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A reflood test program has been conducted at Japan Atomic Energy
Research Institute (JAERI) using large scale test facilities named Cylin-
drical Core Test Facility (CCTF) and Slab Core Test Facility (SCTF).

The present report describes the effect of the initial clad temperature
i.e., the initial stored energy on reflood phenomena observed in CCTF

Core-II tests C2-ACl and C2-4., The peak clad temperatures of tests C2-
ACl and C2-4 were 863 K and 1069 K, respectively at reflcod initiation.

With higher initial clad temperature, cbtained were lower water
accunulation in the core and upper plenum, and higher loop mass flow
rate in an early reflocd transient due toe larger heat release of the
stored energy in the core. Core inlet flow conditions were only affected
shortly after the reflcod initiation, causing the suppressed flooding
rate and the larger U-tube flow oscillation between the core and the
downcomer. In the core, with higher initial clad temperature, siower
quench front propagation and higher turnaround temperature were ocbserved.
Responses to a higher initial clad temperature were similar to those
observed in CCTF Core-I and FLECHT tests. Thus, the lower temperature
rise with higher iritial clad temperature was experimentally confirmed.
The importance of higher flooding rate at initial period was analytically

shown for further decreasing the temperature rise.

The work was performed under contract with the Atomic Energy Bureau

of Science and Technology Agency of Japan.
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1. Introduction

The present report describes the effect of the initial clad temper-
ature on the reflood phenomena observed in the Cylindrical Core Test
Facility (CCTF) Core-1l at Japan Atomic Energy Research Institute
(JAER1).

The large scale reflood test program has been conducted at JAERL
in order to demonstrate the effectiveness of the emergency core cooling
(ECC) system, to verify the best-estimate analysis codes and to supply
information for the improved thermo-hydrodynamic models during the
reflood phase of a hypothetical loss-of-coolant accident (LOCA) of a
PWR. For that purpose the CCTIT and the Slab Core Test Facility (SCTF)
have been constructed. The CCTF is a 1/20 scale integral test facility
with a cylindrical core, 4-loop primary systems, and active steam gene—
rators. Whereas the SCTF is designed to simulate the two-dimensional
flows in the core with an eight fuel bundles arranged in a slab peometry.

The clad temperature at reflood initiation much depends on the
heat transfer in the preceding blowdown and refill phases in LOCA. In
a safety analysis, for example, the initial clad temperature is con-
servatively evaluated at about 1140 X assuming rhe adiabatic heat-up
during the refill phase. It is important, however, to experimentally
investigate the effect of the initial clad temperature, and hence the
initial stored energy on the reflood phencmena. This 1Is because that
the core cooling is sensitive to the core inlet mass flow rate which is
controlled by the coupled feed-backs between the core and the system.

The FLECHT(l) experiment has shown that the higher initial clad
temperature induces the higher peak clad temperature, the later quench
time and the lower temperature rise under the constant forced—-feed re-

(2)(3

flood condition. The series of the CCIF Core-I Lest have revealed
the similar trend in the core as FLECHT and have provided the detailed
information about the system responses under the system feed-back
condition as in an actual PWR.

In the CCTF Core~lI test series, however, the vessel and core
geometry were modified and the ECC flow condition was revised for the
better simulation of the typical PWR-LOCA. Therefore, the effect of the
initial clad temperature on the reflood phencmena needed to be general-

ized in a wider range of the test conditions. For that purpese, the

test G2-AC1 (Run 51) was conducted with a fairly low initial clad
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temperature compared with the base case test C2-4 (Run 62). The nominal

peak clad temperatures of tests C2-ACl and C2-4 are 863 K and 1069 K,

respectively at the reflood initiation.
The test €2-4 is the repeated test of the base case test C2-SH1

(Run 53). Detailed analysis and the data evaluatlon of test C2-5H1 is

repcrted in reference {4). The main results of test C2-ACl are compiled

in Appendix for the better understanding of the test results.
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2. Test Descriptiom

2.1 Test Facility

The CCTF is an experimental test facility designed to reasonably
simulate the flow conditions in the primary system of a PWR during the
refill and reflood phases of a LOCA. The vertical dimensions and loca-
tions of the system components are kept as close as possible to those
of reference 1000 MW PWRs with four primary lcops. The reference re-
actors are the Trojan reactor in the USA and certain aspects of the Ohi
reactor in Japan. The flow area of the system compoments are scaled
down based on the core flow area scaling ratio of 1:21.4. The bird's-
eye view and overall schematic diagram of the facility are shown in
Figs. 2.1 and 2.2, respectively. The scaled dimensions of the components
are given in Table 2.1.

The pressure vessel is a cylirdrical type with the downcomer, the
upper and lower plenums, and the core as gshown in Fig. 2.3. The core
consists of thirty-two 8x8 electrically heated rod bundles arranged in
a cylindrical array. Fach bundle simulates 15x15 array fuel assemblies
including the unheated rods. The cross section of the pressure vessel
and the configuration of the rods in the core are shown in Figs. 2.4
and 2.5, respectively.

The heater rod simulates 15x15 array type fuel in geometry and heat
capacity. The heated length and the outer diameter of the heater rcds
are 3.66 m and 10.7 mm, respectively. The heating element is a herical
nichrome coil with a 17 step chopped cosiné zxial power profile as shown
in Fig. 2.6. The locations of the temperature measurement in the core
are also shown in the figure.

The primary loop consists of three intact loops and a broken loop.
Each loop consists of hot leg and cold leg pipings, a steam generator
simulator with active secondary side, and a pump simulator. A 200% cold
leg break is simulated for the broken cold leg. The broken ccld leg is
connected to two containment tanks. The inner diameter of the piping
is scaled down in proportion to the core flow area scaling. The length
of each piping secticn is almost the same as the corresponding section
of the reference PWR. ECCS consists of an Acc and a LPCI. The injec-
tion points are located at each cold leg and at the lower plenum. The
primary loop arrangement 1is shown in Figs. 2.7 and 2.8.

Approximately 1500 channels of data are recorded on a magnetic disk

_SJ
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or a magnetic tape, which include temperatures, pressures, differential
pressures, liquid levels and mass flow rates. Measurement locations 1in
the pressure vessel and the primary system are shown in Figs. 2.9 through

2.12.

