ATOMIC STRUCTURE CALCULATION OF ENERGY LEVELS AND OSCILLATOR STRENGTHS IN Ti ION, II (3s-3p AND 3p-3d TRANSITIONS in Ti X) October 1983 Keishi ISHII* 日 本 原 子 カ 研 究 所 Japan Atomic Energy Research Institute JAERI-M レポートは、日本原子力研究所が不定期に公刊している研究報告書です。 入手の間合わせは、日本原子力研究所技術情報部情報資料課(〒319—11 茨城県那珂郡東海村) あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター(〒319-11 茨城 県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなっております。 JAERI-M reports are issued irregularly. Inquiries about availability of the reports should be addressed to Information Section, Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan. © Japan Atomic Energy Research Institute, 1983 編集兼発行 日本原子力研究所印 刷 山田軽印刷所 Atomic Structure Calculation of Energy Levels and Oscillator Strengths in Ti Ion, II (3s - 3p and 3p - 3d transitions in Ti X.) Keishi ISHTI* (Received September 16,1983) Energy levels and oscillator strengths are calculated for 3s-3p and 3p-3d transition arrays in Ti X, isoelectronic to Al I. The energy levels are obtained by the Slater-Condon theory of atomic structure, including explicitly the strong configuration interactions. The results are presented both in numerical tables and in diagrams. In the tables, the observed data are included for comparison, where available. The calculated weighted oscillator strengths (gf-value) are also displayed in figures, where the weighted oscillator strengths are plotted as a function of wavelength. Keywords: Ti X, Highly Ionized Atom, Wavelength, Energy Level, Oscillator Strength, Plasma Diagnostic, Cowan Program This work is partly supported by a research contract of Japan Atomic Energy Research Institute with Kyoto University in fiscal year 1983. This work is herewith published for its value to scientific community. ^{*} Department of Engineering Science, Kyoto University, Kyoto 606 # Tiイオンのエネルギー準位と振動子強度の計算・Ⅱ (Ti Xの3s-3pおよび3p-3d遷移) 石 井 慶 之* (1983年9月16日受理) 核融合プラズマにおける不純物問題解明のために必要とされる金属イオンの分光学的データに関する研究の一環として、Ti~Xのエネルギー単位および $\Delta n=0$ 、n=2-2 遷移の波長と振動子強度の理論計算を行った。計算にはHartree-XR波動関数とSlater-Condon 理論に基づいたCowan プログラムを用いた。結果は表および図としてまとめた。文献調査による実験値は参考として表中に示した。 本報告は昭和58年度日本原子力研究所との協力研究の成果の一部である。 ^{*}京都大学工学部物理工学教室 京都市左京区吉田本町 # Contents | 8 | 1. | I | troduction | 1 | |-----|------------|----------|---|--------| | 8 | 2. | Me | thod of Calculation | 2 | | 8 | 3. | Re | sults | 3 | | | 3. | 1 | Configurations $3s^23p(\mathfrak{C})$, $3p^3(\mathfrak{G})$ and $3s3p3d(\mathfrak{C})$ of | | | | | | the first parity | 4 | | | 3. | 2 | Configurations $3s3p^2(\mathfrak{A})$, $3s^23d(\mathfrak{A})$, $3p^23d(\mathfrak{C})$ and | | | | | | $3s3d^2(\mathfrak{D})$ of the second parity | 6 | | | 3. | 3 | Wavelengths and Oscillator Strengths | 7 | | § | 4. | Di | scussion | 9 | | | | Re | ferences1 | 11 | | | | | | | | | | | | | | | | | 目 次 | | | § | 1. | 序· | | 1 | | § | 2. | 計 | 章 方 法 | 2 | | § ; | 3. 1 | 結 | 果 | 3 | | | 3. | 1 | 第1パリティの3s²3p,3p³および3s3p3d 電子配置 | 4 | | | 3. | 2 | 第2パリティの 3s3p²,3s² 3d,3p² 3dおよび 3s3d² 電子配置 (| 6 | | | | 3 | 皮長および振動子強度 ···································· | | | | 3. | 0 | 及及わるの派列「強反 | 7 | | 8 | 3.
4. ‡ | | | 7
9 | ## § 1. INTRODUCTION Knowledge of atomic structure in multiply charged ions, particularly of the structural material of the interior of the fusion devices, is important in the interpretation of spectral data from high temperature plasmas. The allowed Δn =0, n=2-2 transitions have been widely studied. The existing data have been compiled and published for the energy levels and the transition wavelengths¹⁾, and for the oscillator strengths^{2,3)}. Theoretical calculations are now available^{4,5)}, too. However, data on the Δn =0, n=3-3 transitions in M-shell are scarcer than those in L-shell, in spite of that the possible Δn =0 transitions in M-shell are much more abundant than those in L-shell. The Ti X, a member of Al I-isoelectronic sequence has been studied by Edlén⁶⁾ in 1936, by Fawcett and Peacock⁷⁾, by Svensson and Ekberg⁸⁾, by Ekberg and Svensson⁹⁾ and by Fawcett¹⁰⁾. Smitt et al. ¹¹⁾ have improved the accuracy of the previous measurements by examining closely the recorded spectrograms again and by studying the intervals in the ground configuration $3s^2 3p$ along the isoelectronic sequence. The configurations dealt with in the above all works are $3s^2 3p$, $3s3p^2$ and 3s3p3d. In 1971, Fawcett presented an extensive tabulation of wavelengths and classification for transitions in M-shell¹²⁾. Following the previous work on Ti IX¹³⁾, the calculated energy levels of the lower lying seven of the nine possible configurations of the general type $3s^k\,3p^q\,3d^r\,(k+q+r=3)$ in Ti X, and the wavelengths and the oscillator strenghts for the electric dipole transitions among them are presented. The calculated energy levels and wavelengths are listed and compared with the observed ones, where available. The present gf-values are compared with other calculations, too. The calculated energy levels are also illustrated in diagrams. The calculated gf-values are plotted as a function of wavelength as well. The plotted line pattern may provide the helpful guidance to identify the missing lines. No experimental data are available at present for oscillator strengths and lifetimes. ## § 2. METHOD OF CALCULATION The method of calculation used in the present work is the same as in the previous work on Ti IX¹³⁾. Thus, only a brief description is given here. It consists of three steps. The first step is to calculate the radial integral values of the average energy of the configuration $(E_{\rm av})$, the Slater radial integral (F^k, G^k) , the spin-orbit integrals (ζ) and the configuration interaction integrals (R^k) by using the ab initio Hartree-XR wavefunctions (R^k) . The second step involves the adjustment of the radial parameters $(E_{{\tt a}{\tt v}},\,F^k\,,\,G^k\,,\,\zeta$ and $R^k\,)$ by means of the least-squares optimization in order to minimize the differences between the computed and the observed energy levels. Strong configuration interactions are included explicitly. The third step is to calculate the wavelengths and the weighted oscillator strengths (gf-values) for the electric dipole transitions between the configurations considered above. The programs used in the second and the third steps are also originally developed by $Cowan^{\{4-16\}}$. A full explanation of this semi-empirical procedure is described by Wybourne¹⁷⁾, $Bromage^{\{8\}}$ observed ones, where available. The present gf-values are compared with other calculations, too. The calculated energy levels are also illustrated in diagrams. The calculated gf-values are plotted as a function of wavelength as well. The plotted line pattern may provide the helpful guidance to identify the missing lines. No experimental data are available at present for oscillator strengths and lifetimes. ### § 2. METHOD OF CALCULATION The method of calculation used in the present work is the same as in the previous work on Ti IX¹³⁾. Thus, only a brief description is given here. It consists of three steps. The first step is to calculate the radial integral values of the average energy of the configuration $(E_{\rm av})$, the Slater radial integral (F^k, G^k) , the spin-orbit integrals (ζ) and the configuration interaction integrals (R^k) by using the ab initio Hartree-XR wavefunctions (F^k, F^k) . The second step involves the adjustment of the radial parameters $(E_{{\tt a}{\tt v}},\,F^k\,,\,G^k\,,\,\zeta$ and $R^k\,)$ by means of the least-squares optimization in order to minimize the differences between the computed and the observed energy levels. Strong configuration interactions are included explicitly. The third step is to calculate the wavelengths and the weighted oscillator strengths (gf-values) for the electric dipole transitions between the configurations considered above. The programs used in the second and the third steps are also originally developed by Cowan^{14-16} . A full explanation of this semi-empirical procedure is described by Wybourne^{17} , Bromage^{18} and Cowan¹⁹⁾. The configurations considered in the present work are grouped into the following two sets according to the parity: First $$3s^2 3p(0) + 3p^3(0) + 3s3p3d(0)$$ Second $3s3p^2(0) + 3s^2 3d(0) + 3p^2 3d(0) + 3s3d^2(0)$. The seven of the possible nine configurations of the general type $3s^k 3p^q 3d^\tau (k+q+r=3)$ are considered and the configuration interactions in each parity are explicitly included in the present calculation. The remaining two configurations are excluded for being lying too highly. #### § 3. RESULTS The first step calculation gives the ab initio values of the single configuration integrals and configuration interaction integrals as shown in the second column "HXR" of Tables 1 and 3. In the second step calculation, the optimization was reduced to manageable size by fixing ratio of F^k , G^k , ζ and R^k in each integrals C^{20-22} . The accuracy of the optimization was measured by the following quantities defined as $$\Delta = \left[\sum_{i} (E_{calc}(i) - E_{obs}(i))^{2} / (N_{l} - N_{p}) \right]^{1/2} , \qquad (1)$$ $$\sigma = \left(\sum_{i} (E_{calc}(i) - E_{obs}(i))^{2} / N_{l}\right)^{1/2} , \qquad (2)$$ where $E_{calc}(i)$ and $E_{obs}(i)$ are i-th calculated and observed and Cowan¹⁹⁾. The configurations considered in the present work are grouped into the following two sets according to the parity: First $$3s^2 3p(0) + 3p^3(0) + 3s3p3d(0)$$ Second $3s3p^2(0) + 3s^2 3d(0) + 3p^2 3d(0) + 3s3d^2(0)$. The seven of the possible nine configurations of the general type $3s^k 3p^q 3d^r (k+q+r=3)$ are considered and the configuration interactions in each parity are explicitly included in the present calculation. The remaining two configurations are excluded for being lying too highly. #### § 3. RESULTS The first step
calculation gives the ab initio values of the single configuration integrals and configuration interaction integrals as shown in the second column "HXR" of Tables 1 and 3. In the second step calculation, the optimization was reduced to manageable size by fixing ratio of F^k , G^k , ζ and R^k in each integrals C^{20-22} . The accuracy of the optimization was measured by the following quantities defined as $$\Delta = \left[\sum_{i} (E_{calc}(i) - E_{obs}(i))^{2} / (N_{l} - N_{p}) \right]^{1/2} , \qquad (1)$$ $$\sigma = \left[\sum_{i} (E_{calc}(i) - E_{obs}(i))^{2} / N_{l} \right]^{1/2} , \qquad (2)$$ where $E_{calc}(i)$ and $E_{obs}(i)$ are i-th calculated and observed levels, respectively, N_ℓ is the number of observed energy levels and N_p is the number of adjustable parameters. The following five kinds of free parameters were used in the optimization: one average energy $E_{{\tt a}{\tt v}}$ one scale factor for F^k one scale factor for G^k one scale factor for ζ two scale factors for R^k . The reduced electric dipole radial integrals obtained from the same ab initio HXR wavefunctions were utilized in the third step calculation combined with the second step results. In the following Tables and Figures, we closely maintain the format of our previous work on Ti IX¹³⁾. 