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Nonlinear electron dynamics in a large amplitude wave packet with
coherent structure is investigated wvia Fokker-Planck equations and mapping
equations from the viewpoint of toroidal current generation in tokamak
plasmas. Electrons are trapped (and detrapped) by the coherent wave poten-
tial whose amplitude is large so that the electron bounce time in the wave
potential is smaller than the electron transit time through the packet.
This effect is now included into the wave-induced friction and diffusion
terms in the Fokker-Planck equation. The guasi-steady state distribution
function of electrons is obtained to have a tail which is neither a
quasilinear one nor a plateau. The wave induced current, the dissipated
power, and their ratio are numerically calculated to be compared to those

obtained from the quasilinear theory.
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1, Introduction

Evolution of plasmas interacting with small amplitude wave
packets is described by the gquasi—linear theory (QLT)»."™ 1In this
theory, the lowest order distribution function 1s changed by
higher order fluctuations through diffusion processes. It 1s
limited for the rather weak field case, ar < 1 (x/a . the
normaized bounce frequency of particles in the wave potential, T:
the normalized auto-correlation time of the wave) to validate
this theory.

When the wave amplitude becomes larger (aT > 1), particle
trapping by the wave potential begins to cccur, which QLT does
not take into account. As a result, the diffusion coefficient of
the particle 1in velocity space, for example, 18 no longer
proportional to the square of the wave amplitude as QLT shows.
Many researchers have been investigated this feature by test

-1 And theoretical

particle studies in ‘turbulent wave packets.7
studies have been made in order to describe the wave-particle
interaction 1n rather strong wave fields.'""'® Especially the
theories in Refs. 11 and | are well-known as the
Dupree-Weinstock theory or the resonance broadenig theory.
Concerning particle dynamics in finite—-amplitude
monochromatic waves, on the other hand, the work of 0'Neil'™ s
widely known. Since this is done in the framework of the Vlasov
theory, that is; Coulomb collisions are not included in this
theory, trapped/untrapped orbits are well-defined. The inclusion

of slight collisions have been accomplished by Zakharov and

Karpman53 and Sugihara et al . 1® for electrostatic waves.
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In the field of fusion research, considerable interest has
been paid for generating toroidal currents in tokamak plasmas
with radio frequaency (RF; waves recently. In particular, the
idea of current drive by lower hybrid waves (LHW g)!? has been

confirmed by many experiments.m)

In the practical situatin of LHW
current drive and also heating, the externally launched LHW
usually propagates along a resonance cone, in which the wave
forms a coherent wave packet. Because the amplitude of LHW 1is
large for the practical 1incident wave pover {typically,
E ~ 10% kV/m in recent experiments), QLT may be inapplicable
although many works have been done in the framework of QLT. It 1s
therefore necessary to investigate electron dynamics in c¢ocherent
wave packets whose amplitudes are beyond the QL limit, N&;T > 1.

The purpose of the present paper 1s to investigate electron
dynamics in such coherent RF wave packets, especially for the
wave amplitudes which are beyond the QL limit, from the viewpoint
of toroidal current generation in tokamak plasmas. The method
employed here 1is the perturbed-orbit method, 2 in which the
first and the second moments of particle velocity changes are
calculated to be included 1into a Fokker-Planck equation. The
resultant equation coincides with that obtained in QLT when the
wave amplitude is small (&/at < 1). This formulation has the
advantage that the employing phase averaging makes unnecessary
any averagling over an ensemble of fluctuation fields. Therefore
this formulation is applicable to situations 1involving highly
coherent wave fields.

The Fokker-Planck equation which includes the effects of

electron trapping by the wave potential will be write down within
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the framevork of the above formulation. The current induced by
the wave field. the power dissipated into the plasma, and their
ratic will be calculated numerically from the quasi-steady state
distribution function obtained from the Fokker-Planck equation.
They will be compared to those obtained from QLT. This paper 1is
organized as follows: In § 2 we derive the QL diffusion equation
assuming that the wave amplitude 1s small. We integrate the
equations of motion in § 3 in order to derive the first and the
second moments of the velocity wvariation for the arbitary
amplitude waves. Mapping results are presented in § 4 in order to
grasp the intrinsic nature of electron motion in the coherent
wave packets with various amplitudes. § 5 1is devoted to the
Fokker—Planck description of the electron dynamics for large

amplitude waves. Summary 1s given in § 6.
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2. Quasilinear Theory