2.2 Test Procedure

The test procedure was as follows: After establishing the initial
conditions of the test, the electric power for preheaters was turned off
and the lower plenum was filled with saturated water to a specified level.
(about 0.9m). When the water level in the lower plenum reached the
specified level and the other initial conditions of the test stabilized,
the electric power was applied to the heater rods in the core and the
data recording was started. When a specified initial clad temperature
of the heater rods was reached, direct injection of the Ace water into
the lower plenum was initiated. The specified initial clad temperature
for the initiation of coolant injection was predetermined by the inter-
polation between the initial clad temperature and the clad temperature
assumed for the bottom of the core recovery time. The decay of the
power input to the heater rods was scheduled to begin at the BOCREC
time. The specified power decay was cbtained by normalizing the decay
curve of the ANS standard x 1.2 + 238y capture decay at 30 seconds after
scram.

At a predetermined time, the injection port was switched from the
lower plenum to the three intact cold leg ECC ports. At a specified
rime after the initiation of Acc injection, the valves in Acc line and
LPCI circulation line were closed and the valve in LPCT injection line
was opened. These actions transferred the ECC water injection from Acc
mode to LPCI mode.

The generated steam and the entrained water flowed through broken
and intact loops to the containment tanks. The steam was then vented
to the atmosphere to maintain the pressure in the containment tanks
constant.

When all thermocouples on the surface of heater rods quenched and
'indicated temperatures close to the saturation temperature, the power
supply to the heater rods was turned off. After that, the ECC water
injection was terminated and data recording was ended, terminating the

test.
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2.3 Test conditions

Table 2.3 summarizes the comparison of the major initial and
boundary test counditions between test C2-AC1 and C2-4. The initial
clad temperature is defined as the measured maximum temperature at the
rod surface in the core. Tt is realized at the midplane In the central
high power region where the local power is the highest. The initial
clad temperature of test C2-ACl was 863 K, while that cof test CZ-4 was
1069 K.

Except for the initial clad temperature, other test conditions
were almost the same, however, the followings were slightly different
between the two tests: The teotal power and hence the average linear
power was about 0.97% higher in test C2-ACl than test C2-4. Secondary,
the radial distribution of test C2-ACl was more skewed than test C2-4
as shown in Table 2.3.

The ECC flow rates shown in Table 2.3 were about 30% higher than
(2)

those of CCTF Core-1 base case test This revision was made in con-
sideration of the more realistic situation in the reflood phase of PWR-
LOCA.

Table 2.4 gives the comparison of the chronology of events between
two tests. The required heat-up time until the reflood initiation was
longer with the higher initial clad temperature, because the clad tem-
peratures at the initiation of the power supply were set to the satura-

tion temperature in both tests. The evaluated initial stored energy of

rest C2-4 was about 60% higher than that of test C2-AC1.
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Table 2.1 CCTF Component scaled dimensions

Component PWR JAERIL Ratio
Pressure vessel
4394
Vessel inside diameter (mm) (173") 1084
, 216
Vessel thickness (mm) (8 1/2") 30
Core barrel outside diameter {mm) 3874 961
Core barrel inside diameter {mm) 3760 929
Thermal shield outside diameter (mm) 4170
Thermal shield inside diameter (mm) 4030 }
Downcomer length {mm) 4849 4849 1/1
Downcomer gap {mm) 114.3 61.5
Downcomer flow area (m?) 4.23 0.197 1/21.44
Lower plenum volume (m3) 29.6 1.38 1/21.44
Upper plenum volume (m?) 43.6 2.76 1/15.8
Fuel (heater rod)} assembly
Number of bundles (—) 193 32
Rod array - 15x15 8x8
Rod heated length {mm) 3660 3660 1/1
Rod pitch {mm) 14.3 14.3 1/1
Fuel rod outside diameter (mm) 10.72 10.7 1/1
Thimble tube diameter (mm) 13,87 13.8 1/1
Instrument tube diameter (mm} 13.87 13.8 1/1
Number of heater rods {(—) 39372 1824 1/21.58
Number of non-heated rods (—) 4053 244 1/18.09
Core flow area (m?) 5.29 0.25 1/21.2
Core fluid volume (m3) 17.95 0.915 1/19.6
Primary loop
Hot leg inside diameter {mm) Z;gﬂ? 155.2 1/4.75
. Hot leg flow area (m<) 0.426 0.019  1/22,54
Hot leg length {mm) 3940 3940 1/1
L 787.4
Pump suction inside diameter (mm) (31" 155.2 1/5.07
Pump suction flow area (m?) 0.487 0.019 1/25.77
Pump suctlon length (mm}) 9750 7950 1/1
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Table 2.1 (cont'd)
I
Component PWR JAERIL Ratio
cold leg inside diameter (mm) (238'52) 155.2 1/4.50
1d leg flow area (m?) 0.383 0.019 1/20.26
Co B
Cold leg length (mm) 5600 5600 1/1
e
Steam generator simulator
Number of tubes/loop (—) 3388 158 1/21.44
Tube length (average) (m) 20.5 15.2 1/1.35
Tube outside diameter {mm) (ézéggg) 25.4
, , 19.7
Tube inside diameter {mm) ©0.05™) 19.6 1/1
Tube wall thickness {mm) 1.27 2.9
3
Hear transfer area/loop (m?) (‘5'1230 ez 192 1/24.92
Tube flow area/loop (m?) 1.03 0.048 1/21.44
Inlet plenum volume/loop (m?) 4,25 0.198 1/21.44
vutlet plenum volume/loop (m?) 4.25 0.198 1/21.44
Primary side volume/loop (m?) (1033'?23) i.2 1/25.4
. . 157.33
S 3 2.5 1/62.9
econdary side volume/loop (m?) (5556 £17) /
Containment tank 1 (m™) 30
Containment tank 2 (m>) 50
Storage tank (m?) 25
Avcc., tank {m>) 5
(m?) 3.5

Siaturated water tank
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Table 2.2 Component elevations of Cylindrical
Core Test Facility