3.1 Configurations $3s^23p(\mathfrak{A})$, $3p^3(\mathfrak{B})$ and $3s3p3d(\mathfrak{C})$ of the first parity Two 2 P levels of ground configuration $3s^2$ 3p are well established $^{11)}$. On the other hand, no doublet levels have been observed in $3p^3$ and 3s3p3d configurations. One 4 S level of $3p^3$ and three 4 D levels of 3s3p3d have reasonably been determined by extrapolation 9) along isoelectronic sequence, where the some energy levels of quartet terms reletive to ground doublet are known for Al I to Ar VI. The absolute position of quartet terms in Ti X, thus, may have some uncertainty, because of the nature of extrapolation. Accordingly, the least-squares-fit calculation was performed for the second parity configuratin at first, whereby the uncertainty x was estimated as described below. Then, taking the x into account, the optimization procedure was applied to the first parity configuration, in which the adjustable parameters are grouped into the following two sets: - (1) $E_{av}(\mathfrak{A})$, $E_{av}(\mathfrak{B})$ and $E_{av}(\mathfrak{C})$, - (2) F^k , G^k and ζ_{nl} . When parameters in one set were adjusted, those in the other were fixed. Two R^k were always fixed to the scaled values by the factor determined in 3.2. The optimization was repeated successively. The fitted parameter values are given in the column "Fitted", and the ratio of "Fitted" to "HXR" in Table 1. Whereas the difference between "Fitted" and "HXR" is given for E_{av} . The std deviation σ is $0.068 \times 10^3 \, \mathrm{cm}^{-1}$, which gives 0.011% of total energy range of the configurations $(\mathfrak{C}+\mathfrak{B}+\mathfrak{C})$. The calculated and observed energy levels are listed in Table 2 for the $3s^2\,3p$, $3p^3$ and 3s3p3d, together with their differences ("C-O"). The level designations and its percentage compositions in LS-basis are also given. The corresponding energy level dagram is shown in Fig.1. The percentage compositions are listed from the largest two contributions in the same configuration and one from the other when over about 10%. Table 2 shows that the average LS-purity is 76%. The level designation in the column "Term" is given by the most significant component, except a few levels, e.g. 504.341 and 501.792 levels in configuration C. Although their LS-purity is less than 50%, they are labeled as $^4D_{1/2}$ and $^4P_{1/2}$, respectively, by considering the smooth grouping of levels as shown in Fig.1. One can notice that there are several levels whose LS-purity is a little over 50%. Two pairs of $(3p^3\ ^2P$, $3s3p3d\ ^2P)$ and $(3p^3\ ^2D$, $3s3p3d\ ^2D)$ are considerably perturbed with strong mutual configuration interaction. For example, $3p^3\ ^2D$ has a 30% $3s3p3d\ ^2D$ character. One can notice further that the appreciable mixing occurs only among the levels with the same multiplicity. This makes it difficult to cause the intercombination transitions. 3.2 Configurations $3s3p^2(Q)$, $3s^23d(B)$, $3p^23d(C)$ and $3s3d^2(D)$ of the second parity The least-squares optimization was performed for the $3s3p^{2}(\alpha)$ and $3s^{2}3d(\beta)$ configurations, in which seven observed doublet levels are included. Three observed levels of quartet terms are excluded because of uncertainty in their absolute value. The rms deviation Δ of $0.076 \times 10^3 \, \mathrm{cm}^{-1}$ was achieved, when assumed the uncertainty $x=400 \text{ cm}^{-1}$. This yields to 0.041% of total energy level spread of configurations a and B. The Hartree-XR and fitted values are given in Table 3, together with their ratios. The calculated energy levels are given in Table 4, along with the principal percentage compositions in LS-coupling basis. The average LS-purity is as high as 93%. The $^2\,\mathrm{D}$ in one configuration, however, has a 12% other configuration character. The observed energy levels are also included for comparison. The difference between the calculated and the observed energy levels are given, assuming x=400 cm $^{-1}$. The calculated energy levels are displayed graphically in Fig.2. The energy levels of $3p^2\,3d\,(\mathfrak{C}\,)\,,$ and $3s3d^2\,(\mathfrak{D}\,)$ configurations are obtained by adopting the scaled parameters shown below "adopted" in Table 3. The results are given numerically in Table 5, and are illustrated in Fig.3. None of the level listed in Table 5 has been observed thus far. ## 3.3 Wavelengths and Oscillator Strengths The reduced electric dipole radial integrals were obtained from the ab initio Hatree-XR wavefunction (Table 12), and used in the third step calculation without scaling. The calculated wavelengths and the gf-values for $3s^23p-3s3p^2$ and $3s^23p-3s^23d$ transition arrays are listed in Table 6, and those for $3s3p^2-3p^3$ and $3s3p^2-3s3p3d$ in Table 7, respectively. In both Tables, the observed wavelengths are included for comparison, with the difference between the calculated and observed ones. The agreement of the calculated wavelengths with the observed ones is excellent. The difference is only 0.06% at the worst. The intercombination transitions are listed in Tables 8 and 9, along with estimated gf-value. Table 8 contains the spin-forbidden multiplet $3s^2 3p \ ^2P - 3s 3p^2 \ ^4P$. This multiplet has been observed for Al I to Ar VI along the isoelectronic sequence, and utilized to fix the quartet position in Ti X by extrapolation⁹⁾. The present calculation shows that the gf-value is smaller than 0.005 for Ti X. Table 9 gives another spin-forbidden transitions between excited configurations. The calculated gf-value is again so small that the lines are hardly observed. The total number of possible electric dipole transitions among the configurations considered in the present work reaches 483, even when limited for $gf \ge 0.005$. In Table 10, the transitions from highest lying two configurations, i.e. $3p^23d$ and $3s3d^2$, are excluded. This is because that these highly excited levels are in many cases less populated. The lines marked with † are tentative assignment, whose wavelength was taken from Table 2 of Svensson and Ekberg $^{8)}$. The theoretical spectrum was generated from Table 10, and shown in Fig.4, where the gf-values are plotted in a logarithmic scale as a