As a representation of a coherent wave packel, let us

consider the wave packet which is defined by

EX,T) = Esin(kX—owT+¢), 0=X=x1, (ta)

a, elsevhere, (1h)

where FE 1s the strength of the electric field of the wave packet
and k (@) 1s the wavenumber {frequency)} of the carrier wave. The
equations of motion of electrons in the wave packet are written
as
r=v - 1, (2)
U o= — asin{x+¢@). (3)
where x = kX—eT, x = da/dt, t = oT, a = kel/me” = ob/c® . e (m)
the charge {mass) of the electron.
In the present section. we assume that the wave amplitude is
small (a € 1), and derive the quasilinear diffusion equation in
velocity space. Eq. {3) 1s expanded perturbatively with the

smallness parameter a to give

vg = 0, (4)

vl = — asin{ {(vp—1 t+9p], (5)

i t

vz = — aj;Ul(t’)dt'cos[ilmwl)t+¢], (6
i

from which the velocity of the particle 1is obtained to be
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v = vp+tvi+Us+ -+ . The condition of divergence of this series
gives the validity condition of QLT as Nﬂ;t < 1. The transit

time of the particle through the wave packet, 7, is defined by

kl = jﬁ{t@+v|(t)+-- -1 dt. (7
]
Up to the first order in a, T is expressed as 1t = Tm%df+0(a2),
where
okl
0= (87
4Tt = — —‘_*g_—TH{Sin[(1ﬂ_1}fo+@]"Siﬂ@“(l@”l}f@COS@}. (9)
vo(up—1)°

Then the variation of the particle velocity by passing through

the wave packet is given by

dv = \/{;(Uﬂt)—‘—t'g\t)-i- -] dt

= —% {cos [ (vo-1)To+®) —cosp)
vg— 1
012 -
— = {cos [ (vo—1)To+¢] —cosy} cos [ (vo—1 }To+9)
(vo—1)
o2
- — o (sin((up1)Tpte)
vo (vo—-1)
—sinp—~ (vo—1 Tgcose} sin [ (w1 to+e)
+ 0(at). (10)

Randomness of particle orbits is essential in QLT. Then we
require in our formulation that there exists a decorrelation
mechanism 1n particle motion: slight Coulomb collisions are

enough to yield decorrelated particle motion, which will be
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argued on later, and also the nonlinear equations {2) and (3)
themselves may have intrinsic stochastisity (§ 4). Then, taking
the ergodic hypothesis., we replace the average along the
stochastic orbit by the average on the random 1initial phases

which is defined by

_ ot
< > = 5 wdp. (11

The mean deviation and the mean square deviation of the particle

velocity are obtained as

2 o+ 1
<dv> = — %?[;E%i;jsi{ —cos [ {(vg—1)7p) |
ﬁ—fh?sinuvolmn +o0cah (12)
gL uo—
and
- 0:2
<(Av)> = —8 S (1-cos [(vo-1)Tp) | + O(c®). (13}

(vp—1)~
In the following., vwe simply write 15 as v.

In a toroidal plasma with periodicity_of length 2zR (R is the
major radius of the ‘torus}, electrons pass through the wave
packet repeatedly with time intervals of At = 2zkR/v. If there
were no Coulomb collision between the particles. they would see
the wvave packet composed of discrete muliti-modes because the
system 1s periodic. But there exists Coulomb collisions in
practical plasmas. Now let us ask how the particles see the
packet. The interval 1in wave number space between the adjacent
modes of the packet in the periodic system is &k ~ R, This
means that the phase velocities of them have a difference of

§(w/ky ~ w/k°R. On the other hand, the spread of electron
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velocity due to Coulomb collisions is &8V ~ (27RV/7)V? during a
circulation of the torus, where 7. is the collision time. With
the typical parameters of « = 27<10% ¢!, k = 100 w'., R =1 m.
V = 2rx10/ m/s and Te = 1x10% s, ve can estimate as
Sdiw/k ) ~ 27 %x10° /s and &V ~ ZENfﬁijOS w/s. Therefore we may
understand that the particles see the packet with a continuous
spectrum. It may be said that the particles lose the memory of
the motion by Coulomb collisions during circulating the torus so
that they forget that the system is periodic. Then we may be able
to use the expressions of the velocity changes {(Eqgs. (12, and
{13)) which are obtained for the wave packet with the continuous
spectrum. And the particle dynamics 1s described by the
Fokker-Planck equation with the coefficients obtained from Egs.
(12) and {13).

The Fokker-Planck equation i1s generally written by

af a8 a*

af 6U<Ff) + 612<Df>’ (14)
where f = f{(uv,t) is the electron distribution function in
velocity space and

. <dv> _ 1 <dv> \
= 4t 7 2zR T (15
and
<4 1 <awn®s .
D="%31 ~ =R~ =z (16)

are the friction and the diffusion coefficients. Using Eqs. (12
and (13} for <d4dv>» and <(Au)e in the above equations, we

recognize that the relation.



JAERI-M 86-017

F- 92, ()

is hold. 1In cother words. the difference between F and aD/dv is

as small as 0:(a® ). Then we get the QL diffusion equation,
gr - 9 pdil (18"

The distribution function in quasi-steady state is obtained

from the Fokker-Planck eguation,

of _ 9 ndf | \ .

at - avDaU + Ce(f).- (19/'
where

Celf) = Coe(f) + Coi (f) 20

is the linearized one-dimensional collision operator. Defining

the collision frequency as

e%@lnA

1.k .3
1 B3 21)
Isomg W (w A ( ’

wvhere n, is the electron density and 1lnA 1is the Coulomb

logarithm., we can write down the collision operator as

1

3. d g .20f .