COMPONENT PWR CCTF DISCREPANCY

BOTTOM OF HEATED REGION

[N CORE {mem) 0 0 0
TOP OF HEATED REGION IN CORE (mm) 3660 3660 0
TOP OF DOWNCOMER (mm) 4849 4849 0
BOTTOM OF DOWNCOMER {mm) 0 0 0
CENTERLINE OF COLD LEG {mm) 5198 4827 =271
BOTTOM OF COLD LEG (INSIDE) (mm)} 4849 4849 0
CENTERLINE OF LOOP SEAL

47 -

LOWER END (mm) 2056 20 9
BOTTOM OF LOOP SEAIL LOWER (mm) 1662 1959 4297

END
CENTER OF HOT LEG (mm) 5198 4927 -271
BOTTOM OF HOT LEG (INSIDE)} {mm) 4830 4849 + 19
BOTTOM OF UPPER CORE PLATE (mm) 3957 3957 0
TOP OF LOWER CORE PLATE () - 108 - S0 + 58
BOTTOM OF TUBE SHEET OF

7 -

STEAM GENERATOR SIMULATOR (mn) 7308 307 !
LOWER END OF STEAM GENERATOR

SIMULATOR PLENUM (mm) 713 712 !
TOP OF TUBES OF STEAM (o) 17952 .7 14820

GENERATOR SIMULATOR (avg)
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Table 2.3 Comparison of initial and boundary condition
ILtem Test CZ2-ACL Test C2-4

Total power (MW) 9.26 9.34
Averaged linear power (kW/m) 1.39 1.40
Radial power distribution (A:B:C) 1.50:31.14:0.7711.36:1.20:0.76
Containment pressure (MPa) 0.20 0.20
SG secondary side pressure (MPa) 5.2 5.2
Downcomer wall temperature (K) 470 471
Primary piping wall temperature (K) 393 393
SG secondary side temperature (K) 538 539
Peak clad temperature (K)

at ECC initiation 801 9495

at reflocod initiation 863 1069
Lower plenum filled water temperature (K) 393 394
FCC water temperature (K) 308 308
Lower plenum water level (m) 0.9 0.8
SG secondary side water level (m) 7.6 7.4
Accumulator injection rate (m3/s)

into lower plenum 0.10 0.11

into cold legs 0.085 0.090
LPCT injection rate (m?/s5) 0,011 0.011




JAERI —M 84 — (26

Table 2.4  Comparison of chronclogy of events

(unit: s)

Test C2-AC1 Test C2-4
Test initiated 0 0
(Heater rod power on)
(Data recording initiated)
Accumulator injection initiated 45.0 86.0
Power decay initiated 53.5 95.0
(Bottem of core recovery)
Accumulator injection switched
from lower plenum to cecld legs ’8.3 99.0
Accumulator injiection ended
and LPCIL initiated 69.0 110.0
All heater rods guenched 613.0 652.0
LPCTI ended 966.0 1005.0
Test ended 993.0 1035.0
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Dimensicns of pressure vessel
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3, Results and discussion

3.1 System behavior

With higher initial clad temperature, the following responses were
observed for overall system behaviors:
(1) Water accumulation in wvessel

Differential pressures, and hence water accumulations in the core,
downcomer and upper plenum tend to he lower as shown in Fig. 3.1. But
the water accumulations in the lower plenum, which was fillied with water
for the most of the transient, are almost identical between two tests.

The water accumulation in the core remains lower only until about
100 s of the transient. This shows the direct effect of the initial
stored energy which prevents the water from accumulating in the core.
1t is noted that the water accumulations in the downcomer behave almost
identically with each other. The observed much higher water accumulation
in the upper plenum can be attributed to the higher core outlet liquid
mass flow rate in an early reflood transient. This is because that the
water accumulation in the upper plenum is reported to be strongly
governed by the core outlet liquid mass flow rate(B).
Tt should also be noted that the differential pressure oscillation

observed before 30 s is larger with higher initial clad temperature.

(2) Pressure drop and mass flow rate in primary lcop

Broken and intact loop pressure drops are sligﬁtly higher in the
early reflcod transient as shown in Fig. 3.2. This implies that the
loop mass flow rate is also higher, by removing the heat with steam from
the larger initial stored energy in the core. This can be qualitatively
verified by the steam mass flow rate in the broken hot leg measured with
spool pieces as shown in Fig. 3.3.

The pressure drop across the broken cold leg nozzle is higher as
shown in Fig. 3.4. The pressure drop is defined as the pressure dif-
ference between the top part of the downcomer and the nozzle outlet of
the broken cold leg, and it accounts for the large difference between
the broken and intact loop pressure drops shown in Fig. 3.2.

The water mass flow rate through the broken cold leg nozzle is
higher as shown in Fig. 3.5 only in an early reflood transient. But it
ig rather smaller from about 60 to 100 s. However, the steam mass flow

rate at the exlt of the containment tank 2 is higher as shown in TFig.
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3.6. 1t is considered that the larger pressure drop shown in Fig. 3.4
is mainly attributed to the higher steam mass flow rate, resulting in

the higher two-phase mixture velocity through the broken cold leg nozzle.

3.2 Core inlet flow conditions

With higher initial clad temperature, the following responses were
observed for the core inlet flow conditions:
(1) Pressure and fluid temperature

The pressure at the core Inlet is little affected as shown in TFig.
3.7, however, it is slightly higher up to about 230 s of the reflood
transient. This is primarily due to the higher pressure drop acress
the broken cold leg nozzle {shown in Fig. 3.4} which dominates over the
slightly lower pressure drop in the downcomer (shown in Fig. 3.1%.

The fluid temperature at the core inlet shown in Fig. 3.8 is also
little affected, but it is slightly higher from about 20 to 40 s of the
transient. It was found that the fluid temperatures in the downcomer
and the lower plenum were almost the same between two tests, and that
the fluid temperature at the core inlet showed the coincident oscillation
with the differential pressure osciliation. It is therefore considered
that the slightly higher core inlet fluid temperature from 20 to 40 s is
the result of the better mixing of hot water in the lower part of the

core with cold water in the lower plenum due to the larger oscillation.