function of wavelength. Eleven lines above 520Å were excluded. A line rich region from 288 to 308A is enlarged and shown in Fig.5. Both Figures provide a helpful guidance for identification of missing lines by direct comparison with a recorded spectrogram. All the energy levels belonging to $3s3p^2$ and $3s^23d$ configurations are known. On the other hand, only a few quartet levels of $3p^3$ and 3s3p3d have been observed. The absolute values of calculated energy level of the latter two configurations may still contain uncertainty to some extent at present, although they are determind here consistently with the established doublet system in the second parity configuration. However, a small change of E_{av} 's has no significant influence on the relative positions of the levels and it just shifts them up or down slightly as a whole. The same is true for the wavelength. Consequently the line patterns in Fig.4 and 5 do not change their general feature either. In Table 11, the calculated lifetimes for the excited configurations are tabulated. One can see that most of the levels has lifetimes of the order of 0.01 to 0.1 nsec and a few quartet levels are metastable. The data for $3s3p^2$ and $3s^23d$ configurations may especially provide practical help for the future beam-foil lifetime measurement. #### § 4. DISCUSSION The average LS-purity of the first excited configuration of $3s3p^2$ is as high as 94%, as shown in Table 4. On the other hand, the LS-purity of the levels of $3p^3$ and 3s3p3d configurations in the first parity ranges from 36% to 100%, and the average is 76%. The purities vary from level to level in one configuration, and some of them have heavy admixtures from different configurations. As is seen in Table 6, all the lines are observed, and they are in good agreement with the calculated ones. Thus, the classification for $3s^23p-3s3p^2$ and $3s^23p-3s^23d$ transitions is essentially established. For $3s3p^2-3s3p3d$ transition (Table 7.), two lines with fairly large gf-value are not yet observed. The present calculation may provide helpful guidance for finding these missing lines, together with the calculated spectrum shown in Fig.4 and 5. No line due to $3s^23d-3s3p3d$ has been observed so far. Some of the transition have gf-value larger than 1.00, as is seen in Table 10. They are thus expected to be observed. Figures 4 and 5 may be useful when
compared with the recorded spectrograms, although the apparent line intensity is dependent on conditions of a light source. The radial energy integrals were adjusted from their ab initio Hartree-XR values, while the radial electric dipole integrals were not. Therefore, the gf-values of transition between levels, of which at least one is subject to strong configuration interaction, are less accurate. However, the future beam-foil lifetime measurement. #### § 4. DISCUSSION The average LS-purity of the first excited configuration of $3s3p^2$ is as high as 94%, as shown in Table 4. On the other hand, the LS-purity of the levels of $3p^3$ and 3s3p3d configurations in the first parity ranges from 36% to 100%, and the average is 76%. The purities vary from level to level in one configuration, and some of them have heavy admixtures from different configurations. As is seen in Table 6, all the lines are observed, and they are in good agreement with the calculated ones. Thus, the classification for $3s^23p-3s3p^2$ and $3s^23p-3s^23d$ transitions is essentially established. For $3s3p^2-3s3p3d$ transition (Table 7.), two lines with fairly large gf-value are not yet observed. The present calculation may provide helpful guidance for finding these missing lines, together with the calculated spectrum shown in Fig.4 and 5. No line due to $3s^23d-3s3p3d$ has been observed so far. Some of the transition have gf-value larger than 1.00, as is seen in Table 10. They are thus expected to be observed. Figures 4 and 5 may be useful when compared with the recorded spectrograms, although the apparent line intensity is dependent on conditions of a light source. The radial energy integrals were adjusted from their ab initio Hartree-XR values, while the radial electric dipole integrals were not. Therefore, the gf-values of transition between levels, of which at least one is subject to strong configuration interaction, are less accurate. However, the relative gf-values are fairly reliable, because the dipole integrals have a very little influence on them. The absolute gf-values can be determined only after the lifetimes are measured. In this context, Table 9 may be helpful for practical purpose of lifetime measurement. The author would like to express his sincere thanks to Dr. Robert D. Cowan for making his programs available, and to Dr. Jan O. Ekberg for his kindest help to make MT copies of the programs and for his valuable discussions regarding the application of the program to the present work. He owes his thanks to Drs. K. Ozawa, Y. Nakai and T. Shirai of Japan Atomic Energy Research Institute for their valuable comments and for their arrangement of the publication of the report. Thanks are also due to the members at the Data Processing Center of Kyoto University for their help in the computation by use of the FACOM M-380 computer. #### REFERENCES - 1) B.C. Fawcett: "Wavelengths and classifications of emission lines due to $2s^2 2p^n 2s2p^{n+1}$ and $2s2p^{n+1} 2p^{n+2}$ transitions, $Z \le 28$ ", Atomic Data and Nuclear Data Tables 16 (1975) 135-164. - 2) M.W. Smith and W.L. Wiese: "Graphical representations of systematic trends of atomic oscillator strengths along isoelectronic sequences and new oscillator strengths derived by interpolation", Astrophys. J. Suppl. Ser. 196 (1971) 103-192. - 3) K. Ishii: "Systematic trends of oscillator strengths and lifetimes for Δn=0, n=2-2 transitions in multiply charged ions along isoelectronic sequence", U.S.