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The finite element circuit theory is extended to the general eddy
current problem in a multi-torus system, which consists of various
torus conductors and axisymmetric coil systems. The numerical
procedures are devised to avoid practical restrictions of computer
storage and computing time, that is, the reduction technique of eddy
current eigen modes to save storage and the introduction of shape
function into the double area integral of mode coupling to save time.
The numerical code EDDYMULT based on the theory is developed to use
in designing tokamak deﬁice from the viewpoints of the evaluaticn of
electromagnetic loading on the device components and the control

analysis of tokamak equilibrium.
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1. Introduction

As is well recognized in a tokamak fusion research and develop-
ment, eddy current problem is one of the most important and essential
subjects from the standpoints of mechanical stress design against an
intensive electromagnetic loading on devices components and control
analysis of plasma current, plasma position and its shape. The
intensive electromagnetic loading on device components due to a rapid
plasma disruption causes a severe problem in assessing the structural
integrity of tokamak device. In addition, the transient stray field
produced by eddy currents causes unfavorable displacement and
distortion of the tokamak equilibrium from its ideal state. Therefore,
the accurate evaluation of transient eddy current is absolutely
necessary. These demands on the eddy cufrent study in a tokamak fusion
research would go on increasing with a scale-up of tokamak deﬁice.

In spite of these urgent requirement, the rational evaluation of
eddy current in a tokamak system is quite difficult because of the
complexities of machine geometry and electrical characteristic. 1In the
early years of a tokamak fusion research, a stabilized confinement of
tokamak plasma had been attained only by the so-called shell effect of
conducting walls such as a ﬁacuum vessel or copper shell. Namely,
tokamak equilibria during a short discharge duration had been estab-
lished by the passive feedback control action due to an image current
induced on ideally conducting walls. Where, the study of eddy current
itself was not necessary since the ideal shell effect of conducting
walls automatically guarantees the equilibrium of tokamak plasma
columnl), that is, there was no need for precise considerations taking
account of the wall geometry or its electrical characteristics. Here,
one must notice the following remarkable features of actual tokamak
system from a viewpoint of a transient analysis of eddy current. In
general, a tokamak device consists of a composite milti-torus system,
i.e., a vacuum vessel, torcidal field coils, support structures and
ﬁarious kinds of poloidal field coil systems. Each torus component
has indiﬁidually a complicated geometry with regard to the cross-
sectional shape. There is a great deal of complexity due to port
holes and electrical insulations. Moreo&er, one must take account of
non-uniform and non-isotropic electric resistivities due to the bellows

section of a vacuum vessel commonly used in the actual tokamak.
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From the mentioned above, the eddy current problem must be solved for
the multi-torus system composed of individually complicated torus
conductors including various kinds .of poloidal field ceoil systems,
since each torus component magnetically couples with the cthers.

In the recent years, numerical and analytical procedures have
been considerably advanced on the increasing demands for design studies
of the present generation large tokamaks such as JI-60, JET and
TFTR2_13). On the assumption of axigymmetry, the eddy current
problems had been investigated considering a ﬁacuum vessel magnetically
coupled with a plasma loop or poloidal field ccil system3’4). The
finite element method was applied to three dimensicnal eddy current
problem, in which the penetration of electromagnetic field into a
conductor with the finite thickness was taken into account5’6).

On the other hand, the eddy current in an infinitely thin surface had
been investigated to use in a practical design of tokamak deﬁice8—12).
In these studies, a torus with an arbitrary cross-sectlion was
discretized into a set of finite element circuits, which provide the
eddy current induced on a vacuum ﬁessel. Among them, the finite

11,12) is considered

element circuit method deﬁeloped by Kameari et al.
to be most promising way from a viewpoint of the designing of tokamak
device and the control analysis of plasma equilibrium. Since the
finite element circuit method is based on the eigenvalue expansion,

the method has the advantage that the obtained eigen modes of eddy
current characterize the electrical and geometrical features of a
considered torus. The method was extended to solve a general eddy
current problem in a composite multi-torus system because that the
actual tokamak system is composed of many torus conductors such as a
vacuum vessel, toroidal field coils and the support structures which
are magnetically coupled with each otherIB). Uging the extended
finite element circuit method, the computer program EDDYMULT has been
developed in JAERI and used to evaluate the transient eddy current on
deﬁice components of JI-60 multi-torus systemla’ls). Moreover, it

was shown that the obtained eigen modes of eddy current by the program
describe the actual eddy current effects on the tokamak equilibriuml6).
Therefore, it is anticipated to use the numerical results in the
adﬁanced control analysis of fusion plasmal7_19).

The paper is arranged as follows. The following section describes

outline of the finite element circuit method. The general

e
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formulation of circuit constants and the introduction of boundary
conditions will be menticned, respectively, in sections 3 and 4 without
the assumption of toroidal geometry. In section 5, the concrete
representation in a multi-torus system is discussed, where the
formulation te evaluate the three dimensicnal magnetic field produced
by eddy current is also described. Summary of the paper is presented
in section 6. The description of the program EDDYMULT and the
representation of the numerical results are outside of the scope of

this paper.

2. Basic Concept of Finite Element Circuit Method

This section 1s devoted to outline a basic concept of finite
element circuit method. Throughout the paper, all of the conductors
is approximated to be infinitesimally thin neglecting the thickness
and the conductor material is considered non-ferromagnetic, In the
application of the thin conductor approximation, the skin time of the

conductor T d? /n (uo is the vacuum permeability, and 1 and d

skin ~ Yo
are the electric resistivity and the thickness of the conductor, res-

)

pectively)zo must be sufficiently small compared with the character-
istic time of the external magnetic field variations.

Since a surface current density J on a thin conductor is divergence
free, so the surface current density is described by a current vector
potential V which is a function of time and position on the conductor

and given by
J=vxV, (n

Apparently, the current vector potential V always refers to normal
direction of the conductor surface. Let V be the normal component of
the current ﬁector potential Y. We call V a current function. The
current flows along the lines of V = constant. An arbitrary constant
can be added to V, and V can and must be fixed to zero at a certain
point on a conductor to eliminate the arbitrariness. These are
illustrated in Fig. 1.

