability will be important factor.
when we cannot avoid to set the operation point in the unstable region,
it is of primary importance to investigate beforehand the growth time
and the feature of the unstable mode in order to establish the reliable
method for the control and measurement of the instability. To obtain
the growth time, the unstable region and the feature of the unstable
mode, we must investigate them on the basis of the precise scaling law
and analytic model, which can reproduce realistic reactor conditions.
As for the scaling law, it is widely accepted that INTOR scaling is
standard21), while it is uncertain that this scaling law is applicable
to future higher temperature and a-particle heated plasmas.

Therefore, at present, it is important to establish the reliable
analytic method for investigating the thermal instability.

As for the analytic model, zero-dimensional point model analyses
were first done, and then one-dimensional analyses haﬁe been developed.
However, emphases have been placed on the énalysis of only the temperé~
ture perturbation, i.e., the density perturbations have been omitted
and the density profile fixed or artificially created by pellet
injection or neutral beam injection with complete pumping of the dif-
fusing particles. In an actual tokamak reactor, however, it will be
reasonable to consider that 5~ 10% of the diffusing particles are
pumped out and the remaining particles are recycled to the main plasma
to enhance the fuel burn-up fractionzz). This pumping ratio might also
be reasonable due to the engineering restriction on the pumping

.. 2 . . o
capacity 3). Thus, for the more precise analytic model, 1t 1s necessary

to develop the particle recycling model and take account of the density
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dynamics such as the effects of the density profile, density variation,
conﬁective energy loss, particle recycling.

The purpose of this paper is to develop more refined one-
dimensional model for the thermal instability analysis taking account
of the density dynamics. ‘The effects of the particle recycling are
considered in the analysis by evaluating the diffusing particle filux
at the plasma boundary and using the constraints of the total number
density conservation. Linearizing the perturbed transport equations
for ion density, electron and ion temperatures, we obtain the general-
ized eigen value equation, whose solution provides the growth rate and
unstable region of the instability. We apply the formulations develop-—
ed to the INTOR scaling law for the transport coefficients as a
standard reference. Critical curve of the thermally stable and
unstable region on the density and teﬁperature'plane for an INTOR-size
reactor is obtained. We also determine a regime of stable operation,
which satisfies the requirement of high Q (= fusion output power/input
power) operation and the limitation of the toroidal B-value.

In addition, when the transport coefficients strongly depend on the
density and temperature, the effect of the density dynamics on the
instability will be far more important. In fact, it has been pointed
out that a thermal instability driven by demsity perturbation can arise
in the case of the trapped-ion mode scalingg’za). The effects of '
particle recycliﬁg are examined for this density-driven thermal
instability. It will be shown that this mode is completely stabilized
as the recycling rate approaches to unity. We reexamine our basic
formulations and linear stability analysis by using time dependent
one-dimensional transport code. '

Formulations developed in this paper will serve to analyse the
thermal instability more correctly when the more reliable energy and
particle confinement scaling laws are obtained in future. These will
provide useful information to establish the method for the measurement

and control of the instability and also will be a useful tool for the

physics design considerations.
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2. Basic Equations and Models of Analysis

The basic equations are the one-dimensional particle and energy

transport equations. These equations are given by

3 3
3—:=—%~§?rr+s—sf=Fl+S . (2.1)

oT -
39 13 5 r 3
75c KT ST or T [“Xek o0 "7 MTe | *qor (kT
nk (T, - T;) e
" T Pf +Pext+PJ_Pbr_Psy B Fz » (2.2)
eq
oT.
3 9 1 2 1 5 : r 3 _
75 T =TT [nxik a2 kFTi:} v oy (kTP
nk({T_-T:) .
e 1 1 -
* T PPt Pexe T L (2.3)
eq

where n is the plasma density and T, and T; are the electron and ion
temperatures, respectively. Also, Xe and X4 are the electron and ion
thermal diffusivities, Teq is the ion-electron energy relaxation time
and k is the Boltzmann constant. The MKS units are used for all
quantities except for T, and T,, which are given in eV. The remaining
notations and their basic models used in Eqs.(2.1) - (2.3) are as
follows;
(1) particle transport equation