(2) U-tube flow oscillation

The differential pressure oscillation in the lower plenum and the
core bottom is larger, and the oscillation pericd is sherter as shown in
Fig. 3.9, The oscillation which corresponds to the U-tube flow oscilla-
tion between the core and the downcomer lasted from the reflood initiation
until about 20 s. The larger amplitude can be attributed to the larger
heat generation in the core, causing the more rapid pressurization in
the upper plenum. The shorter period, on the other hand, 1is probably
due to the larger steam condensation rate at ECC ports wilth Acc water,
when the steam mass flow rate is larger as suggested from Figs. 3.2 and
3.53. The oscillation ceases after about 20 s when the injected water
was largely reduced from Acc to LPCL injection mode. Hence it appears

to give little effect on the overall system behaviors on a long-term base.

{3) Liquid mass flow rate

The integrated core inlet liquid mass flow rate is lower as shown



JAERI —M 84— 026

in Fig. 3.10, The integrated mass is estimated from differential pres-
sure measurement in the core and the upper plemum, and flow measurement
at the pump simulating orifice in the primary lcops.

The core inlet mass flow rate 1.e., the derivative of the integrated
mass is lower from about 15 to 30 s. This is probably due to the higher
pressurization in the upper plenum which tends to retard the core inlet
mass flow {nitially. This trend becomes a little reversed after 30 s
and almost null after 250 s, Tt is noted that the average core inlet
mass flow rate in LPCT period after 30 s is about 4.6 kg/s, which

corresponds to core flooding velocity of about 1.9 cm/s.

3.3 Core thermo-hydraulic hehavior

With higher initial clad temperature, the following responses were
observed for the core thermo-hydraulic behaviors:
(1) Temperature history of heater rod

The maximum (turnaround) temperature is higher and the quench time
is longer in the high (A), medium (B) and low (C) power regions as shown
in Figs. 3.11 through 3.13 {(Definition of power regions is shown in Fig.
2.5). The peak clad temperature is found at 2.44 m elevation from the
bottom of the heated length in A region. It is noted that the tempera-
ture curves with different initial clad temperature become almost alike
after about 200 s with each other, indicating the similar core hydraulics

between the two cases.

(2} Turnaround and quench times

The turnaround time is earlier and the gquench time tends to be
later in the high (A} power region along the core as shown in Fig. 3.14.
Indicated in the figure are the mean values with a standard deviation of
totally 65 measurement points. The earlier turnaround time is the result
of the larger heat removal from the heater rod, which is discussed in
the following section. It is noted that the turnarcund at 2.035 m
occurred remarkably earlier than other neighbouring location. As indi-
cated in Fig. 3.14, the elevation 2.035 m is only 9.5 cm apart from the
upper edge of the third grid spacer. It will be therefore due to the

(6)

heat transfer enhancement effect of grid spacers in the downstream

region.
The averaged quench times in medium (B) and low (C) power regions

are also later as shown in Fig. 3.15. The difference of quench time
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between the two tests is gemerally smaller in high power region than
medium or low power region. This can be attributed to the radially more
skewed power distribution, i.e. the higher local power in high power
region in the case of lower initial clad temperature as shown in Table
2.3. The quench time above 3 m has not a smooth change with elevation
as indicated by the large scattering of data in Fig. 3.14. It will be
due to random occurrence of the top—down quenching in the top part of

the core.

(3) Turnaround and quench temperatures, and temperature rise

The turnaround temperature is higher except in the top part of the
core, and quench temperature tends to be higher in the bottom section
of the core as shown in Fig. 3.16. The temperature rise, which is the
difference between the turnaround and initial clad temperatures, is
lower along the core heated length as shown in the figure. It is noted
again that the turnaround temperature, and hence the temperature rise
is noticeably small at 2.035 m elevation.due to the heat transfer
enhancement of grid spacers.

The turnaround temperatures in medium and low power regions are
also higher as shown in Fig. 3.17. The difference of the turnaround
temperatures between the two tests tends to be smaller with higher
elevation. This situation is shown in Fig. 3.18 by considering the
difference of the radial power distributions between two tests. It is
found that the turnaround temperature depends almost linearly on the
local power at 1.83 and 2.44 m elevations. The temperature rise is
generally larger with higher local power, but it tends to be slightly
lower with higher local power when the initial clad temperature is high.
This may show that the multi-dimensicnal effect for homogenizing the

flow in the core is larger with higher initial clad temperature.

(4) Heat transfer coefficient and heat Flux

The heat transfer coefficients at 1.83 and 2.44 m elevations are
slightly lower from about 20 to 50 s as shown in Figs. 3.19 through
3.91. This can be attributed to the initially suppressed core inlet
mass flow rate by the higher initial stored energy as already shown in
Fig. 3.10. However, the difference of the heat transfer coefficients
between two tests is small for the rest of the tramsient.

The heat fluxes at 1.83 and 2.44 m elevations are larger for the

most of the transient as shown in Figs. 3.22 through 3.24, This is
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because that the temperature difference between the rod wall and the
saturated fluid is too large te be cancelled by the difference of heat
transfer coefficients. This then causes the larger heat removal from
the heater rod with higher initial clad temperature, decreasing the

temperature rise as already shown in Figs. 3.16 and 3.18.

{5) Water distribution in core

The water accumulation, and hence the sectional differential pres-
sure in the core is lower as shown in Fig: 3.25. This trend is more
clearly observed below 1.83 m elevation in the core before about 150 s
of the transient. This will be due tc the larger initial stored energy
which works to reduce the initial core inlet mass flow rate and to
retard the quench front propagation upward in the lower part of the
core. It is noted that the differential pressure, and hence the void
fraction in the upper part of the core is not much affected by the
initial clad temperature. This then causes the similar heat transfer
coefficients between the two cases as already shown in Figs. 3.19

through 3.21.

3.4 Comparison of test results with CCTF-I and FLECHT data

(1) Fxperimental conditions

The observed phencmena described previcusly are compared with the
test results of CCTF Core-I and FLECHT data concerning the effect
6f initial clad temperature in the following. Table 3.1 summarizes
the experimental conditions between CCTF Core-I, CCTF Core-II and
FLECHT tests. The ECC water is injected into downcomer through cold
legs in both CCTF tests (gravity feed), whereas 1t is constantly injected
into the core in FLECHT test (forced feed) with no other system simula-
tions. It is noted that both Acc and LPCI flow rates of CCTF Core-II

are about 30% higher than those of CCITF Core-I.