If a current function V is represented by a linear combination of
linear-independent functional series an(n =1, 2, ..., ®), then V can

be described using each coefficient Vn(n =1, 2, veey @2

_3__.
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conditions will be mentioned, respectively, in sections 3 and 4 without
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are the electric resistivity and the thickness of the conductor, res-
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istic time of the external magnetic field variations.

Since a surface current density J on a thin conductor is divergence
free, so the surface current density is described by a current vector
potential VY which is a function of time and pesition on the conductor

and given by
J=vVxV, (D)

Apparently, the current vector potential V always refers to normal
direction of the conductor surface. Let V be the normal component of
the current vector potential V. We call V a current function. The
current flows along the lines of V = constant. An arbitrary constant
can be added to V, and V can and must be fixed to zero at a certain
point on a conductor to eliminate the arbitrariness. These are
illustrated in Fig. 1.

If a current function V is represented by a linear combination of
linear-independent functional series an(n =1, 2, ..., ©), then V can

be described using each coefficient Vn(n =1, 2, vsey @2

_3_
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V=) a V_. (2)

Although a distributed eddy current problem is infinite dimensional,

we must consider a finite dimensional problem in practice. Here, we
divide the conductor surface intc finite elements as shown in Fig. 1.
Furthermore, it is assumed that the unknown function of distributed
eddy current in the individual finite element can be approximated by
using an interpolation polynominal an(u,v). Then, the current function

given by Eq. (1) is rewritten as:

. an(u,v) Vn s (3}

<=
I
| 12

n

here, N denotes the number of independent nodal points on the conductor.
If the nodal points lie on a same boundary of the considered conductor,
then these are linear-dependent with each other. The detailed discus-
sion to introduce the Boundary condition and symmetry of the current
function will be carried out in section 4.

From the above mentioned, a finite-dimensional linear circuit

equation of eddy current is given as:
MK + RX = E , (4)

where X is the current vector corresponding to the nodal value Vn {n =

x
I, 2, ...y N). Inductance matrix M € RN K and resistance matrix

R € RNXN are both real symmetric and positive-~definite since the
physical nature. E ¢ RN means the externally applied electromotive
force to the individual finite element circuit. In the following
section, it is shown that the inductance and resistance matrices and
the voltage vector can be described by means of the corresponding
energy integrals.

Consider the following generalized eigenvalue problem as:
MX = diag(M)RX , (5)

here diag(A) denotes the diagonal matrix whose diagonal element is A.
The obtained eigen modes are magnetically and resistively decoupled with
each other. The physical meaning of eigenvalue A is decay time of the

eigen mode. After solving the generalized eigenvalue problem, we can

_4_



JAERI-M86— 096

represent the circuit equation of the #-th eigen mode of eddy current

as follows:

where E2 means the externally applied electromotive force to the 2-th

eigen mode, which can be expressed as:
e = 0°E (7}

here, ¢ is the modal matrix of the generalized eigenvalue problem given
by Eq. (5) and ( )T denots a transpose of matrix or vector. The time
evolutional solution of Eq. (6) is easily obtained as:

1" et

£,(t) = £ (0) exp(- =) + e, exp( yde! (8)
) g TR jo 2 X,

where, 52(0) means an initial current of the f2-th eigen mode at t = 0.

3. Circuit Constants

In this section, we firstly present the general formulation of
respective circuit constants such as an inductance and resistance
matrices. These matrices can be obtained from the integral
calculations of the magnetic energy and Joule loss. Formulations in a
discrecte form for the finite element system is described in the later
part of this section.

Let us consider the multi—conductor system composed of NCond
conductor surfaces as is shown schematically in Fig. 2. The curvi-
linear coordinate system (ui,vi,wi) is defined separetely corresponding
to the individual conductor. Therefore, a point P on the conductor Si
is designated by the two dimensional orthogonal coordinate system

(ul,vl). Using this coordinate system, Cartesian coordinate (x,v,2) of

the point P on the conductor Si is represented as:
i i i i i i
Xx =x(u ,v), y=vy{u,v), z=z@W,v) . (9)
A line element dsi is

;2 , | 12
dsi = fi du” + g} dv . (10)
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here, ¢ is the modal matrix of the generalized eigenvalue problem given
by Eq. (5) and ( )T denots a transpose of matrix or vector. The time
evolutional solution of Eq. (6) is easily obtained as:
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respective circuit constants such as an inductance and resistance
matrices. These matrices can be obtained from the integral
calculations of the magnetic energy and Joule loss. Formulaticns in a
discrecte form for the finite element system is described in the later
part of this section.

Let us consider the multi—conductor system composed of Ncond
conductor surfaces as is shown schematically in Fig. 2. The curvi-
linear coordinate system (ui,vi,wi) is defined separetely corresponding
to the indiﬁidual conductor. Therefore, a point P on the conductor Si
is designated by the two dimensional orthogonal coordinate system

(ul,vl). Using this coordinate system, Cartesian coordinate (x,v,2) of

the point P on the conductor Si is represented as:
i i i i i i
x =x(u ,v), y=y@,v), z=2z@,v) . (2)
A line element dsi is

i2 , 52
dsi = fi du™ + g} dv . (10)
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where the scale factors f, and g, are respectively defined as:

. 4 2 2 2
e2etoly = (BT 4 (B 4 22y
+ au™ au’ du’
? (11)
. . a 2 a 2 a 2
g2(utv) = () + (Fp o+ (F)
v oV av .
Because of the orthogonality of (ul,vl) coordinate, we obtain the
equation:
3xi Bxi + Byi Byi + ozi QEI - g . (12)
Ju av du v Ju v

. i i
Let € ; and e_; be unit tangent vectors along v = constant and u =
u v

constant, respectively. €. i and eV are mutually orthogonal and the

i
components are given by

[ ox ) [ ax )
i i
fi Ju 84 av
e i = ._.g)_r..._:. N e i = --m@l——' . (13)
u £ gut hts i
, du g. ov
i i
9z 9z
i i
L fi Ju” ) 84 ov

C . i, i 4
From the definition of Eq. (1), a surface current density J (u ,vl)
is expressed by a current function which is a function of time and

position on the conductor Si and given by
i, 1 i . i i i i . i i i i
J (U sV ) = .]uj_(u » Vv ) eui(u sV ) + Jvi(u Vv ) evi(u sV )9 (14)
where, the components of current density can be expressed as:

1 vt
- ’ jiqg==-— —= . (15)
BVl v £t Bul

As was discussed in the previous section, the usual current func-
, i i s s , ,
tion V- can be expanded by the infinite sets of linear—independent

functional series. By substituting Eq. (2) into Eq. (15}, we can
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obtain each component of current density expanded by the linear-

. : i
independent function a_ as follows:

§ 1 @ ai 1
ig o= (= —2vVv)
u n=1 &1 av- "
(16)
T 1 aa;i
Jyi = (-+ — V) .