Ce (f) - .éUP—(a_'l-;US(DfTLt—a—l—)/, (221

where vy = ka/Te/m./w 1s the electron thermal velocity normalized
to the phase velocity of the carrier wave and Z = 1 Tfor the
background ions is assumed for simplicity. This collision

cperator is applicable for v € 1 as in the present case. Since
we are interested in the time scale which is much longer than the
circulation time of the electrons around the torus but much
shorter than the heating time of the bulk electrons. we here

assume that the bulk temperature 1is constant. Thus obtained
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quasi-steady state solution to Egq. {19 is given by

Y Brpu/2
il a
3vpus /24 v°D

flvy = C;exp[nj; duv} (23
{

where C, 1s the normalization constant.

In Fig. 1, the diffusion coefficient {168 is depicted. And
the distribution function {(23; i1s shown in Fig. 2. The parameters
are chosen as v, = 0.25., v, = 1.6x10°%, k! = 20.0, n, = 52107 w3,
and lnA = 168, and the others are the same as those given earlier.

The power spectrum of the present wave packet, S{v), 18 given by

R R YN
S(vy = ﬂzikl>281n (k1w 1;,?},
2n (kl{u~13/2v5"

(24

The diffusion coefficient is connected with the power spectrum by

the relation,

sy - T STu) :

N

which is easily seen from Eqgqs. (13}, (18), and {24). The relation
{17y and {(2b) are well-known results of QLT. Because of the
relation (£2b;, the profile of Dy 1is invariable as far as the
wave amplitude 1is small (w&; < 1), It will be shown in § 5 that

these relations are not hold when the wave amplitude 1is larger

(War > 1),
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3. Integration of the Equations of Motion

Egs. (2 and {3 are integrated to give
T = 2040 (FF—sin? [ (x+p)/2] ) V2, (26 )

where o = sgn(i},[ﬁ = W/2a, and ¥ = #2/21a(1-cos{x+g)) .

Now the particles are devided into two groups,; the trapped
particles (° < 1) and the untrapped particles (8% > 1).
i} Trapped particles.

Further integration of Eq. {26} gives

- < = 0 ‘

ai{t+ity) = f . — —s = SN 'Z 27

f G g (1_22)1/2(1_622;}1/2 ( )]

~ oz = sn{Va(t+tg)iB), (28)

where snia{t+ly):f87 1is the Jacobi elliptic sn function with the

argument Nﬂ;{t+to)‘and the modulus of 3, 8z = sin([{(x+p}/2], and
to = {t; sin(ep/2) = Bsni{s/ai;f)} . We then obtain the integratin

of motion for the trapped particles as

sin‘lué@ = Bsn Ao (titadif) . (29)

11} Untrapped particles.

From Eq. (26, ve get

| i dz -1 :

x {(t+1g) = f ’ TS a2 — 02 Z 30

Ba/a ( 0 O[:(lﬁz“)u“(l~22/8‘)“‘ osn (30

- z = osn (B (t+tg) 87 . (31)

where = = sin[{x+9)/2] and ty = {t; sin{g/2) = osn{ﬁw&?t;ﬁ*)}.

Then the integratin of motion for the untrapped particles is
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sinI£$ = osn (Ba/a (t+ty) ;71 . (32)

On the contrary to the trapped particle case, o cannot be
eliminated from the above equations. This is because the o = +1i
particles and the ¢ = —1 particles are well distinguished for

the untrapped case.

From Eqgs. {29y and {323, the velocities of the particles

(v = 1+dx/dt) are given as
VPO = 1+ 28 aen [V a (Bt BT (33
Wity = 1+ 208 adn (B/a (t+te): 37" (34)

where TP (UT) denotes trapped {(untrapped)} particles, and ¢n and

dn are Jacobi elliptic functions. The velocity changes of the

particles passing through the wave packet, 4v = vi{t);—v(0), are
AvF to) = 280 {en /e (tpzt)B) —en(Wate B, (35

AV (tgy = 2op/a (dn (B (foxT i) —dniB/atoifo), (36

where t3 1s the time when the particle enters the packet, and
signs are identical to those of x. The transit time through the

packet, T, 1s obtained from

kKl = ]?[1+2ﬁwﬁ;cn(wﬁft;ﬁ)]dt {37
0
for the trapped particles, and from

KL = | [(1+208/adn(Ba/at: ) dt (38)
{1

for the untrapped particles. Note the parities of - du and ¢,
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which are

dv_{tg) = Adv.(~ty), (39
pltg) = ~pi-tyg)y = 0O, (0 = 0. (40}
by the

Now we obtain the first and the second moment of Au

phase average (11). Using Eqs. {(35) and (36, we get

24
<dus = g: AV g+ 40T ()] do
TTJO

ZLf (AT o+ a0 (to) ) de
ty
- _’\é—ajo‘ Blciz.fi+c(-T7.8)—2c (0, B3] Ci(”tli(_)