{2) System responses in CCIF Core-T and Core-II1

Table 3.2 compares the responses between CCTF Core-I and Core-I1l
to higher initial clad temperature. The overall responses of the present
CCTF Core-11 test are similar to these in CCTIF Core-1 test in spite of
modified core geometry and different ECC conditions. It means that the
observed phenomena may have a characteristic feature of a PWR-LOCA
conditlons, concerning the effect of the initial clad temperature.

The water accumulation in the downcomer, however, is somewhat
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different between CCTF Core-I and Core-TI as shown in Table 3.2. This
will be the direct effect of about 30% higher Acc and LPCI flow rates
in CCTF Core-I11 than Core~I, because the downcomer water in CCTF Core-1i
began to overflow much earlier in Acc period when the loop steam flow
rate was fairly small, causing little difference of the downcomer water

head between two tests in CCTF Core-IL.

(3) Core thermal behavior

Figure 3.26 compares the temperature rise and the quench time of
the peak powered rod at the midplane between CCTF Core-I1, Core-II and
FLECHT tests. Also shown in the figure is the result of Evaluation
Model (EM) test(7) in CCTF Core-1 with nominal initial clad temperature
of 1143 K and same ECC flow rate as CCTF Core-~II test. The temperature
rise is smaller and the quench time is longer with higher initial clad
temperature in all tests as shown in Fig. 3.26.

The temperature rise in both CCTF tests is generally smaller than
FLECHT data. This can be attributed to the larger core flooding rate
in CCTF tests during Acc period. The temperature rises in three CCTF
Core-1 parametric tests are slightly higher than those in CCTF Core-I1
or CCTF Core—T EM test. Since the peak linear power is nearly same
among those tests as shown in Table 3.1, this will be due to about 30%
lower Acc flow rate in CCTF Core-I parametric tests.

The quench time in CCTIF Core-IT with higher initial clad temperature
(Test C2-4) was somewhat earlier than expected. The radial power dis-
tribution in test €2-4 is less skewed than test C2-ACl, in which the highest
local power is about 10% higher than test C2-4. This shows that the
quench time much depends on the local power as well as the initial
stored energy. The quench times of CCTF tests are in the same range of
PLECHT data with the flooding rate of 2.0 cm/s. This implies that the
quench time is much affected by the long-term flooding rate in LPCI

pericd, but not by the initial high flooding rate in Acc period.

(4) Analysis with REFLA code

The effect of the flooding rate on the turnarcund temperature and
the quench time has been analyzed with REFLA code(g), the result of
which is shown in Fig. 3.27. Shown in the figure are the calculated
temperature histories at the midplane under five core inlet flow condi-

rions for the simulated CCTF core geometry. The ipput pressure and the

fluid temperature at the core inlet were 0.2 MPa and 373 K, respectively.
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As shown in Fig. 3.27, the turnaround temperature, and hence the
temperature rise is strongly affected by the flooding rate before 10 s
which simulates Acc period. The quench time, on the other hand, is much
affected by the flooding rate after 10 s which simulates LPCI period.

It means that the initial flooding rate is cruciel for decreasing the
temperature rise and that the long-term flecoding rate determines the
complete cooling of the core. Although the temperature rise tends te

be lower with higher initial clad temperature, the higher initial flood-
ing rate rather than the long-term flecoding rate is important for

further decreasing the temperature rise.
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Table 3.2 Comparigson of CCTF Cere-I and Core-11 responses

to higher initial clad temperature

Response to higher

Item initial clad temperature
CCTP-1 CCTF-11

{1)System behavior L

Water accumulation in core Lower Lower

Water accumulation in upper plenum Lower Lower

Water accumulation in downcomer Higher Not clear?)

Loop mass flow rate Higher Higher

Broken cecld leg nozzle pressure drop Higher Higher
{(2)Core inlet flow condition Y

Pressure Nearly same Nearly same

Fluid temperature Higher Slightiy higher

Mass flow rate Slightly lower3) Lower®)

U-tube flow oscillation Larger Larger

(3)Core thermo~hydraulic behavior

Turnarcund temperature Higher Higher
Quench time Longer Longer
Temperature rise Lower Lower
Heat flux Higher Higher
Void fraction Higher Higher

Note 1) Responses are different only in an early tramsient.
2) Nearly same before the initiation of dowmcomer overflow and
slightly lower afterwards.
3) Almost same after about 20 s.

4) Higher after about 20 s until 250 s.
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4, Conclusions

The effect of the initial clad temperature on the reflood phenomena
was investigated in CCTF Core-I1. The initial peak clad temperature in
the two tests were 863 and 1069 K, respectively. The following conclu~
sions were obtained:

{1) The higher initial clad temperature has revealed lower water accu-
mulation in the core and the uppler plenum, higher loop mass flow rate,
and larger differential preésure across the broken cold leg nozzle in
an early reflood transient., These effects can be attributed to larger
release of stored energy in the core.

(2) Pressure and fluid temperature at the core inlet were little
affected by the initial clad temperature. The core inlet mass flow
rate was suppressed by the higher initial clad temperature only just
after the reflood initiation, due to the more rapid vapor generation in
the core. However, the core inlet mass flow rate was little affected
for the rest of the transient.

{(3) The U-tube flow oscillation between the core and the downcomer was
observed just after the reflood initiation. Amplitude of the oscilla-
tion was larger with higher initial clad temperature. This can also be
attributed to the more rapid vapor generation in the core. The oscilla-
tion lasted for less than 20 g, and hence it appears to give little
effect on the overall system behaviors,

(4) 1In the core, with higher initial clad temperature, higher turnaround
temperature and later quench time were observed. The heat transfer
coefficient was slightly lower only in an early reflood transient, but
the heat flux was larger, which resulted in lower temperature rise. The
water accumulation in the lower part of the core was smaller in the
higher initial clad temperature test in which the core flooding and
guench front propagation were more suppressed than in the lower tempera-
ture test.