; . . i, i 1 ,
Here—ln—after, the functional series an(u oW (n=1,2,....) is abbre-
viated as a for convenience. Consider the following energy integrals

to cbtain the respective element of Inductance and resistance matrices

o3 - EU_ E___g;i ds. ds (1,5 = 1 N ) (17)
nm g Py, i i’ »J Tt cond
S. 5,
1 ]
i iT i i
W J' 7ot ol as, (1= LoeusN ) (18)
S
1

here 013 denotes the distance between a point Pl(xl,yl,zl) on the con-
ductor Si and a point P,(x,,y¥,,2,) on the conductor Sj; pl2 (xl-xz)
+ (yl-y2)2 + (z, - 22)2. The electrical resistivity matrix n g R¥%2

is real symmetric and positive-definite

i i
. T.EU. r]1.1"7
nto= (19)
i i
rivu nV .
. s e . . i i i
If the electrical resistivity is uniform, then n = nv and n = 0. By

substituting Eq. (16) into Eqs. (17) and (18), we obtain the element
M;i of inductance matrlx M 1] between the current components V and VJ
and the element R of resistance matrix R* between the current compo-

nents V and V
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a1 3
ij Ho fff 1 aan aam
M = I ! f — (f, f.—= — e '€ 3
nm T JJJ O i7] aV:L avj u u
da  9ad
- f, g, r.].mei' i
i *] Bvl BuJ u v
. . (20)
Bai Sai
-g f,.— —Fe jre s
1 J 3ul BVJ v u
Ba; Bai i1l 9.3
t+tg, 8. — —s B {*€ j) du " dv du ' dv s
i =] Bul Buj v v
da  da” da  Sa
j]’ n 1__1 It m nl ! m
ug, 5,1 Bvl uv . E
1 i (z1)
i gl aan aam i, i
+n = — — ) du'dv .
v £ i 1
i Bu du

It is clear that the inductance matrix Mij and the resistance matrix Ri
are both real symmetric and positive-definite.

If an externally applied magnetlc fleld on the conductor S is
descrlbed by the vector potential A(u Vv ), then the mutual magnetlc

energy Uen between the current component Vn and A(u sV ) is represented

by

en

N S N T (22)
) n 85y
S,
1
Introduction of Egq. (I6) into Eq. (22) leads to the following equation:
i | Ba; i Ba; i, i, i
= | S - —
En J (fi T Au 8 7 AV) du"dv , 7 (23)
v ou
in which, E denotes the extermally applied electromotive force on the
current component V u “ and A are ul and vl components of A(u »V ),
respectively.

For more explanation, we divide the conductor into finite elements

as schematically shown in Fig. 3, so that, the energy integrals (17),

__8_
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(18), (22) are reduced to discrete forms. The finite element circuit
ﬁi(m,n) is assumed to be ceonstructed of the corresponding four finite

elements Qi(v) {(v=1,2,3,4) to each node (m,n)
Qi(m,n) = Qi(l) | 91(2) U 91(3) J 91(4) . (24)

According to the discussion carried out in the previous section, let us
. i, . i i
assume that the function a is represented by coordinates u” and v~ in

the finite element Qi(v)

al = B(W) QW) (v = 1,2,3,4) , (25)
in which
P(V) =X, (v =1,4) )
P(V} = 1=~ X (v=2,3 s
(26)
Q(v) =Y (V =1, 2) »
V
Qv = 1-Y (v = 3, 4} .

Here Xv and Yv are the following leocal coordinates given in the finite

element Qi(v), respectively

1 .
X = n (U - (U)) s
VT el "L
(27)
1 i i
Y = : (v - v (V) .
vV Avl(v) L

where, Aul(v) and Avl(v) are widths of the finite element Qi(v) along

i i, . . . .
u~ and v~ directions, respectively. It is easily found

: W,

i i

W= ué(l) = w4 = W@

i vy = w@, ul, w2 - w3

m-1



JAERI-M86—-09¢

i i _ i . i - i
v, = vU(l) = VU(Z) = vL(B) VL(A)
(28-a)
i _ i N i i _ i _ i
v ;o= i) = v (@2 , v . = v, (3) = vU(4) s
and
Aul(l) = Au1(4) = u; - u;_I s
i i _ i 4
Au™(2) = Au (3) = U u .
(28-b)
i N _oi
ANT(LY = Avi(2) = v V.1 s
i _ i - i _ i
AvT(3) = Av({4) = Voq v, .

Using the approximation given by Eq. (25), the partial differential
terms of the integland in Egs. (20}, (21) and (23) are represented as:

Bai Y i
(-——; )g v) -~ € (V) P(w) /AvT(v) s
ov i

. (29)
Ba;
(—=

X i
=) = £ (v) Q) /Au"(v)
8ul Qi(v)

X Y

Where, £9(1) = €3(4) = 1, £X(2) = €5(3) = -1, £°(1) = £°(2) = 1 and
e¥(3) = el = -1.

Now, the integral of Eq. (20) must be carried out for ﬁi(m,n) and
Qj(m',n'). By putting Eq. (29) into Eq. (20), we can obtain the con-
crete form of the mutual inductance Mﬁi(m,n);ﬁj(m',n') between finite

element circuits ﬁi(m,n) and Qj(m',n'), which is

K
M= . B t ' = 5=
3 0nsm) 5 8. 0mont) SN R
i i Y Y 1
(Au™(v) Au’ () e (v) e (W) Avu
- atoy e oy K A7, (30)

- sty sl oy e Aéu

+ AV AV 2oy X AL
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flflf [1 £, £,
VH JO Jo JO {0 pl z

o:S
—
1

eui- .j P(vY PO dXv de dXM dYU .