For the density dynamics, we assume that the deuterium and tritium
densities are equal every where (nD=rHj=n/2) and consider the behavior
of the total ion density (n==nD-+nT). The ion particle flux [ in

Eq.{2.1) is expressed by

1“=—D§E+r;“ (2.4)

ar ’
where D is the diffusion coefficient and F;n is the inward particle

flux due to Ware pinch25), which is given by

o 2.44VE E,
r*t . - ¢ : . (2.5)

W W1 40.85 v B
e P
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Here, € is the inverse aspect ratio, E, the toroidal electric field,
Bp the poloidal magnetic field. Also, ve* is the collisionality
parameter of banana-plateau for the electrons and Cw is a numerical
factor.

The particle fueling source S can be written as
s =5, , (2.6)

where S is the total source amount in the plasma volume and f{r) 1is
the source profile mormalized by S (f(r)=8/8,). Most of the previous
works on the thermal instability assumed that 35 consists of only the
external fueling source. However, in realistic tokamak operation,

a large part of particles lost due to diffusion return to the plasma.
We take into account such a recycling effect by using the constraint of
the total number density conservation. That is, S, can be determined

by the equation,

_ 1 3
dev = RCI?E r[dv + jsextdv R (2.7)

vhere RC is the recycling rate and S5, . represents the external fueling
source. On the other hand, source profile f(r) in Eq.(2.6) is deter-—
mined by neutral calculation code26), which solves the neutral transport
equation in cyiindrical geometry.

The sink term S; by D-T fusion reaction has the form,

n® <gv> . (2.8)

ro| —

Sf =

. : . . . .27
The reaction rate <Cv > 1§ approximated by the following equation ),

0 (T; <1.1 keV)
<g » = 10"22><exp(clya-Fczyz-+c3y-+cu) (1.1 keV;gTi<:150 keV)
6.268 x 107%2 (150 keV<Ty) (2.9)

where y=5ln(Ti/103), c, =0.038245, C, = -1.0074, C,=6.3997 and
c, =-9.750. '

(2) electron and ion energy transport equations

In Egs.(2.2) and (2.3}, Pre and P represent the a-particle
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heating power densities for electrons and ions, respectively.

We assume that the c-particle energy is delivered to the field
particles instantaneously, since the finite slowing down time wiil not
have large effects on the thermal instabilitylz). The heat deposition
profile of c-particles is assumed teo be the same as their birth

profile. Then, Pfj is given by

1 2 .
L, o= < > =K, =
PfJ 7 ov kE& RJ , (j=1,e) , (2.10)
where Ea= 3.52 MeV and Rj is the fraction of the energy to the parti-
cles of j-th species. Using the assumption nD==nT==n/2, R, and R, can

be given by

v 3 v
Ry = “g—mi GO EHn L Re=loRg (2.11)
T tho c
with
v=v
B o= Hv,v) tha (2.12)
v=v_ .
a1
3 3 -
1 v, 1 Zv-v,
H(v,vc) = E‘iﬁ - = 4 = arc tan (——) , (2.13)
(v+v )® V3 V3 v
d c
where v, .. = VZkT./m. s v . = v2kT./m . v = (3/n v /4)1/3
thj ol 1w c the
(mj is the particle mass of j-th particles and m —-1/mD-+1/m ).

The external heating sources for electrons and ions are denoted
by Pext and gxt' WElaqsume only the ion heating and put P t-—O in the
present analysis. PeXt is assumed to be in the form as

i W1 2
Py = p,(0) [1-(c/a)?]* , (2.14)

where Pi(O) is rhe heating power density at r=0 and a is the plasma
minor radius. The peaked heating profile in the plasma center, which
will correspond to the RF type external heating, is assumed in Eq.(2.14).
Although the change of heating profile and heating species {electron or

ion) will have a considerable effect on the thermal instabilitle),
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“our primary concern is placed on the effect of demsity dynamics so that
only one type of external heating given by Eq.(2.14) is employed here.
Another heating source term in Eq.(2.2) is Joule heating Pl
Using the plasma toroidal and poloidal current densities J, and Jp, PJ

is expressed by

P, = mZJZZ + anpz , (2.15)
where 1, and Np are the plasma classical resistivities in the torcidal
and poloidal directions.