(5) The effect of the initial clad temperature on system responses in
CCTF Core-Il were similar to these observed in CCTF Core-I. The core
thermal behaviors in CCT¥F Core-1, Core-II1 and FLECHT tests were also
similar with each other. The general trend of the lower temperature

. rise with higher initial clad temperature was thus confirmed. Analysis
by the REFLA code has revealed that higher initial flooding rate rather

than the long-term flooding rate is important for further decreasing the

temperature rise.



JTAERT —M 84 —1026

Acknowledgments

The authors are very grateful to Dr. M. Nozawa, Deputy Director
General of Tokai Research Establishment of JAERI, Dr. S. Katsuragi,
Director of Nuclear SafelLy Research center, Dr. M. Hirata, Director of
Department of Nuclear Safety Research, and Dr. K. Hirano, Deputy
Director of Department of Nuclear Safety Research, respectively, for
their guidance and encouragement.

They are deeply indebted to Mr. T. Sudoh, Mr. K. Okabe, Dr. H.
Akimoto, and Mr. T. Ckubo for their valuable suggestions and discussion,

They would like to express their appreciation to the SCITF analysis
group, Mr. H. Adachi, Dr. Y. Sudo, Mr. M. Sobajima, Mr. T. Iwamura,

Mr. M. Oszkabe, Mr. A. Chnuki, and Mr. Y. Abe for their useful discussiom.

References

(1) 1Lilly, G.P., et al.: "FLECHT cosine low flooding rate test series
evaluation report", WCAP-8838, March (1977).

(2) Sugimoto, J., et al.: "Evaluation report on CCTF Core-I reflood
tests C1-5 (Run 14), C1-7 (Run 16} and Cl-14 (Run 23) - Effects of
initial clad temperature -'"', JAERT-M 83-026, February (1983).

(3) Sugimoto, J., et al.: "Experimental study of effect of initial
clad temperature on reflood phenomena during PWR-LOCA", J. Nucl.
Sci. Technol., 20 [8], 656667 (1983).

(4) Sudoh, T., et al.,: "Evaluation report on CCTF Core-II reflood Test
C2-SHL (Run 53)", JAERI-M, to be published.

(5) Iguchi, T., et al.: "Water accumulation phenomena in upper plenum
during reflood phase of PWR-LOCA by using CCTF data”, J. Nucl. Sci.
Technol., 20 {6], 433466 (1983).

(6) Sugimoto, J., et al.: "Effect of grid spacers on reflood heat
rransfer in PWR-LOCA", J. Nucl. Sci. Technol., 21 [2], 103~114
(1984).

(7) Murao, Y., et al.: "Evaluation report on CCTF Core-I reflood test
C1-19 (Run 38) - Experimental assessment of the evaluation model
for the safety analysis on the reflood phase of a PWR-LOCA-",
JAERI-M 83-029 (1983).

(8) Murao, Y.: "Analytical study of thermo-hydrodynamic behavior of
reflood phase during LOCA", J. Nucl. Sci. Technol. 16 [11],
802817 (1979).

— 49 —



JAERI —M 84 — 026

Acknowledgments

The authors are very grateful to Dr. M. Nozawa, Deputy Director
General of Tokai Research Establishment of JAERI, Dr. S. Katsuragi,
Director of Nuclear Safety Research center, Dr. M. Hirata, Director of
Department of Nuclear Safety Research, and Dr. K. Hirano, Deputy
Director of Department of Nuclear Safety Research, respectively, for
their guidance and encouragement.

They are deeply indebted to Mr. T. Sudoh, Mr. K. Okabe, Dr. H.
Akimoto, and Mr. T. Ckubo for their valuable suggestions and discussion.

They would like to express their appreciation to the SCTF analysis
group, Mr. H. Adachi, Dr. Y. Sudo, Mr. M. Sobajima, Mr. T. Iwamura,

Mr. M. Osakabe, Mr. A. Ohnuki, and Mr. Y. Abe for their useful discussicu.

References

(1) 1iliy, G.P., et al.: "FLECHT cosine low flooding rate test series
evaluation report", WCAP-8838, March (1977).

(2) Sugimoto, J., et al.: "Evaluation report on CCTF Core-I reflood
tests Cl-5 (Run 14), C1-7 (Run 16) and Cl-14 (Run 23) - Effects of
initial clad temperature =", JAERI-M 83-026, February (1983).

(3) Sugimoto, J., et al.: "Experimental study of effect of initial
clad temperature on reflocd phenomena during PWR-LOCA", J. Nucl,
Sci. Technol., 20 [8], 6567667 (1983).

(4) Sudoh, T., et al.: "Evaluation report on CCTF Core-I1 reflood Test
€2-SH1 (Run 53)", JAERI-M, to be published.

(5) Iguchi, T., et al.: "Water accumulation phenomena in upper plenum
during reflood phase of PWR-LOCA by using CCTF data”, J. Nucl. Sci.
Technol., 20 [6], 453466 (1983).

(6) Sugimoto, J., et al.: "Effect of grid spacers on reflood heat
transfer in PWR-LOCA", J. Nucl. Sci. Technol., 21 [2], 103~114
(1984).

(7) Murao, Y., et al.: "Evaluation report on CCTF Core-I reflood test
C1-19 (Run 38) — Experimental assessment of the evaluation model
for the safety analysis on the reflood phase of a PWR-LOCA-",
JAERT-M 83-029 (1983).

(8) Murao, Y.: "Analytical study of thermo~hydrodynamic behavior of
reflood phase during LOCA", J. Nucl. Sci. Technol. 16 [11],
802~817 (1979).

— 49 —



JAERI —M 84 — 026

Appendix A

Definitions .of Tag IDs
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Figure List

Definition of power zones and bundle numbers

Definition of Tag. ID for void fraction (AG(EL.1) ~ AG(EL.6))
Definition of Tag. ID for average linear power of heater and
in each power unit zone (LPOlA LPOJA)

Definition of Tag. ID for differential pressure through down-
comer, upper plenum, core, and lower plenum

(D5D55, DTO7RTS5, LTO8RMS, DSC75; DSC15)

Definition of Tag. ID for differential pressure through intact
and broken loop and broken cold leg nozzle

(DT23C, DIO1B, DPBCN)

Definition of Tag. ID for fluid temperature iniinlet and outlet
plenum and secondary of steam genrator

(TED2GW, TERSGW, TEOSGOH)

Definition of Tag. ID for ECC water imnjection rate, ECC water
temperature and vented steam flow rate

(MLEC1, MLEC2, MLEC3, MLECLP, MLECUP, MLECDC1, MLECDCZ,
TE11QW, TE210W, TE01JW, TEC1UW, TEOZUW, TEO3UW, MGVENTL1)

Definition of initial temperature, turnaround temperature,
quench temperature, temperature rise, turnaround time and

quench time



1.

