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Introduction

1.1

Objectives

As one of the main characteristics of INTOR Phase I,

the 12 TF coils were sized with sufficient bore
dimensions so that a complete torus sector, consist-
ing of 1/12 of the total, can be withdrawn by a simple
straight motion between TF coils. Consequently the
remote maintenance system was greatly simplified.
However, a large-size reactor structure configuration
is required to perform this approach, and may lead to

high cost of reactor.

In order to establish the INTOR system concept with
high reliability and reascnable cost, further more
detailed approach is required from both standpoints

of reactor structure configuration and remote main-
tenance technology. The objective of the engineering
studies on INTOR J-ITa is to evaluate different mechani-
cal configuration concepts and the corresponding
maintenance and assembly/disassembly approaches that

might be used to reduce the size and cost.

Design requirements

The principal engineering parameters such as major
plasma parameters of INTOR J-Ila are the same as those
used in Phase 1. Primary design considerations carried

out on INTOR J-IIa include; (1) minimization of the TF
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coil and reactor size, {(2) adoption of pumped limiter
for impurity control, (3) adoption of RF heating

instead of NBI heating.
The different specifications are follows.

(1} The bore of the toroidal field coil is reduced
from 7.7 m wide x 10.7 m high for Phase I
reference deéign te 6.6 m wide x 9.3 m high.

Number of toroidal field coil amounts to 12.

-

(2} Ripple condition at R = 6.5 m is +1.2%.
{3) Plasma start up is carried out with 35 Vv, 0.3 sec.

(4) The pumped limiter is used in order to control

the impurities.

Brief summary of results

The four options of repair and maintenance method are
considered taking into account the reduction of the

TF coil bore.

Replacement of the blanket/first wall and the pumped
limiter is performed by single straight motion. The
torus structures of both limiter and blanket are
divided into 24 sectors (2 sectors/TF coil).

Each of twc sectors between two TF coils is retracted

in radial direction with different angle.

Concerning the vacuum boundary, 4 cpticns are considered
and the separate vacuum boundary for the torus and

superconducting magnet vacuum system is selected.
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The vacuum boundary of the plasma chamber is located
on the inner side of the shielding structure.

This vacuum boundary 1is connected with the blanket
access door through which the blanket and the limiter
sectors are retracted. A common vacuum cryostat

contains all of the superconducting coils.

Five cases of limiter or divertor operation as
impurity control are considered. Our reference system
is limiter case of the PF coil maximum radius ll m.
The adoption of the limiter permits the reduction of
the PF coil ampere turn 98 MAT (Phase I) to 83 MAT,
accordingly, the capacity of power supply is reduced
from 15 GW {(Phase I) to 4 GW.

The out-of-plane force {(MZ) resulting on TF coil

(+239 MN-m/coil) is also considerablv reduced by 33%.

The size of the reactor is reduced and the cost
becomes lower than phase one's.
AS PF coil distribution, the Universal-INTOR type 1s

taken into consideration.

The Universal type has the divertor type PF coil

distribution permitting the limiter operaiton.

The conceptual study on the Universal-INTOR type reactor

concept is carried out under the following specifica-

tions.
i) combined type vacuum boundary
i} torus closure without access port

ifi} torus segmentaticn by 1 %2 sectors/TF coil
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TF System
2.1 Evaluation of coil size
2.1.1 Ripple requirement
The number and bore of TF coil is determined, taking
into account accessebility and maintainability for
the remote handling of blanket, pump limiter, etc.
and also considering the achievement of an accepta-
ble field (ripple *¥1.2% at R = 6.5 m) at plasma
region.
In the limit of the TF coil bore width 6.6 m, the
blanket sector segmented as 2 sectors/TF coil can
be retracted with straight single motion.
The attained field ripple is *0.92% at R = 6.5 m.
2.1.2 Winding configuration

JAERI-M 82-178

The key design issue of TF magnet is the estab-

lishment of cryogenic stability and mechanical
rigidity.

Besides those, there are many conflicting con-
straints; AC loss, coil protection against normal
zone propagation, electrical insulation, joint

requirement, fabricability, economics and such.
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There are many discussion with regard to the
choice of cooling concept of large bore TF.mag-
net; pool boiling, forced cooling, etc. However,
none of them satisfies all above reguirements.
Each cooling method has individual features and
one cooling method is, in many case, devoid of
advantages the other one displays.

The adopted cooling method in this phase is the
concept of pool beoiling in preference to other
cooling concepts. The reason for this choice is
that pool boiling is simple and more reliable,
and is considered a more mature technology as
shown in the achievement of a number of large
magnets, and further the mechanism of cryostability

is more understood.

Oon the other hand, forced-cooling method are
short.of achievement with large magnets. But,
forced cooled magnets have some interesting advan-
tages and potentialities especially concerning

the heat transfer characteristics, mechanical
integrity of the magﬁet, high voltage endurance,
etc., overcoming the difficulties.of supplying

the supercritical helium or cooling down the large
magnet. It is worth noﬁing that cable-in-conduit

conductors may exhibit an outstanding cryogenic
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stability as typically shown by zero flow stabil-
ity. NbTi based conductors may have useful per-
formances for constructing large TF magnets to

be operated at 12T and reduced temperatures and
if so, this type conductor might be put to use

in place of brittle NbiSn conductors.

Anywéy, many uncertainties to be solved still
remain on other cooling conéepts notwithstanding
the active research and development, but it is

not true that pool boiling concept is decisively
advantageous way. It could be envisioned that
other cooling concepts will be introduced to large
TF magnets as their technologies are advanced.

It does not seem at the present stage that the
determination of the cooling concept is the most
critical issue for the definition cf TF magnet

for INTOR.

Pancake winding of pool boiling conductbrs are
favored primarily due to the fact that ventila-
tion of vapor bubbles is better and the trans-
mission of expanding forces through thé winding

fo the coil case is reliable. It is another

merit that the pancake winding approach simplifies

the coil winding process significantly.
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(a)

{c)
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Structural design implication

Fig. XI-2-1 shows the TF coil-structure and Fig.
¥XI-2~2 shows the cross section of the coil/helium
vessel.

The main features of TF coil are shown below.
The helium vessel material is 316 stainless steel.

The helium vessel structure consists of inner
ring wall, outer ring wall and two side plates.

These parts are assembled by welding.

In the centerpost region, the outer wall is thick-
ened in order to be supported against the center-

ing force by means of the wedging action of helium

vessels.

The electromagnetic hoop force is supported by

the TF coil conductor and the helium vessels.

In the outer region, the outer sﬁpporting frame
is welded to the outer wall in order to suppeort

the out-of-plane force.
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In order to permit the removal of torus sectors,
there is an open window region between adjacent

TF coils.

A bending moment is produced on the outboard
portion of the TF colil because of the out-of-
plane force.

As shown in Fig. XI-2-1, the support structure

is attached on the outer ring wall of the outboard

portion of the TF coils.

This support structure has a forme of trapezoid.

At the lower portion of the TF coils, the pedes-
tal supports for the dead weight of the shield
structure and the vacuum duct penetrate the space
between adjacent TF colls. Therefore, the support
structure of inter TF coil is partially installed
in order to permit the penetration of the vacuum
duct and shield support pedestal as shown in Fig.

XKI-2-1.
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Design description

The number and bore of TF coil are determined, taking
into account accessibility and maintainability for
the remote handling of blanket, pump limiter, etc.
and also considering the achievement of an accept-

able field at plasma region.

The TF coil main parameter is shown in Table X[-2-1
v Table XI-2-3,
The main characteristics of TF coil is summarized

below.

The major requirement for the INTOR TF magnet is
to provide total ampere-turns of 143 MAT required
tc generxate the 5.5T7 field at plasma major radius

of 5.2m.

The TF coil bore is 6.6 x* 9.3m. The number of
TF colls is 12 which satisfy the field ripple
limit of 1.2% at the plasma edge. |
The attained field ripple is £0.92% at R=6.5m.
The TF coil structure size is shown in Fig.

X-2-3.

The overall current density in the winding of
TF magnet is.l9.4A/mm2 and the maximum field is
11.4T at the magnet bore. The pocl boiling
method is adopted and fulfils the cryogenic
stabilization. The magnet is graded at three

fields: the nominal field of 12T, 10T and 57T as
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shown in Fig. Xt-2-4.

The conductors of 12T and 10T are consist of the
conductor of copper stabilized NbiSn.

The conductor of 5% is consist of copper stabilized

NbTi conductor.

For cooling of magnet, the pool boiling concept

is used.

One coil has 22 pancakes, each separated with

3mm thick cooling spacers for the establishment
of cooling channels and pancake-to-pancake elec-
trical insulations. One pancake is wound flat-
wise with 27 turns at most and between which
insulated 5mm thick inter-turn reinforcements are
inserted with the objective of holding each turn
tightly and preparing cooled space c¢n the flat

surface of conductors.

Fig. X[-2-5 indicates torcidal field distribu-
tion at a centerline of a torcidal coil and
between toroidal cecils on a mid-plane.

In-plane force distribution for TF coils is shown
in Fig. XI-2-6. The total expanding force per
coil is 1144MN and centering force and vertical
force F, are 379MN and t253M.N respectively.
Besides those electromagnetic forces which are
caused by TF magnet itself, TF coil must be sus-

tained against torque which is caused by the



{(g)

’ {h)

(1)

JAERI-M 82-178

interaction between toroidal field current and
poloidal coil field. Fig. XI-2-7 gives the
out-of-plane force distribution for case 1.
3MN-m’

The torque around the horizontal axis 1s 21

while the one around the vertical axis is

1+ 239MNTm

The copper stabilizer houses cabled and compacted
Nb;Sn strands. Both mechanical and chemical
treatment on four surfaces of the copper stabil-
izer are made in ordér not only to enhance the

heat transfer but to increase the cooling surface

area.

The recovery process at the operating current
can be simulated, if the disturbance energy is
determined. It is assumed that the disturbances
are caused by AC loss, the nuclear heating and

the frictional heating.

Tt is concluded that the each of three conductors
can be operated stably against expected disturb-

ances.

The AC loss is caused by the changing poloidal
field mainly at the superconductor, the helium

vessel and the coil support in the TF coils.

For the case 1, the average AC loss is 56kW

(See Table XI-2-4).
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Table XI-2-1 Major characteristics of the TF magnet system

10.

11.

12.

13.

14.

i5.

16.

17.

18.

19.

Total ampere-turns
No. of coils
Anpere-turns per coil
Plasma major radius
Field at plasma axis
Helium condition
Grading concept
Winding configuration
Superconductoer

No. of turns per coil
No. of pieé per coil
Operation current
Critical current

Avg. winding current
density

Maximum field

Cooling spacer
thickness

Cooling surface

Inductance

Magnetic field energy

143 MAT
i2

11.8 MAT
5.3 m
5.5 T

Pool bciling
3 grades (12, 10, 5T)
Flat wound in pancakes

Copper stabilized Nb;Sn and NEBETI

i 540

3 22

i 22.07 kA
33 ka

19.4 2 /mm

11.4 T

3.0 ithal

Rough surface
(mechanical and chemical
treatment)

~120 H

30 GJ
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Tabhle X-2-2

Characteristics

of cone TF magnet

10.

11.

Ampere turns

Qperation current

Maximum field

No. of turns

No. of pies

No. of lavers

Magnet bore

Magnet cross section

Turn insulation

Cocling spacer

Electromagnetic force
Expanaing force
Centering force
Vertical force

Torgue

11.9 MAT
12T portion 1.456°T
107 5.649
T
5 4.811
22.07 kA
12T portion  11.47
107 10.27
7
57T 4.9
540
127 portion 66
107 256
5t 218
22
27
127 portion 3
107 12
5T 12

6.6m » 9.3m

max imum
700mm thick

x 94 9mm wide

5Smm thick including steel

3mm thick

1144 MN
379 MN

+253 MN

213 MN.m against X axis

+239 MN.m against 2 axis
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Characteristics of the superconductor

127 conductor

lOT conductor

ST conductor

)

(oo BENES AN o8

10.
11,

12.
13.
14,
15.
16.
17.

18.

19.