REE /a2 _
+ [(lf 5[df;r,ﬁ*‘)mcer,s*'>—2d<o,.@'f>3Cj‘_f(dto (41)
¥

I £

and

——j' (AP () %+ (40P (01 2} dg

]

<(du)T> =

+ '““f (AW (o)) %4 140 (103121 dy

= Zﬂj'ﬁ-ffc(t,ﬁ\-c(o 8]

I
T

Lo (-T,8)—c (0,812 gfdtu

o [R5 2
2_;1]; B2 tdz,B " y-do.g" 12
! 1

\2] d\,;

+idi-Tt,83H-d0,3 8 zt‘““’ (42

1s the complete elliptiec integral of the first kind,

where K31
= sn(WVat;1)}, 1 = {¢: B = Blu,p;t=0) = 1}

ty = {t: sin{g/2);
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(see Fig. 3), and the abhreviations,

cit.8) = en(Aa (torT1iB) . (43)
dit. By = dnipatertif ), (44

have been used.

Right hand sides {(RHS's} of Egs. (41 and (42} are the
functions of wv, which are plotted in Figs. 4, 5, 6, and 7. The
bars in the figure indicate the trapping regions,
1—2N4; = v = l+2wﬁ;. where 2+/a 1is the trapping velocity. In
Figs. 5, 6, and 7. the mean square deviation of the particle
velocities'(43) is caved around the resonance velocity (v = 1) by
particle trappins. This effects are remarkable when Nﬂfr =T
This condition coincides with that the trapping velocity exceeds
the spread of the wave spectrum, 2z/kl.

In Fig. 8, <(Juv)*> for the resonance particles (v = 1) 1is
plotted as a function of «a. Substituting v = 1 in Eq. (42, wve

obtain

<AV ey = gl (45)

for ~/at < 1, and
<AV | e =« (46)
for ~/at » 1, Eg. (45} should coincide with the results obtained

from QLT; indeed Eq. {(13) gives <(Au)?>@ = a%£/2 for v9 = 1. The
quantity, <(Alﬂ%>1v4/<{dv}%>m, calculated from Eq. (42) is
plotted in Fig. 9. Though the condition Nﬂif'( 1 1s necessary to
derive Eq. (45}, numerical calculation of Egq. (42) shows that it

holds for +at < 1. For ~/at > 2z, numerical results coincide



JAERI-M 86-017

with Eq. (483. Noting that ~/at - 27T/ Th, wvhere 7, = Z2ra/w 158
the particle bounce time normalized to the wave oscillation
period, we rewrite this condition as 7/7, > 1. This means that
the numerical results fit Eq. (46) when the particle transit time

through the wave packet is larger than the particle bounce time.

In Fig. 8, the effect of particle bouncing appears around
« ~ 107!, although the origin of the ripples for a > 10 is not
clear.
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4., Mapping Equations

In this section. we investigate nonlinear electron dynamics
via mapping equations. The present system has a periodiclity 1in
the toroidal direction as is stated earlier. Then the particle
motion is described by discrete variables with the interval of
the periodicity of the system. Sampling the particle motion at a
certain poloidal cross section, we obtain the time series of
{vuj, ;! (j = 0,1,2, ...>. Here ¢, 1is the wave phase at an

entrance of the packet. This discrete stochastic process 1s

defined by the mapping equations,

Uil — U; = duja, . {(47a)
e — ¢ = Ao, (47h)
From Egqs. (35} and (36, we write down RHS of Eq. {(47a) as
AV = 2B/ len [Wa (ti+T 080 —en(W/at; 1 85)) (48a)
for the trépped particles and
AV = 20B;/a (dn (Ba/a (12750585 —dn (B/a b 571 ) (48h)

for the untrapped particles. where the signs are those of ¢; ., and

, oy e n
B; = Bj(uvj.e;) = ©( bg)&+31n°%§]LQ, (49

20
b=t sin% = Bisnis/atip;y for TP,

sin%d = gsnifn/at;p;'y for UT}. (50 )
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(b1
RHS of Egq. (47b) is written as

I 2zR-1 .

Aon = s TR——— \

Ao k{2zR v; v . (523

The mapping equations (47) have a periodicity in ¢; € [-m,w) and

are inhomogeneous in v; £ ({~co,c0).