Definition

fransfer c

Notation :

JAERI —M 84 — 026

of Tag. ID for clad surface temperatures and heat
oefficients
TEnnYlm (temperature)

HTEmmYlm (heat transfer coefficient)

each power

See

Definition

mn : Bundle number (see Fig. A.1)
m : Elevation number
Elevation (m) | Axial power factor
3 0.38 0.651
5 1.015 1.147
7 1.83 1.40
9 2.44 1.256
A 3.05 0.854
Definition of power zone and boundle number
See Fig. A.l
Definition of Tag. ID for void fraction
See Fig. A.2
Definition of Tag. ID for average linear power of heater rod in

unit zone

Fig. A.3

of Tag. ID for differential pressure through downcomer,

upper plenum, core and lower plenum

See

Definition
and broken

See

Definition
plenum and

See

Fig. A.4

of Tag. ID for differential pressure through intact
loop and broken cold leg nozzle

Fig. A.5

of Tag. ID for fluid temperature in inlet and outlet
secondary side of steam generator

Fig. A.6
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8. Definition of Tag. ID for ECC water injection rate, ECC water
temperature and vented steam flow rate

See Fig. A.7

9., Definition of initial temperature, turnaround temperature quemnch
temperature, temperature rise, turnaround time and quench
time. (See Fig. A.8) '

Ti : Initial temperature (Clad surface temperature at
reflood initiation)

Tt : Turnaround temperature (Maximum clad surface temperature
in each temperature history)
AT ¢ T rature rise (= T_- T,
. empe ure se ( c 1)
T : Quench temperature (Clad surface temperature at
4 gquenching)

10. Definition of quenching
See Fig. A.8
Quench time tt is determined as

tt = i x At - (reflood initiation time)

In above equation, i is determined by the following criteria.
(1) Clad surface temperature is high, compared with the saturation

temperature.

T, > T + AT:
1 sat

(2} Decreasing rate of clad surface temperature is large.
T. - T,
i+ 1L _ c .
At s

(3} Clad surface temperature falls around the saturation temperature.

< + AT
Ti + k1 T Tsat 1

(4) 1f the determined i is inadequate, the value i is manually
re~determined.

At Data sampling peried (s)

Ti : (Clad surface temperature (K)
Tsat: Saturation temperature at the pressure Iin upper
plenum (K)



JAERI —M 84 - 028

ATy : Temperature discrepancy (K)
Default value = 50.0
CSt : Decreasing rate of clad surface temperature (K/8)

Default value = 25.0

k1 : Number of referred data (~)
Default value = 6

i11. Definition of Tag. ID for core inlet mass flow rate, time-integral
core inlet mass flow rate and carry-over rate fraction

(1) Core inlet mass flow rate : my
Notation : MLCRIDO (0 = N, 1 or 11)

(2) Time-intefral core inlet mass flow rate : jFﬁth
Notation : IMLCRIC (C =N, 1 or 11)

(3) Carry-over rate fraction : (mF - mCR)/mF
Natation : CRFD (2 = N, 1 or 11)

where m : Core inlet mass flow rate (See item 12)
ﬁCR: Water accumulation rate in core
Suffix &F base on
N Eq.(A.2)
1 Eq.(A.1} with K=15
11 | Eq.(A.1) with K=20

12. FEwvaluation of core inlet mass flow rate

The reflood phenomena is a relatively slow transient and a steady
state condition can be applied. 1In a steady state condition, based
on the mass balance relations of the system, the core flooding mass

flow rates mFs can be written as follows:

By using the data measured at the downstream of the core inlet, mg

is derived as,
m
F

where m. and ™y are the mass accumulation rates in the core and the upper

plenum respectively. The &B and ﬁI are the mass flow rates in the broken

- <L e .
me + mU i + I mI . (A.1)

loop and the intact loop, respectively.
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By using the data measured at the upstream of the core inlet, m,

is derived as,

S - .
3 e T ™ T ™ T "gcc/ip
where aDL and m. are the mass flow rates of the water flowing into and

0
overflowing from the downcomer, ﬁECC/LP and m, are the mass flow rate

(A.2)

of the ECC water injected into the lower plenum and the water accumula-
tion rate in the dowmcomer respectively.

The ﬁIs and &B can be obtained from the pressure drops at the pump
gimilators with orifices by assuming the K-factor of the orifice is
constant. The values of &C’ ﬁD and &U can be evaluated with the

differential pressure APC, APD and APU, respectively, as follows:

m = d(aP S /g)/dt  (n: C, D, V) . (A.3)

where g is the gravitational acceleration and Sn is the cross secticnal
area. The value of ﬁo can be obtained from the liquid level X in the
Containment tank 1 as,

m, = d(Xp, 8 )/dt , (A.4)

where pg is the liquid density and S0 is the cross sectional area of the
containment tank 1.
T . i iquid f1l
The value of mDL’ Ty and h, which are liquid ow rate, steam
flow rate and enthalpy of two phase mixture downstream each ECC port
respectively, are obtained from the following mass and energy balance

relations at each ECC port under the assumption of thermal equilibrium:
My T Mpp T Mgee T ’ (A.5)

(g + M) E = mpechpoe + My ’ (4.6)

[
[
jmp
v
=0
Iv

& = By o (g + o Ji = R = my Ry

if h2h ,om. =0 (A.7)

where h is enthalpy of fluid and hp and hg are enthalpies of liquid and

steam at the saturation temperature, respectively.
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The fluid temperatures can be mé35ured with thermocouples immersed
in the fluid and the enthalpies hI and hECC can be estimated.

Mass balance calculations were performed with Egs. (A.1) and (A.2).
The K-factor of the orifice in the pump simulator was evaluated in the
following two ways.

The K-factor of 20 was obtained with the steam and water single
phase calibration tests using the flow meter and spool piece data.