Superconducting
wire

Maximum field

Conductor
current

Ic at 4.2 Kk
Conductor size
Clement size
Cable size

Conductor cur-
rent density

Element current
density

Conductor
copper ratio

Interturn re-
inforcement

r0

np (1.1x10'% n/em’)
ot

lieat flux.

pBe. of strands

Ceeling surface

Minimum winding
radius
Max imum winding
strain

Copper
stabilized
Nngn

11.4%
22.07 XA

33 kA
30x39 mm?
35%42 mm?
8x18.4 mm’
18.8 A/mm”

15.0 A/ram?

15.5
5 rmum

£.2210-% ficm
9»10-% Zfcm
15.2%=10-° Gem
0.39 w/cm”

O
-

Rough surfa

2.21 m

G.18%

Copper
stabilizee
Nk:Sn

10.2T
22.07 kA

33 kKA
21=39 mr “
2642 mmn?

8.10.2 mm*

] 26.9 B /m

20.2 A/mm?

18.2
5 mm

5.6x10-% fem
5, 3x10~% Ocm
10.9-10-% Dem
0.47 w/cm?

5
ce (mechanical
chemical tr

£.32 m

Copper
stabilized
NbT1

4.97
22.07 kA

33 kA
16x39 mm?
2142 mm?

©3.6%9.3 mm?

35.4 A/t
25.0 A/mm<
42.5
5 rmm
2.4210-% Gem
0.6x10-% fTcom
3.9x10-°% Geom
0.24 w/cm?
11

and

eatment)

2.63 m
0.06%
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Table X~2-4 AC losses 1in TF coils

Case 1 Case 2 Case 4da
(Pum§=fﬁriter ) ( Pumg=f;:iter ) (Divertor)
Superconductors 15.4 kW 14.5 kW 42.8 kW
Helium vessels 14.4 kW i4.1 kw 35.8 kW
Coil supports _;6.2 kW 20.0 kW 70.5 kW
Sum 4 ~56:;“;G~” - 48.6 kW 149.1 kW

R710

(=X

R1650

R2330

R2780

6,600

Fig. X-2-3

TF coll dimengion
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2.3 Coil maintenance and replacement'approach

1. Assembly/disassembly

The maintenance procedure of one troubled TF coil is
slightly different from the replacement procedure of

whole TF coils in torus.

The disassembly/assembly procedures are considered for the

bay where ICRF coaxial cable duct is not installed.

(i) Disassembly of TF ccil.

CE) Disconnect the cooling and electric

|

() Disengage the connecting structure of

line,

belljar, and remove the belljar dome.

(:) Remove the upper poloidal field coils.

C) Disengage the connecting structure of
inter toroidal field coil and remove
the upper part cf the inter coil

support beam.

Contact (:) Remove the upper part of the vacuum

cperatio
P Ton boundary c<f cryostat.

A

Remote C) Dismount the limiter and remove 1t. *2
operation
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#

Dismount the blanket and remove it.

Disengage the tie plate which con-

nects the shield sectors.

Remove the

central sector of shield

Remove the

side sector of shicld.

Remote
operation
@D Engage the shield plug for shield
structure
1
@2 Remove the supporting base plate
for shield.
*1
Contact
operation -

Remove the

lower part cof the vacuum

boundary of cryvostat.

Dismount and remove the lower PF

coils.

*3
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Disengage the connecting structure
of torocidal field coils and remove
the lower part of the inter coil

suppoert beam.

©

Dismount the TF coil and transfer it

by overhead crane.

(2) Reassembly of TF coil

~Contact

operation

Remote
operation

@

Install the TF coil (by over head

crane)

Install the lower support beam

between TF coils.

Install the lower PF coils.

*L

Install the lower part of cryostat

Install the supporting base plate
for shield

Dismount and remove the shield plug

for shield structure

(See
Fig.
X-2-8)

cak test
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Install the side sector of shieid

@ |

Install the central sector of shield
? : . *5
(:) Connect the shield sectors Leak test
(0 1nstall the blankets *3
C? Install the limiters. *2
C) Install the upper part of the

vacuum bcoundary of cryostat

| <> Install the upper part of the

inter coill support beam.

@) Install the upper poioidal field

coils.

@3 1Install the belljar dome Leak test

@) Connect the cooling and electric

lines.

Leaktest (cooling pipes)




*1

*2

*3

*4

*5
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Operations C) " @) are supposed to be
performed by contact operation with a

shielding measurxe against the induced

activity.

Refer X-6-1 for the assembly/disassembly

of limiters

Refer X~-5-3 for the assembly/disassembly
of blankets.

Leak test will be performed after setting
provisionally the upper cryostat and the

belljar dome.

Leak test will be performed with the

blanket access door using the viton O-ring.
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Estimation of the time reguired for assembly/disassembly

of TF coil

In maintenance of TF coil, almost operations reguire remote
handling. As the examination on remote maintenance 1is not
sufficiently accomplished in this stage, it might be so
early to estimate the time of assembly/disaésembly of TF
coil. However, a very rough estimation may be possible with

the assumptions mentioned below.

(i) Only one damaged TF coil is replaced by a spare TF

coil after disassembling.

{i1) The following parts should be at least dismounted in

~order to replace one TF coil.

o Cooling pipes for 2 baies.

o Pumped limiters for 2 baies.

o Dome cf belljar

o PF coils, #9~ #12, #22 #24.

o Support beams between TF coils; both lower and upper
beams for 2 baies

¢ Cryostat for 2 baies

o Disconnection of vacﬁum ducts for 2 bhaies

o Shields and base plates (including support legs) for

2 baies.
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(iii) Disassembly is considered only for the bay where ICRF

coaxial cable duct is lacking.

(iv) Installation of the shield plug is considered after

removal of the shield sectors.

(v) The time required for assembly/disassembly is estimated
under the assumption that the maintenance operation is

carried out 12 hours per day.

The time reguired for each operation is shown in Table X-2-5
and X-2-6. The disassembly of one TF coil requires 65 days
and the reassembly 63 days. The sum total amounts 228 days

{7.6 month).
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Shield structure
(with bellows)

Hange

{ __ Shield structure handling
i}ff machine
ha :

zigj EEE;R’HE,#f-TF cell
a _._ Clamping device
N
i\%//ﬂ/ §

____ Contacting face

=

S

v/ B\

Fig.

Shield structure
(with bellows)

XI-2-8 Schematic view of replacement of

the shield structure
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2.4 Supporting analysis

1. TF coll loading condition

Three cases of PF coil distribution are considered in

order to evaluate the TF coil strength for the out-of~

rlane load:
a) Case 1l: Pump limiter operation with small ring coil
(Max. radius of ring coil = 11 m)
b) Case 2: Pump limiter operation with large ring coil
{Max. radius c¢f ring coil = 13 m)
c) Case 4a: Divertor operation

Figure X-2-9+vFig. X-2-11 show the PF coil location for

each cases.

The in-plane electromagnetic force as a function of TF coil

perimeter is given in Fig. X-2-12.

a) Total hocop force per coil : 1,144 Mu
b) Centering force per ceoil : =379 MN
¢) Vertical direction force per ceoil : £253 MN

The out-of-plane magnetic forces as a function of TF coil

perimeter are shown in Fig. X[-2-13~ Fig. XI-2-15 for each

cases.
a) Case 1: ° Moment around horizontal : 213 MN-m
axis per cocil (Mx)
° Moment around vertical : 2239 MN-m
axis per coil (Mg)
b)Y Case 2: ° Mx : 188 MN-m

° Mg : £263 MN-m

_— 31 —
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c) Case 4a: ° My : 164 MN-m

@ Mz : 234 MN-m

2. Structural analysis for electromagnetic force

(1) Overall stress analysis
The finite element model for the structural analysis
is shown in Fig. X[-2-16. TF coils, upper and lower
intercoil support structure between TF coils, and
support legs are modeled with beam element.

The wedged portion of TF coils, which mainly receive

the compression, are modeled with bheam ¢lements.

This three dimensional beam element model treats both
in-plane electromagnetic force and out-of-plane electro-
magnetic force of TF coils.

The deformations of TF colls for three loading condi-
tions are shown in Fig. X-2-17 v Fig. XI-2-19.

The maximum displacements in vertical direction are

the same value of 7 mm for three cases and the maximum

displacements in toroidal directiocn are as follows:

a) Case 1 : 27 mm
b} Case 2 : 26 mm
} c) Case 4a 3 29 mm

(il) Local stress analysié'
It should be noted that the local bending stress on
the side plate of the helium vessel due to the out-of-
plane force canncot be calculated with the above-

mentioned model.
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The local bending stress (o3b) 1s given by

M

U3b T ¥
where, ,
. M = pg

P = Out-of-plane’ force shown in Fig. X-2-13n
Fig. X-2-15
% = Supporting length subjected to the force (0;7 m)
7 = Section modules of side plate
The side plate thickness is assumed tc be 150 mm 1in
the nose region, where the two adjacent side plate
will support the out-of-plane force. In the other
region where the torus support leg and exhaust duct
may restrict the thickness of side plate, the side

plate thickness 1s assumed to be 200 mm.

(iii) Resultant stress

The calculated stresses of TF coil are shown in Table
X¥-2-7 vTable X-2-9 for three cases.

Mechanical strength and design stress intensity value
of used materials are shown in Table X -2-10. Table
X -2-11 shows the evaluation of maximum stress inten-
sities in TF coil for three cases. The maximum stress
intensities for pump limiter operation (Case 1 & Case
2) are below the allowable value, but the maximum
stress intensity for divertor operation (Case 4a) is
over the allowable wvalue.

Cyclic bending stresses due to out-of-plane force

occur in the helium vessel of the TF coil. As shown
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in Table X-2-7 ~ Table X-2-9%, the maximum values of
cyclic stress ranges for case 1, case 2 and Case 4a
are 261 MPa, 235 MPa and 464 MPa respectively, so that
maximum cyclic stress amplitudes for case 1, case 2
and case 4a are 131 ﬁba, 118 MPa and 232 MPa;

Taking into account the mean stress, the equivalent
cyclic stress amplitude 1is given by

_ Salt
Seq = 1 Smean

Su

where,
Salt : Cyclic stress amplitude

Smean Moditied mean stress

Su : Ultimate strength
The equivalent.maximum cyclic.stress amplitude for
case 1, case 2 and case 4& are 152 MPa, 147 #Pa and
321 MPa, respectively.
Fig. XI-2-20 shows the design fatigue curve of 5§ 316,
which is determined taking into account both the
stress safety factor of 2 and the cycle safety factor
of 20. Maximum cyclic stress amplitudes for pump
limiter operation {(case 1 & case 2) are less than the

- design fatigue stress of 310 MPa for the design

cyclic number of 10°.
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*7)

bending stress.

The values in parentheses

indicate o©
zm

Table X[-2-7 TF coil stress due to electromagnetic force (Case 1)
Unit MPa
Stress due to Stresi die to
in-plane force gut—o ~plane
Location orce
rl)
T1m b 93m Y1b 93b P PL*+Pp
He vessel | 108.39 | +52.231{-286.26]| 35.57 +1.86 {394.65 | 484.32
A
Conductor 74.19| $£35.671 -86.53| +24.40 160.72 1 220.7¢9
w2)
iie vessel §7.91]13100.16| -88.49|%49.98 [4158.76 |176.40 | 485.30C
5 _
Conductor 60.171 +68.60| -50.96|232.4 111.123 1 213.93
de vessel 80.16 1 +88.20| -28.91{*60.47 1:141.12 1105.07 { 358.86
C : \
Conductor | s54.881 #60.37| -28.91 ) +41.36 83.79 | 185.51
He vessel 73.79 | *35.97| -25.09{14.95 |142.10 98.88 | 391.9¢C
D
Conductor 50.47 | %24.60] -25.87!+76.69 76.34 1 179,63
He vessel 48.71 | #14.701 -25.871941.02 {<120.05 74.58 | 350.35
= -
Conductoeor 33.32 | +10.00¢ -25.87 ] +96.53 59.1% | 165.72
. ] r
He vessel $6.931 +10.58 | ~19.80| +34.20 | £23.22 [106.72 | 174.93
¥
Conducter 59.49 +7.251 =19.80|£23.42 | ___ 79.28 | 109.96
Note: *1) g1, 02z, o3 show the stress
direction. & and 6b show 1
the membrane stress and the 2 3 \T
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Table X-2-8 TF coil stress due t0 electromagnetic force (Case 2)
Unit MPa
Stress due to Stress due to
in-plane force cut-of-plane
. force
Location
*1)
91m Olh 93m U1b U3b P P1+Pp
*32

He wvessel | 108.3¢ +52.23 —286.28 +32.05 +1.67 | 3%4.65 480.59
N :

Conductor | 74.19| #35.67 | -86.53,421.95 | ___ 160.72 | 218.34

* )

He vessel 87.91 1+100.16] -88.49| £48.22 [*156.60 [176.40 481.38
B

Conductor 60.17 | +68.60| -50.96] +33.03 111.13 212.76

lHe vessel 80.16 +88.20 ~28.611+804.37 £131.03 1169.07 432.67
C

Conductor | 54.88| #60.37| -28.91] 7] .44 £3.79 1 215.60

He vessel 73.7% 35,97 =-25.091403,29 [+121.52 S8 .88 329.6%6
D

Conductor 50.47 1 224.60 1 -25.87| +70.66 76.34 171.60

He vessel 48.71 +14.70 | -25.871432.5¢9 +95,84 74.58 317.72
- ‘

Ceonductor 3¥3.32 +10.00 1 ~25.87| +90.7% 59.19 159.94

e vessel 86.93 +10.58 -15.80 +39.79 +0.331 1106.72 166.40
I .

