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Poloidal distributions of neutron flux, radiation damage rate and
nuclear heating rate in a first wall and a protection wall of INTOR-J
are calculated using three—dimensional Monte Carlo transport code.

The peaking factors of 14 MeV neutron flux and helium production rate

are about 1.3 and those of DPA and nuclear heating rate are about 1.2.
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INTRODUCT ION

INTOR—Jl) is a Japanese proposal for INTOR ( IAEA Tokamak
Reactor) which is a compact size tokamak reactor with a non-circular
cross section plasma. In this report, poloidal distributions of 14 MeV
neutren fluxes and rates of helium production, displacement and nuclear
heating in a first wall system are calculated using a three—dimension§l
Monte Carlo transport code. :

Blanket test sections will be installed to INTOR for tritium .
breeding and materials irradiation tests. Their positions in poloidal
directicn should be chosen to attain the highest neutron fluence and .
radiation damage rate.

Heat removal from first wall is one of crucial problems of a first
wall system design for tokamak reactor with high wall loading. Evalua-
tion of nuclear heating distribution is required for a realistic
thermal design of the first wall system.

The poloidal distribution of neutron flux in a first wall of
tokamak reactor with circular cross section plasma has been calculated

2)~6)

by several authors using the ray-tracing method or Sn transport

code. Monte Carlo method is not necessarily required when plasma and
7)

first wall are circular However in case of INTOR-J with non-circular

plasma cross section Monte Carlo method seems to be the only choice.

INTOR-J CONFIGURATION

Depending on the method of ash exhaust, there are a concept with
poloidal divertor and one without for INTOR-J reactor configuration.
In this paper the former case is investigated. Figure 1 shows a side
view of INTOR-J blanket concept. This concept has a tritium breeding
blanket on the outboard of torus. The following calculation is made
based on this figure.

The first wall system of INTOR-J consists of the closest part of
blanket to plasma ( the first wall )} and a protection wall in front of
it. The blanket structure and the protection wall are made with

stainless steel and molybdenum alloy, respectively,

__1_
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ONE DIMENSIONAL CALCULATION

Because of noncircular cross section of plasma and nonuniformity
of blanket, it is not.possible to make accurate calculation model of
INTOR-J with one dimensional transport code. And the normalization of
neutron source intensity becomes a problem. Two ways for the
normalization can be considered ; Fusion Power Normalization and
Wall Loading Normalization., Figure 2 shows the schematic layout of out
beard calculational model of INTOR-J. In one-dimensional Sn transport
code ANISN, the height of cylinder is taken to be 1 cm. The fusion
power in the disc of INTOR-J plasma with 1 cm thickness corresponding
to the calculational model is 0.1257 M. The first way to normalize the
source intensity is to let the fusion power in the calculational model
equal to 0.1257 MW (Fusion Power Normalization). On the other hand, the
surface area of first wall in the calculational model is 0.08482 m?. The
second way for the normalization is to equate the fusion power in the
calculational model to 0.1060 MW considering that the wall loading of
INTOR-J is 1.25 MW/m? (Wall Loading Normalization). In the former case
we will obtain the value near the maximum in poloidal direction. In
the latter the calculated value will be near the average. In any case the
meaning of the results obtained from one dimensional calculation is

vague.
Table 1 and 2 show 42-group neutron and 21-gamma energy structures,

respectivly.

Helium production and displacement Cross sections of stainless

steel and molybdenum are shown in tables 3 and 4.

The result of the ANISN calculation is shown in Table 3.

NEUTRON SOURCE DISTRIBUTION IN THREE DIMENSIONAL CALCULATION

Neutrons are emitted isotropically from sources distributed pro-

portional to the fusion power density.
The power density distribution is obtained by the following

process. In the MHD equilibrium, plasma pressure is expressed with the

flux function ¥ as follows:
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ONE DIMENSIONAL CALCULATION

Because of noncircular cross section of plasma and nonuniformity
of blanket, it is not possible to make accurate calculation model of
INTOR-J with one dimensional transport code. And the normalization of
neutron source intensity becomes a problem. Two ways for the
normalization can be considered ; Fusion Power Normalization and
Wall Loading Normalization. Figure 7 shows the schematic layout of out
board calculational model of INTOR-J. In one-dimensional Sn transport
code ANISN, the height of cylinder is taken to be 1 cm. The fusion
power in the disc of INTOR-J plasma with 1 cm thickness corresponding
to the calculational model is 0.1257 MW. The first way to normalize the
source intensity is to let the fusion power in the calculational model
equal to 0.1257 MW (Fusion Power Normalization). On the other hand, the
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calculational model to 0.1060 MW considering that the wall loading of
INTOR-J is 1.25 MW/m? (Wall Loading Normalization). In the former case
we will obtain the value near the maximum in poloidal direction. In
the latter the calculated value will be near the average. In any case the
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Table 1 and 2 show 42-group neutron and 21-gamma energy structures,

respectivly.