The K-factor of 15 was obtained with the Pitot tube measurement in a
typical reflood condition assuming the flat velocity profile in the
pipings. In the differentiation, higher frequency components of the
data tends to be amplified mcre. Therefore, in the differentiation of
the differential pressure data, the smoothing procedure was used to
suppress the high frequency components of the data.

In the Acc injection period, the calculated ﬁFs with Egs. (A.1l) and
(A.2) are significantly different from each other. This discrepancy
may be caused by inaccuracy of the mass flow rate injected into the
system and by the unaccounting of the storage of water in the cold leg
pipe. The former might be introduced frem the slow time response of
the flow meter (time constant 1 second) and the change of the gas
volume in the injection line. In this period, especially before the
steam generation from the core becomes noticeable, the mass flow rate,
ﬁF’ calculated with Eq. {(A.l) is probably reasonable, since the
calculation uses the increasing rates of the masses in the core and the
upper plenum and their accuracy is good encugh for our estimation.

In the LPCI injection period, the calculated m_s are slightly

different from each cother., Judging from the time—iitegral values

cf both ﬁFs, their average values are nearly proportional. The
discrepancy was inferred to be caused by the disregard of the bypass

of steam and liquid from the upper plenum without going through the hot
legs in the calculation with Eq. (A.1). And additionally the discrepancy
was caused by the disregard of the steam generation in the downcomer

due to the hot wall of the pressure vessel in the caiculation with Eq.
(A.2). Tt was estimated that the disregard of the downcomer steam
‘generation causes the error of 0.25 kg/s on predicted ﬁF. The estima-

tion was made by comparing the results of the tests with hot and cold

downcomer conditions.
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PTO1B
PTOIRL2
Steam

Q @ O Steam
generator generator

Pump| - [ ECC
Pump
Core
DPBCN @ Calculated from data
measured with DT43C

‘ and DT23C
Contoinment tank ‘
Containment tank

PTOORNO

Fig. A.5 Definition of Tag. ID for differential pressure through intact
and broken loop and broken cold leg nozzle

(DT23C, DT01B, DPBCN)

i Temperature _measurement
' I, Inlet pienum (TED2GW)
2 2 Outlet plenum(TEOSGW)
3 | = 3 Secondary side(TEOBGDH
0: loop number (1~4 )
S Top of
o 12/ o tube sheet
Hot le | Cold leg

Fig. A.6 Definition of Tag. ID for fluid temperature iniinlet and outlet
plenum and secondary of steam genrator

(TED2GW, TEDSGW, TEQ8GOH)
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<= MLECDC T, TEQ2UW
MLECDC2, TEO3UW

Lower plerum
<= MLECLP

TEO1JW

Coniainment lanks

Pressure vessel

MLEC3, TE31QW

<= ECC water injection

location

MLKXRKEK : Mess flow rate
TERRRKR : Flouid femperature

Fig. A.7 Definition of Tag. ID for ECC water injection rate, ECC water

temperature and vented steam flow rate
(MLEC1, MLEC2, MLEC3, MLECLP, MLECUP, MLECDCl, MLECDCZ,
TE11QW, TE21QW, TEO1JW, TEOLUW, TEO2UW, TEQ3UW, MGVENT1)

=
_

(ATr)
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Turnaround )
time
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Clod surface temperature (K}

BOCREC time
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. Turnaround temperoture
© Quench femperoture

. Temperature rise (=Te~ Til

[Reficod initigtion)

Time
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O ————— \

Time after flood

{s)

Fig. A.8 Definition of initial temperature, turnaround temperature,

quench temperature, temperature rise, turnaround time and

guench time



JAERI —M 84 — 026

Appendix B

Selected data of CCTF Test C2-ACI (Run 51)
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Figure List

ECC water injection rates into the primary system.

ECC water temperature.

Average linear power of heater rod in each power unit zone.
Pressure history in containmment tank 2, upper plenum and
lower plenum.

Clad surface temperature at various elevations along a heater
rod in high power region (A region).

Clad surface temperalture at various elevations along & heater
rod in medium power region (B regicn).

Clad surface temperature at various elevations along a heater
rod in low power region (C region).

Heat transfer coefficient at various elevations along a
heater rod in high power region (A regiom).

Heat transfer coefficient at various elevatioms along a
heater rod in medium power region (B region}.

Heat transfer coefficient at variocus elevations along a
heater rod in low power region (C region).

Initial clad surface temperature.

Temperature rise.

Turnaround temperature.

Turnaround time.

Quench temperature.

Quench time.

Void fraction in core.

Differential pressure through upper plenum.

Differential pressure through downcomer, core, and lower
plenum.

Differential pressure through intact and broken loops.
Differential pressure through broken cold leg nozzle.

Fluid temperature in inlet plenum, outlet plenum, and
secondary of steam generator 1.

Fluid temperature in inlet plenumJ outlet plenum, and
secondary of steam generator 2.

Core flooding mass flow rates evaluated with Egqs. (A.1) and

(A.2)



Fig. B.25

Fig. B.26
Fig. B.27
Fig. B.28
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Time-integral mass flooded into core evaluated with Egs.
(A.1l) and (A.2).

Carry-over rate fraction.

Core inlet subcooling.

Exhausted mass flow rate from containment tank 2.
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Fig. B.1 ECC water injection rates into the primary system,
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Fig. B.2 ECC water temperature,
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Fig. B.3 Average linear power of heater rod in each power unit zone,
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Fig. B.4 Pressure history in containment tank 2, upper plenum and

lower plenum.
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Clad surface temperature at various elevations along a heater

rod in high power region (A region).
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Clad surface temperature at various elevations along a heater

rod in medium power region (B regicn).
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Clad surface temperature at various elevations along a heater
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Heat transfer coefficient at various elevations along a
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Fig. B.10 Heat transfer coefficient at various elevations along a

heater rod in low power region (C region).
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Fig. B.12 Temperature rise.
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Fig. B.14 Turnaround time.
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Fig. B.18 Differential pressure through upper plenum.
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Fig. B.22 Fluid temperature in inlet plenum, outlet plenum,

secondary of steam generator l.
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Fig. B.25 Time-integral mass flooded into core evaluated with Eqgs.
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