Conductor 56.49 +7.25| -19.80| +27.24 79.28 | 113.78
Note: *l} g,, o:, o3 show the stress

* 2

direction.

ém and dp show

the membrane stress and the

bending stress.

The wvalues in parentheses

indicate Ty -
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Table X-2~-9 TF coil stress due to electrcmagnetic force {(Case 4a)
Unit MPa
[7 Stress due to Stifsiﬂdie to
in-plane force ?u ol=plane
Location orce
*l)
lm Ulb 93m 91b Uap Pm PrtPy
*2)

He vessel + 108.39 | +52.231-286.26[230.77 | +18.62 {394,65 | 496.27
A

Conductor 74.19 | #35.67 | -86.53+21.07 . 160.72 | 217.46

*2) 4 [ T >

He vessel §7.91|+100.16| ~-88.49(x2127.30 #315.56 |176.4¢0 | 719.42
B

Conductor 60.17 1 *68.60! -50.96] +87.12 111.13 | 266.85

He vessel 8C.1%6 +88.20 -26.911*184 .14 (*280.18 [109.07 66L.060
C .

Conductor | 54,88 #60.371 ~28.91{4126.32 83.79 | 270.48

He vessel 73.79 $35,97 ~-25.09(469.74 [+260.68 98.86 565.26
D

Conductor 50.47 ) 24,60 -25.87(#216.13 76.34 217.07

He vessel 48.71 +14.70 1 —-25.87 {#233.57 1£106.47 74.58 332.32
E

Conductor 33.32 ] #10.001 -25.87| #91.43 59.19 | 160.62

e vessel 86.93 +10.58 -19.80| +77.81 +47.73 1106.72 242.84
r

Conductor 59.49 +7.25+t -19.,80] £53.21 | 79.28 139.75
Note: *1} o@.,, 02, o; show the stress

direction. &, and &y show 1
the membrane stress and the 2 3

*2)

bending stress.

The values 1in parentheses

indicate

a0

Tzm”t
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Table XI-2-10 Mechanical strength and allowable

stress of materials

Ultimate ! Yield
Part Materials | strength | strength § sm {(MPa)
gu {(MPa) oy {MPa)

Helium vessel

Stainless

steel SUS316L 1,580 670 440
reinforce- .
Winding | ment

Copper el N
stabilizer OPHCZ H 440 330 220

Table X[-2-11 Evaluation of maximum stress

intensities in TF coil

Unit : MPa

“-‘—_5_1_1\—\—_ Pm Pi+Ph
H»Eﬁiﬁ&%%ﬂhﬂ {(<&m) (<1.58m)

Allowable stress 440 : 670
. Case 1 395 485

He vessel e
Case 2 395 481
Case 4da 395 791
Allowable stress 220 330
Case 1 161 221

Conductor

Case 2 161 218
Case 4a | 161 270
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Z{m)

Rl2

Fig.

X-2-11 Peleidal ceoil location for divertor operation (Case 4]}

£25
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Out-of-plane force
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70
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e
3 L
c
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o 30+
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o L
1
o
= 20 L 0 1 30 r
100
° Total hoop force 1,144 MN/coil
1o
° Centering force -379 MN/coil
I - Fz £253 MN/coil
L 1 I )] L [l ] 1 Il 1
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Percent perimeter
Fig. X-2-12 1In-planc force distribution for TT colis Lino)
(Component of force normal to coil centerline
Upper Lower
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1 t | I I I ]
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¢} + + " o " N A ;
10 0 30 40 50 €0 70 0 a0 ige
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100 X
_lD -
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-1la Fig. X[-2-13 Qut-of-plane force distribution for pump limiter cperation (Case 1}
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L o My= 188 MN-m/coil z
i) : 0 T 50

N Mg= £263 MN-m/coil

10 0 30 40 30 96 100
I Tircent perimeter
Upper Lower Lower
straight Upper interceil . intercoil straight

[section| support area | W®Window area support arealsectlod

Fig. X-2-14 Qut-of-plane force distribution for pump limiter operation (Case 2)

L My= 164 MN-m/coil 2
° Mp= £234 MN-m/coil 0 >
= £ -m/co g
- z cot 160 x TF
10 20 30 40 50 6 70
Uppeg . . Lower Lower
straight Upper intercoil inter coil straight
-sectioq support sectionl Window area | Gupport areal section
- Fig. M-2-15 Qut-of-plane force distribution for divertor operation (Case 4a)
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3. PF System
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3.1 Configuration drivers

3.1.1 Maintenance and access philosophy

(1}

Requirements for reactor structure maintenance

The reactor structure components of Tokamak fusion
reactors are expected to be exposed to various
kinds of severe stresses during coperations such

as thermal and neutron loads and electromagnetic
forces. In particular, the reactor core components
such as first walls, blanket and divertor plates
wall be very severely stressed and are exXpected to
héve relatively short life. Therefore, reactor
structure which enables easy maintenance cf those

components is required.

The following items must be considered in relation

to maintenance requirements.
(a) Maintenance frequency and its scale

Maintenance frequency and its scale for each
component are classified as shown in Table
X-3-1. Because of the complex nature of the
Tokamak geometry, replacement of certain
structures within the deﬁice will severely
impact device availability. Those structures
are designed for the life of the device, and
classified as semi-permanent installations.
However, capability to accommedate their un-

expected repair or replacement will be a



(c)
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design criterion even though such an occur-
rence represents a prolonged downtime.
They include, but may not be limited to, the

TF coils and the PF coils.
Reliability of remote maintenance system

Since most remote maintenance works will be
performed in highly radio~active environment,
it is rather difficult to send another main-
tenance equipment to the rescue of the failed
one. Therefore, highly reliable remote main-
tenance equipment and reliable maintenance
procedures are required to minimize the pos-

sibility of those accidents.
Maintenance time minimization

It is very important to reduce the maintenance
time, in order to achieve the high availability
required for the INTOR system. Since the life
of divertor plates %s rather short and its
maintenance freguency is fairly high, it is
particularly important to reduce the mainte-

nance time for them.
Heavy components handling

The weight of the divertor components which
must be removed from the reactor core region,
is an order of several tons. It is required

to develop remotely controlled manipulators
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and retraction vehicles which can handle re-

moving process of those heavy components.

{2) Basic considerations on maintenability

(a)

Modes of operation

The device components to be handled in the
reactor cell range in size from very large
(i.e., TF coils and torus sectors) to very
small (i.e., valves and pipes), and many of
the operations to disassemble and replace
them will require varying degrees of handling
ranging from contaét to fully remote. 1In
general, the areas within the shield envelope
of the device require remote handling opera-
tions and the outside surface of the shield

is the "hands-on" boundary.

Two modes of operation around the device

can be defined: contact and fullyv remote.
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Contact 0pera£ions allow the maintenance
worker to use direct touch (hands-on) and
sight without intermediate protective
shielding. All components which are lo-
cated outside the shield structure are
maintained using hands-on procedures.
Some examples of these are: inspection,
setup of diagnostics, electrical connec-
tions, coolant connections, and engineer-
ing instrumentation. The outer shield
thickness is sized to limit surface dose
rates to 2.5 rmem/hr, 24 hours after ma-
chine shut-down. This is the design level
for contact maintenance and is only ex-
ceeded when the inner surfaces of the ma-
chine are opened to the reactor cell.
Contact operations are very significant
for simplification and high reliability
of the maintenance system which will lead

to reduction of machine downtime.

Fully remote operations do not allow di-
rect touch or sight. These operations

are required for all cémpohents which are
within the shield boundary of the torus,
as well as the beam-lines, and the divert-
or. ducting, and will be required in the
reactor cell when the plasma chamber is

disassembled. The worker is separated

__49_
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from the device by a biological shield
and maintenance tasks are accomplished
by the use of remote handling equipment

and viewing systems.

Basic considerations on structure configura-
tion

Because of the complex Tokamak geometry and
limited space inside the shield boundary, the
maintenance system will be greatly affected
by structure design. In general, if machine
design is focused on getting smaller machine
and smaller structure segments to replace, the
maintenance system will become more sophist-

cated and complicated.

With "Phase-I" design, structure components

are removed in horizontal direction with single

- straight motion, and all vacuum seal lines

and mechanical joints to be released are pro-

vided on the front side of the reactor shield

boundary.

In "Phase-I", with combination of this étruc—
ture configuration and allowable radio-activ-
ity level for human beings, the assembling

and disassembling process is rather simplified,
thoﬁgh this system has such a drawback that
séme structure components, particularly

toroidal and peoloidal field magnets, were

iSO,A
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designed to be big sized to allow horizontal
access for replacement of internal reactor
compeonents. This is a tradeoff between sim-
plified maintenance process and size of
structure components.

In "Phase-IIa", thé efforts are conducted on
the reduction of the reactor size in order
reduce the reactor cost without complication
of the assembling and disassembling press

in maintenance operation.

Table XI-3-1 Frequency of repailr

Frequency of repair

Type of repair (per year) Components
Small scale 2 - 10 Pumped limiter
First wall, blanket
Medium scale 1 (removable torus
sector}, farady
shield of TCRF antenna
Magnet, shield struc-
Large scale 0.1 ture (semi-permanent

torus sector)
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'Pumped limiter/poloidal divertor configuration

(1)

PF coil location and ampere turn

The examinations on several cases of PF cqil loca~-
tion and ampere turn is carried out. The discussion
is mainly focused on the following four principle
points. The case of the pumped limiter (bottom
type, maximum PF coil radius R = 1llm) is finally

selected as our reference design.

{(a) Relevancy with the reactor structure system.

(b) Reduction of power capacity of electrical
supply.

{(c) Out-of-plane force acting on TF coil structure.

{(d) Reduction of AC lcss in superconducting con-
ductor and coil case structure induced by

pulsed magnetic f£ield.

The above items are considered for four cases

shown Table X[-3-2.

The PF coil location for each case are shown in
Fig. X-3~-1 vFig. X-3-4. The Pr ccil ampere turns
for each case are shown in.Table X-3-3 v Table
X-3-6.

In order to determine the PF coil distributionf
the region necessary fér limiter and blanket main-
tenance is presupposed. This space available for
maintenance is estimated under the assumption that
the blanket sector is retracted horizontally in

radial direction.
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Incorporation with the reactor structure

The main objects of Phase IIa are to réduce the
reactor size, to make more reliable and to reduce
the construction cost. |

Concerning the PF coil, the case 1 and case 4a
have a largest PF coil of radius R=1lm, the case
2 and case 3 have a largest PF coil of radius
R=13m.

If the belljar type cryostat is supposed to be
used, the outer radius of belljar for case 1 and
case 4a is R=24.5m, the case 2 and case 3, R=Z28.7m.
As ﬁhe space required for the maintenance of
blanket énd other structure is suppesed to be
same, the size of the reactor room increases propo-
tinally to the PF coil maximum radius.

Concerning the support structure of the PF ceil
of maximum radius, in the case 1 and case 4da, the
PF coil of maximum radius can be supported easily
from the TF coil.

In the case 2 and case 3, as the PF coil cf maxi-
mum radius is located at the 2m from the TF coil,
in order to support the PF coil from the TF coil,
long support arms which have sufficient rigidity
for bending are necessary and these support arms
brings about an increase of dead weight and heat-

ing due to AC loss.
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Another optibn such as PF ceoil supported inde-
pendently from the floor is proposed.
However, this concept is noct desirable from the

view peint of heat penetration.