-Japan Seminar on Plasma Spectroscopy, Kyoto (1979) p.54. - 4) B.C. Fawcett: "Theoretical oscillator strengths for $2s^22p^n-2s2p^{n+1}$ and $2s2p^{n+1}-2p^{n+2}$ transitions and for $2s^22p^n$ "forbidden" transitions, Be I, B I, C I, N I, O I series, $Z \le 26$ ", Atomic Data and Nuclear Data Tables 22 (1978) 473-489. - 5) K.T. Cheng, Y.-K. Kim and J.P. Desclaux: "Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F", Atomic Data and Nuclear Data Tables 24 (1979) 111-189. - 6) B. Edlén: "Mg I-ähnlich Spektren der Elementen Titan bis Cobalt, Ti XI, V XII, Cr XIII, Mn XIV, Fe XV und Co XVI", Z. Physik 103 (1936) 536-541. - 7) B.C. Fawcett and N.J. Peacock: "Highly ionized spectra of the transition elements", Proc. Phys. Soc. **91** (1967) 973-975. - 8) L.A. Svensson and J.O. Ekberg: "Titanium vacuum-spark spectrum from 50 to 425 Å", Ark. Fys. 40 (1969) 145-163. - 9) J.O. Ekberg and L.A. Svensson: "Analyses of the XUV spectra of K, Ca, Sc and Ti isoelectronic with P I, Si I and Al I", Physica Scripta 2 (1970) 283-297. - 10) B.C. Fawcett: "Classification of the lower energy levels of highly ionized transition elements", J. Phys. B3 (1970) 1732-1741. - 11) R. Smitt, L.A. Svensson and M. Outled: "An experimental study of $3s^23p^n-3s3p^{n+1}$ in the Cl I, S I, Si I and Al I isoelectonic sequences", Physica Scripta 13 (1976) 293-307. - 12) B.C. Fawcett: "Wavelengths and classifications of emission lines due to $3s^23p^n-3s3p^{n+1}$ $3s3p^{n+1}-3s^23p^{n-1}3d$ and other n=3-3 transitions", Report ARU-R4, Culham laboratory, UK (1971). - 13) K. Ishii: "Atomic structure calculation of energy levels and oscillator strengths in Ti ion. (I. 3s 3p and 3p 3d transitions in Ti IX)", JAERI-M 83-155 (Report of Japan Atomic Energy Research Institute, 1983). - 14) R.D. Cowan: "Atomic self-consistent-field calculations using statistical approximations for exchange and correlation", Phys. Rev. 163 (1967) 54-61. - 15) R.D. Cowan and D.C. Griffin: "Approximate relativistic corrections to atomic radial wavefunctions", J. Opt. Soc. Am. 66 (1976) 1010-1014. - 16) R.D. Cowan: "Theoretical calculation of atomic spectra using digital computers", J. Opt. Soc. Am. 58 (1968) 808-818, and "Theoretical study of p^m-p^{m-1} L spectra", ibid. 58 (1968) 924-933. #### JAERI-M 83-164 - 17) B.G. Wybourne: Spectroscopic Properties of Rare Earths (John Wiley & Sons, New York, 1965). - 18) G.E. Bromage: "The Cowan-Zealot-Suite of computer programs for atomic structure", Report AL-R-3, Appleton Laboratory, UK (1978). - 19) R.D. Cowan: The Theory of Atomic Structure and Spectra (Univ. Calif. Press, Berkley, 1981). - 20) G.E. Bromage, R.D. Cowan and B.C. Fawcett: "Energy levels and oscillator strengths for $3s^2\,3p^n-3s^2\,3p^{n-1}\,3d$ transitions of Fe X and Fe XI", Physica Scripta 15 (1977) 177-182. - 21) G.E. Bromage, R.D. Cowan and B.C. Fawcett: "Atomic structure calculations involving optimization of radial integrals: Energy levels and oscillator strengths for Fe XII and Fe XIII 3p-3d and 3s-3p transitions", Mon. Not. R. astr. Soc. 183 (1978) 19-28. - 22) G.E. Bromage: "Atomic structure calculations: Energy levels and oscillator strengths for 3s-3p and 3p-3d transitions in nickel XII to XV and vanadium VII to X'spectra", Astron. Astrophys. Suppl. Ser. 41 (1980) 79-83. - 23) W.L. Wiese and J.R. Fuhr: "Atomic transition probabilities for scandium and titanium (A critical data compilation of allowed lines)", J. Phys. Chem. Ref. Data 4 (1975) 263-352. Table 1 Energy parameter values for the first parity configurations. (a): $3s^2 3p$ (B): $3p^3$ (C):3s3p3d | Parameter | HXR | Fitted | Fitted/HXR* | CI | |--|---|---|--|--------------------------| | Eav(α) ζ(3p) | 0.000
5.597 | 12.347
5.091 | (+12.347)
0.910 | | | Eav (&)
F ² (3p, 3p)
ζ (3p) | 447.906
112.048
5.572 | 458.245
100.160
· 5.068 | (+10.339)
0.894
0.910 | | | $Eav(C)$ $\zeta(3p)$ $\zeta(3d)$ $F^{2}(3p,3d)$ $G^{1}(3s,3p)$ $G^{2}(3s,3d)$ $G^{3}(3p,3d)$ | 514.006
5.572
0.461
111.363
147.465
101.362
129.381
83.642 | 527.687
5.014
0.298
99.547
128.523
88.347
112.768
72.902 | (+13.681)
0.910
0.650
0.894
0.872
0.872
0.872
0.872 | | | R ¹ (ss,pp)
R ¹ (sp,pd)
R ² (sp,pd)
R ¹ (sd,pp) | 147.163
135.443
103.389
135.271 | 88.298
81.266
62.033
120.391 | 0.600
0.600
0.600
0.890 | 8*0
9*0
9*0
9*8 | | σ | | 0.068 | | | ^{*} Values in parentheses are (Fitted)-(HXR). Table 2 Calculated and observed energy levels of $3s^23p(\mathfrak{C})$, $3p^3$ (B) and 3s3p3d (C) configurations in the 1st parity. | | | Ener | gy (in 10 ³ c | m ⁻¹) | Percentage | |--|--|--|---|---------------------------|---| | Term | J | Calc. | Obs. | C-O* | Composition | | 3s ² 3p (0 | 1/2
3/2 | 0.000
7.542 | 0.000°
7.543° | 0.000
-0.001 | 99%
99% | | 3p ³ (G) 4 S 2 D | 3/2
5/2
3/2
3/2
1/2 | 421.626
411.073
410.054
458.466
458.109 | 421 . 188+x ^b | -0.000 | 98%
69%, 30% C(³ P) ² D
68%, 30% C(³ P) ² D
77%, 16% C(³ P) ² P
80%, 15% C(³ P) ² P | | 3s3p3d (| C) | | | | 4.00% | | $(^{3} P)^{4} F$ $(^{3} P)^{4} D$ $(^{3} P)^{4} P$ $(^{3} P)^{2} F$ $(^{3} P)^{2} D$ | 9/2
7/2
5/2
3/2
7/2
5/2
3/2
1/2
5/2
1/2
5/2
5/2 |
470.567
467.602
465.399
463.875
505.595
505.553
505.079
504.341
499.214
500.585
501.792
549.900
544.049
522.720 | $505.266+x^b$
$505.134+x^b$
$504.516+x^b$ | -0.109
-0.019
0.125 | 100% 100% 100% 100% 100% 100% 100% 100% | | | 3/2 | 522.742 | | | 52%, 29%(¹ P) ² D
18% & ² D | | $(^{3} P)^{2} P$
$(^{1} P)^{2} F$
$(^{1} P)^{2} D$ | 3/2
1/2
7/2
5/2
5/2
5/2
3/2
3/2
1/2 | 588.510
590.438
600.632
602.056
622.859
622.312
619.200
619.502 | | | 83%, 15% & ² P
83%, 13% & ² P
70%, 29% (¹ P) ² F
70%, 29% (³ P) ² F
69%, 18% (³ P) ² D
13% & ² D
53%, 20% (¹ P) ² P
10% & ² D