) rlflflfl f g
AT = €.i" 8,3 P(v) Q(u) dXv de dxu dYU »

VH aoJoJo.@ plz u
(31)
3 f flfjpl Bs fj |
A = | — e s*e 4 v} P dX  dy  dx 4y ,
vu oJojo y 0rp GviTCud Q(v} P(W) X, dY, dX dY)
1rlpelel g 8.
AY = —Jd e e qE dX_ dY_ dXx  ay
v JOJOJOJO o, Svit 8y Q(v) QW) dx  dY LAY

In the case Qi(v) = Qj(u), the integral of Eq. (31) has a singularity
since the denominator p,, becomes zero. The analytical way to avoid
the singularity will be described in Appendix A.

By substituting Eq. (29) into Eq. (21), we obtain the concrete
form of mutual resistnace RQ LG s 3. LGt an') between the finite element

circuits 0, (m,n) and 0, (m n')

4 i
rat(v) Y Y, |
Z ( ———= e (v) £ (V") Btu'

R= = 1 ]
$0, (mym) 350, (m' ym') vel Aview)
@) =9,6") (32)
RO £y X un) B,

-2 s (v) £ (v ), BZ +
! Aul(v)

where
1 A
o= b= ' dy
B\)\)v ./0.‘1(; T]u gi P(v) P(VY) dX\) v ?
flrl i
2 = [ '
va, jojo nuv P(v) Q(v') dXv de s (33)
rlfl . Bl
3 _ 1 _1 1
va, = V £ Qlv) Q(vh) dXv de .

Joio i



JAERT-M86— 096

The area integral of Eg. (21) must be carried out for the finite
element which coincides as Qi(v) = Qi(v').

By substituting Eq. (29) into Eq. (23), we obtain the concrete
form of the electromotive force due to an externally applied field

A(ui,vi)

i

.4 .
el = ¥ (i) eTw) ct - avrewy €800 ¢y, (34)
v=1 v

where

, flrl i
Cv = Jojo fi P(V) Au dXv de s
(35)
, flrl 1
Cv = Jo A 81 Qv AV dXv de .

Using the circuit constants given by Eqs. (30) and (32) and the
externally applied electromotive force (34), we can represent the
circuit equations governing the eddy current, which can be solved
directly with the aid of Runge-Kutta method or analytically with the

help of eigen mode expansion.

4. Boundary Condition and Symmetry

In the foregoing section, the circuit equations of finite element
circuits in a multi-conductor system with arbitrary shape and electri-
cal resistivity distribution are formulated to solve a general eddy
current problem. In this section, boundary condition of the individual
conductor is introduced by adopting a linear map of linear vector
space. - The symmetry of system geometry is also discussed making use

of the same operation on the nodal variables of current function.

4.1 Boundary condition

' . out
Let us consider a bounded surface S with an outer boundary 3C

as shown in Fig. 4., In the figure, an inner boundary ¢'" denotes the
hole and an inner boundary Bcln means the electrical insulation. From
the definition given by ¥q. (1), it is easily found that the difference

of current functions between the certain two points denotes the total
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The area integral of Eg. (21) must be carried out for the finite
element which coincides as Qi(v) = Qi(v').

By substituting Eq. (29) into Eq. (23), we obtain the concrete
form of the electromotive force due to an externally applied field

A(ui,vi)

4 .
el = ) (i) e e - avtowy e ¢, (34)
v=1 v

where

=

lrl ,
¢ = Jﬂ £, P(V) A” dX dYy. ,
0 1 u v vV

‘\‘) '/'
0 (35)
, (lrl :
c2 = Jo«L g, Q(V) AL X dY

Using the circult constants given by Eqs. (30} and (32) and the
externally applied electromotive force (34), we can represent the
circuit equatiomns governing the eddy current, which can be solved
directly with the aid of Runge-Kutta method or analytically with the

help of eigen mode expansion.

4. Boundary Condition and Symmetry

In the foregoing section, the circuit equations of finite element
circuits in a multi-conductor system with arbitrary shape and electri-
cal resistivity distribution are formulated to solve a general eddy
current problem. In this section, boundary condition of the individual
conductor is introduced by adopting a linear map of linear ﬁector
space. The symmetry of system geometry is also discussed making use

of the same operation on the nodal variables of current function.

4.1 Boundary condition

' . out
Let us consider a bounded surface S with an outer boundary aC

as shown in Fig. 4. In the figure, an inner boundary ¢ denotes the
hole and an inner boundary Bcln means the electrical insulation. From
the definition given by Egq. (1), it is easily found that the difference

of current functions between the certain two points denotes the total
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current across a line connecting these points., Therefore, we can
regard the nodal current functions on the outer boundary BCOUt, the
inner boundary BCin and within the inner boundary Cin to be constant,
respectively. Moreover, we can also regard all of the nodal current
functions on the outer boundary acout to be zero since the current
function has an arbitrariness of constant. From the mentioned above,
it is evident that the current function of a point on the conductor
surface S denotes the total current flowing between the point and the
outer boundary acout.

Let N be the total number of finite element circuits on the
conductor S. And, let Ncin= NBCin’ NBCOUt and NO be the numbers of all
nodal points within the hole, on the electrical cut, on the outer
boundary and the numbers of all nodal points except these within
the inner boundaries and on the outer boundary, respectively.
Therefore, the number of independent nodal value of current functicn
is N' = NO +2 =N - (Ncin-l) - (Nacin-l) - Nac°“t in total. Lettlng

V be an ordered set whose member denotes the current function of each

node and, then ¥V can be written

V=aT", {36-a)
A= Aacout Aacin Acin . (36-b)
Where, V' means an ordered set whose members denote the NO-+2
independent current function of nodes, which is reprecented:
V' o= (v v V'V-)T (37
1 o NO Cln Bcln ]
V is also represented
%o Fein Nacin
~ A ™ - A = ——
Vo= (Vl cee VN Vein +o« Voin Vaein --+ Vyoin
0
Nacout
VBCOUt . VBCOut) . (38'&)
where,
(38-b)

Vacout =0 .