Helium production and displacement cross sections of stainless

steel and molybdenum are shown in tables 3 and 4.

The result of the ANISN calculation is shown in Table 3.
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Then ion temperature and density distributions are assumed as follows:

=7,y
n = n, wE
n+té=¢

In the case of INTOR, the value of £ is 1.48, and n is assumed to be
1.0 for this calculation.

The fusion power density is given by

Figure 3 shows the fusion power demsity distribution when the average

ion temperature T is 10 keV. Where T is defined as

T o/ nT dv
S ndv

The fusion reaction cross section used in this calculation is

2 8)
Y / ((A+(Ti/70)*?*) x Ti?)

. 1
< gy > = 370.0 exp(-20 x Ti °

THREE-DIMENSIONAL CALCULATION

The Monte Carlo tramnsport Code MORSE—Ig)

10)

and input debugging code
TOPLIC are used in three-dimensional calculation. Brief descriptions
of MORSE~I and TOPIC are given in Appendix. Figure 4 shows a three-

dimensional calculation model of INTOR-J.

Thirty-two energy group P. cross section set is employed. Neutron
and gamma energy group structures are shown in tables 6 and 7.
Tahles 8, 9 and 10 show 32 group KERMA (Kinetic Energy Released in
Materials) factor, displacement cross sections and helium production
cross sections, respectively. These cross sections are obtained being
collapsed from 63 group cross sections with the aid of one dimensional
calculations.

The number of histories followed is 11600. It requires computa-

tional time of about 10 hours with FACOM 230/75 system.

wsf
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Then ion temperature and density distributions are assumed as follows:

T=71, y"
n = n, wE
n+té=¢g

In the case of INTOR, the value of £ is 1.48, and n is assumed to be
1.0 for this calculation.

The fusion power density is given by

Figure 3 shows the fusion power density distribution when the average

ion temperature T is 10 keV. Where T is defined as

T=fanV
S n dv

The fusion reaction cross section used in this calculation is

2 8)
Y /[ (Q+(Ti/70) %) x TiY)

. 1
< gy > = 370.0 exp(-20 x Ti °

THREE-DIMENSIONAL CALCULATION

The Monte Carlo transport Code MORSE—Ig)

10)

and input debugging code
TGPIC
of MORSE-I and TOPIC are given in Appendix, Figure 4 shows a three-

dimensional calculation model of INTOR-J.

are used in three-dimensional calculation. Brief descriptions

Thirty-two energy group P. cross section set is employed. Neutron

and gamma energy group structures are shown in tables 6 and 7.
Tables 8, 9 and 10 show 32 group KERMA (Kinetic Energy Released in
Materials) factor, displacement cross sections and helium production
cross sections, respectively. These cross sections are obtained being
collapsed from 63 group cross sections with the aid of one dimensional
calculations.

The number of histories followed is 11600. It requires computa-

tional time of about 10 hours with FACOM 230/75 system.

-3 -
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RESULTS AND DISCUSSIONS.

Both the protection wall and first wall are divided into eighteen
regions as shown in Fig.5. Neutron and gamma fluxes averaged in each
region are calculated using track-length estimator. The fluxes and rates
of helium production, displacement damage and nuclear heating are shown in
Fig.6~13.

Real curves in the figure are the least square fittings using 5th or

6th degree polynominal with the following limitations.

d =

:_e £8) /g150° = 0

These limitations must be satisfied because a symmetrical boundary is
assumed at the mid-plane. The peaking factors of 14 MeV neutron flux and
helium production rate distributions are about 1.3 which is a little
larger than those of DPA and nuclear heating rate distributions.

Because of the above limitations the fitting curves do not agree
well with the original values at the innermost part (6 = 0°). It is
necessary to make fractional standard deviations smaller for obtaining
more accurate information about the flux at the innermost part. However
it is practically impossible to follow more neutron histories because of
increasing computational time.

The results of three-dimensional calculation are a little smaller
than those of one-dimensional calculation. This may be caused by the
overestimation of grazing coﬁponent'of particle flux in one dimensional
calculation. Infinite cylinder approximation and uniform source distri-

bution approximation overestimated the grazing comporent of particle

flux.
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helium production rate distributions are about 1.3 which is a little
larger than those of DPA and nuclear heating rate distributions.

Because of the above limitations the fitting curves do not agree
well with.the original values at the innermost part (8 = 0°). 1t is
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more accurate information about the flux at the innermost part. However
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increasing computational time.