The time series of {u;} (3 =0.,1.2, ... obtained
numerically from Egs. (47 are shown in Figs. 10 for {(a)
a = 5.0x10° (Vaty = 0.04472, 15 = 20.0), (b> 1.0x107

(0.8323), (c) 5.625<107 (1.50), and (d) 3.0x102 (3.464). The
parameters used in the above equations are the same in § 2.
Regular motion is seen in Fig. {(a). There is a threshold of aT
above which the particle motion bocomes stochastic: the quantity
0.04472 may be below the threshold, which will be evaluated later
with a reduced standard mapping. Random walk is seen in Figs. (b}
and (c¢). The dashed lines indicate the trapping region. In the
case of (c), the steps of the random walk are larger than those
in (b)), although the steps outside the trapping region remain
small (iteration number 81-87, 147-161, and 185-191). This is
because the diffusion coefficients are extended in the trapping
region for about Nﬁ;T > 1.5, as 1s seen in Fig. 5 (b).

On the contrary, the moticon in (d) is no longer a random walk
in the trapping vregion. This strongly reflects the trapping
effect by the wvave potential. OQOutside the trapping region,
however, the motion is still a random walk {(iteration number
T3-109). Iﬁ this case, the velocity change in the trapping region

is of the order of the trapping velocity (4dv ~ 2:/a ).
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In particular situation, Egs. (477 are reduced to the

)

standard mapping.- which has been investigated well. Leaving the

derivation to the Appendix, we here write down the result.

i"jﬂ — ?}j = Asinﬁj. \{,53“\4‘
Ciel = P = Vel (530)
where ¥; = 7kR [vj+w(w—2)1 /15, @ = ¢;/2. and 4 = R/ lup)ats.

The threshold of A for the particle motion being stochastic 1s
given by the Chirikov condition,® A > 1. In the present case,
this leads ~/aty > 0.25 for wvg = 1, which is consistent with the
results of the mapping (47). The standard mapping (b3, does not
describe the particle trapping; the particles diffuse when
A > 1. In the limit of A — <, the particle motion is completely

decorrelated. Then the diffusion coefficient is obtained as

Dsy = <(uj—v;)%> = A%/2, (54
where < > is the average over ¢;. From the last section, we see
that it 1is identical to the QL diffusion coefficient for the

resonance particles (v = 1). Then it coincides with that of the

original mapping (47 for the resonance particles when Joat € 1.



JAERI-M 86-017

5. Fokker-Planck Equation in the Nonlinear Regime

When the wave amplitude 1s large {NA;T > 13, electrons are
trapped {(and detrapped) by the coherent wave potential. In. order
for the Fokker-Planck description 1s wvalid, the trapping
velocity, 2+/«, must be smaller than the spread of the wave
‘spectrum, 2z/kl; otherwise the velocity changes are so large that
it is not be able to define the Fokker—Planck coefficients which
are local in velocity space. Then there exists an upper limit of
the wave amplitude for the validity of the Fokker-Planck
description, Nﬁ;? < nt/kl =« (t = k1l = 20 in the present
case). Within the limit. the particle dynamics is described by
the Fokker—Planck equation wilh the coefficients (15) and (i16) in

which <Adv> and <(ALU2>’ are substituted from Egs. (41} and (42}:

arf _ _ d. 0Dy
at OLJ[<F' alnlf]

p3L -~ coip. (55

oty

g
dv

o3

This equation includes the effects of particle trapping. The

quasi-steady state distribution function is given by

VS v,/ 2- v (F-8D/dv)
0 SJJPL‘?/Z‘TU“’D

fiv) = Coexp {— dul . 4s1sP]

Contrary to QLT, F-a8D/6v 1is not vanishing for the wave
amplitude, 1 < Nﬁ;T < ©. These features will be investigated 1in
the following. In Figs. 11 and 12 shown are the Fokker-Planck
coefficients which are given by Eqs. {15)., (186}, (41>, and (42"
for the two cases of at = 1.0 {(Fig. 11} and 2.0 for = = 20
{Fig. 12). 0On the contrary to the former case, a glance shows
that F = aD/8v does not hold in the Jlatter case. The more

quantitavie feature is shown in Figs. 13, 14, and Table I. Since
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v ~ 1, the magnitude of Ugdﬂ~6D/6LQ in Eq. (B8, is about 6x107

< in the latter case. Using the same

in the former case and 4x10
parameters mentioned in the last section, we estimate that
3upu/2 ~ 2x10°. Therefore v*(F-aD/dv; can be neglected in the
former «case, which 1is consistent with QLT. In the latter case,
however, the term of USU?—OD/Olw may play important role.

In Fig. 15 and 16, the quasi—-steady state distribution
function f{v) given by Eq. (56) is shown for the above two cases,
The high energy tail in Fig. 15 bears close resemblence to that
obtained in QLT {Fig. 2;. The more enhanced tail is shown in Fig.
16. In this case f(v) is no longer a monotonically decreasing
function of v, and neither does form a plateau. This is caused by
the F—aD/8v term. Note that., in the figure., the acceleration
phase 1n velocity space, F-9D/0v > 0, and the deceleration
phase, F-38D/0dv < 0. correspond to the humps of the tail.