713__
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_ NX(N AN o+ )
Ajcout €1 0 CIMTACInTY Ay gy

(NO+NCin+l)X(NO+2)

¢ 1 MoWeinMyoin) (N Wpintl) o

Adjn e T

C denote the respective linear maps in linear

. O
vector space corresponding to the cuter boundary oC Ut, the inner

boundaries 3¢ and C as follows:

N Ncin Nacin

0
—a —~ ——
r -
T 0 0 } } N,
0 I 0| } N
Aacout = cin (39-a)
0 0 1|} Nycin
L0 0O 0 )1 Noour
NO Ncin 1
A - ——
[ I 0 0 } Y,
Aygin = { 0 T 0]} Noin (39-b)
C [
Ngo 1 1
—= ———
o o]} Ny
Agin = 0 1 o |} Noin (39-c)
I .
Lo o0 1 J Pl ,

where, I is unit matrix. If a conductor has many holes or electrical
cuts, then the corresponding linear mapping to these boundary con-
ditions successively done by means of the similar procedure.

From the mentioned above, the similar linear map A in a multi-

conductor system is cbtainable

A = quasi-diag. (Ai) (i=1, ..., XN (40)

cond)
- s XTN; '

Here, A € IZNl INj has a structure of so-called quasi-diagonal matrix

composed of the submatrices Ai of the i-th conductor, which is already

given by Eq. (36-b). The summation I must be carried out over the

EN{XENg R e RZNiXZNi

NCond conductors of a considered system. Let M € 7
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and € € RZNi be the inductance, resistance matrices and the voltage

vector for the variable sets of current function in a multi-conductor
system without the boundary conditions in each conductor. Then, the
reduced inductance, resistance matrices M's RZNi‘XZNi‘, R'e RZNi'XZNi'
and the reduced voltage vector £'c RZNi' are represented by use of the

boundary condition (40)

M' =A'MA

t -T n

R'" = A" RA . (41)
g' = A ¢ .

It is clear that the reduced matrices M' and R' are also real symmetric

because M = MT and R = RT.

4.2 Symmetry

When the geometry of a multi-conductor system has a symmetry with
respect to a common symmetric plame II, then the usual current function
on the conductor S can be separated into the following odd parity part

and even parity part as:

vo4d ) '—'—é—(V(u,v) - V(-u,v))
(42)

even( , )

v = 2(V(,v) + V(-u,v)) .

Here, the common symmetric plane II is given by ut =0 (i=1, ...,

N The odd parity part of current function along the symmetric

cond)'
even

line u = 0 is always zero, and the even parity paft v (0,v) along
the symmetric line u = 0 is given by the usual current function V(0,v).
Fig. 5 shows the symmetry of a multi-conductor system, where conductors
are discretized inte finite elements. Using the representation given
by Eq. (42), the ordered set of nodal current function V on the

conductor S can be described as follows:
V=PV , (43)

in which
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Vo= (V> 0,2)" Vin=0,n" (m<0,m) )T , (44-a)
vr= (P9t ¥R m=0,m)" VR T, (44-b)
(I <ms<sM, Isn<l)

Here the both ordered sets VDdd(m,n) and VEVER

according to the same order of the set V(m>0,n), and the order of

(myn) are arranged

Y(m>0,n) is arranged according to the reverse order of V(m<{,n).

Therefore, the matrix P & IN(dM+l)xN(2M+I) is given by

MY N MW

e e

I 0 1) } My
P=]0 I 0] } W , (45)

[—1* 0 1% } My

where, I* ¢ IMWXMW is a matrix to rearrange the members of ordered set
Nip(2My+1) xEN; (2M;+1)

in reverse. The entire matrix P € T in a multi-

conductor system is described

P = block diag. (P,) =1, ey N (46)

here Pi denotes the linear map of nodal current function for the i-th

conductor, which is given by Eq. (45).

Let M & RZNi(gMi+I)XZNi(2M€+I) be the inductance matrix corre-—

sponding to the ordered set V = (?IT?ZT . ?Ncond)T in a multi-

conductor system, which is given by

1]
(r P P o 3y
Ve 13 1]
m>0, m'>0 m>0, m'=0 ~m>0, m'<0
- ij ij ij
M Mm=0,m’>0 1wffn=0,m'-—"0 h1m=0,m’<0 . G
1j ijf ij
Lk Mm'<0, m!>0 Mm<0_, m'=20 ]l'\JIm<OJ mt< g )J

Then, the inductance matrix M e 7 Ni(zMi+1))<Ni(2M€+I) corresponding

e - T =.T _
to the ordered sets V' = (ViT Vé - VﬁT )T can be represented
cond
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M=P MP . (48)
That is,
¢ il i h
odd, odd odd ,even (m'=0) odd,even
i Tie s
even{m=0) ,odd ~even(m=0) ,even(m'=0) aven (m=0) ,even
vl i i
L\ even ,odd even,even(m'=0) even,even
{(49-a)
where
=17 - Mij _ oy T*
odd ,odd m>0, m'>@ m>0, m'<@ 7j
_ Tl 4.y % (49-b)
i "m<0, m'>0 i m<0, m'<0 73 °
T = i C T (49~c)
odd,even(m’=0) m>0, m'"=0 i “m<g, m'=0 ° ¢
_13 ij 1] x
= +
odd ,even Mm>0, m' >0 Mm>0, m’<01j
* .. %* ..
T . 1] » T  1ij * 3
L Mo, mieo "t Ma<o, m<o Ty (49-d)
1§ _ i A % )
Meven(m=0),odd m=0, m'>0 Mm:O, mt <@ Ij (49-e)
T = 1 L9-£
Meven(mZO) yeven(m'=0) Mm:O, m' =0 (49-£)
—14 17 13 %
= + T -
Meven(m:()) ,even Mm:Q, m! >0 Mm: 0, m'<0 7j {49-g)
_ _ Al o -
even,add m>0, m'>{ m<@, m'"<( 7]
*T 1§ T 1§ %
- 49-h
+Ii m<d, m'>0 IJ‘_ Mm<0, m'<01j ( )
~1j 1j T 13
= + 49-1
Meven,even(m'IO) Mm>0, mt=0 Ii Mm>0, mt=0 ( 1)
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el 1] ij %
M = +
even,even M 0, m'>0 Mm>0, mt < Ij
* . * .
T 1ij T 1] *
+ +
Ii Mm<0, mt >0 Ii Mm<0, m’<01j

