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In nodal and coarse mesh methods, one of the most difficult problems
is to estimate neutron leakages from a subregion because spatial mesh
widths are too wide to evaluate the neutron current at the boundary of the
subregion accurately. To eliminate this difficulty, a leakage iterative
method is proposed and several computer codes have been developed.

The contents of these codes are briefly shown in this article.
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1. Outline of Leakage Tterative Method

In the leakage iterative method (LIM}, the reactor is divided into
several layers along the z axis and into several rectangular channels
across the xy piane as shown in Fig.l. A parallelepiped formed by a
channel and a layer is called a block., To start the iterative procedure
for solving the diffusion equation, the neutron scurce and the radial
leakage ccefficients are assumed as shown in Fig,2. A one-dimensional
neutron flux calculation is performed for each channel with the radial
leakage coefficient. A two-dimensional neutron flux calculation is then
made for each layer with the axial leakage determined from the one-
dimensional calculation. The one- and two-dimensional leakage calculations
are iterated until the coqsistency is attained between both. At each step
of the iteration the neutron source distribution and the eigenvalue are
recalculated., For obtaining the balance of the neutron population within
a block, it is Important to evaluate the neutron leakage from the block
as precisely as possible. For this purpose, & block is subdivided inte
fine meshes, and the fine-mesh difference approximation method i1s applied
to solve the one- and two-dimensional neutron diffusion equations for
each channel and layer, respectively.

The present method has the following characteristics:

1) A fine-mesh difference approximation technique is applied only to
the channels and layers, Therefore it is not necessary to calculate the
neutron fluxes at all fine-mesh points in the core and thus the computer
time is reduced. TIf the block is a 12 cm cube and the mesh width is

2 cm, the number of fine-mesh points is 6 X 6 X 6 = 216. In the present
method, however, the number of mesh points used for the calculations is

6 + (6 x 6) = 42, that is about one-fifth of the former. The physical
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quantities connecting the channel and layer calculations are only the
neutron leakage and the neutron source, and the fact reduces the computer
memory required.

2) Since the neutron leakage from a block is calculated by & fine-mesh
difference approximation, the numerical error due to discretization is
minimized.

3) When only one fine-mesh point 1is locéted in each block, this approach
becomes the same as the usual method in a fine-mesh difference approxi-
mation. In this case, the iterative scheme coresponds to one of the
variants of the Peaceman—Rachfdrd iterative method., Therefore, it is
possible to establish the condition, under which the consistency is
achieved between the axial and radial leakages in the same manner as

ADI (altermnating direcfion.implicit iterative methods of Peaceman and
Rachford). 1In addition, it is easy to compare the results with those
obtained from conventional fine-mesh difference approximation methods.
The computer code can thus be used for calculating both the collapsed

flux and the fine-mesh flux.

2. Fundamental Equation

The iterative process to recalculate the source distribution with
use of the previously obtained neutron flux is the same as that utilized
in the conventional power-iteration method. This iterative process is
called as the outer iteration or source iteration, as usual.

The problem with which are concerned here is how to calculate the
neutron flux distribution for a fixed neutron source distribution.

This process is called as the inner iteration.

The fundamental equation to be sclved is
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VDV ~ ZT¢ +6=0 , (1)

where ¢ is the neutron flux and 9 the neutron source at a fine-mesh

point, and D and ZT are the diffusion coefficient and the macroscopic

removal cross section, respectively. Integrating Eq. (1) over a block

results in

where Ax,

notations:

2
2% 4
DIAX IAY dxdy fAz 5 dz

3z
a2 82
+ DfAz dz I Ax fﬂy C—“§‘+ ——§J¢dxdy
ox ay

+ ET fo IAy fAz ¢pdxdydz + IAX fAy fAz 8dxdydz = 0 , (2)

Ay, and Az are the widths of the block. Using the following

2
‘ %
fo fAy dxdy fAz D ; > dz
-y = 2 ,
Z
d
IAX IAY fﬁz ¢dxdydz
32 3P
IAX IAY IAZ D(—wa 5 + —)¢dxdy
g - X ay ,
Xy
. f&x fAy IAz Ppdxdydz
! = I 37 ; =
b, = fﬂx f&y ddxdy , wxy fAz ¢dz
62 = IAX IAY Bdxdy , ny = fﬂz 6dz , (3)
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Equation (2) is rewritten as