74%, 16% (¹ P) ² D
91%, 7% & ² P | ^aSmitt et al.(1976), ref. 11). ^bEkberg and Svensson (1970), ref. 9). *When assumed uncertainty x=0.438. Table 3 Energy parameter values for the second parity configurations. (a): $3s3p^2$ (B): $3s^23d$ (C): $3p^23d$ (D): $3s3d^2$ | | | | T2 4 4 - 3 /11VD* | | |--|---|---|---|---| | Parameter | HXR | Fitted | Fitted/HXR* | CI | | Eav(α)
F ² (3p,3p)
ζ(3p)
G ¹ (3s,3p) | 203.635
112.081
5.572
147.325 | 219.929
104.815
5.184
128.398 | (+16.294)
0.936
0.913
0.872 | | | Eav (%) ζ (3d) | 328.577
0.461 | 336.169
0.269 | (+7.592)
0.584 | | | Δ | | 0.076 | | | | Eav (\mathcal{C}) F^2 ($3p$, $3p$) \langle ($3p$) \langle ($3d$) F^2 ($3p$, $3d$) G^3 ($3p$, $3d$) | 740.354
111.894
5.551
0.461
111.108
129.216
83.451 | Adopted
740.354
104.719
5.165
0.269
103.984
112.616
72.730 | (+0.000)
0.936
0.930
0.584
0.936
0.872
0.872 | | | Eav (\mathfrak{D})
F^2 $(3d,3d)$
F^4 $(3d,3d)$
ζ $(3d)$
G^2 $(3s,3d)$ | 836.598
116.662
75.070
0.457
100.944 | 836.598
108.183
70.257
0.266
87.976 | (+0.000)
0.936
0.930
0.584
0.872 | | | R ¹ (pp,sd)
R ¹ (sp,pd)
R ² (sp,pd)
R ¹ (pp,dd)
R ³ (pp,dd)
R ¹ (ss,pp)
R ² (sd,dd)
R ¹ (sd,pp) | 135.242
135.271
103.182
128.906
83.181
146.981
104.060
135.020 | 120.365
81.163
61.909
77.344
49.909
88.189
62.436
120.168 | 0.890
0.600
0.600
0.600
0.600
0.600
0.890 | 0*8 9*0 9*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 | ^{*} Values in parentheses are (Fitted)-(HXR). Table 4 Calculated and observed energy levels of $3s3p^2$ (C) and $3s^2 3d(\mathfrak{B})$ configurations in the 2nd parity. | | | Ener | gy (in 10^3 c | Danasutana | | |-------------------------------|------------|---------|----------------------|------------|---------------------------| | Term | J | Calc. | Obs. | C-O* | Percentage
Composition | | 8 s 3p ² (6 | t) | | | | | | ⁴ P | 5/2 | 165.189 | 164.764+ x^{a} | 0.025 | 99% | | | 3/2 | 161.075 | 160.655+ x^{a} | 0.020 | 100% | | | 1/2 | 158.206 | 157.850+ x^{a} | -0.044 | 99% | | ² D | 5/2 | 212.550 | 212.598° | -0.048 | 87%, 12% ß ² D | | | 3/2 | 212.098 | 212.046° | 0.052 | 87%, 12% ß ² D | | ² P | 3/2 | 285.231 | 285.217° | 0.014 | 98% | | | 1/2 | 281.030 | 281.044° | -0.014 | 92%, 6% ² S | | | 1/2 | 264.458 | 264.467° | -0.009 | 93%, 6% ² P | | s ² 3d (@ | 5) | | | | | | ² D | 5/2 | 345.875 | 345.856 ^b | 0.019 | 87%, 12% a ² D | | | 3/2 | 345.331 | 345.329 ^b | 0.002 | 87%, 12% a ² D | ^a Smitt et αl . (1976), ref.11). ^b Ekberg and Svensson (1970), ref.9). * When assumed uncertainty x=0.400. Table 5 Calculated energy levels of $3p^2\,3d\,(\text{C})$ and $3s\,3d^2\,(\text{D})$ configuration in the 2nd parity. Energy in $10^3\,\text{cm}^{-1}$. | Term | J | Energy | Pei | rcentage Compositin | |--------------------------------------|--------------------------|--|--------------------------|--| | 3p ² 3d (C) | - | | | | | $(^3P)^4F$ | 9/2
7/2
5/2 | 695.151
692.353
690.059 | 99%
97%
98% | | | $(^3 P)^4 D$ | 3/2
7/2
5/2
3/2 | 688.395
707.849
705.826
705.338 | 98%
96%
97%
92% | | | $(^3 P)^4 P$ | 1/2
5/2
3/2 | 706.854
741.257
741.485 | 53%,
58%,
79%, | 29% (³ P) ² P, 15% (¹ D) ² P
31% (¹ D) ² D
15% (¹ D) ² D | | $(^3P)^2F$ | 1/2
7/2
5/2 | 741,791
789,539
787,566 | 98%
75%,
72%, | 11% $(^{1}D)^{2}F$, 14% $D^{2}F$
13% $(^{1}D)^{2}F$ | | $(^{3} P)^{2} D$
$(^{3} P)^{2} P$ | 5/2
3/2
3/2 | 828.647
831.737
698.335 | 58%,
57%,
59%, | 39% (¹ S) ² D
42% (¹ S) ² D
28% (¹ D) ² P | | $(^1 D)^2 G$ | 1/2
9/2
7/2 | 701.637
725.530
724.640 | 34%,
88%,
89%, | 47% (³ P) ⁴ D, 17% (¹ D) ² P
11% D ² G
11% D ² G | | $(^{1} D)^{2} F$
$(^{1} D)^{2} D$ | 7/2
5/2
5/2 | 683.638
680.824
736.513 | 64%,
64%,
44%, | 22% (³ P) ² F, 12% D ² F
24% (³ P) ² F, 12% D ² F
42% (³ P) ⁴ P | | $(D)^{2}P$ | 3/2
3/2
1/2 | 738.275
764.889
762.849 | 59%,
40%,
43%, | 19% (³ P) ⁴ P, 10% D ² D
31% (³ P) ² P, 19% D ² P
35% (³ P) ² P, 20% D ² P | | $({}^{1}D)^{2}S$
$({}^{1}S)^{2}D$ | 1/2
1/2
5/2
3/2 | 774.414
778.899
773.422 | 87%,
53%,
47%, | 11% D 2 S
34% (3 P)2 D
34% (3 P)2 D | | 3s3d ² (D) | | | | | | ⁴ F | 9/2
7/2
5/2 | 805.837
805.439
805.127 | 100%
100%
100% | | | ⁴ P | 3/2
5/2
3/2 | 804.905
827.999
827.777 | 100%
100%
100% | | | ² G | 1/2
9/2
7/2 | 827.636
866.628
866.570 | 100%
89%,
89%, | 11% $e(^1D)^2G$
11% $e(^1D)^2G$ | | ² F | 7/2
5/2 | 900.996
900.778 | 74%,
73%, | 22% C(¹ D) ² F
21% C(¹ D) ² F | | ² D | 5/2
3/2 | 862.825
862.768 | 83%,
82%, | 17% e(1 D)2 D
16% e(1 D)2 D | | ² P | 3/2 | 926.437 | 73%, | 25% C(¹ D) ² P
25% C(¹ D) ² P | | ² S | 1/2
1/2 | 925.814
914.173 | 74%,
88%, | 11% C(¹ D) ² S | Table 6 Calculated and observed wavelengths with weighted oscillator strengths for $3s^23p(\mathfrak{A})-3s3p^2(\mathfrak{A})$ and $3s^2 3p(\mathfrak{A}) - 3s^2 3d(\mathfrak{B})$ transitions. | Trans | ition | Wav | elength (i | n Å) | | | |---------------------------------|--|--|--|------------------------------------|--------------------------------------|-------------------------| | Term-Term | J – J | Calc. | 0bs. | C-0 | gf | gf^* | | 3s ² 3p - | - 3s3p ² | | | | | | | ² P - ² D | 3/2-5/2
3/2-3/2
1/2-3/2 | 487.786
488.862
471.479 | 487.654 ^a
488.971 ^a
471.574 ^a | 0.132
-0.109
-0.095 | 0.2746
0.0155
0.1774 | 0.182
0.020
0.105 | | ² P - ² P | 3/2-3/2
1/2-3/2
3/2-1/2
1/2-1/2 | 360.115
350.593
365.646
355.833 | 360.133^{b} 350.610^{b} 365.628^{b} 355.815^{b} | -0.018
-0.017
0.018
0.018 | 1.8573
0.3822
0.5191
0.5510 | | | ${}^{2}P - {}^{2}S$ | 3/2-1/2
1/2-1/2 | 389.231
378.131 | 389.237°
378.135° | -0.006
-0.004 | 0.1200
0.3272 | | | $3s^23p$ - | $3s^2 3d$ | | | | | | | ² P - ² D | 3/2-5/2
3/2-3/2
1/2-3/2 | 295.566
296.043
289.577 | 295.584 ^b
296.04 *
289.579 ^b | -0.018
0.00
-0.002 | 2.4279
0.2998
1.3514 | 2.69
0.30