(49-3)

From the symmetry of the multi-conductor system with respect to the

plane [I, we obtain the following equations for the inductance subma-

trices

ybd o I*T 1j
m>0, m'"<0 j i “m<o, m'>0

Wi I*T ij *
m>0, m'>{ i "m<d, m'<{g 7]

13 Ty
Moso, m=0 =T Ya<o, m'=0 g
M = uHd *

=0, m'>0 " Tm=0, m'<0 3

(50-a)

(50-b)

(50~c)

(50-d)

Consequently, all of the inductance submatrices between the odd and

even parity parts of current function are always zero in the multi-

conductor system which is symmetric with respect to the commen

symmetric plane II. TFinally, we obtain the inductance matrix M

r' i. .. %
i S
220, mrso " Mo, mr<o Ty 0
_ 1] i)
M= 0 M=o, m'=0 M0, m'>0
1 i3 1]
|0 My 20

>0, mt>00, mso 1y

*

(51)

In a similar way, we can verify the orthogonality of resistance,

that is, the odd parity and even parity parts of current function are

decoupled with each other.
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5. Formulation in a Multi-Torus System

This section describes the detailed investigation on an applica=-
tion of the finite element circuit theory discussed in the previous
sections to the eddy current problem.in a composite multi~torus system.
It is supposed that the considered multi-torus system, in which each
torus is discoﬁnected with others, is symmetric with respect to an
equatorial plane of the system geometry. Therefore, the odd and even
parity parts of current function with respect to the equatorial plane
are separately treated in what follows. As is described in subsection
5.4, the odd parity part of current function with respect to a toroidal
symmetry couples only the magnetic field provided by a toroidal field
coils. For this reason, parity of current function is assumed to be
even with respect to the torcoidal symmetry.

In order to analyze the eddy current in a multi-torus system
composed of many tori, one must customarily carry out multiple
integrals to obtain the circuit constants and solve a large-scale
generalized eigenvalue problem to get the eigen mode of eddy current
paying for a great deal of computational cost. Although a reckless
practice with the aid of the theory discussed in the foregoning sec-
tions 1s basically possible, however, this will not be practical
because of the existing restrictions of computer storage and computing
time. In order to avoid these restrictions of computer, the improved
method is described in subsections 5.1 and 5.2. The improvement is
provided by the mode reduction of eigen eddy current and the intro-
duction of shape function into the double area integral for the
coupling between eigen modes. Firstly, the eddy current in a multi-
torus system is obtained for the bases of eigen function, which
indicates the eigen mode of eddy current on a corresponding torus.

In subsection 5.1, formulation of the eigenvalue problem is given for
the system composed of a torus. In this step, the inductance matrix
of the multi-torus system has vet off-diagonal block submatrices (see
Fig. 8), that is, the eigen modes defined on different tori couples
with each other. Next, we individually select a set of the dominant
modes from the entire modes of eddy current on the respective tori by
eliminating the uncontrollable and higher modes. The discussicn on
this mode elimination is carried out in Appendix B by means of "con-

trollability" familiar in the theory of linear multivariable comtrol
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system., Finally, after evaluating the mutual inductance between the
reduced eigen modes, we solve the reduced eigenvalue problem in an
entire multi-torus system. Those are described in subsection 5.2.

In subsection 5.3, the external coil systems controlled by the given
voltage are introduced to simulate the poloidal field coils in an
actual tokamak. Formulation to evaluate the three—diménsional magnetic

field due to an eddy current is represented in subsection 5.4.

5.1 Eigen mode of eddy currents localized in a torus

Consider a multi-torus system composed of Ncond tori as is illus-

trated in Fig. 6. The system geometry is supposed to be symmetric
0. Let (¢,%) be the orthogonal

]

with respect to the equatorial plane z
coordinate system defined on the torus 5. In a cylindrical coordinate

system (r,¢,z},

r = r({&) , z = z(L) . (52)
Taking x-axis as the direction ¢ = 0, Eq. (9) is now rewritten as:

x = r(l) cos¢, vy = r(l) sing, z = z(ik) . (53)

Here, the scale factors f and g given by Eq. (11) are also rewritten

as:
£ o= r(® , g = 1. (54

Coordinate line % and ¢ are defined between the interval [2_,£+] and
between the interval [-m,7], respectively. In the case that a torus
cross—~section is closed, two points (¢,£n) and (¢,2+) conincide with
each other., Unit tangent vectors along & = constant and ¢ = constant

are respectively expressed as

(- sind, cosd, O)T s

D
[l

(55)

T

dr )

cosd dr dz
> de dg,

Consequently, the double area integrals for the mutual inductance
o —_ . . - 3 = m 1

Mﬂ(m,n);ﬂ(m',n') between the finite element circuits Q(n,n) and

Q(m',n"), which is given by Eq. (31), are represented in the following

concrete forms as:
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f]rlfl 1 r.r,
Vo loigloly Pis

h
—
[

cos(¢2— ¢1) P(v) P(u) dXv dYU qu dYU ’

) flflflf r, dr,
A —— e 5] - P d¥ dY d4dX dy .,
i J bolode 712 3, sin(d, - ¢y) POV QG dx d¥ dX dY,

(56)

D>ua
1]

pl{ [ ( r, dr,
— — sin($, - ,) Q{v) P(y) dX 4y dX dY ,
VI JOJOJOJO Py, 42, 1 72 1 2R DU

[ lflf 1 dr, dr, dz:L dz,

{ cos(d, -6 + - ag;

TR } oy o

=
F
]

WU o*o o Piz
d¥ dy d4dX d4dy .
v Sy Ty

And, the area integrals for the resistance Rﬁ(m n);@(m‘ s+ which is

1)
given by Eq. (33), are also represented in the following concrete forms

as:

N flfl

Boor = JOJO n¢(v) r; Pv) POVT) dX dY 0,

BZ , = rlrl (v) P(v) Q(v') dX , dY (57)
\)\)t JO JO T](Ml U . N

11
82, = [ | nw) o) o) &x ay
' JOJO Ny T, ooyt

If the finite element is sufficiently small comparing with the size and
radius of curvature of the torus, then f, g, e¢ and ez can bhe approxi-
mated to be constant as f, g, e¢ and 62 within the respective rectan—
gular finite element. In the case the finite elements (v) and 2(u) do
not overlap each other, p,, can be well approximated by 0,5, which is
the distance between centroids. Therefore, one can rewrite Egs. (56)

and (57) into the following simple forms, respectively
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Al =2 7 %
VH 4 512 ¢1 ¢2
T
5 1 - -
= e * e .
W5, ¢ 9,
_ (56")
3 I, - -
A = e, *e ,
Wug, ot
1 - -
AY = e v e .
VL 4 512 21 L,
and
n, (v}
SR A
\)\)l 4 1 H)
2 " 1
Bovr = 0 s (57")
\ Ny (V)
va' - - '
b T,
Here, n¢(v) and ng(v), which mean the electrical resistivities in ¢ and

% directions, are supposed to be respectively constant in the finite
element (V). On the other hand, in the case that the finite elements
f(v) and Q(u) overlap each other, it is difficult to carry out the
integral (56) since the integrands are singular at p,, = 0. The
analytical way to aovid the singularity will be described in Appendix
A.

For more explanation, let us consider a finite element mesh of the
torus as is illustrated in Fig. 7, where the three-dimensional torus
conductor is extended to a plane. N, denotes the number of toroidal

¢

periodicity of the considered multi-torus system. £ = 0 line on the

torus coincides with r = r(0), z = 0 line. The torus is divided into
4N¢MW rectangular finite elements with a same toroidal width but a

different width along the torus cross—-section. Following features of

the torus geometry are obviocus with regard to the inductance M.
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(a) The symmetry of torus geometry with respect to the equatorial
plane gives the relation

Mﬁ(m:n); PICANTAD Mﬁ(ma—n); Q' ,-n') (58-a)

(b) The axisymmetry of a torus conductor gives the relation

M) s Bt onty T Mmkon) s Bty (58-b)

(c) The symmetry of torus gemometry with respect to the ¢ = 0 plane
gives the relation

Mm,m) s Bontnty T Memn) s Beamt ity (59-¢)

Here, |m|,|m'| < MN¢ and |n|,|n"| £ ¥. It is also obvious

Mﬁ(m,n);ﬁ(m',n') = Mﬁ(m',n');ﬁ(m,n)' Consequently, the numerical
i — - = e =

calculations only of MQ(O,n);Q(m’,n') (n=0,...,0m 0,...,MN¢

vaesl,0e.N) are sufficient in order to obtain the objective inductance

in'=-0W,

matrix. In Fig. 7, it must be noted that the boundary 3C(7n) always
coincides with 3C(-7), and the finite element circuits 50(m,V) along
the boundary 8C(£+) or 3{(m,-N) along the boundary 3C(2 ) are composed
only of (1) and R{2) or R4} and 2(3) rectangular finite elements,
respectively. The finite element circuit ﬁ(MN¢,n) overlaps with

R(=MN,,7).

¢

From the periodicity of current function whose interval is

2m 2T
=i, — (i, +1 1, =0,..., N
[, o ¥y Qe ¥ D1 Uy ) Ny "
even parity of current function with respect to Y, i3, we can reduce a
2MNG (2N+1) % 2MNg (2N+1)

-~ 1) and on the assumption of

dimension of the inductance matrix M ¢ A to M' &

RO%+1)(2N+I)X(M+I)(2N+I) making use of a similar manner to the discus-
sion on symmetry described in subsection 4.2. Namely, because that
the current function V(m,n) on the node (m,n) (0 £m s 2M-1;-N s n = IV)

is same with V(2Mi +m,»n) due to the toroidal periodicity and V(ZMi¢—m,n)

¢

due to the even parity, we can obtain the following equation
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N,~-1

Mﬁ(m,n) Y AR A O‘quJ :lo { Mﬁ(m,n) s QM1 Hmt ')
¢

b

* By Mﬁ(m,n); Q(ZMi¢—m',n‘) b (60)

Where, 0 < m, m’ £ M and |n|,|n'| € ¥. If m =0, ¥, then o =1,
otherwise o, = 2. If m' =0, ¥, then Bm’ = 0, otherwise Bm’ = 1.
Furthermore, the parity condition with respect to the equatorial
plane divides the inductance matrix M' into an even and odd matrices
with reduced dimensions. As is emphasized in subsection 4.2, these

parity parts decouple with each other., As for the even parity part,

. teven
the mutual inductance M

Qon,ny 3 Don' n') 18 represented by

'even !

Remony 3 Q') - e R0mn 5 Bt nh)

¥

+ 6n'Mﬁ(m,n); Qm' y-n'")

) ’ (61)

here, 0 £ m, m" £ M and 0 £ n, n' £ . If n =0, then Y, = 1, otherwise

Y, = 2. If »n' =0, then 6n' = 7, otherwise 6n' = 1. Consequently, the
dimension of inductance matrix M'S ol is (M#1) (N+1)x(M+1)(N+1). As for
'odd

the odd parity part, it is evident that the mutual inductance Mﬁ(m n);
] 3

o' ,nY) can be represented by

'odd '
Moy sy T 2 M ; Gt nt)

= M5 mn) ; Qm! ,—n')) ’ (62)

where, 0 £ m, m'" £ M and 7 £ »n, n' £ N. Now, the odd parity part of
current function with respect to the equatorial plane has no current
component across the boundary BC(2+) or 3C(% ), that is, the current
function of odd parity part is constant along the boundary 8C(2+), even
if the torus cross—section closes its circumference. Therefore, these
boundary conditions given the reduction of matrix dimension in terms of

the following representation as
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M

'odd _ 'odd _
Mm,ny s Doy T TR Rt (n %), (63-a)
and
M M
'Odd 'Odd
M ; O = 1 P M= . Tt (63-b)
Q(O,N) > Q(U;N) m=0 m’-‘-TO Q(m,N) H Q(m ,N) .
L]
Consequently, the dimension of inductance matrix M odd for the odd

parity part of current function is (MFW-M+N)x{(MN-M+V).
Now, consider the resistance matrix. It Is sufficient to calculate

only R senes My m' =m, ml;n=0,..., N, n' =mn,

Bom,n) 5 Dot ety 0

#+1) in order to obtain the objective resistance matrix. Here, the

following features of the torus geometry are used.