3%y
z .
fAz D 322 dz - IAZ (LT * ny)wzdz + fAz bdz = 0 , (4)
82 82
fo fAy DG~“§ + ——i)wxy dxdy - fo IAY (ET + Qz)wxy dxdy
9x ay
+ fo fAy GKY dxdy = 0 , (5)

where wz and wxy are obtained respectively by solving the following

one~ and two-dimensional fine-mesh neutron diffusion equations:

2
7Y
z —
D 5 7 (ET + ny)wz + BZ =0 s (6)
z
2 2
d d
D+ —5)i - (., + I n +6 =0 . 7
(sz ay2)¢}xy ( T z)pxy Xy 7

One-dimensional fine-mesh neutron flux distribution calculations
are performed along the channels, and two-dimensional calculations are
made over the layers. The axial and radial leakages from each block,
% and £ , are cbtained as follows:

z Xy
2
3 wz
D —F— dz
z

¥ az2

z
fAz Y, dz

s

2 2

3 3
fo Ii\.y D(a—xz + a—z)wxy dxdy
—zxy = 7 . (8)
fo fﬂy wxy dxdy
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The neutron flux distribution in the core is now determined by solving
Egqs.(6) and {7) alternately.

The neutren flux convergence criterion is given by

IAZ Y, dz - IAX fAy wxy dxdy

fAz wz dz

<E , (9)

If the neutron flux distribution satisfies the above condition, the
leakage coeffieients also satisfy the following condition, as is readily
seen from Eqs.(4), (5) and (8):

new

{ ) ~ Q,OICI I
Xy Xy

_ IAx IAy exy

fo fﬂy 1'bxy

Ax

dxdy | IAZ wz dz

.
dxdy f&z b, dz - fAy wxy dxdy

IAX jAy ny dxdy
dxdy

=
T Ax fAy Lpxy

< + B . (10)

The suffix #new indicates the result of this iteration step and old the
result of the preceding iteration step. After the convergence criterion
(9) is satisfied, the neutron sources, exy and Gz, are recalculated by
using the converged geutron fluxes wz and wxy' The source iteration
process is repeated until the scurce distribution is converged.

The above explanation gives the genmeral feature of the computer code
DIFFUSION-ACE, which is a standard of our code series of LIM. Equation
(7) can be solved not only by two-dimensional finite difference approxi-
mation method but by finite element method (FEM) or by two one-dimensional

calculations as follows,
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\
a2
D';‘-Z‘li)x- (ZT+2.y+R.Z)I,UX+9x=O
X
> (7'
a2
D-a‘;—z"yy— (ZT+2,X+R.Z)IPy+ey=O

Such solution algorithms are also included in our code series.

3. Dbevelopment of Computer Codes with LIM

In Fig.3 and TABLE I are shown the relation between computer codes
in our system. Program language used is FORTRAN IV for all codes, and
check calculations are dome by solving the three energy groups neutron
diffusion equation. The contents of these codes are summarized as
follows:

(1) DIFFUSION-ACE
A) General ca;culational flow

This code was developed in 1972 and reported in Nucl. Sci. Eng. 58
(1975)1). The general calculational flow diagram is shown in Fig.2.

As the figure shows, one-dimensional z axial calculation and two-
dimensional x-y layer calculation are repeated alternately until the

consistency is attained.

B) Characteristics
1) One- and two-dimensional neutron fluxes are obtained by fine
mesh finite difference approximation method (FDM).
2) VNeutron flux in reflector region can be calculated analytically
and combined with the neutron flux in the core region calculated
by FDM. The boundary condition for core caleculation is determined

by this analytic solution, so that the neutron flux in reflector
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3
82
D ;_E_wx - (ZT + Qy + Rz)wx + ex =0
X
> 7"
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region is not necessary to be calculated.
3) The boundary condition on the surface of a cruciformed control

rod can be given by logarithmic derivative value of the neutron flux.