The current induced by the wave packet is calculated from
J = f:vf(v)dv, (57)
and the power dissipated into the plasma is calculated from
Pa= L[ w0 o 90y p 2Ly, (58)

The induced currents are plotted in Fig. 17. The broken line 1is
that calculated from QLT (Egs. {(23) and (57)). The solid line is
that obtained in the present section (Egqs. (66) and (57:). For
6 < 2.5<107 (WaT < 1Y, both lines are close. This means that J
of the solid line is almost proportional to «°. It shows the
tendency of transition to be proportional to « for larger o’'s.

The similar results are obtained for the dissipated powers, which
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are plotted in Fig. 18. An important quantity in arguing
current drive is the ratio of the induced c¢urrent. J,
deposited power, Py;. that 1s, J/P;. It is obtained
distribution function (96} and is shown in Fig. 19 as a
of «. Their dependence on « are rather weak, although
increase with increasing «. The ratio ohtained in the

section is a little larger than that obtained in QLT,

about RF
to the
from the
function
J and Py

present
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6. Summary

In the present paper. we have wvwrite down two types of
Fokker-Planck equations which describe electron dynamics 1in a
model wave packet. First, the so-called QL equation has been
obtained, which 1is wvalid for small amplitude wave packets
(Nf_f < 175, Second, derived has been the Fokker—-Planck equation
which includes the effect of particle trapping by the wave
potential. This description 1is applicable even for larger
amplitude wave packets (Nﬁ;T < 7). The quasi-steady state
distribution functions of electrons have been obtained from the
equations. The distribution function for thé large amplitude case
has a tail whiéh is neither a QL one nor a plateau. The current
induced by the wave field and the ratio of the current to the
dissipated power have been calculated numerically with the
distribution functions. Comparison has been made between the
electron distributicon functions, the wave induced currents, etc.
those obtained from the two theories. For the small amplitude
wave packet {N4;? < 173, the induced current 1is almost
proportional to the square of the amplitude as in QLT. It
switches to be proportional to . the amplitude for the large
amplitude case (4 /at > 1). The ratio of the induced current to
the dissipated power calculated from the latter theory is almost
the same as or a little greater than that calculated from QLT.

The method of formulation emploved in the present paper 1s
the perturbed-orbit method. This formulation has the advantage
that the employing phase averaging makes unnecessary any

averaging over an ensemble of fluctuation fields. Then this
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formulation is suitable for highly coherent fields 1like the
present case. In the case of the weak wave fields, the resultant
equation coincides with that obtained in QLT. Note that the QL
diffusion equation describes the diffusion of resonance
particles. The perturbed-orbit method formulates the dynamics of
resonence particles; the contribution from nonresonance particles
is excluded. Only the diffusion of the resonence particles is the
true one, which 1s an irreversible process. The response of
nonresonance particles, which 1s a reversible process, 1s related

to the change in wave amplitudes,'”

and this is not the present
case.

Decorrelation mechanism is essential for the Fokker-Planck
description. We have recognized in § 2 that slight Coulomb
collisions are enough to yield stochastic particle motion. The
Coulomb collisions are necessary also to yield quasi-steady state
distribution functions, which are generally given by Eq. (b6,
The wave produced tail of the distribution function which is a
monotonically decreasing function of v is formed when the wave
term, 'v3at—aD/alq. is neglected compared to the collision term,
3vp,u/2, 1in Eq. (56) because of the monotonicity of the collision
term (Fig. 1b). On the other hand, the tail which is not a
monotonically decreasing function of v is formed when the wave

term dominates the collision term because of the non-monotonicity

of the wave term (Fig. 16). From the Table and rememubrance of

3v,v/2 ~ 2x10°% in our case, we see that the criterion of the
wvave amplitude distinguishing the two cases is ~/aT ~ 1. This
coinsides with that distinguishing the QL regime and the

nonlinear regime in the present case,
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Even if Coulomb collisions are absent, electron motion can be
stochastic for some magnitudes of the wave amplitudes, because
the nonlinear equations of motion {2) and (3 have 1intrinsically
stochastic nature. The mapping equations which describe the
electron dynamics have\been obtained in order to investigate the
intrinsic nature. Some examples of the numerical solutions have
been presented. The motion is stochastic when the wave apmlitude
exceeds a certain value. However, the motion 1is no longer
stochastic for the very large amplitude waves {NA;T > 73 due to
strong trapping by the wave potential. In particular situation,
the mapping equations could be reduced to the standard mapping
form. This gives the stochastic threshold of the wave amplitude.
The diffusion coefficient obtained from the standard mapping
coincides with that obtained from the original mapping for
VJar <1,

The model wave packet.employed in the present paper 1s an
idealized one. The wave amplitude is constant in time. The wave
field is coherent. And the profile of the envelope of the packet
is rectangular. But this is not necessarily unpractical for the
LH current drive; the wave field is in a steady state with a
coherent structure and the waves are usually launched by
waveguide antennas with rectangular cross sections.