The energy sink terms Pbr and Psy represent the bremsstrahlung
radiation and the synchrotron radiation losses, respectively.

Their expressions are

!
It

>

o, = L.42x 10778 nzTel/2 (2.16)

P, = 6.38% 10716 BT5/2 T 2 J s , (2.17)

where BT and R are the toroidal magnetic field and the major radius of

the torus, respectively.

In the above basic equations and models, the effects of impurities
are neglected to simplify the analysis. The scrape-off layer plasma 1is
not included either, though it is easy to consider it.

Furthermore, charge exchange, ionization and excitation losses of fuel

particles are ignored for simplicity.
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3. Linear Stability Analysis

The stability analysis of the equations (2.1) - (2.3) is carried
out in the following manner. First, the demsity, temperatures and

particle source are expanded about their steady state solutions,

n(r,t) = nU(r) + 8n(r,t) (3.1a)
Tj(r,t) = Tjo(r) + 6Tj(r,t) , (j=e,i) (3.1b)
s(r,t) = §,(r) + 65(r,t) . (3.1c¢)

These expressions are substituted into Egs.(2.1) - (2.3) and the non-
linear terms are neglected. The resultant linearized one-dimensional

equations for én and 6Tj can be simply expressed by using a matrix

form,
Sn &8
ASX = BSX + 85, &x= |o&T, | , 8= |0 . (3.2)
8T lo

dF oF oF

1 1 1

o, 0,0 0 BT, 0 T

- 3 3 _ 9¥, oF, oF,
A= [ 5 kT, 3k, O » B s e 0 g | 0 O0Y

3 3 dF 4 oF, oF 4

T KT, 0 gk Sn * 3Te * 971

Here, it should be noted that all the elements in A, B, &X and 65 have
radial dependence.

Next, we eliminate the perturbation of the particle source &5 from
Eq.(3.2). As was noted in section 2, the particle source term S
consists of two parts —— the external one (gas puffing or pellet
injection) and the recycling one. Although the source profiles of both
particle sources will be a little affected by the density and tempera-
ture perturbations, we will ignore for simplicity the perturbations of
both source profiles. It will be reasonable to assume that the total
source amount by external one is not perturbed. Thus, the perturbation

of particle source 8S comes from the recycling one and is given as

— 7 —



JAERI-M 82-147

88 = SSrcy e £(x) , (3.4)

1 3
6srcy = —61§:J[;-§; el dvV (3.5)

where we have used Eq.(2.7). The right hand side of Eq.(3.5) can be
transformed into the surface integral of I'. To obtain the growth rate
of the instability, we will use the finite difference approximation for
the space derivatives in Eq.(3.3). Since the spatial gradient at the
plasma boundary may contain rather large error in the approximation,
we rewrite the right hand side of Eq.(3.5) by using Eq.(2.1).
Then, Eq.(3.5) is replaced by the following expression,

§s_ = i?; (6n + 3s.) dv . (3.5)"

[o4

In actual reactors, R, is always smaller than unity, since a certain
fraction of diffusing particles is pumped out by the exhaust system for
herium ash. Substituting Eqs.(3.4) and (3.5)' into £q.(3.2), Eq.(3.2)

can be reduced to the following generalized eigen value equation;

AM 68X = BM 8x (3.6)
with
RC
1-£(r) TR, dv , o ., 0
AM = 3kt . 2n , 0 , (3.7a)
2 e 2 0
3 3
7 Kl ’ 0, Fkn,
oF, Re 38 F, 9F, R. Sf
EuR A A T Er R )
i - 3F, 8F, 3F,
y b
on aT, aT;
JF 8F3 an
n > 3T, 5T
(3.7b)

whered/;V, J[év (BSf/Bn) anddf;V (BSf/BTi) represent the integral

_8_.



JAERT-M 82-147

operators om 5% and éx, respectively.