C) Check calculation
The calculational results by DIFFUSION-ACE are compared in Fig. 4
with those by the CITATION code which adopts the standard fine mesh dif-
ference approximation methoed. The analysis of JPDR-II {BWR) core
performance was carried out by this cede and one of the results was

reported in J. of Nucl. Sci. and Techz).

(2) STEADY-ACE
A) General calculational flow
This code was developed in 1973 with the general calculational flow

diagram shown in Fig.5. As the figure shows, this code is made of two
subroutines,a mneutron diffusion calculation routine (DIFFUSION-ACE) and
a thermal hydraulics calculation routine (HYDRO-ACE) . These two routines
are combined by a subroutine CROSS-ACE. The nuclear group constants for
the diffusion equation are expressed as functioms of the thermal
hydraulic condition at each block in the core. The calculation of
thermal power distribution is repeated until the consistency is attained

between thermo-hydraulics and thermal power distribution.

B) Characteristics
1) The subroutine to deal with the neutron diffusion is the same as
DIFFUSION-ACE.
2} The subroutine HYDRO-ACE is for calculating the multi-channel
thermo-hydraulics in a BWR core. So STEADY-ACE is a code fer

analysing the core performance of a BWR.
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C) Check calculation
The analysis of JPDR-II (BWR)} core phenomena was carried out by
this program and the some of the results were reported orally at JNS

committee in October, 1977.

(3) STEADY-SHIP
A) General calculational flow

This code was developed in 1977 with the general calculational flow
diagram shown in Fig.6. This program is developed by modifying STEADY-ACE
for calculating the core performance of a ship reactor. The nuclear
group constants are expressed as functions of the thermal hydraulic
condition as shown in TABLE II. After the gross neutron flux and thermal
hydraulics in the core are obtained, a more precise calculation is
carried out for the block appointed by a user with a subroutine LOCAL-FINE.
For the neutron flux calculation in this block, boundary conditions

arround the selected block are obtained by the gross calculation.

B)Y <Characteristics
1) The subroutine to treat the neutron diffusion is named as
DIFFUSION-SHIF. In this program, mesh and channel widths are
arbitrarily given by input data to evaluate the effect of hetero-
geneous structure in a block as shown in Fig.7.
2) The subroutine HYDRO-SHIP is a program to calculate multi-
channel therme-hydraulics in a ship reactor (PWR). So, this code
is applied to analysis of a PWR core performance with cruciformed
control rods.
3) Taking into comsideration of the fine structure in an_appointed
block as shown in Fig.8, the local peaking factor can be calculated

more precisely.
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(4)

A)

JAERI -M 8238

Check calculation

1) The power distribution in a ship reactor UMUTSU" is calculated
and compared with the experimental data. One example of them is
given in Fig.9, which shows a good agreement with the experimental
data.

2) The computational results by LOCAL-FINE are compared with those

by CITATION., One example is shown in Fig.l0, where it is seen the

results of gross calculation exert influence on the local power peaking.

WHITE-HORSE
General calculational flow

The general calculational flow diagram is shown in Fig.11. This

program was developed in 1975 for a FWR type commercial electric power

plant. The outline of this code was reported orally at JINS committee

in November, 1975.

B)

C)

Characteristics

1) In two-dimensional layer calculations, not only the reflector

but also the pressure vessel can be taken into consideration.
Geometry of the pressure vessel is cylindrical and that of the

core is rectangular, so that some regions are treated by R-0
coordinate meshes and the others are by X-Y ccordinate meshes.

2) This code is programed for analysing the core per formance of a
PWR. Therefore, critical search routine by a boron concentration and

thermo-hydraulics calculation routine are inciuded alsc in this code.

Check calculation

The check calculation is performed by using the experimental data

of the critical boron contents and power distribution in the IKATA-I (PWR)
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of Shikoku electric power company, Inc.

(5) FEDM
A) General calculational flow
In this code developed in March, 1978, two-dimensional neutron
diffusion layer calculations are performed by using the finite element
method (FEM) and one-dimensional channel calculations are done by using
the finite difference method. The general calculational flow diagram

is almost the same as DIFFUSION-ACE.