1.58 | ^aSmitt et al. (1976), ref.11). ^bSvensson and Ekberg (1970), ref.9). ^cFawcett (1971), ref.12). ^{*}Wiese and Fuhr (1975), ref.23). Table 7 Calculated and observed wavelengths with weighted oscillator strengths for a particular transition of $3s3p^2\ ^4P-3p^3\ ^4S\ and\ 3s3p^2\ ^4P-3s3p3d\ ^4D.$ | Trannsit | ion | Wavel | ength (in | Å) | * | |--|--|--|--|---|--| | Term-Term | J – J | Calc. | Obs. | C-0 | gf | | $3s3p^2 - 3p^3$ | | | | | | | ⁴ P- ⁴ S
⁴ P- ⁴ S
⁴ P- ⁴ S | 5/2-3/2
3/2-3/2
2/2-3/2 | 389.959
383.802
379.622 | 389.99°
383.93°
379.74° | -0.03
-0.13
-0.12 | 1.0869
0.7365
0.3727 | | 3s3p ² – 3s3p3d | i | | | | | | ⁴ P-(³ P) ⁴ D
⁴ D | 5/2-7/2
5/2-5/2
3/2-5/2
5/2-3/2
3/2-3/2
1/2-3/2
3/2-1/2
1/2-1/2 | 293.767
293.803
290.294
294.213
290.695
288.290
291.320
288.905 | 293.684 ^b
293.798 ^b
290.294 ^b
290.815 ^b
288.462 ^b | 0.083
0.005
0.000
-0.120
-0.172 | 3.2027
1.4298
0.7972
0.3875
0.9032
0.0664
0.5199
0.0742 | a,b,c see footnote in Table 6. Table 8 Calculated wavelengths (in Å) of intercombination resonance multiplet $3s^2\,3p^{-2}\,P^o\,-\,3s\,3p^{2-4}\,P$. The gf-value is smaller than 0.005
for all components. | Term | J – J | Wavelength | |--------------------------------|---|--| | ² P- ⁴ P | 3/2-5/2
3/2-3/2
1/2-3/2
3/2-1/2
1/2-1/2 | 634.33
651.33
620.83
663.73
632.09 | Table 9 Calculated wavelengths (in Å) of intercombination transitions $3s3p^2-3p^3$ and $3s3p^2-3s3p3d$, with $gf \ge 0.005$. | Transition | Term-Term | J - J | Wavelength | gf | |--------------------------------------|---|--|--|--------------------------------------| | $3s3p^2 - 3p^3$
$3s3p^2 - 3s3p3d$ | ${}^{4}P - {}^{2}P$ ${}^{2}D - {}^{4}D$ ${}^{2}D - {}^{4}P$ ${}^{2}P - {}^{4}S$ | 3/2-3/2
5/2-7/2
5/2-5/2
3/2-5/2 | 336.258
341.244
348.840
276.514 | 0.0088
0.0087
0.0150
0.0093 | Table 10 Calculated and observed wavelengths (in A) with $gf \geq 0.005$ for transitions -3s3p3d and $3s^23d - 3s3p3d$. $3s^2\,3p\,-\,3s3p^2\;,\;3s^2\,3p\,-\,3s^2\,3d\;,\;3s3p^2\;-\,3p^3\;,\;3s3p^2$ Arranged in order of decreasing wavelength. | | ² D 3/2-3/
² D 3/2-5/
² D 1/2-3/
² P 3/2-1/
² P 3/2-1/
³ P) ² D 5/2-5/
³ P) ² D 3/2-5/
³ P) ² D 3/2-5/ | |---|---| | ιώνα άνανανανανο | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3/2-3/2
3/2-5/2
1/2-3/2
3/2-5/2
3/2-3/2 | $\begin{array}{c} - \ ^2 D \\ - \ ^2 D \\ - \ ^2 D \\ - \ ^3 P)^2 D \\ - \ ^3 P)^2 D \end{array}$ | | | 0.0728
0.0133
0.0198
0.0322
0.5967 | 0.3576
0.0724
3.4304
0.1393
1.0869
2.4589
0.1200
0.0064
0.7365 | 0.3272
1.5542
0.5191
0.0134
0.7985
0.0732
1.2198
1.6618
0.0694 | 0.5510
0.3822
0.0150
0.0087
0.0088 | |----------------|--|---|---|---| | | | 389.99°
389.237°
383.93°
379.74° | 378.135° 365.628 ^b | 355.815 ^b
350.610 ^b | | | 413.715
412.143
411.220
407.985
406.643 | 406.487
405.898
392.532
390.350
389.959
389.522
389.231
387.171
387.171 | 378.131
365.865
365.646
365.137
364.735
361.035
361.035
360.323 | 355.833
350.593
348.840
341.244
336.258 | | | 1/2-3/2
5/2-3/2
3/2-3/2
3/2-1/2
5/2-3/2 | 3/2-1/2
3/2-3/2
5/2-3/2
5/2-3/2
3/2-5/2
1/2-3/2
1/2-3/2 | 1/2-1/2
3/2-1/2
3/2-1/2
3/2-3/2
5/2-3/2
5/2-3/2
3/2-5/2
3/2-5/2 | 1/2-1/2
1/2-3/2
5/2-5/2
5/2-7/2
3/2-3/2 | | | $ \begin{array}{cccc} ^{2}P & -(^{3}P)^{2}D \\ ^{2}D & -(^{3}P)^{2}P \end{array} $ | 2D - 2P
2D - 2P
2D - (P)2F
2D - (P)2F
4P - 4S
2D - (P)2F
2D - (P)2F
2D - (P)2F
2P - 2S
4P - 4S
4P - 4S
4P - 4S | 2P - 2S
2D - (1P) ² P
2D - (1P) ² P
2D - (1P) ² P
2D - (1P) ² P
2D - (1P) ² D
2D - (1P) ² D | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 2 - 3x3p3d d - 3x3p3d d - 3x3p3d d - 3x3p3d 2 - 3p³ | 2 - 3p ³ d - 3x3p3d 2 - 3x3p3d 2 - 3p ³ 2 - 3p ³ | d - 383p2
d - 383p2
d - 383p3
d - 383p3d
d - 383p3d
d - 383p3d
d - 383p3d
d - 383p3d
d - 383p3d
d - 383p3d | p - 3x3p ² p - 3x3p ² 2 - 3x3p3d 2 - 3x3p3d 2 - 3x3p3d 2 - 3x3p3d | | | 383p
38 ² 3
38 ² 3
38 ² 3
38 ² 3 | $\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 38 ² 3
38 ² 3
383p
383p
383p | | e 10 Continued | 281.030-522.742
345.875-588.509
345.330-588.509
345.330-590.437
212.549-458.465 | 212.098-458.109
212.098-458.465
345.875-600.631
345.875-602.055
165.189-421.626
345.330-602.055
7.542-264.458
264.458-522.742
161.075-421.626 | 0.000-264.458
345.875-619.200
7.542-281.030
345.330-619.200
345.330-619.502
345.875-622.312
345.875-622.859
345.330-622.859 | 0.000-281.030
0.000-285.230
212.549-499.214
212.549-505.595
161.075-458.465 | | Tabl | 20
20
30
30 | 33
33
33
33
33
33
33
33
33
34
35
36
36
37 | 44444444
000
000
000
000 | 52
53
54
55 | Table 10 Continued | 0.0080
0.3925
0.0698
0.0146 | 2.1829
0.1448
0.2145
1.4424
1.6293
0.5446
0.1200
0.9581
0.2874 | 0.2321
0.1084
1.1414
1.4490
3.6845
0.2998
1.3022
1.2007
2.4279
0.3479 | 0.0882
0.3875
1.4298
3.2027
0.9532 |
--|--|--|---| | | 308, 408 [†] | 296.04 *
295.584*
295.584*
295.584 | 293.798 ^b
293.684 ^b
293.033 [†] | | 330.673
329.729
327.646
325.225
323.198 | 322.403
322.380
321.935
321.912
308.593
306.768
301.659
301.249
299.428 | 299.158
298.154
296.664
296.427
296.184
296.184
295.709
295.709
295.566 | 294.542
294.213
293.803
293.767
293.013 | | 5/2-7/2
3/2-3/2
3/2-1/2
1/2-3/2
1/2-1/2 | 5/2-5/2
3/2-3/2
3/2-3/2
1/2-3/2
1/2-1/2
5/2-5/2
3/2-5/2
5/2-5/2 | 3/2-1/2
5/2-3/2
3/2-3/2
5/2-7/2
3/2-5/2
3/2-5/2
1/2-3/2
1/2-3/2 | 3/2-3/2
5/2-3/2
5/2-5/2
5/2-7/2
1/2-3/2 | | $ \begin{array}{l} 4 P & -(3 P)^4 F \\ 2 P & -(3 P)^2 P \end{array} $ | 2D - (3P)2D
2D - (3P)2D
2D - (3P)2D
2D - (3P)2D
2D - (3P)2D
2S - (3P)2P
2D - (3P)2P
2D - (3P)2P
2D - (3P)2P
2D - (3P)2P
4P - (1P)2P | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{l} 4 P - (^{3} P)^{4} P \\ 4 P - (^{3} P)^{4} D \\ 4 P - (^{3} P)^{4} D \\ 4 P - (^{3} P)^{4} D \\ 2 P - (^{1} P)^{2} D \end{array} $ | | | 38393d
38393d
38393d
38393d
38393d
38393d
38393d
38393d
38393d | - 383p3d
- 383p3d | - 3x3p3d
- 3x3p3d
- 3x3p3d
- 3x3p3d
- 3x3p3d | | 383p ²
383p ²
383p ²
383p ²
383p ² | 38 39 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 38392
38392
38392
38239