The growth rate and eigen function of the instability can be
obtained by numerically solving Eq.{(3.6). To this end, we devide the
radial region considered (i.e. 0<r<a) into several zones with the
width Ar (subscript j means the j—th radial zome). Finite difference
and sum approx1matlons are used for the space deviatives and integrals,
in Eq.(3.6). The steady state quantitles, such as no(r), jo(r) and
£f(r) in AM and BM, are given at each mesh point. The boundary conditions
imposed are 38X/8r=0 at r=0 and éx=0 at r=a. Then, the matrixes AM
and BM have 3+(N-1) x 3+(N-1) elements, where N is the total number of
the radial zones. That is, each matrix element in Egs.(3. 7a) and (3.7b)
becomes (N-1)} x (N-1) minor matrix. For example, 1—-f(r)R /(1-R )4fdv

in Eq.(3.7a) becomes as

1+, , Gy , *°c°t Ciyg
az . 1+a3’ seansw QN

1—'f(r) 12 fdv N Olz » OLB N Oll.., OLN s (3.8)
C L] - " L)

.
o R o R -----’ l+aN

where aJ= —f(r ) "R, /(I—R ). ﬂ(r Ar -

. ArJ) and the flnlte sum approxi-

mation (trapezoidal formula), _jﬁv F(r) =2n)dr £t F(r) = 2T, Z [r F(rJ)

+ rJ F(r )]Ar./Z have been used (r. ,F(r) are the radlal coordinates
at j-th mesh p01nt and the arbitrary functlon respectively).

Finally, we replace the time derivative 3/9t by y. The resultant eigen
value equation for the eigen value Y and the eigen vector

sxT = [Sn(x,), -——, énlry), 8T (r;), -, 5T, (ry), 8T;(x,),

———=, éTi(rN)] can be solved by standard numerical method.

With use of the growth rate obtained, growth time T, of the

instability is defined by

T = -—}—*»ﬂ (3.9)
max
where ReY,, is the largest real part of all eigen values. Actually, in
some cases, the growth rate Yy can become complex, as will be showm

later. In those cases, though the eigen functions are also complex,
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only their real part is physically meaningful. For example, the time

evolution of the ionm density eigen mode is given as

t
ﬁ/(énr)2-+(6ni)% . eYr » cos{wt +¢) . (3.10)

Here, ﬁnr, 8n. ia Ypo w and ¢ are the real and imaginary part of eigen
vector and eigen value, and the phase of eigen vector, respectively.
Various eigen functionms given by arbitrary phase of (wt+$) can emerge
in our eigen mode analysis. We will check them by one-dimensional time
dependent transport code for Bgs.(2.1) - (2.3).

in our thermal stability analysis, we have neglected the perturba-
tions of the electromagnetic pavameters, such as E_, By, J, and Jps
cince the current diffusion time will be very long for the reactor
grade temperature. ASs mentioned in section 2, the perturbations of
ngt have also been ignored.

We obtain the quasi-steady states of the density, temperatures and
so on by the time dependent transport code, in which the ion tempera-
ture and ion density are controlled by the feedback method, which is
similar to POPCON code28). For example, the ion temperature is
controlled by the combination of the proportional and derivative
control and Pi(O) in Eq.(2.14) is given by

T = At/T 9 3 -, =
Pl(O) = \'Cl(Ta T1)+C2 mg’g (-E nkT: ) R (3.11)

where C_, Cz’ Ta’ T and n are the gains, the desired and the average
ion temperatures, and the average ion density, respectively. Also, At
and T are the time step of the transport code and the appropriate time
constant. The quasi-steady states can be obtained after long simulation
time (about 10 s).

The numerical calculations and their results will be shown in the

next sectiom.
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4, Results of Calculations

Based on the formulations developed in the previous sections, we
analyzed the following two cases, (1) INTOR scaling case and
(2) Trapped-Ion Mode scaling case, and see that our formulations are

well effective for the instability analysis with the density dynamics.