There is an upper limit of the wave amplitude for the
Fokker—-Planck description as 1is already mentioned wearlier
(Nﬂ;? < 7. When the wave amplitude exceeds the 1limit, the
electrons suffer nonlocal scattering by the wave packet because
the trapping velocity is greater than the spread of the wave

spectrum, Ewﬂi > 2xz/kl. This feature is seen in Fig. 10 {(d:. The
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scattering 1s no longer a diffusion process which 1is 1local in
velocity space, and the electron motion may become similar to
that 1n a monochromatic wave due to the deep trappig by the wave
potential. Further study 1is in progress to investigate such

highly nonlinear electron motion.
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Appendix

Taylor expanding the term in the bracket of RHS of Eq. (48¢

for Nﬂ;1j<< 1, we write RHS of Eq. (30a) approximately as
A = T 2patsndatdna/at. (A 1)

With Eq. (293 and the rough replacement of dnwﬂ;tjfw 1/2., the

above equation is rewritten as

|T'D b j— 3 q) 81 fj— |
Avy jo = F a¢051n(E§) + ZEO(_7ET~" (4.2)

In deriving this equation, 7; is also linearlized as
U.
- . = sl r 7_] A !
T o= Tp(2 UO}‘ (A.3)

The second term of RHS of Eq. (A.2} 1is small compared to the
first term, which will be ascertained later.

Similarly, Eq. (48b) is approximated as
JU{JJ‘H = ¥ EOCYTjSFI{}jr\/E'ijRBy\/Ef;. (A.4)

With Eq. (32) and the rough replacement of cnﬁpfafj ~ 1/2, the

above equation is rewritten as

Yi—to,, (4.5)

J ‘ - . D X
Av o = F atgsin(Zly + Zo¢
.5+ 0 \2 ) Yo L To

Eq. (A.B5) coincides with Eq. (A.2) in the first order of the
approximation. This means that there may be no marked difference
in the dynamics between the trapped particles and the untrapped
ones when the wave amplitude is small (Nﬂ;f < 15,

Next we linearlize RHS of Eq. (b2) as
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2y, 2TRYjiy | Klg Via=l; (A.B)
vo

Adp.y = k(2zR{1-——=
©iel b vo Up  Up n

The second term of RHS of Eq. (A.6) is small compared to the
first term, which will also be ascertained later. From Egs.
(A.23, (A.5H), and {(A.6), the mapping equations (47, are

approximated as

Vi — v = - a‘cosin{%), (A .Ta)
Vi

pjr — vy = 2rkR(EEL_2 ., (A7)
v Yo

Introducing the new variables,

v; = “L/B (vj+vg(vg—2)) (A.8)
ug

and
o = %" | (A.9)

we can reduce Eqs. (A.7) to

U — U; = Asing;, (A 10a)
Girl — Dj = Ujuls (A.10b)
where A = (ER/ZUD)aTa This is a well-known form of the standard

q?j

mapping.<
l.Let us estimate the order of the second terms of RHS s of

Eaqs. (A.2) and {A.6). Since |v;1~v;l ~ A from Eq. (A.9), vwe get

A

5007 (A 11

Pujo—uy !

in the present case. Then the second term of RHS of Eq. (A.2) 1is
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estimated to be

Q Vi Ui QA
—0{(—+——) ~ =—=%— < a7y,
v ( vg 200 v

and that of Eq. (A.8) is estimated to be

E;Lo(lﬁ+rmvj\ . kiA
vg " vg 2007

< kR.

(A.12)

A.13)
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Table 1.
a 2.5x1073 1.0x107"
Vot 1.0 2.0
| F | e 3.3x10° 4.6-107
i D | par 4.5x1077 5.7x10°8
| 8D/ 0V} nar 3.5%10° 7.3x107
| F—3aD/3v "} aer 5.6:107 4.4%107°

Dy

Fig. 1  Quasilinear diffusion coefficient which is given by Eq. (16).
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Inf ()

Fig. 2 Quasi-steady state distribution function obtained from the quasilinear
theory Eq.(23); o = 2.5 x 1073 and Ut = 0.25, The dashed line is that

in the negative v,

v(t=0)

Fig. 3 Integration contour in Eqs. (41) and (42), in which 0 < p < ¢; is
the trapped particle part and ¢; < ¢ < 7 1is the untrapped part.
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1h (a)
4A| ' : -
‘;’ \f‘ Il
v G \i MY \f\/ \/

_1 .
0 1 2
v

Fig. 4 (a) Mean deviation of the particle velocity for o = 2.5 x 10~3,

. (b)

1

< (Auv)t>

(b) Mean square deviation of the particle velocity for o = 2.5 x
1073. The bar indicates the trapping region, 1-2Ja‘;=u ;:l+2/a,

where 2V/a is the trapping velocity.
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(a) |

1t

A |
- P
[

1
]
!