Reduction of electric power capacity

Among the systems constituting the tokamak

reactor, the electric power system occupies a

great part ¢of the construction cost.

Therefore, the cost reduction of the electrical
power system is of great importance from the view
point of the reactor system design.

The optimization of operation and control of PF
coll should be also examined.

The stored energy and MG peak power of three cases

are listed in Table xXI-3-7({a}.

Table XI-3-7{a)

Case 4a
Phase-IT A
Divertor

Case 2
Phase-II A
Pump
limiter

Case 1
Phase-1I A
Pump
limiter

PF coil

Stored

energy 4,3GJ

5.75GJ 8.09GJ

Power
supply
(*)

MG peak

power 0.86GW

1.1GW 2,3GW
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* Remarks

During the plasma start—up phase (0 v 0.3s),
the voltages of PF coil are assumed toO 5e
generated by resistances. So thyristor con-
trolled DC power supply capacity is not

included in start-up phase.

Out-of-plane force acting on TF coil

Tncreasing the size of TF coil, the ampere

turn of the PF coil and the distance of PF coil
from the plasma, the out-of-plane magnetic forces
acting on the TF coil becomes greater in general.
The out-of-plane magnetic force as a function of
TF ¢oil perimeter is shown in Table X-3-8.

The stress produced by the cut-of-plane-force 1s

shown in Table X-3-9.

Reduction of AC loss in S5.C. conductor and
sﬁrrounding structure

The AC loss caused by changing poloidal field
appears mainly in the superconductor, the helium
vessel and the coil support in the TF coil.

The averaged AC losses are summarized in Table
X-3-10 for each case.

The loss in the case 1 and 2 is small. On the
other hand, the loss for case 4a is about three

times greater than that for the cther twc cases.
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Table X[-3-7 Study of optimum PF coil distribution
' Case 3
se 1 Case 2
case ase Phase-1II A Case 6
Phase~1L A Phase-II A
pumped pumped out?oard FPhase-1
limiter limiter p?m?ed divertox
limiter
Main Plasma 1.4 l.52v1l.6 1.5 l.e
characte- elongation
i stics
ristic Start-up 35V 35V 35v 50V
voltage
Max. ring- 11lm 13m le' 12.1m
coil radius
No. of TF 12 12 12 12
ccils
TF coil 6.6%9.3m 6.6%X9.3m 6.6%8. 9m 7.7%10. T
bore
out-cf- fmax 13.6 MN/m 13.4 MN/m 11.4 MN/m 29.7 MN/m
plane i .
M 239 MN-m +263 MN-m +£278 MN-m +3¢8 MN-m
force of z
TF coil Mp 213 MN-m 138 MN.m 160 MN-m 237 MN.m
AC loss <fBiaL> 8.53x10-" g.27x10=" TBD 34.4x107°
of TF T2m/s” Tm/s” Tm/st (*1)
coil TBD (32.8%1077)
<SBrag> 11.3%107° 11.2%10-° 34.8%1077 (%1}
(33.3x10°7)
PF ocolil AT 83.53 MAaT 86.33 MAT 84.19 MAT 97.88 MAT
Bnas 7.17 7.1T 7.8T 9.8T
Birax 6.4 T/S 6.4 T/S TED 8.3 T/S .y,
(5.5 /%)~
f Max. one- 105V 144v TBD 377V (251V)
| turn
voltage 1
Stored 4.3 CGJ 5.75 GJ 7.18 GJ 15.34 GJ
energy
Power MG peak 0.86 GW 1.1 GW TBD 3.1 GW
supply power
(*2)
Remarks: 1) In case of start-up voltage of 35V.
During the plasma start-up phase (0 ™ .35, the voltages of

2)

PF coil are ass-med tc be generated by resistances. )
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Study of optimum PF coil distribution

(Continued)

Universal-Japan

Universal—-INTOR

Case 4(b Case 5(b
case 4(a) | (b) Case 5({a) (b) Case G
. phase-1II A phase-1 A
phase-1I A phase-1I A ) phase-1I
. pumped , pumped . i
diverter . divertor .o divertor
limiter limiter
Main Plasma 1.5~1.6 1.5 1.6 ! 1.5 1.6
characte- ; elongation
letics }
FRERICS Start-up 35V 35V 35V 35V 50V
voltage
Max. ring- | llm 1im 12.35m 12.35m 12.1m
coil ' :
| No. of TF 12 12 12 12 12
cols ; :
TF coil | 6.6X9.3m | 6.6X9.3m | 6.6%9.3m | 6.6X9.3m | 7.7%10.7m
bore i |
| out-of~ frax 27,1 MN/m | 22,1 MN/m | 32.3 M/m | 1307 MN/mo| 29,7 MN/m
‘ plane [ . ) . 1 _ ) ]
- M | 234 MN-m | 2229 MN-m ; 2307 MN-m @ £230 MN.@m ¢ 2368 MN-m
force of % :
TF coil My 164 MN-m 199 MN-m 135 MN-m 0 184 MN-m 237 MM-m
AC loss <fhian: 23.7%207°% | 9.22%1077 TED $,35%10-° | 34.4%107°
of TT Tm/s” T'm/s” 'rim/s T m/s” {*1)
coil {(32.5 1677
<SBIAL 25.2%10-7 | 12.0%310"° TED 12.4x107% | 24.8%x107% (1
] . -
: : (23.3%1077)
PF coil AT 95.74 MAT | 87.95 MAT | §3.06 MAT | 92.05 MAT | 97.88 MAT
Bmax 8.27 7T £.0T &.0T 9,87
Brax 16.5 T/S 6.4 T/S TBD 8.0 7/8 8.3 T/5 (*1)
| (5.5 T/%)
: Max. one- 196V 121v TBD 171V 377V (251V)
turn
voltage
Stored 8.09 GJ 5.0 GJ 15.6 GJ 5.77 GJ . 15.34 GJ
energy
Power MG peak 2.3 GW 0.94 GW 3.5 GW 1.06 GW 3.1 GW
supply power
(*2)
Remarks: 1) In case of start-up voltage of 35V.

?) During the plasma start-up phase {0 ™~ 0.3s, the voltages of

PF cecil are assumed to be generated by resistances.)




ot

JAERI-M 82-178

Z
TTIOD-UW/NIW {s3TUuf
ﬁ (ZKH) STX®
AN BLZ+ 9+ LT TedT3a8A
pUNOIe JUSUOK
{XH) STXEe
PoT 091 88T €12 TeluozTIoy
pUNOIR JUSWORN
neT=y¥ e =9 WTT=Y
A3 TWUTT A23TWTT AIQTUTT
A0 ABATD dumd dumd dund
vy ?SED ¢ ase)d 7 @seD T @se)

an103 oDT3oubew aueTd-Jo-3n0O

g-£-I{ STYRL




Table XI-3-9
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TF coil stress due to electromagnetic force

Unit: MPa
Case Case 1 Case 2 . Case #%a

Stress due to tress due to' Stress due to

out-of-pliane out-of-plane out-of-plane
Location force force force

Ulb U3b Ylb 03b Ulb Ih
He vessel +35.57 £1.86 +32.05 +1.67 30.77 +18.62
Conductor +24 .40 — £21.95 _ £21.07 S
He vessel 149,98 | 2158.76 =48.22 | £156.60 | #+127.30 | 4315.5¢6
Conducter =32.4 — £33.03 —— +87.12 —_—
He vessel +60.47 | #141.12 | £104.37 | +131.03 | £184.14 | +280.18
Conductor t41.36 — *71.44 o $126.32 —
He vessel | #114.95 | #142.10 | £103.29 [ +121.52 | +169.74 | £260.68
Conductor t76.69 — 170.66 _ *116.13 —_—
He vessel ii41.02 £120.05 | x132.59 +05 .84 | +133.57 | 2109.47
Conductor +96.53 —_ +90.75 —_— £91.43 —
He vessel +34.20 23,42 £39.79, *9.31 +77.81 47.73
Conductor +23.42 — +27.24 —_ ¥53.21 e
Note: *1) o,, o0,, o, show the stress

*3)

direction.

the

Op and gy show

membrane stress

bending stress.

The values 1n parentheses

indicate

2m-

= 64—

and the
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Poleoidal divertor configuration

{Compiled in 3.1.2)
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3.1.4 Design optimization (Universal-INTOR Concept)}

Concerning the Universal-INTOR type operation, the PF coil
arrangement, the ampere-turns, the stored energy and the

out-of~plane force acting on TF coil are examined.

The PF coil arrangement is shown in Fig. X[-3-5.

The maximum radius of ring coil is R = 12.35 m.

The ampere-turns of the case of divertor operation and the
case of limiter operation are shown in Table X-3-11(a)

and Table XI-3-11(b} respectively.

The total ampere turns are 83.06 MAT in divertor operation
and 92.05 MAT in limiter operation.
The stored energy of PF coils are 15.6 MG in divertor

operation and 5.8 MG in limiter operatiorn.

The out~of-plane forces acting on TF coill by interaction
of PF coil field are shown Fig. XI-3-6(a) feor divertor

operation and in Fig. X-3-6(b) for limiter operation.

The overturning moments are My = *307 MN-m, Mg = 135 MN-m
for divertor operation and Mz = 236 MN-m, Mg = 184 iN-m

for limiter operation.
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Fig. X-3-5

Poloidal'coil location {Case 5]
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The design description

The major design features of the selected PF mag-
net are specified in Table X-3-12~ Table XK~3-14

and summarized as shown below.
All PF coils are located outside of TF coil.

A pool boiling system is employed mainly because

of efficient cooling and matured technology.

Copper stabilized NbTi superconductor is used.

Three composite superconducting material composed of

NbTi, copper and CuNi is used for the achievement of

low AC losses. (Sec Fig. X-3-7)

(a)

{e)

Rated maximum conductor currents 1is 53.8kA and

the critical current is B85kA.

A liquid helium vessel is intended to be made of
fiber‘reinforced plastic (FRP) instead of conduct-
ing material such as stainless steel in order
that the excessive eddy current losses can be

avoided.

The maximum field of 7.1T appears on coil #7.
The maximum rate of magnetic field change on

PF coil is 6.4T/S at coil #7.



JAERI-M 82-178

Electromagnetic force acting on conductor is
mainly supported by both stainless steel mandrel
and the stainless Stgel tape inserted between
turns.

The mean current density of the coil including

the SS support is 12.1A/mm® ~ 16.5A/mm*.

The conductor is a flat cable type conductor con-
sisting of 31 subcables wrapped around a central
stainless steel mandrel core.

The conducter has the size of 130mm by 18mm.

The conductor is designed so as to satisfy cryo-
genic stability against the fast field sweep and
AC losses such as hysteresis loss, coupling loss

and eddy current loss.

The coil is subject te the AC loss due to the
changing field. The loss occurs in the supercon-
ductoré, the coil support and the helium leak
shield if used for PF coils.

(if the helium leak shield is used,.it is expected
that the AC loss might be great due te one turn
loop, even though the thickness is as thin as
possible.)

If the helium leak shield is not used, the average

AC loss of all PF coils amounts to 3.8kW.
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(k) The stress produced in S5 tape inserted between

SS mandrel and turn,

is 290MPa maximum which 1s

lower than the allowable valhe.

Table XI-3-12

Specificaticn of

poloidal field coil system

Max} imurm

Number of coils

Concépt of power supply
Magnetomotive force/coil
Cooling method
Supercenducting cakble
Operating current
Critical current

Average.current density

field

Coil case material

Suppert concept

24

hybrid

0.421 ~ 13.69 {(MAT)
pool boilding

BbTi + CuNi + Cu
53.8 (k)

85 (kh)

12.1 ~ 16.5 (A/ram?) !