{1) TINTOR scaling case

As the first example, we employ INTOR scalingzg) for the transport
coefficients in Egs.(2.1) - (2.3);

Electron thermal diffusivity : Xg = 5x 1019/ne'f(K) . 4.1

Ton thermal diffusivity : Xiz'BXneo.f(K) s (4.2)

Particle diffusion coefficient : D==Xe/5 . (4.3)

where Xseo is the neoclassical ion thermal diffusivity.
Noncircular effect of plasma cross section is simply taken into account
by a factor of £(c) =/(1+k2)/2 / k (k: ellpticity of the plasma cross
section), which is the volume-surface ratio of the plasma. We do not
include the ripple enmhanced thermal diffusion, for simplicity, in the
present analysis.

The recycling rate R, is set to 0.95, which will be the typical
value of the reactorzg), and the fuels are fed by gas puffing,
The energy of neutrals, which are recycled back and fed into the plasma,
is assumed to be 5 eV. The numerical factor of the Ware flux in
Eq.(2.5) is taken as Cw==1.0.

The device parameters used in the calculations are listed in
Table 1, which are proposed by the recent design study of Fusion
Experimental Reactor (FER) in JAERI and are similar to those of INTOR.

Typical profiles of electron and ion temperatures and ion density
in the steady state (n~1.0% 102°m'3, Ti~'1o keV and TE'VS keV) are
shown in Fig.l. There is always only one unstable mode in the unstable
equilibrium state, which is purely growing (Inmy=0) and global mode.
The unstable eigen functions for the equilibrium state of Fig.l are
shown in Fig.2 for the electron and ion temperatures and in Fig.3 for
the ion density. Figure 4 shows the equi-growth time lines of the
instability on the H-—Ti plane. The dotted line Tg=« is the critical

curve of the thermally unstable and stable regions. We restrict our
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analysis to the sub-ignited region in Fig.4. By the feedback control
of Eq.(3.11), we can obtain the quasi-steady state even in the over-
ignited region and can examine its thermal stability. However, P;(0)
in the steady state becomes negative in this case, which correspond to
the central cooling of the plasma. There seems to be no such cooling
scenario at present, so that we do not consider such a case in the
present analyses. To determine the operating point, it is convenient

to draw equi-~Q lines on the ﬁ-—fi plane, where Q is defined by

5j(Pfe+Pfi) dv
Q = :
e 1
I(Pext+Pext+PJ) dv

This is shown in Fig.5. When these figures (Fig.4, 5) are supplemented

(4.4)

by equi-beta lines, we can choose the stable or weakly unstable operat-
ing regime within the 8-limitation, which realize the required Q-value.
Two examples are shown in Fig.6. Hatched regions (a) and (b) satisfy
the following operating conditions,

i) stable operation, Q=30 , B<47 ,

ii) stable operation, Q>10 , B<3%Z,
respectively.

The effect of the density perturbation on the thermal instability
is small in this scaling law. This is because the dependence of D and
X, on the density and temperature is weak (e.g. D, xe<11/n)..
Quantitively, if we put én=0 in Eq.(3.6) and omit the density perturba-
tion in the analysis, the growth rates become larger by 10% at most.
This increase of the growth rate is mainly due to the fact that the
dominant term in Eg.{2.1) is the fusion term Sf in this scaling law.
The effect of the particle recycling is also small and the growth rate

is little affected by the recycling rate.

(2) Density mode of the trapped ion scaling case

In the present sub-section, we analyse the density mode of trapped
ion scaling as an example, and show that the density perturbation can
be important when the density and temperature are strongly coupled in
the transport coefficients. It has been pointed out that the equi-
1ibrium state of the trapped ion mode scaling is stable for the tem-

perature perturbatien, while is unstable for the deﬁsity perturbation

9,24

)
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However, when we consider the particle recycling, this mode will be
stabilized, since the particle recycling works as a feedback control to
the density perturbation. This will be shown by our stability analysis,
The plasma and device parameters used in the analysis are shown in
Table 2. The fuel particles are fed by the pellet injection as well as
the particle recycling. To obtain the equilibrium state, the particle
density is kept constant by the feedback control. Figure 7 shows the
growth rate of the instability as a function of the recycling rate R,.
The instability is stabilized when R, 20.95. Figure 8 shows the typical
unstable eigen functions of the ion density and ion temperature (only
one mode is unstable) for R, = 0.0, The unstable mode is strongly
oscillatory (w~7Y).