B) Characteristics
1) Due to two-dimensional FEM layer calculations, this code is

powerful to analyse the core performance with complex geometry.

¢) Check calculation
The check calculation is performed by using the experimental data
of the high flux reactor (HFR) of Kyoto University. An example for the

neutron flux calculation is shown in Fig.l1l2.

() JUMP-FDM
A) General calculational flow

In the above mentioned five codes, the layer calculation is performed
by the two-dimensional finite difference or finite element method. In
this code, however, the calculation is done by repeatedly using the
one~dimensional finite difference method. The fundamental treatment of
the neutron diffusion equation is shown in Appendix A-I. By this
treatment, coarse mesh points are combined with each other by one-dimensional
fine mesh finite difference calculations. The general calculational

flow is shown in Fig.1l3.

_..IO_
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B) Characteristics
1) Since coarse mesh points are combined with each other by the
one-dimensional fine mesh finite difference scheme, the fundermental
difference equation easily corresponds with the coarse mesh seven
points difference equation. That is, with the exception of the
coefficients of flux vector, the calculational method is almost
the same as the coarse mesh defference method.
2) As shown in A-I, if the neutron source distribution in a block
is assumed to be fixed, the coefficients of flux vector do not
change with each iteration step. In this case the one-dimensional
calculation between coarse mesh points must be done only once before
performing the coarse mesh calculation.
3) As coarse mesh points are combined with one-dimensional fine
meshes, the intervals between coarse mesh points can be selected
much larger than the node length used in the ordinary node method.
4) Since the three~dimensional block geometry is expressed only
three one-dimensionél lines, it is not appropriate to perform the

core calculation with complex geometry.
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Appendix A-1
FTundamental Treatment of Neutron Diffision Equation in JUMP-FDM

A reactor is divided into many blocks which are called coarse meshes.
If intervals between coarse mesh points are too wide to express neutron dif-
fusion by difference equation, the intervals must be divided into finer meshes
as shown in Fig.Al. The neutron leakage from a block is obtained by
using fine mesh flux wB arround the block boundary.

The one-dimensional fine mesh difference equation between coarse

mesh points I and I + 1, is expressed as fcllows:

’ N , 3 I
r -4 ® [ v, s, + 2,0
% T, Yoo | Sy
. N A ' 1
\\ \\ \\ : |
\\ \\ \\ t :
\ . ; -
\\ \\ \\ : i (l)
N \ hY |
e r -2 U] S
p-1 P P p P
N ;
\\ A f :
(:}:> ) B i ' 1
p N ' I+
-1 Tk Yy S T A >
~ Vi " A \ 7’
where
D +D A
Rz 2 p_._ptl
. + 'y b4
P Dp Axp+l Derl Axp
D D
— 1 ~ k
2o =2 B, hEZ2 A e > 2
_ 2
r = (X + D B )xAX + & + £
p ap P p p-1 D y,
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; I, . .
In the above expressions, §  is the neutron fluxz at the center point in

a block I and AXp is a fine mesh width.

The neutron source vector in Eq.(1) is divided into three terms as

follows:
¢ ' hS g hN N
5, 2 (0
S, 0 0
2 | |
{ 1 [
: I !
' i
= I I . I I+1
= | |
S ; SI+1 + 1 &+ i ¢
| |
G 0 4]
P { i
i i |
1 b }
| ¥ |
¥
Sk 0 ﬁk
\ / N / \ /
_ ZE I 21 I ZT+1 . I+1
= S SI+l + 5 " 4+ S o] . 3

=T

—+E +I+1 . .
Now, three vectors ¢, ¥ and ¥ are defined as solutions of the

following equations:

> T >7 ST -+
SE I <t T+1 _ SI+1 (4)

W o= S5, Mt =S, M ,

where M is the matrix shown in Eq.{(l). With using above three vectors,

>
the one~dimensional fine mesh neutron flux Y is expressed as follows:

- -+ B e d T
7= s§+1 N wl Cel e T R _ (5)

The neutron current between blocks is expressed with the fine mesh

neutron flux near the boundary,
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J(I1+1) = RB(I|I+1)*{¢B(I{I+1) - wB+l(I|I+1)}*A(I!I+1) ,

where A(I|I+1l) is the boundary area between the blocks T and I+1.