FRF

outer coils supported by TF
coils and inner coils by the
center post
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1. Final Level

{1)
(2)
(3)

Operating current
Critical current

Cable size

Number ©f subcables
Mandrel core size

Cable twist pitch
Effective perimeter
Conductor current density
Winding current density

Maximum fielad

2. Subcable

(1) Subcable diameter
(2}  Number of strands
(3) Core strand material
(4) Twist pitch
3. Strand
(1Y Strand diameter
{2) Number of NbTi filaments
(3) Twist pitch
{4y Surface treatment
{5) Number of bundles
(6} NbTi : Cu : CuN:i
4. Bundle
(1) Bundle diameter
(2) Number cf filaments
(3) Surface CuNi thickness
(4) NbTi : Cu : Culi

(1}
{2)
(3}
{4)

5. Filament

NbTi filament diameter
QFHC thickness
surface CulNi thickness

NbTi : Cu : CulNi

Parameters of supercoenductor

53.8 kA
85 kA

130mm = 18mm

31

115mm x 4mm

1300 mm
520 mm
23 A/mm’
14 A/mm?
7.17

8 mm

5

Stainless steel

50 mm

2.67 mm
£156

40 mm
Formval
18

1 : 9.58

0.338 mm
342

11.7 um

1 : 1.33

10 ym
2.1 um

1 : 1.02

.04

.04

.59
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{(2)
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Table X~-3-14 Conductor characteristics

Strand loss time constant 2.88 ms
Subcable loss time constant 0 ms

Total loss time constant 1.28 ms

Cu resistivity 5 x 10='°% om
Heat generation 1.96 w/cm
pffective perimeter 52 ¢m
Reguired heat transfer | 0.37 w/cm?
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(1) Conductor

‘ 130 >
A *x31 T
-‘gmw2Wﬂmﬂ%ﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬁﬂﬁﬁ hB
.vvvvv
\ J

5.8
)
(2} S.% cable !
|
58.0
|
y
H
(3) Strand
|12.67
!
i
OFHC
{
2um CuNi
(4) Bundle ‘
65um J 10pm
, OFHC
CuNi 11.7um NBT1
14um
Filament

Unit: mm except noted above
Fig. X[-3-7 PF coil ccnductor
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Supporting analysis

The mechanical stresses due to the electromagnetic foroos
on T coils arc considered. It is assumed that the oo
force 1s supported only by the stainless'stcél raeinforce-
mont.

Figure X -3-8 shows the two-dimensional axisymmetric stress
analysis model and loading condition for PF coils. The
stainless steel reinforcement 1s modeled with the two-

dimensional plane element. And the superconductor cable
and interturn insulation arc modeled with the truss
nioment, bocause the aablco and insulation are assumed notl
to support the hoop forca bubt to carry only the radial‘

load.

Figure X-3-9 v Fig. X-3-12 show the stress distribution

- of PF coils for case 1. TFig. X-3-13vFig. XI-3-16 show

the stress distribution for case 2. And Fig. X-3-17 v
Fig. X-3-20 show the stress distribution for case 4a.
The maximum stresses for case 1, case 2 and case 4a are

290 Mpra, 28G MPa and 325 MPa, respectively.

Ultimate strength, yield strength and design stress
intensity of stainless steel reinforcement ($5316L) are
1580 MPa, 670 MPa and 440 MFa. The maximum stress
intensities of reinforcement for three cases arc below

the allowable value.
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the design L[albigue stress of SS3161L EOr_thé design cyclic
pumber ol 10" is 310 }\'H’L:I.
The cquivalent ayclic stress amplitude is given by
Seq = __.Salt
I ] Smean
Su
where,
Salt : Cyclic stress amplitude
% Smean @ Modified mean stress
! S0 . Ultimate strength
1
i The cguivaelent maximum cyclic stress amplitudes for
| casc 1, casc 2 and case 4a are 160 MPa, 154 MPa and 182
MPa, respectively. These cyclic stress amplrtudes are
below the design fatioue stress of 310 MPa.
The out-cf-plane force is assumed to be sunppaorted by
stainless steel support structure attached to helium
vessel of FRP, bhecause the bending stiffness of conductor
and stainlcss.steol tape inserted between turns is felt
to be small.
‘ The kending stress (0h) of PP osupporl structure due to
| the out~of~ﬁ1anc force can be obtained from the following
cguaticn.
ob = Q
R 4]
where )
. Mo W_fz_
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Pz = Out-of-plane [orce
roo Radius of PP ocoil
o= o Suapporting span

7z = Secition modulcs of support structure

The bending stresses of 50 mm thick support structure arc
about 50 MPa in the largest ring coil. This strass is

below the allowablre stress.

.

Two-dimensional plane element
i(strainlcsg steel reinforcement)

7 —— S5—17 -
-{/ - -
z e -~
jue el -
Z p — gt i p 5
A ) s — i
:-: —o / [t
\\Trus: clement (superconductor cable and
=R ' interturn insulation)
REN
- _
— — -
- .
P o~

Fig. X-3-8 Two-dimensional axisymmetric stress analysls
model and loading condition for PV coils
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4. Vacuum boundary

4.1 Design options

é The choice of the vacuum boundary configuration should
be made according to the consideration taken for the

vacuum boundary technical issues such as,

1} Safety
2) Reliability
3) Maintenability

4) Preducibility and cost

53 Torus one turn resistance

6} Penetration and accessibility
7). Influence of bake out
8} Influence of electromagnetic force

The comparison study with respect to the above issues
are carried out for five following vacuum boundary
configurations.

5 The following options were identified and discussed:

<:>‘ Separate vacuum boundaries with air in-between

(Double plasma vacuum boundary). This option is

| schematically indicated in Fig. XI-4-1. In this
design concept dielectric breaks are backed by
double bellows, and field welded joints are sealed
by double welded seals to minimize the potential
for a leak into the plasma chamber and preclude
tritiﬁm permeation into the reactor building.

The Phase 1 design employs this concept.
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Simplified separate vacuum boundaries with air in-

between -~ (simple plasma vacuum boundary). This

option is schematically indicated in Fig. X ~4-2
It is similar to option 1, except that the dielec-
tric breaks are backed by single bellows and field

welds can be backed by welded seals;

Single combkined vacuum boundary

This option is schematically indicated in Fig.

X-4-3.
A single vacuum boundary separates the plasma chamber

from the TF coil assembly in this option.

Double wvacuum boundary integrated in semi-permanent

torus segments, with segmented interspaces.

This option is schematically indicated in Fig.
X-4-4.

This. concept is similar to option 3, except that
double wall boundary with an intermediate vacuum

replaces to single wall in cption 3.

Separate vacuum boundaries with intermediate vacuum

in-between (with two separate vacuum closures).

This option is schematically indicated in Fig.
-4-5.

This concept is also similar to option 3, eXcept
that the intermediate vacuum is extended across the
face of the torus by the installation of an outbecard
closure (deoor! in. the open space between adjacent

TF coils.
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Vacuum of the
cryostat

Intermediate vacuum
(controlled atmosphere)

IS

Vacuum of the
plasma chamber

Fig. XI-4-5
Separate vacuum boundaries with intermediate vacuum in
between with two saeparate vacuum closures
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4.2 Evaluation and Selection

(1) safety, reliability
(a) Influence on superconducting coils
o Configuration ¢f bellows

The cryostat of option @ consists of single
beliow. The plasma vacuum boundary of option
(2) consists of single bellow.

Adoption of double bellows in these two con-
cept reguires more space necessary for one
bellow 70mm.

The options @& and (B) consist of double

bellows.

o Influence of the rupture of bellows

With respect to the options (D and (2 , the
temperature elevation of the superconducting
" coil due to air penetration evaporates the
liguid helium in coil case and increase the
pressure in coil case which leads to distruc-
tion of the rupture disk.
The rapid elevation of temperature of the
superconducting coils induces a relatively high
thermal stress which exceeds possibly the allow-
able value of mechanical strength.
On the other hand, éoncerning the option (@
"and @ , as the bellows is facing to the vacuum
boundary, the rupture of bellows do not accom-

pany the elevaticon of temperature.

_93__'



JAERI-M 82-178

However, the beilows should'be installed at the
access port in crder to absorb the thermal dis-
placement produced by bake out. As the bellow
is facing to the atmosphere, the~rupture_of
this bellow induces a penetration ¢f air and
consequently the elevation of the S.C. coil

temperature.

Tritium leakage (by rupture of bellows)

Concerning the concepts (1) and (2 , the rupture
of the hellows in plasmé vacuum boundary bring
about the tritium diffusion in reactor room.

The tritium will be evacuated by emergency tritium
processing system.

Concerning the concept () and @) , when the
tritium leakage tekes place from the bellow in
plasma vacuum boundary, the greater part of the
tritium is absorbed by He ceoil case. Therefore,
the tritium elimination system should be eguipped
in vacuum system cf the belljar. This tritium
elimination system will be operated mainly in
time of elevation of coll temperature.

This kind of accident is, however, not freguent.
Besides, no person is in the reactor room during
reactor cperation.

It seens that an exaggerated account should not

be given to the accident of tritium leakage.
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Tritium leak (permeation through bellows)
Tritium permeation rate depends mainly on the
temperature of bellows through which the tritium
permeates.
The temperature of the bellows is determined from
the nuclear heating of the bellow and its cocling
method. The comparative study on five concepts
are summarized in Table XI-4-2.
Shielding ability
Shield thickness for inner side cf TF ceil
depends on the space required for the bellows.
It concerns the space necessary for installation
of bellows in major radial direction of the
device.
Available space of shield for each concept is
shown in Table XI-4-1.

Maintenability
Accessibility to cryostat

In option @ and () , the access to the cryostat
is possible after disassembling the shielding
structures., This maintenance operation is clas-
sified as large scale repair.

On the other hand, in option (3 and @ , the
access to the cryostat is possible after retrac-
tion of the blanket. This maintenance operation

is classified as medium scale.
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However, .1f the bellows is installed behind the
shield, the shield structure should be disassembled
in order to access the bellew. This maintenance

operation should be classified as-large scale.

Leak detection

In option () , the leak test of the double
bellows in plasma vacuum boundary can be carried
out independently for each toroidal part, however,
the leak test of the bellows ¢f cryostat should
be performed as a whole torus.

In option @) , the leak test of bhoth the bellows
in the plasma vacuum chamber and that of cyostat
should be performed as a whole torus.

In option & , (5 , the leak test of the bellows
in both the plasma vacuum chamber and the cyostat
is possible if the space between the plasma
chamber and cryostat is evacuated and connected

to the leak detector. However, in option (& ,

the detection of leak spot is difficult.

Requirement of temperature elevation of S.C coil
at the maintenance operation

For maintenance cperation such as replacement of
shielding structufe, the elevation of the temper-
ature of S.C coil is required for five optiocns
because of accessibility and space necessary for

retraction.
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For maintenance operation such as replacement of
the blanket and.limiter, the elevation of super-
conducting coil temperature is not required for
five options.

In options (3 and (& , there would be a possi-
bility that the unexpected accident such as
rupture of bellows or lip seals due to bad mani-
pulation of maintenance equipment causes an eleva-
tion of superconducting coil temperature which

leads to the coil damage.

Manufacturing and cost

Cost down by reduction of the reactor size

The options (3) and (4) can save more space than
the options (D and (@ by about 10cm in major
radius direction.r As the plasma major radius
5.3m is fixed, this free space can not contribute

to the reduction of the reactor size.

Installation time and easiness of installation

As the options @ and (@) have only one boundary
common to plasma and superconducting coil, the
time required for installation is shorter and

the installation is easier.

_.97 —



JAERI-M 82-178
One turn resistance

In order to obtain 0.2mi torus resistance, the
bellows in option (3) reguires the lowest resistance
(length of the bellows is short), on the other hand,
the bellows in option (:) requires the highest

resistance.

Penetration and access

As the option (8 has double vacuum boundaries,
the accessibility is very poor and the penetration

of pipes through these boundaries is very complex.

Influence of bake out

The bake out is necessary to evacuate the trace of
water at the surface of the plasma vacuum boundary.
Analysis of thermal displacement and thermal stress

for plasma vacuum boundary and cryostat are carried out.
The temperature of the torus at the time of bake

out is assumed to be 150°C.

The peak value cf 410MPa appeared at the edge ex-

ceeds slightly the allowable stress of 55304 of

ASME criterion.

On the other hand, the option (I) and (20 does not

suffer the thermal stress due to thernial displace-

ment.
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< Conclusion >

Comparisons among five 0ptioﬁal vacuum boundaries
are listed in Table X-4-3.

The option (&, simplified separate vacuum bound-
ary, is selected in our design from the following

reasons mentioned below.

Maintenability

The option (5 has double vacuum boundary which
complicates the replacement procedure of blanket
and pumped limiter. In particular, the piping
through double vacuum boundaries is highly complex.
Therefore, the option (5 is rejected from our |

design.