38392
38392
38392 | 383p ²
383p ²
383p ²
383p ²
383p ² | | 165.189-467.602
285.230-588.509
285.230-590.437
281.030-588.509
281.030-590.437 | 212. 549-522. 720
212. 549-522. 742
212. 098-522. 720
212. 098-522. 720
264. 458-588. 509
264. 458-590. 437
212. 549-544. 049
212. 098-544. 049
285. 230-619. 200
165. 189-499. 214 | 285.230-619.502
165.189-500.585
285.230-622.312
212.549-549.900
285.230-622.859
7.542-345.330
161.075-499.214
281.030-619.200
7.542-345.875
281.030-619.502 | 161.075-500.585
165.189-505.079
165.189-505.553
165.189-505.595
281.030-622.312 | | 5
5
5
6
6
7
6
7
7
7
7
7
8
7
8
7
8
7
8
7
7
8
7
7
8
7
7
8
7
7
8
7
8
7
7
8
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
7
8
7
8
7
8
7
8
7
8
7
8
7
7
7
7
8
7
8
7
8
7
8
7
8
7
7
7
7
8
7
7
7
7
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 61
62
63
65
65
66
67
66
69 | 71
72
72
74
75
76
77
80 | 81
82
83
84
85 | Table 10 Continued | 0.9970
0.5199
0.6828
0.9032
0.7972 | 1.3514
0.0742
0.0664
0.1162
0.0987
0.0093
0.0085
1.5958 | 1.1307 | |--|---|---| | 291.958†
290.815 ^b
290.294 ^b | 289.579 ⁶
288.462 ⁶
258.008 [†] | 256.525† | | 292.074
291.320
291.048
290.695
290.294 | 289.577
288.905
288.290
281.655
279.444
276.514
265.986
257.677 | 256.438
245.911 | | 1/2-3/2
3/2-1/2
1/2-1/2
3/2-3/2
3/2-5/2 | 1/2-3/2
1/2-1/2
1/2-1/2
1/2-3/2
1/2-3/2
5/2-5/2
5/2-7/2 | 3/25/2
5/2-3/2 | | 4 P - (3 P) 4 P
4 P - (3 P) 4 D
4 P - (3 P) 4 D
4 P - (3 P) 4 P
4 P - (3 P) 4 D
4 P - (3 P) 4 D | 2 P - 2 D
4 P - (3 P) 4 D
4 P - (3 P) 4 D
2 S - (1 P) 2 P
2 S - (1 P) 2 D
4 P - (3 P) 2 D
2 D - (3 P) 2 D
2 D - (3 P) 2 F
2 D - (1 P) 2 F
2 D - (1 P) 2 F
2 D - (1 P) 2 F | ${}^{2}_{2} {}^{D}_{-} ({}^{i}_{1} {}^{p})^{2}_{2} {}^{F}_{2}$ | | $3s3p^2 - 3s3p3d$ | $3s^{2}3p - 3s^{2}3d$ $3s^{2}3d - 3s3p3d$ $3s^{2}3d - 3s3p3d$ $3s3p^{2} - 3s3p3d$ | 3s3p ² – 3s3p3d
3s3p ² – 3s3p3d | | 158.206~500.585
161.075~504.340
158.206~501.792
161.075~505.079 | 0.000-345.330
158.206-504.340
158.206-505.079
264.458-619.502
264.458-622.312
161.075-522.720
212.549-588.509
212.549-602.055 | 212.549-619.200 | | 86
83
89
90 | 91
92
93
96
98
98 | 100 | a,b,c,* see footnote in Table 6. † Svensson and Ekberg (1969), ref.8), and see text. Table 11 Calculated lifetimes (in nsec) of levels in the excited configurations. | Conf | Term | J | Energy | Lifetime* | |-------------------|--|---|--|--| | 3s3p ² | ⁴ P ² D ² P ² S | 5/2
3/2
3/2
1/2 | 165.189
161.075
158.206
212.550
212.098
285.231
281.030
264.458 | 7.80(-1)
6.95(-1)
3.44(-2)
3.64(-2)
9.73(-2) | | $3s^2$ $3d$ | ² D | 5/2
3/2 | 345.875
345.331 | 3.24(-2)
3.07(-2) | | 3p ³ | ⁴ S
² D
² P | | 421.626
411.073
410.054
458.466
458.109 | 4.07(-2)
4.29(-1)
4.32(-1)
1.09(-1)
1.06(-1) | | 3 s 3p3d | (3 P)4 P
(3 P)4 P
(3 P)2 F
(3 P)2 D
(3 P)2 P
(1 P)2 F
(1 P)2 D
(1 P)2 P | 9/2
7/2
5/2
5/2
1/2
5/2
5/2
5/2
5/2
5/2
5/2
5/2
5/2
5/2
5 | 544.049 | 1.65(+1) 3.23(-2) 3.46(-2) 3.76(-2) 4.27(-2) 4.99(-2) 4.31(-2) 3.72(-2) 6.79(-2) 7.09(-2) 7.09(-2) 3.73(-2) 3.73(-2) 2.83(-2) 3.01(-2) 2.59(-2) 2.54(-2) 1.63(-2) 1.70(-2) 2.07(-2) 2.14(-2) | Table 11 Continued | able 11 (| Continued | | | | |--------------------|--------------------------------------|--|---|--| | Conf | Term | J | Energy | Lifetime* | | 3p ² 3d | $(^{3} P)^{4} F$ | 9/2
7/2
5/2 | 695.151
692.353
690.059 | 9.62(-2)
9.72(-2)
9.82(-2) | | | $(^3 P)^4 D$ | 3/2
7/2
5/2
5/2
1/2
5/2
1/2
5/2
5/2
3/2
9/2
5/2
5/2
5/2 | 3/2 688.395 7/2 707.849 5/2 705.826 3/2 705.338 1/2 706.854 5/2 741.257 3/2 741.485 1/2 741.791 7/2 789.539 5/2 787.566 5/2 828.647 3/2 831.737 3/2 698.335 1/2 701.637 9/2 725.530 7/2 724.640 7/2 683.638 5/2 680.824 | 9.94(-2)
8.77(-2)
8.69(-2)
8.47(-2)
7.27(-2)
2.53(-2)
2.27(-2)
2.10(-2)
2.24(-2)
2.24(-2)
2.01(-2)
2.01(-2)
3.13(-1)
3.08(-1)
2.54(-1)
2.54(-1)
2.54(-1)
2.55(-2)
3.00(-2) | | | $(^{3} P)^{4} P$ | | | | | | $(^3 P)^2 F$ | | | | | | $(^3 P)^2 D$ | | | | | | $(^{3} P)^{2} P$ | | | | | | $(^1 D)^2 G$ | | | | | | $(^1 D)^2 F$ | | | | | | $(^1 D)^2 D$ | | | | | | $(^1D)^2P$ | 3/2
1/2 | 764.889
762.849 | 3.99(-2)
3.87(-2) | | | $({}^{1}D)^{2}S$
$({}^{1}S)^{2}D$ | 1/2
5/2
3/2 | 774.414
778.899
773.422 | 4.10(-2)
7.23(-2)
6.66(-2) | | $3s3d^2$ | ⁴ F | 9/2
7/2
5/2 | 805.837
805.439
805.127 |
2.82(-2)
2.78(-2)
2.74(-2) | | | ⁴ P | 3/2
5/2
3/2
1/2
9/2 | 804.905
827.999
827.777 | 2.72(-2)
2.32(-2)
2.29(-2) | | | ² G | | 866.628 | 2.29(-2)
3.43(-2) | | | ² F | 7/2
7/2
5/3 | 900.996 | 3.47(-2)
1.80(-2)
1.77(-2) | | | ² D | 5/2
5/2
3/2 | 862.825 | 1.77(-2)
1.96(-2)
1.96(-2) | | | ² P | 3/2 | 926.437
925.814 | 1.36(-2)
1.35(-2) | | | ² S | 1/2 | | | ^{*}Figures in parentheses are the power of 10 by which the preceding number should be multiplied. Table 12 Calculated reduced electric dipole radial integrals (in atomic units). | Tra | nsition | Reduced E1 integral | |--------------------|---------------------|---------------------| | 3s ² 3p | - 3s3p ² | (3s:R1:3p) = 0.8851 | | - | $-3s^23d$ | (3p:R1:3d)= 1.1908 | | 3s3p ² | - 3p ³ | (3s:R1:3p)=-0.8838 | | | - 3s3p3d | (3p:R1:3d)=-1.1933 | | $3s^2 3d$ | - 3s3p3d | (3s:R1:3p)=-0.8853 | | $3p^3$ | $-3p^23d$ | (3p:R1:3d)= 1.1931 | | 3s3p3d | $-3p^23d$ | (3s:R1:3p) = 0.8851 | | | $-$ 3s3d 2 | (3p:R1:3d)= 1.1973 | | | | | (C) Fig.2 Calculated energy level diagram of $3s3p^2\left(\alpha\right)$ and $3s^23d\left(\alpha\right)$ configurations of the second parity. Fig.1 Calculated energy level diagram of $3p^3 \, (8)$ and $3s3p3d \, (2)$ configurations of the first parity. Energy is in $10^3 \, \rm cm^{-1}$. Fig.3 Calculated energy level diagram of $3p^3\,3d\,(\text{C})$ and $3s^2\,3d\,(\text{D})$ configurations of the second parity. Fig. 4 Calculated line pattern for the transitions in Ti X, corresponding to Table 10. and (lower) 380-520A (upper) 240-380Å Fig.5 Enlarged partial line pattern in the wavelength range 288 to 302Å