(6)

The

neutron current J can be divided into three terms, JE, JI and JI+1:

JE(T|14) = QB(IiI+1)*{wBE(I|I+l) - of QD bear T+
JHr) 1) = RB(I|I+1)*{¢BI(I|I+1) - ¢;+1

) - QB(I[I+1)*{w£+l(I]I+l) - wBiil

J(I|T+1) = JE(I|I+l)S£+l + st enyet + 7

(I]T+1) F*A(T| I+D)

(1]1+no™*

(1| I+1) }#A(T|I+1)

1

~

In the same manner as for the neutron current, the neutron absorp-

tion in a block is expressed as follows:

1
PE(I{I+1) = Sum U EL.s v

p=]_ ,B P ap p
PL(I|T41) = sum ¢ © - IV P ,

p=1,B P ap P
pIYh(1|1+1) = sum ¥ s v

p=1,B P ap p ‘

P(I|I+1) = PE(I]I+1) . 3111 + PI(I|I+1)®I + PI+l(I]1+1)@I+l .

(9}

With the above notaticns, the neutron balance equation in the bleck T

is expressed as
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- + -1 -

E,I+1 | LE.I-1 E,J+1 E,J-1  pE,k+l | E,k-1

P + P + P 18(1,7,k 5 &)

+ {P

I,I+1 I-1 J,J+1 JyJ~1 k,k+1 + Jk,k—l}

+JI’ + J + J° +J

-+

({71

o DT pTI-1 Pl THL | 53, 0-1 gt | plkelyg 0 g oy

{JI+l,I+1 I+l,I+l}

+ P #5(T+1,J,k ; g)

J-1LI-1 GI-1,1-1,

*¢(I"13Jak g)

we

+ {

J+1,J+1 PJ+1,J+1

+ {J Y (I, J+1,k ; g)

{JJ—I,J—l PJ—l,J—l

}*¢(I,J_1’k > g)

-+
Jk 1,k+1 + Pk+l,k+l

+ { Prp(1,J,k+1 ; g)

R e N

}*¢(I,J9k“l g)

>

+ {

Source. (10)

l§

E, I+
In the above expression, JE(I|I+1) is written as J ’ 1

and the other
terms are expressed in the same manner. Equation (10) is a seven point
coarse mesh equation. The coefficients of the neutron flux depend only
on the calculational system but do mot change with iteration steps.
These values are obtained by solving only once Eq.(4). The values of
JE and PE depend on the source distribution in a block, and they must
be obtained at every outer iteration steps. If the source distribution
in a block is assumed to be fixed, however, also these values do not

change with iteration steps. This suggests the possibility of developing

a high speed calculation method.

,ﬁl 6 e
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TARBLE II The nuclear group constants fitting formulas

2
’I‘f = eo + elnP +- eZ*P + Tm
T =T - TS'I'D
m m ™

2

1i/D=d,. + d,*T + d,%T
m m

0 1 2

T =vr. +1r_xT + r *T Z
m m

R 0 1 2

P
(8§Z ) = ———
a’ xe b0 + bl*P

_ . ) 2
(B2 Jpop = 8 + 31% JTp e T )

2 T, e o
*T © o+ b«{ao +ap* JT;'+ a,*( JTf )

- 2
Za = f_ + fl*Tm + £ }

0 2

+ g={pP / (bo + bl*P)}

2 .
VL. = h. + h *T_ + h,*T_~ + Gx{P / {(c, + C %P} }
m m 0 1

i 0 1 2

G=26(g-3), F=6(g~-2)
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Fig. 1 Configuration of Channels, Layers, and Blocks.
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Assume initial sources (0)

and radial leakage coefficients {Lxy )

1-D Channel calzulations (%)

Axial leakage coefficients computed

from channel calculation (L)

2-D Layer calculation { Wyy)

Radial leakage coefficients computed

from layer calculation (Lay)
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Fig. 2  Schematic diagram of the Leakage Iterative Method.
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Fig. 8 Calculational model for LOCAL-FINE
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Fig.13 Schematic diagram of JUMP-FDM
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