Problem of bake out

Concerning the thermal displacement at the bake out
in options ) and & , there is no problem because
the plasma vacuum boundary and the crycstat are
independent. 1In optiens (3 and @ , the belljar
and the plasma vacuum boundary are connected at

the access port where the thermal stress exceeding
the allowable criteria appears. However, the
bellows installed in belljar will be available in
order to reduce this stress. In this case, the

bellow is forming a boundary to atmosphere.
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Reliability

It is desirable that the components which constitute
the reactor should function independently from the
other components. It is fundamental from éhe biew
point cf the safety and reliability that an unex-
pected accidents should not propagate to other com-
poﬁents. From these standpoints, the options ()
and @) will be rejected because of the possible
propagation of unexpected accident.

On the other hand, in option () and () , there is
no propagation of accident. The components are
independent from the structural and functional

points.

Shielding ability

In option (D and (2) , the option (@ is disposable
more space for shield structure.
Therefore, the option (2) is selected to be reason-

able

~100--
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Tritium permeation

The examinations on the temperature of bellows and
the tritium permeation on five.type of vacuum topolo-
gies are carried out.

The results are shown in Table XI-4-1 and Table X-4-2.

=101~
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| Table XI—-4-2

Plasma Isclation
side layer side
@D Radiation Plasma 105°¢C Vacuum 114°C Air
6.8x10" " — Recovery in
Ci/day vacuum system
Alr Plasma 70°C Air 70°C Air
| cooling 1.2x10-° — Recovery in
Ci/day cooling system
C) Radiation + Plasma 73°C Air
Air —
. 7.9x107°3 S
| cooling Ci/day —
| (:) Radiation Plasma 23°C Vacuum
| 1.2x107"
% Ci/day
! C) Radiation Plasma 830°C Vacuum 33°¢C Vacuum
| 3.5%10" s Recovery in
Ci/day cocling system
Air Plasma ~ 150°C Air 70°C Vacuum
| cooling 3.3%107" — Recovery in
? Ci/day cooling system
(5) is same-
as
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Design description

(a)

The vacuum boundary of the plasma chamber is located
on the inner wall of the.shielding structure. This
vacuum boundary is connected with tﬁe blanket access
door through which the blanket is retracted. The
concept of this vacuum boundary is shown in Fig.
XI-4-6.

As the segment of the blanket or the limiter between
the two toroidal coils is devided to several sectors,
the T shaped seal will be necessary to seal these
sectors. However, it is desirable to aboid the T
shaped seal where the mechanical force is acting on.
The T shaped seal can be aboided if we use the access
port accompagnied with the access door which covers
the outer face of shield segment between the two
toroidal field coils, as shown in Fig. X-4-6.

The vacuum seal is carried out around the access
door without T shaped sealing.

On this access door called as blanket access door,
the smaller opening dooxr called as limiter access
door is equipped. The sealing is also carried cut

around this limiter access door.

The single cryostat is used for the toroidal field
coils as well as for the polcoidal field coils.
This cryostép-is equipped independently from the
plasma vacuum chamber.

Cryostat for TF coil 1s shown in Fig. XI-4-7.

--105—
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Torus resistance

The simplified separate vacuum boundary is employed
in this design. As the torus structure should have
0.2m$: of one turn resistance, the bellows are
equipped in the plasma vacuum vessel at the position
justbehimidfeaéhtoroidalfieldcoil,asshowninEig.
XI-4-8. These bellows are installed at the outer side of
These bellows-are installed at the outer side of

the shield. With regard to the cryostat of the
superconducting magnets, the bellows are also in-
stalled just behind each toroidal coil.

As the belljar type single cryostat is used for the
toroidal field coils and the polcidal field coils,
one turn resistance (0.2m2) of the part of belljar
structure is sustained with help of the thin wall

structure.

— 106~
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{a) One turn resistance

The basic configuration of the bellows is

shown in the next figure.

49 thickness: 1.5 mm

40 RLO | . ﬂ% height : 60 mm
ﬁ____m__T// Number of
FL_JC: ‘ convexifies: 8
I .
| €0
[ '
Basic configuration of bellow
|
o 9.5/2 m
R, R, Cryostat [ / Ré/z

Bellijar dom N / /

: //7 2m J/
Pl se1 | B ] A t 1
asma v ——N cce
s esse *1 - 6'5mJ] ss tunne
i _“\\ 16m ;
7 - 71 N
¢24.5m £ ; [RT]
i Ry R
R, R, 9.5/2m 3 R;Q
Bottom of Side of
belljar belljar

One turn resistance R is given as

sl
il
g
|

Ri
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Ri is given as shown in the figure.

where

The resistance of plate is Ri = p% 2: length
_a: cross sec-
tional area
t: thickness
. , . . 27
The resistance of disk 1s Ri = p'YT

The specific resistance of Inconel 625 1is

1

p 129 x 10~¢ Q.cm (at room temperature)

The resistance of the outer side wall of belljar

5.2 x 10-3% ()
2.4 x 10=3% (Q)

made with thin plate is R;
R

i

The resistance of the belljar dome and belljar bottom
~is Ry, Rs = 4.1 =x 107° (@)

The resistance of the bellows in plasma vacuum vessel
is Ry = 5.4 x 107% (@)

The resistance of the bellows in cryostat is

R = 5.9 x 10=" (@)

The integrated resistance is R = 2.1 x 10-" (Q)

The positions and configurations cf the bellows are

shown in Fig. X-4~7 and X-4-8.
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Semi-permanent
shield (vVac. chamber)

\: L Access door
Ve
| e | || Removable
[ = sector
._//"//
\\ /7
S22
C L
\
C -\

Fig. XI-4-6 Vacuum boundary of plasma chamber
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Supporting analysis

Thermal stress of the vacuum vessel for the combined

boundary is investigated with respect tc torus bake~out.

Fig. XI-4-9 shows the three-dimensional stress analysis
model of the vacuum vessel for the combined boundary.
The torus vacuum vessel, the vacuum duct between torus
vessel and bell jar, and the bell jar are modeled with
the shell elements of 750 mm, 50 mm and 70 mm thickness,
respectively. Temperature rise of torus for bake-out

is assumed to be 150°C.

Fig. XI-4-10 and Fig. X-4-11 show the results of stress
analysis by means of a finite element method. The peak
value of 410 MPa sit on the margine of ASME criterion,
therefore an alternative mechanical configuration between

the vacuum boundary and the bell jar must be resolved.
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Torus structure

vacuum duct between //ﬂ ///” é

torus and belljar '?/i// //

|
; / /

' /
- e

; L/

|

3 STRESS ANALYSTS OF xxxBLLLJRKxxx

‘ OGTHR CHECK

t

Fig. X-4-9 Three-dimensional stress analysis model of
the vacuum vessel for the combined boundary
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5. Torus System

5.1 Segmentation options

The relation between the torus segmentation and the
maintenability, one of the major concerns in the reactor
design, influences greatly the reliability of the reactor
system.
Here, the segmentation of blanket and the replacement
method of the blanket sectdr are discussed.
Five representative options mentioned below are considered
from the view point of relations between the number of
torus segmentaticon and the replacement procedures.
(a) one sector/TF cecil-single motion (straight);

Fig. XI-5-1.

(b} two sectors/TF coil-single straight motion
(obligquely) ; Fig. XI-5-2.

{c) two sectors/TF coil-two motions (straight and
obligue) ; Fig. XI-5-3.

{(d) three sectors/TF coil-single motion (straight or
oblique) ; Fig. X-5-4.

(e} three sectors/TF coll-two motion (rotation in
toroidal direction + straight) ; Fig. XI(-5-5.

5.2 Evaluation and selection

The merits and demerits of each option are discussed

below.
{(a) One secter/TF coil-single motion (straight)

This concept is the reference design in INTOR
Phase-I. The advantage of this concept is simplic-

ity of retraction motion.
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Less accidents and high reliability are expected

in this concept in comparison with other concepts

of two motions.

The disadvantage of this concept is that this con-
cept requires larger coil bore size. In order to
maintain the ccil bore 6.6m with fhis concept, a
small fraction of the outer blanket/shield structure

just behind the TF coil should be left in the TF

coil bore at the time of blanket replacement.

Such design brings about reduction of tritium breed-
ing ratioc, and requires insitu maintenance of first
wall on blanket/shield fraction left in toroidal

bore. This operation should be performed with full

remote and might be relatively difficult.

Two sectors/TF coil-straight motion ({(ckliguely)

This concept is Japanese optien in INTORIPhase—Ha.
The advantage is that the retraction motion is
single straight motion which is relatively simple
and highly reliable. Though two sections/TF coil
should be retracted in two different direction
respectively, this concept permits a reduction of

TF coll bore size.

Two sectors/TF coil-straight motion + obligue

motion

The advantage is that the torus consists cf the

blanket sector having a equally divided angle,

—117—
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and that there is sufficient space on semi-perma-
nent shield just béhind the TF coil in order to
install the bellows. However the attention for
tritium permeation through this bellow should be
payed. The disadvantage is that the second sector
requires the two motion in different direction and

complicates the maintenance of the blanket.

Three sectors/TF coil-straight motion + obligue
motion
The advantage is that the TF coil bore size can be

more reduced.

Three sectors/TF coil-straight motion + circumferen-
tial moticn in toroidal direction
The advantage is that the most reduced TF coil bore
size can be realized and thdt the torus can ke con-
sist of equally divided sectors.
The disadvantagé is that the two side sectors, with
the exception of central sector, need the circum-
ferential motion in toroidal directioﬁ which re-
guires sophysticate equipment for replacement
operation. Therefore, the reliability concerning

the maintenance operation does not seem to be high.
Conclusion >

The results of comparative study on five concepts
are shown in Table XI[-5-1.

Each concept has each merit and each demerit.
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However, as the disassembly and assembly operations
of blanket/first wall is assumed to be inevitable,
the reliability cf maintenance is the most important.
Therefore, single straight motion is recommended
for blanket replacement procedure.

In order to satisfy the reduced TF coil (bore size

6.6m) condition, the concept b and d is favorable.
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(1)
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Design description

Removable torus sector

In order toe reduce the dimensicn cf the rgactor,
the TF coil size is reduced. This reduction does
not allow to replace the blanket on the limiter Dby
simple retraction of the segment of the same member
of TF coills.

It is necessary to devise further each 1/12 segment
of the blanket or the limiter to several sectors.
The methode of segmentation influences strongly the

remote maintenance procedure.

Here, in crder to simplify the replacement operation
and the remote maintenance machine, only the methode
of the simple straight motion is adopted.

In Fig. XI-5-6 the segmentation of the blénket
structure is shown. The blanket segment between

two IF coils 1s separated to the two sectors,
which are lafge sector and small one.

After pulling out the large sector in the olbigue
direction, the small sector will be pulled out

with straight motion in a slightly inclined direc

tion.

Fig. XI-5-7 shows the segmentation of the limiter
structure. The segment between two TF coils con-
sists of large sector and small one and each sectér
has sepérate opening window located at the-outside

of the shield where the support structure of limiter
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plate is fixed.

In order to replace the limiter segment, the large

sector is pulled out after removing the samall sector.

The connections between the blanket and the shield
as well as between the limiter and the shield, are
performed with mechanical connection only.

The vacuum sealing is carried out at the outside of
the access doors.

Segmentation of shield structure

The shield structure 1s semi~permanent. However,

at the maintenance of toroidal field coil, the shield

structured should be removed.

" In toroidal direction, the shield structure 1is

divided into 36 sectors at the time of manufacturing,
but 24 sectors at the time of maintenance operation.
Segmentation of shield structure is shown in Fig.

XI-5-8.
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The side sectors located behind the toroidal coil
equip ‘the bellows for torus resistance and the
contact surface between two side sectors is insulated
with ceramic coating.

As the each twc side sectors are fixed with bolts,
the replacement of the two side sectors can be
performed as one structure.

The access port connected to the shielding structure
can be divided according to the same manner as
shield structure.

The connection between the side sectors and the

central sgector is performed by welding.
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Support structures

TF coil support

The force to the torus center in the toroidal field
magnets is supported by the pressure écting between
the surfaces of wedge parts of the magnet cases
which are located on the inner side in the major
radius direction.

The toroidal torsion force in the toroidal field
magnets is supported by the support beams between
torcidal field magnets.