The results of three-dimensional calculation are a little émaller
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APPENDIX

I. MORSE-I
11)

This code is a revision of the MORSE-GG code The following
improvements are made.

I-1. MORSE-I can treat a torus geometry which is represented by
using surface of fourth order while original MORSE-GG treats
those which can be represented by surfaces of second order.
The number of surfaces allowed in a block is increased from
17 to 35.

1-2. Point-detector technique is improved

I-2-1. Computational time required is reduced significantly by
the Scofe Point Selection techﬁique..

I-2-2. Spécular reflection boundaries camn be used as symmetric
boundaries. Proper usage of this boundary also reduces
computational time practically.

1-2-3., Infinite varience is eliminated by the Small Density

Perturbation technique.

II. TOPIC

This code has the following features: (1) It debugs the geometry
input data of not only MORSE-GG but also MORSE-I. (2} Its calculation
results are shown in figures drawn by Plotter or COM, and the regions
not defined or doubly defined are easily detected. (3) It finds a
multitude of input data errors in a single run. (4) the input data
required in this code are few, so that it is readily usable in a time

sharing system of FACOM 230-60/75 computer.
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Table 3 42-Group helium production Table 4 42-Group displacement cross
Cross section (barns) section (barns)
| ' I
Neutron | Neutron i
Energy | S.S, Mo Energy 5.8. : Mo
Group ; Group i
[ 1
1 ~7.938-2 9.120-2 1 i 2573.0 | 1564.0
2 . 6.993-2 | 6.343-2 2 2474.0 | 1478.0
3 ' 5.814-2 3.793-2 3 2354.0 1408.0
4 | 4.618-2 | 2.500-2 4 2320.0 | 1299.0
5 3,189-2 1.570-2 5 2221.0 | 1199.0
6 - 1.767-2 8.800-3 6 2087.0 | 1063.0
7 . 8.875-3 4.700-3 : 7 2016.0 = 981.0
8 4.607-3 2.550-3 ; 8 2016.0 ¢ 920.0
9 2.253-3 1.440-3 | 9 1969.0 . 908.0
10 9.218-4 | 7.,900-4 .10 - 1929.0 | 858.0
o 2.250-4 4.400-4 Pl 1843.0 | 792.0
| 12 1.0%4-4 2.500-4 ; 12 © 1633.0 | -768.0 !
| ! 13 6.011-6 0.0 ! ! 13 1 1417.0 778.0
I 14~42 0.0 0.0 : | 14 ©1162.0 782.0
f : f .15 ©887.0 | 666.0
| ; 16 ' 681.0 | 566.0
: 17 427.0 | 456.0 |
18 . 346.0 395.0
; 19 ~373.0 357.0° |
i 20 - 363.0 302.0
: 21 240.0 | 255.0
% 22 217.0 | 195.0
g i 23 ~239.0 143.0
: 24 - 128.0 135.0
25 . 109.0 61.5
26 :102.0 29.6 |
27 o325 0 14,2
28 L26.5 6.95 |
29 - 9.90 |  2.72
30 5.18 | 1.61
31 0.13 1.78
32 0.18 | 2.25
33 0.29 ! 5.25
34 0.43 | 2.52
35 0.66 | 14.5
36 0.67 | 1.12
37 0.95 . 0.29 |
38 1.38 | 0.41 |
39 2.06  0.57
40 2.99 | 0.83
41 4.38 1.23
42 12.3 3.50
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The results of one—diménéiohal calculation

Table 5(a)
(Fusion Power Normalization)
fﬁ Protection Wall First Wall ’
Material Mo alloy’ 5.5.

14 MeV Neutron
Flux (n/cm®.s)

Helium Production
Rate (appm/s)

Displacement per
Atom ( /s)

Nuclear Heating
Rate (w/cc)

i

6.352 x 103
5.648 x 10”°
3.016 x 10”7

10.58

8.859 x 10!?
8.533 x 10~ °©
2.442 x 1077

9.203

Table 5(b) The results of_one—dimensiohal calculation
{(Wall Loading Normalization)
T
! Protection Wall First Wall
Material Mo alloy 5.S.