These results are reexamined by one-dimensional time dependent
transport code. Unstable eigen mode perturbations shown in Fig.8 are
added to the equilibrium state, and the feedback control of the density
is turned off simultaneously. Time evolutions of the average ion
density are shown in Fig.9. Time evolutions of the density perturbation
are shown in Fig.10. To compare the results of Fig.lO with the eigen
functions given by Eg.(3.10), we depict Eq.(3.10) for various phases
with the growing term (exponential term) dropped. They are shown in
Fig.ll. From Figs.l0 and 11, it is seen that the perturbations maintain
the shape of the linear eigen function for rather long time. The growth
rates obtained by the time dependent transport code, however, are small-
er than those by eigen equation calculation by a factor of 1.5 to 2 as
shown by circles in Fig.7. This is due to the nonlinear effects i.e.,
particle and energy diffusion, since the growth time and the diffusion
time is comparable. The fundamental profiles of the background plasma
density and temperature do not change so much, so that there is always
only one unstable eigen mode., Other modes, which distort the shape of
the unstable eigen mode, damp one after another, so that the shape of

the linear unstable eigen function remains almost unchanged.
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5, Summary

The model of particle recycling and the basic formulations fer the
one-dimensional thermal instability analysis in a tokamak reactor
taking into account the density perturbation were developed. The growth
rate and eigen functions of the instability were calculated by numeri-
cally solving the linearized eigen value equations of ion density,
electron and ion temperatures. We applied the formulations to the
following two cases of transport scaling law. The results obtained are

summarized as follows.

(1) INTOR scaling law

Thermal stability properties were examined over wide range of the
E-—Ti plane. Critical curve of the thermally unstable and stable
regions on the ﬁ-—Ti plane were determined. We also determined an
operating regime, which meets the following physics design requirements,
(a) thermally stable operation, (b) attainment of required Q-value and
(c) operation within the critical teroidal B-value.

In this scaling law, the effects of the density perturbation and
the particle recycling are small. The growth rate of the instability

decreases by only about 10Z in comparison with the case of dn=0.

(2) trapped-ion mode scaling law

If the density and temperature are strongly coupled in the trans-
port coefficients, the effect of the density perturbation becomes
significant. This is confirmed by our formulations for the density
mode of trapped-ion mode scaling case as an example. It is also shown
that this mode is completely stabilized when the recycling rate
approaches to unity. These results were reexamined by time dependent

tokamak transport code and were shown to be physically reasonable.

These results show that our basic formulations are well effective
to investigate the effect of the density dynamics on the thermal
instability. They also provide useful informations to consider the
desirable operating condition,

However, there still remain some quentions to be resolved or
extended in future to make clearer the effect of the density dynamics
on the thermal instability. Especially, it is of primary importance to
investigate what sort of demsity profile will be realized in the future

reactor plasma. Simple application of the INTOR scaling law leads to a2
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very flat density profile. However, if the round density profile is
more likely to be realized in the future reactor plasgma, some ancmalous
inward particle flux must be introduced as in the present-day tokamaks.
In this case, the growth time, unstable region and feature of the
instability will comsiderably differ from those of INTOR scaling case.
Futhermore, it is also necessary to compare these results with the
case, where the round density profile is artificially created by pellet
injection or neutral beam injection with the complete exhaust of the
diffusing particles. The formulation developed here can be simply
extended or applied to these cases. Analyses of these cases and

comparisons with the results will be reported elsewhere.
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Table 1 Device parameters of Fusion Experimental
Reactor (FER) of JAERI

a (Minor radius) 1.1 m

R (Major radius) 5.5 m

B, {Toroidal field on axis) 5.7 T

I, (Plasma current) 5.3 MA
K (ellpticity) 1.5

Table 2 Device and plasma parameters to investigate
the density mode of the trapped ion scaling

case

a (Minor radius) 1.4 m

R (Major radius) 5.5 m

B, (Toroidal field on axis) 5.7 T

Ip (Plasma current) 6.7 MA

Ei (Average ion density) ~1.6%102% m~*
Ti (Average ion temperature) ~ 7 keV
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