At the upper and lower areas of the TF coil, the
support beams are installed. The support beams
installed at the lower area of TF coil have the
openings to permit the penetration ¢f the support
leg for shield and the exhaust duct for pumped

limiter.

The gravity of the TF colls is supported from both
the torus center and the outside of the torus.

At the torus center, TF cocils are supported with
the support leg which also supports the solenoid
coils.

At the outside-of the torus, each TF coil has an
independent support leg. These support legs have a
shield layer of 77K located between the floor of

300°K and the structures of 4.2K.
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PF coll support

The hoop force resulting in PF coils 1is sustained
by the PF coil's own structures.
The gravity and the out of plane force acting on the

PF coils {#1 ~ #9} are supported with the support

cylinder situated at the center of the torus.

As regard to the PF coils #10 ~ $#13,
they are supported by the arms on the toroidal field
coil.

These PF ccils have the same cryogenic temperature
as the toroidal field coils, and slide freely in
radial direction.

Shield support structure

The shield is installed and fixed with bolts on the
base place which is supported by the support legs
(12 legs) penetrating the inter TF coil support
beam:

This support structure of the shield is surrounded

by the crvostat.
Cryostat gravity support

The gravity of the cryostat is supported by the
vacuum boundary structure surrounding the support

structure of the shield alréady mentioned in (c) .
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(4) Maintenance of first -wall and blanket

Replacing the first wall and the blanket is a medium
scale repair. Here, disassembly and assembly proce-

dures of the blanket are described.

(i) Maintenance procedure

a) Disassembly procedure for first wall and

blanket.

(i) Cut the cooling pipes cutside of the

hlanket access door.

(:) Disengage the bolts on the tie plate

and remove the tie plate.

Position the limiter access door

()

carrier.

(:) Cut the seals of the cooling pipes.

/

(g) Retract the limiter access door

carrier.

(E} Put into the blanket access door

carrier.
|
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Clamp the blanket access door.

Open the vacuum seal of the balanket

access door.

Remove the blanket access door carrier

{by overhead crane).

Position the retraction vehicle for
blanket.

P

Disengage the bolts of the blanket.

¥

Grasp and pull out the blanket sector.

{

Remove the blanket sector from the

retraction vehicle by overhead crane.

Position again the retraction vehicle

for blanket.

(Repeat a* @ for two side sectors

blanket)

—130—
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nssembly procedure for first wall and blanket.

Asscembly operation of blanket is done basic-
ally with the reverse sequence to that of
disassembly, provided that the NDT operation

is added aftcr welding of the sela in place of

C) and (:).

Maintenance eguipment

During the blanket replacement operaticn, overhead
crane will be employed frequently in order to re-
move the blanket sector from the retraction vehicle
and to change the direction of the retraction

vehicle for blanket.

In order to remove the blanket access doocr, con-
siderable amount of time will be reguired to cut
the seal of the door which amounts to 14 m in
total length.

The following equipments are necessary for the

purpose of the maintenance of first wall and

blanket.
1 Overhead crane
2 Limiter access door carrier
3 Blanket access door carrier
4 Retraction vehicle for blanket

The eguipments listed above have following func-

tions.

—131—-



JAERI-M 82-178 .

Overhead crane

During the maintenance operation of the bklan-
ket, this crane functions to transfer the
blanket sector and also the retraction
vehicle for blanket.

100 ton hoist capacity 1s required for this
crane because the maximum weight of the

central blanket sector amounts to 100 ton.

Limiter access door carrier

This carrier is employed not only for limiter
replacement but also for blanket replacement.
The manipulator ecuipped in this carrier
serves to weld and cut the seal of pipes
situated at the upper part of the blanket

access door.
Blanket access door carrier

This cérrier is composed with, machine for
welding and cutting of the sealing part of
the blanket access door, machine for handling
and positioning of the blanket access door,
and traveling system.

Ther equipments' are 'séme as those .of fhe
limiter access door éafrier except thé ﬁani¥

pulator.
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Retraction vehicle for blanket

The retraction vehicle for blanket appreaches
to the blanket sector along the guide rail
equipped on the floor between the toroidal
field coils.

This retraction vehicle functions to disen-
gage the bolts fixed between the hlanket
sectors and to pull out the blanket sector

in radial direction with a straight motion.

This vehicle consists of the manipulator
which functions to engage and discngage the
bolts in moving along the vertiéal pole, the
grasping system which grasps the blanket
sector with two points, and the traveling
system moving along the guide.

The concept bf this vehicle is shown in

Fig. X-5-10 and Fig. X-5-11.
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/ Manipulator with Tool

Clamping
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Fig. X-5-10 Retraction vehicle for the blanket
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Supporting analysis

This section concerns the strength of the support leg for

toroidal shield.

Support
leg

The schematic configuration

of the support leg of the

52 | shield is shown in Fig. XI-5-12.

The supprting of the toréidal
o2 shield is carried out by means

of the suppert leg standing

from the floor and fixed with

L
TITTATTA AT

the shield structure by pin-

Fig. XI-5-12 joint.

This leg can support the gravity of the shield, blanket,

limiter and base plate.

If these structures are supported by 12 leg, the load par

one leg (Wg) is 494 ton/legq.

{1) Aseismatic strength

(a)

Leard in vertical direction

If we suppose that the dead load (Wg) 1is
multiplied by 1.3 for the load in vertical

direction Wv,
Wv = 1.3 Wg = 642 % 10° (kg)

The buckling load Wk of the leg is given as,

- 2 . L
Wk = nem ﬂzE I (kg)
P
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here; n : coefficient determined from
configuration‘= 0.25
E : young's modulus = 1.95 x 10* (mm")
I : moment of energy (mm"*)

2 : length of leg = 5300 (mm)

As the outer radius of the leg is 850 mm, the
thickness of the cylinder t = 100 ({(mm),

The bulcking load is Wk = 29.2 x 10°% (kg)
Therefore, Wk = 29.2 =« 165.kg > Wv = 6.4 x 10° (kqg)
The strength cof the leg is sufficient for buckling.
The compressive stress of ifhe leqg in this case is

0o = 2.7 (kg/mm?) .

(b3 Loard in horizontal direction

If we suppose that the gravity loard is multiplied
by 0.3 as the horizontal_load,
Wh = 0.3 Wg = 148 X.lOS (kg)
bening stress op is expressed as
op = % = 19.8 (kg/mm?)
here, M : bending moment = Wh « R
Z : section modulus = 3.97 x 107 {(mm?*)

(2} Thermc-mechanical strength at the time of baking

As the connection is carried out with pin-joing system,

the deformation is defined as
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AR = ¢« R« AT = 11.9 (mm)

here, o : coefficient of thermal expansion of the

[

S.5 304 = 17.3 x 10 ~ (/°C)
R : the radius of the installation of
leg = 5300 ({(mm)

AT: temperature elevation the time

of baking = (150 - 20) = 130°C
The stress is given is as follow

cE+T AR 1
Opp = 3-E - AR z = 10.7 (kg/mm*)

Therefore, the stress appeared in the leg is
exXpressed as

c = (0g + ob + Opr) = 33.2 kg /mm?
This value is higher than the design criteria of

-the ordinary stainless steel.

Therefore, the use of material of high strength such
as high Mn steel or an adjuncticon of some support

structure should be recommended.

The above analysis is carried out only for static

load. However, the dynamic seismic analysis will

be necessary.

—141—-



6.

6.1

i,...'.J

JAERI-M 82-~178

Impurity control

Pumped limiter configuraticn

Reference concept (PF coil max. radius R = 11 m)

The structure of the reactor system with pumped limiter

is shown in Fig. XI-6-1 and Fig. XI-6-2. The radial

built is shown in Fig. X[-6-3. This reactor system

has the following features.

(1)

{4)

The bore of the torcidal field coil is 6.6 m
width x 9.3 m ir height. Number c¢f toroidal
field coil amcunts +tc 12. The cross section

of the TF coil helium case is 0.9 m x 1.25 m.

All superconducting poloidal field coils are
located outside of the toroidal field coils.
The distance between the plasma center and the

T coil center is 400 mm.

The pumped limiter is used in order to control
the impurities. The limiter plates are install-
ed at the bottom of the reactor core. The
curved, double-edged limiter is considered.

The configuration of the pumped limiter is

shown in Fig. m&6—4.

Replacement of the blanket/first wall and the

pumped limiter is performed by single straight
motion. The.torus structures of both limiter

and blanket are divided into 24 sectors (2

sectors/TF coil).

=142
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Each two sectors between two TF coils is re-

tracted in radial direction with different

angle

The vacuum boundary of the plasma chamber is
located on th inner side of the shielding
structure. This vacuum boundary is connected
with the blanket access door through which

the blanket and th limiter sector are retracted.

The coil cryostat is simplified-separate-vacuum

boundary type.

The exhaust duct is lead from the bottom of the
toroidal plasma chamber to the cryopump after
passing through the space between two toroidal
field coils. Number of the exhaust duct is 12.

Their conductance is 4.3 x 10° /s (He).
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Alternative concept ({(Qutboard single pumped limiter}-

The reactor structure concept, whose plasma center is
located on TF coil center, and which is equipped with
the outbqard single pumped limiter is shown in Fig.
X-6-5. The limiter plate is curved and double-edged
configuration.

TF coil bore size 6.6m x 8.9m is determined from the
space necessary for maintenance of the limiter and the
blanket sectors. In this concept, the single straight
motion is supposed.

The torus is segmented as 24 sectors/12 TF coils, and
the replacement procedure of the limiter and blanket in
this case are shown in Fig. X~6-6.

The replacement of the outboard pumped limiter is accom-
plished as the same manner as the case of the bottom

pumped limiter which is shown in section 6.4.
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Fig. XI-6-6 Replacement region of blanket and limiter
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Poloidal divertor configuration

The reactor structure with poloidal divertor is -examined.
The TF coil bore size is fixed as 6.6m x 9.3m.

In corresponding to this TF coil bore, locatioﬁ and
ampere turn of the PF coil are arranged.

The torus and divertor segmentation are determined
according to the maintenance method adopted for single

motion replacement procedure of the divertor.

o The configuration of divertor is adopted without

modification from that examined in Phase-I.

o The reactor structure is shown in Fig. XI-6-7.

The segmentation of the divertor is shown in Fig. X[-6-8.

o The replacement of the divertor is performed by re-
traction of each sector between TF coils with single
straight motion. The precise procedure and seguence
of the replacement as well as the reguired remote
maintenance equipments are in principle same as those

of the limiter.
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Fig. X-6-8 Segmentation and replacement region of divertor
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Universal concept

Concerning the Universal-INTOR type PF coil distribution,
the reactor structure for both limiter and divertor are

considered under the following specifications.

1) Vacuum boundary is combined type

ii) Torus clesure is completed without access port
iii) Torus is segmented as 1 + 2 sectors/TF coil

) TF coil hore is 6.6m X 9.3m

The reactor concept with divertor is shown in Fig. X-6-2.
The reactor concept with limiter is shown in Fig. X-6-10.
The divertor/limite and the blanket are segmented into

24 sectors in torus (2, small and large sectors/TF coil).

The small sector is retracted after the retraction of

the large one.

In order to avoid the T shape seal, the structure as shown
in Fig. XI-6-11 is adopted.

The segmentation concept of the divertor/limiter and

blanket i1s shown in Fig. XI-6-12.
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All TF coils and PF coils are located in the same
vacuum boundary (bell jar).

The maximum radius PF coil has a independent cryostat
structure. However, this structure is cénnected with

the bell jar and holds the common vacuum boundary.
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Maintenance and Segmentation

Segmentation and replacement pfocedure of pumped
limite;

The segmentation of the limiter is.intimately
associated with the segmented blankef sector into
which the pumped limiter is inserted and fixed.

The space required for limiter replacement is also
cne of the factor.

The region to be replaced in the limiter is shown
in Fig. XI-6-13. The inner radius and outer radius
of the limiter blade in 4525mm and 5525mm respecti-
vely. Only the outer rédius is concerned in main-
tenance operation space.

Being the TF coil bore size 6.6mm x 9.3m, TF coil
the thickness 1.25m and ti.e distance from the TF
coil helium vessel to the cryostat wall 0.2m, there
is a sufficient space which permits the pump limiter
of one sector/TF ceil to 5e replaced as shown in
Fig. XI-6-14. However, this concept is possible
only when the concept of one blanket séctor/TF coil
is adopted.