- b
U L i ﬁdv‘\/\{\#‘m \{f\f\\/\/\/\"f

< Av>

v

Fig. 5 {(a) Mean deviation of the particle velocity for o = 1.0 x 1072,

(b)

<(dv)e>
/

(b) Mean square deviation of the particle velocity for o = 1.0 x

1072, The bar indicates the trapping region, 1-2va v §=l+2ﬁ§.
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(a)

<Advu>
(@8]
e
<\\2ﬂ
/’/

Fig. 6 {(a) Mean deviation of the particle velocity for o = 3.0 x 10-2,

(b) |

(du )2>

-
-
T
i

(b) Mean square deviation of the particle velocity for o = 3.0 x 10-2.

The bar indicates the trapping region, 1-2Va L. §:1+2JE.
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1 (a)

<Avu>

O gttt /\
y /
\ |

/
l’iI

0 1N/ 2

Fig. 7 (a) Mean deviation of the particle velocity for @ = 0.1.

(b)

<(du)t>
_.—-’/I

(b) Mean square deviation of the particle velocity for o = 0.1.

The bar indicates the trapping region, 1—2/3-;:U é:1+zJE.
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1.0

— T |
(a)
u
l __1"2'."' :“ﬁ' ety et o ool Al o =T = e L i - Qad
0.999 P SO — A N O S SR .
b 511 100 150 200
ITERHTIDN NUMBER
Fig. 10 Temporal changes of the particle velocity which are obtained from
the mapping equations (48).
(a) o = 5.0 x 1070, (ug, ¢p) = (1.0, 3.0).
T T T T
1.2 | (b)
T T:_;";”ﬁfm' """"""""""""""""""""""" *_Ti;.r
1 :
0.8 |
i N 1 " L L M L n 2 1
0] 50 100 150 200

ITERATION NUHBER

(b) o = 1.0 x 1073, (up, 34) = (1.0, 2.0).
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2 T T T
(c)
‘--'3!.'""'“"-‘ ————————————— el i i sl
U " A " . 1 1 " " 1 1 X N i " 1 i 1 " s
U bl 100 150 200
: ITERATION NUMBER
(¢) o = 5.625 x 1073, (ug, @y) = (1.0, 3.0).
T T T
(d)
" M n i i 1 " -l i ] " " L L 1 N
0 S0 100 150 210

ITERATION NUHBER

(d) o = 3.0 x 1072, (ug, 9p) = (1.0, 0.25).
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- I i -
P
FooL b ]

W

Fig. 11 (a) Friction coefficient which is given by Egs. (15) and (41) for
o = 2.5 % 1073 or Vot = 1.0 when 1 = 20.

L {(b) .

|

\

1

o

/
/
N
1

2
v
(b) Diffusion coefficient which is given by Egqs. (16) and (42) for

the same value of o in (a). The bar indicates the trapping region,

l—ZVE-é:U < 1+2/a.
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Y|

—
[15]
e
1

Fig. 12
1.0 x 10_2 or Yat

o =

(a) Friction coefficient which 1is given by

U

Egs. (15) and (41) for

= 2.0 when 1 = 20.

—
T

(b) |

g ]

AT

v

(b) Diffusion coefficient which is given by Egs. (16) and (42)

The bar indicates the trapping

for the same value of o in (a).
region, 1-2va <Y ;;1+2JE.
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1L //\ (a) |

: A |

s | | |
C e\ f\'/\/\ \/ \\ /——\—-'

g 1 2

Fig. 13 (a) Diffusion coefficient differentiated by velocity, 3D/3y, for
o = 1.0 x 1072,

(L (b)

(b) Difference between the friction coefficient and the diffusion

coefficient differentiated by velocity, F-3D/31u, for o = 1.0 x 1072,
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1t N (a)
[
& | | ~
av ] \
0 bt A /
-1 :
0 1 2
v
Fig. 14 (a) Diffusion coefficient differentiated by velocity, 3D/du, for
a = 3.0 x 1072,
{1 (b) |
;’A\
o= i j 2 1
T P
| |
S e ‘a
P 1
Loy
L !g \J/ i}
_ | _
I R B
1 2

0

(b) Difference between the friction coefficient and the diffusion
coefficient differentiated by velocity. '

F-3aD/3y, for a = 3.0 x 1072,
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il

Inf(v)

Fig. 15> Electron distribution function in a quasi-steady state which is
given by EG. (56); & = 2.5 x 1073 and vy = 0.25. Dashed line is

that in the negative part of v.

Lnf (V?)

Fig. 16 Electron distribution function in a quasi-steady state which is

given by Eq. (56); o =1.0 x 1072 and vy = 0.25. Dashed line is

that in the negative part of vu.
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—
3

J/Py

o

s g.s 1.0
a (xlO‘z)

Fig. 19 Ratio of the induced current to the dissipated power as a function
of the normalized wave amplitude; v¢ = 0.25. Dashed line is that
calculated from the quasilinear theory, and the sclid lime is that

calculated from Eqs. (56), (57), and (58).