14 MeV Neutron
Flux (n/em®-s)

Helium Production
Rate (appm/s)

Displacement per
Atom ( /s)

Nuclear Heating
Rate (w/cc)

7.471 x 10%8

7.196 x 10°°

2.060 x 1077

7.761

5.357 x 1013
4,763 x 107°
2.543 x 1077

8.922
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Table 6 22-Group neutron energy group structure
!
gigﬁ;on Fnergy Limits Mid-Point Energy
1 15.000 - 13,720 MeV 14.36 MeV
2 13.720 - 11.478 12.599
3 11.478 - 9.314 10.396
A 9.314 - 7.328 8.321
5 7.328 - 5.757 6.5425
6 5.757 - 4.516 5,1365
7 4.516 - 3.162 3.839
8 3.162 - 1.871 2.5165
9 1.871 - 1.058 1.4645
10 1.058 - 0.566 0.812
11 0.566 — 0.283 0.4245
12 0.283 - 0.141 0.212
13 0.141 - 0.0465 0.09375
14 46.5 - 10.0 KeV 28.25 KeV
15 10.0 -~ 2.15 : 6.075
16 2.15 - 0.465 | 1.3075
17 0.465 - 0.1 ; 0.2825
18 100.0 - 21.5 ev | 60.75 eV
19 21.5 - 4.65 ; 13.075
20 4,65 - 1.00 [ 2.825
21 1.00 - 0.215 ! 0.6075 |
22 0.215 - 0.001 | 0.108 !
Table 7 10-Group gamma energy group structure
gigﬁ; Energy Limits(MeV) Mid-Point Energy
1 14.0 - 10.0 l 12.0
2 10.0 7.5 i 8.75
3 7.5 6.5 7.0
4 6.5 5.5 6.0
5 5.5 - 4.5 5.0
6 4.5 3.5 4.0
7 3.5 2.5 3.0
8 2.5 1.5 2.0
9 1.5 0.4 0.95
10 0.4 - 0.01 0.205
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Table 8 22-Group neutron
KERMA factor
(Mev/cm)
Neutron | 5.3, Mo
Group ]
1 | 0.3066 0.3087E-1"
2 0.2735 0.2780E-1
3 0.1787 0.2214E-1
4 0.1111 0.1854E-1
5 0.7191E-1 0.1620E-1
6 0.4822E-1 0.1369E-1
7 0.3039E-1 0.1170E-1
8 0.1732E-1 0.9300E-2
9 0.9524E-2 0.6519E-2
10° 0.5184E-2 0.4701E-2
11 0.3356E-2 0.3277E-2
L 12 0.2327E-2 | 0.2195E-2
: 13 0.1190E-2 0.9316E-3
| 14 | 0.8132E-3 | 0.2944F-3
| 15 | 0.1800E-3 0.7793E-4
i 16 0.4344E-4 0.4937E-4
' 17 0.1131E-4 0.5836E-4
18 0.7204E~5 0.6917E-4
‘ 19 - 0.8410E-5 0.1307E-4
! 20 0.1613E-4 0.8781E-5
Loo21 0.3317E~4 | 0.1731E-4
22 0.9453E-4 0.4949E-4
Table 9 10-Group gamma—ray
KERMA factor
(MeV/cm)
| Gamma g g Mo
| Group
1 | 0.2025E+1 | 0.3117E+1
2 . 0.1467E+1 0.2200E+1
3 . 0.1203E+1 0.1760E+1
4 0.1025E+1 0.1473E+1
5 0.8421 0.1180E+1
6 0.6793 0.9183
7 ©0.5203 0.6738
8 ©0.3714 0.4657
9 . 0.2181 0.2886
10 . 0.1140 0.2907

22-Group displacement

Table 10
cross section
(barn)
Neutron $.s. i Mo
Group :
1 2.573+3 | 1.564+3
2 2. 44443 1.460+3
3 2.264+3 1.241+3
4 2.04943 1,019+3
5 1.991+3 9.137+42
h 6 : 1.88343 8.24142
: 7 | 1.,48643 7.748+2
8 9.915+2 7.112+2
9 5.46442 5.081+42
10 3.62042 3.72442
11 3.001+2 . 2.78242
12 2.256+2 | 1.744+2
13 1.17442 1 9.397+1
14 8.823+1 : -2.654+1
15 2.215+41 | 5.872
16 4,566 | 1.626
17 ; 1.967 't 2.536
18 i 0.484 3.591
| 19 i 0.757 | 0.835
! 20 i 1.579 0.458
21 L 3.409 0.949
22 I 1.230+1 3.500
Table 11 22-~Group helium production
cross section
(barn)
Neutron S.s. Mo
Group
1 7.938-2 9.120-2
2 6.697-2 5.680-2
3 3.816-2 1.963-2
4 1.292-2 6.584-3
5 3.358-3 1.963-3
6 5.616-4 6.101-4
7 3.889-5 8.136-5
8~22 0.0 0.0
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Fig.2 One-dimensicnal Calculation Model of INTOR-J
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Fig.4 Three-dimensional Calculation Model of INTOR-J
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