In the case of the cdncept of twé or further blanket
sectors/TF coil, the vacuum seal will be T type O
+ Type which reduce the reliability of the vacuum
seal. This concept is not realizable from the view
point of the mechanical structure. Therefore, in

our design, the pumped limiter 1is segmented as 2
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sectors/TF coil as shown in Fig. X~6-15. The
limiter segment.between twoe TF coils consists of
large sector and small sector which are retracted
horizontally in radial direction as shown in Fig.
X-6-16.

The pumped limiter is supported from the limiter
support structure in which the vacuum duct is in-
tegrated as shown in Fig. X-6-15.

The electromagnetic force acting on the limiter
blade at plasma disruption 1s supported with two
kevs provided at the two side wall of the limiter
support sktructure.

These keys function effectively as positioning tool
at the time of assembly of the pumped limiter
sector.

The cooling pipes coming from each limiter sector
pass through the access door on which the vacuum

scaling is carried out.
Maintenance of pump limiter

Disassembly procedure for pump limiter

Cut the cooling pipes outside of the

limiter access door.

Contact
Operation

Disengage the bolts on the tie plate }

and remove the tie plate. #
: |
Remote
N Operation
(3 Cut the seals of the cooling pipes.

|
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(:) Position the limiter access door

carrier.

v
| (:) Clamp the limiter access door.

(E) Open the vacuum seal of the limiter
access door,

i

7} Remove the limiter access door.
(g) Position the retraction vehiclie for

limiter.

Position the guide beam.

©

&y

Disengage and remove the bolts on

the limiter flange.

Clamp the limiter.

!

@E} Pull cut the limiter. : See Fig. X-6-16

@

@}) Position the guide beam horizontally.

&

@E\ Move back the retraction vehicle.

ﬁg) Lift the limiter and transfer.
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Maintenance egquipment

As the replacement frequency of the limiter is
thought to be relatively high, the remote mainte-
nance machine for limiter replacement sﬁould be
designed to be speciai machine with high efficien-
cy and reliability.

The following eguipments are served for the

purpose of the maintenance of the pumped limiter,

1 Overhead crane

2 Cutting machine of seal for coolihg pipe
3 Welding machine of seal for cocling pipe
4 TLimiter access dcoor carrier

Retraction vehicle for limiter

(W2

The equipments listed above have following func-

tions,
1 Overhead crane

This crane is primarily provided to service
the reactor. During the maintenance operation
of the limiter, this crane functions to trans-
fer remote manipulator, damaged limiter and
new limiters.

Several ten ton capacity should be provided
for this crane in order to maintain the

pumped limiter.
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Cutting machine of seal for cooling pipe

This machine 1is provided to éut and remove the
sealing part of the cooling pipe which passes
through the limiter access door.

As shown in Fig. XI-6-17, the inserted colet
which clamps the pipe from the interior, and
which is primarily equipped at the top cof the
manipulator, permits the pesiticning and fix-
ing of the cutting machine of seal.

The cutting velccity is considerably reduced
in order to reduce the reaction. The cutter
is of cylindrical shape, with which the seal
ring and the weldéd part of seal will be cut

and removed.

Weight of machine 30 kg
Cutting spesed 100 rpm
Feed speed 0.1 mm/rev.

Welding machine of seal for cocling pipe

This machine is provided for welding the seal-
ing part of the pipe. The positioning is
performed in the same manner as that of the

cutting machine for seal.

The welding procedure is schematized in the

figure shown in Fig. X-6-18.
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TIG tecrch

LI
- ;Y

i

Seal ring

Fig. XI-6-18

The end part of kellows 1s welded at first,
and after inserting and fixing the seal ring,
the welding of inner and outer circumferences
of the ring is performed.

Method of welding ; 7IG

Welding speed ;20 mm/sec.
Limiter access door carrier

This carrier has several machines in order to
perform several kind of functions.

This carrier equips the jib which permits to

hold the manipulator and which has sﬁfficient
capacity to handle it freely.

This carrier also équips a machine for handl-
ing and positiconing of the limiter access door.
The carrier eqguips alsc a machine for welding

and cutting of the sealing part of the limiter

access door.
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These three machines are equipped in the same

remote driving vehicle as shown in Fig. X-6-19.

| a) Manipulator

This manipulator handles the cutting and
welding machine for ccoling pipes and
functions to transfer and position the
sealing structures.

5 The manipulator has seven freedoms with
40 kg capacity hoist and is operated by

force-reflecting serveo-manipulator slave

units. The manipulator has an arm of 1.2
rm maximum length.

Concerning the jib which is provided for
supporting of the manipulator, one articu-
lation is introduced at its central part
in order to permit the operation in the
vicinity of the floor.

The jib has a front arm of 1.4 m length
and a hack arm of 2.5 m length, which, on
the occasion of the blanket repiacement
operation, enable to weld and cut the seal
of pipes situated at the upper part of the

blanket access door.
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Machine for handling and positioning of

the limiter access docr.

This machine functicns not only to support
the limiter access door of 2 tons weight
after disengaging the bolts of the limiter
access door and opening the pipe sealing,
but also to position and fix the orbit of

the cutting or welding machine.

In order that the positioning and locking
of the machine are just performed, the
nails of the machine are inserted tc the
holes bored at the central part of the
limiter access door.

The precise positioning and the strong
grasping are reguired in order to cut the

sealing part.

Machine for welding and cutting of the

sealing part of the limiter access door.

This machine consists of one welding

vehicle and two cutting vehicles. They
can travel on the orbkit installed on the
machine for handling and positioning of

the limiter access door.

One of the cutting vehicles functicns to
cut and remove the V shaped sealing struc-

ture with $20 end mill, the other cutting
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vehicle functions to cut and remove the
plate shaped sealing structure with ¢60
cutter. .

Each cutting vehicle has a capability to
control the quantity of cutting, the cut-

ter speed and feed speed.

The welding vehicle equips two TIG torches
which permit to weld the two end of seal
at the same time by only oﬁe traveling cn
the orbit.

The height and the distance between two
torches are controlable and adjustable
according to the sealing structures:

U shaped or plate shaped.

Traveling speed of 0 v~ 20C mm/min.

vehicle ; ;
(contlnuously)
variable

Cutting speed ;v 40 mm/min.

Welding speed ;o 100 mm/min.

Performance ¢of motor

for cutting : 2.2 kW

Cutting speed ; 180 rpm

Performance of motor
for traveling H 1.5 kW

Traveling system

Total weight of the limiter access door
carrier amounts to abcut 20 ton. So, the

traveling speed kept at low: about 2 m/min.
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The transfer of the limiter access door
carrier between the sectors is performed

by the overhead crane.

Retraction vehicle for limiter

This retraction vehicle for limiter is provided

to service both large limiter sector and small

limiter sector, and functions to fasten and

disengage the bolts on the limiter frange.

When the limiter should be retracted, with the

Other equipments

Maintenance operation of the pumped limiter

requires the following additional equipments.

a)

b)

Chip treatment equipment
Machine tool for bolts fixing

Remote viewing equipment

Non-destruction-test eguipments
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Fig. X-6-13 Replacement region of pumped limiter

Replacement
region

>

I'ig. A-6~14 Replacement region cof pumped limiter
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Fig. X-6-16 Limiter replacement concept
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Fig. X-6-17 Cutting tool
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Fig. X-6-19 Limiter replacement procedures

174~



JAERI-M B2-178

7. Heating system

As the auxiliary heating system, the concepts of NBI and

RF are considered.

The design of the antenna as well as the wave guide étruc—
tures are accomplished in taking account the compatibility
of the overall reactor system and of repair and maintenance

system.
7.1 NBI configuration

The same stfucture and size of the NBI designed in
Phase I i1s adopted.

As shown in Fig. XI-7-1, one beam line of the NBI has
8 ion sources eguipped as 2 x 4, The NBI size 1s 8m
(width) % 9.4m (length) x 8m (height).

The connection of the NBI to the reactor is shown in

Fig. XI-7-2.

7.2 RF configurations
(1) ICRE

The installation of antenna, Farady shield and
coaxial cable of iCRH to the reactor are considered.
The schematic view of the ICRF antenna installed

in the reactor is shown in Fig. XI-7-3. The

blind like part is the Faraday shield whose
position is nearly the first wall surface. As the
one port has four antenna, the Faraday shield 1is
divided into four region. The front view of the

four ICRF antenna is shown in Fig. XI-7-4.
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The central conductor, the return conductor, the
end conductor and the coaxial cable are shown

in the cross sectional view removed the Faraday

shield. The return conductor and the end conductor

are fixed in the wall. The lateral cross secfional
view of the ICRF antenna is show in Fig. X[-7-5.
The center conductor is very near the Faraday
shield, and the gap spacing of them is 1.5 cm;
The all antenna elements and the coaxial cable
have cooling channels.

The vertical entire cross sectional view of the

ICRF antenna in the reactor is shown in Fig. XI-7-6.

In order to aboid the neutron dammage to the

insulators supporting the coaxial cable, the each

four coaxial cable has corner covered with shielding

structures.

The repair and maintenance of antenna or Faraday
shield are carried out by retraction with

the shield structure behind the antenna struc-
tures.

The main specifications are follows.

RF parameter

Frequency 85 MHz

Input power/port 15 MW

Port Number 4

Tofal input power 50 (+10}) MW
Pulse width 1C sec.
Repetition rate 10 sec/246 sec.

(The number in the parentheses denotes redundancy.)
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Antenna parameter

Distance from central conductor to
plasma surface

Distance from central conductor to
return conductor

Central conductor length
Central conducdtor width

Antenna impedance
Resistance

Reactance

LHRH

8.2 cm

30 cm

40 cm

9.3 Q/m
~95.6 Q/m

The installations of the launcher and the wave

guide of LHRH to the reactor are investigated.

The port size is horizontally about 2m and vertic-

ally about 3m. As the less r.f port number is

desirable from the point of view of large branket

space, we design the two type structures as shown

in Fig. X-7-7.
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The one is composed of only A-type launchers as
shown in Fig. XI-7-7 {a).  Two ports of this type
are required in this design. |

The other is composed of 4 A-type launchers and

4 B-type launchers as shown in Fig. X-7-7 (b).
The 85 MW r.f power can be injec£ed by above three
ports, which is less than the ICRF heating system
by one port.

The total view of the A-type launchers in the
reactor is shown in Fig. XI-7-8. The front surface
of the launcher is set as same as the first wall
position from the plasma surface.

The total cross sectional view of the R.F port

is shown in Fig. X-7-9. The bundle of waveguides
are located in the shield.

The main specifications are follows.

Total input power 85 MW

Plasma heating power 75 MW in duty of 10 sec/
246 sec.

Current drive power 10 MW in duty of 211 sec/
246 sec.

Maximum available r.f port number 4

Maximum transport r.f power density 4.5 kW/cm?

Interval of waveguide for plasma heating 36 mm

Interval of waveguide for current drive 18 mm
Long side width of waveguide 125 mm
R.F frequency 2 GHz

Launcher Grill type
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Fig. X-7-1 Preliminary concept of the neutral beam
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Layout of NBI

Fig. X-7-2

cactor

-

ancennag 1In

ICRE

o
..

V1w

Schematlic

KL~T7-3

Fig.
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' : . F ia) 1 i -1ctor
Fig. T-7-8 Schematic view OF LHERE launcher 1n rec
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Conclusion and Recommendations

In Phase ITa, our efforts are focused on the reduction of

reactor size and on the cost reduction.

Concerning the cost reduction, the overall system including

the power supply system should be taken into consideration.

As impurities control system, both divertor and limiter
operations are investigated for PF coil distribution of

S cases.

As the results of the examination on the decisive items
such as reactor size, out-of-plane force, PF coil arrange-
ment, PF coil stored energy and power supply capacity,

the case 1 (limiter operation, PF coil max radius R = 11 m)

is found to be most advantageous.

Therefore, the case 1 is adopted as the reference reactor

concept in our repocrt. Concerning the limiter operation concept,

not only the accumulation of the material data bases for
irradiation effects, but alsoc the more in depth design
investigation is needed in order to improve the design of

the limiter.

Concerning the vacuum boundary configuration, the separate

type boundary is adopted.

As regard to the influence of tritium penetration, detailed

studies will be necessary.

The reduction of TF coil size obliges to segment the torus

in 2 sectors/ TF coil.
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