(a) The symmetry of torus geometry and electrical resistivity with
respect to the equatorial plane gives the relaticn

RS (myn) s B0 1ty RdGma-n) 5 B(m,-n') (64-a)

(b) The periodicity of electrical resistivity gives the relation

Rﬁ(m,n); Qm' ") - R§(2Mi +oman) s G(EML, + m',n') (64-b)

¢ ¢

{c) The symmetry of torus geometry and electrical resistivity with

respect to 9 = 0 plane gives the relation

RS many 5 Ben'on®) T (em,n) 5 Deem' nt) (64=c)

It is evident from the definition of electrical resistivity that if

lm = m'| 2 2 or |n - n'| 2 2, then Rﬁ(m,m); Sont oty - 0, and

Ry 3 Bemt oty T R0t "y ;3 Dimam)”
According to the procedure described in the calculation of the

inductance matrix, from the periodicity of current function with

interval | %ﬂ i, %ﬂ (i¢+l)] (i¢ = 0,000, N¢-l) and on the assumption
2T

of even parity with respect to ﬁ? iy, we can reduce the order of the
LN+ 4 x
resistance matrix R & Rz&m®( N+ X?MN¢(2N+I) o R' € R(M+I)(2N+l)

ﬁM+1)(2M+1)_ The element of R' is denoted by



JAERI-M 860948

)

RS,y 3 Dot an™y = S N6 Roman) 5 Bty (63)
Where, [ml,|m’| £ M and ln[,!n'| s N. If my m' =0 or M, then Ot = 1,
otherwise &t = 2. Furthermore, the parity condition reduces the

'even

dimension of resistance matrix. Namely, the resistance matrix R

H(M+1)(N+I)X(M+1)(N+I) of the even parity part can be described such

that

'even !

Qm.n) 3 Rent onY) = T Rﬁ(m,n); Q@m' ,m") ? (66)

where, 0 <m, m'" £ Mand ¢ £n, n' £ 8. Ifn=n"=¢0, then v_, =1,

odd”

\ 1
otherwise Yot = 2. On the other, the resistance matrix R of the

parity part is described by

'odd _ !
RS man) 5 D' on') = ) s Gt on'y

(67)
where, 0 =m, m'" €M and I £ n, n' £ F, Now the current function of

+
odd parity part along the boundary oC{(L£ ) is constant. Therefore, this
gives the reduction of matrix dimension in terms of the following

representatiog as

o odd _ _ o 0dd )
QUm,N-1) ; 0(n' ,N) , Q(m,N=1) 3 00n' W)
m'am-1
{68-a)
0 <m<u) |,
and
alodd ) g m§1 dlodd (65b)
Q(0,8) ;5 Q(0,0) Qm,y 3 Q@m' 0y

m=0  m'=m~1
. . . . 'odd
Consequently, the dimension of resistance matrix R for the odd

parity part of current function is (MV-M+N)x(MN-M+N) .

When the torus has port holes and electrical insulations, the
boundary conditoins can be introduced making use of a corresponding
linear map in linear vector space, which is given by Egq. (41). 1In
addition, the constant arbitrariness of current function can be removed
by putting the current function of even parity to be zero at a given
node. Now, the preparatory formulations are completed for the general-
ized eigenvalue problem (5), which should be individually solved sub-

ject to the considered NCond tori. Here, the eigenfunction is normalized
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in its joule loss per unit time {sec) on the corresponding torus con-
ductor. It is clear that eigen modes of eddy current on a torus are
decoupled with each other, however, these are coupled with the eddy

current modes on the other tori through magnetic interaction.

5.2 Eddy current preblem in a multi-torus system

In this subsection, formulations to solve an eddy current problem
in the multi-torus system are described. firstly, basis vectors of
eddy current in the multi-torus system are defined by selecting the
dominant eigen modes among the entire sets previously obtained for the
individual torus. After that, the mutual inductance Mkikj between the
ki-th mode on the i~th torus and the kj—th mode on the i-th torus is
expressed in terms of these basis vectors. Here, one must evaluate a
great number of the mutual inductance given by Eq. (20). It is shown
that the double area integral can be replaced by a linear combination
of the nodal value of eigenfunction and the so-called shape function
which depends only on the torus geometry but current function. There-
fore, it is sufficient to carry out once the double are integral of the
i-th and the j-th (j#i) tori. The structure of inductance matrix in
the multi-torus system is shown in Fig. 8.

Because that the torus Si are divided into finite elements Qi(m,n)

(|m| ¢ m, |n] < W), Eq. (20) is rewritten in the discrete form

¢
=y )
= - A ..0.) , (69)
Mkikj RN CRORNCENAY Mkikj o
here, AMp .. (. ,92.) denotes the partial inductance between the k.—th
S T St i

eigen mode on the finite element Qi(m,n) of the i-th torus and the
kj—th eigen mode on the finite element Qj(m',n') of the j-th torus.
The finite element $(m,n) is redefined in Fig. 9. Double summation
must be carried out for all of the finite elements on the respective
tori. Now, the current function in the finite element {{(m,n) is
represented in terms of four vertices V(o,u) (0,4 = L,U) which are

shown in Fig. 9

V(¢,8) = ) Y OP(o) Q) Vio,u) . (70)
o=L,U u=L,U

_f'Z'T,.
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Where
P(U)
Q(U)

1 - X ’
I - Y .

1

X, P(L)
Y, Q(L)

(71)

]
]

here, X and Y are the following local coordinates in the finite element

Q(m,n), respectively

1
X = Y (¢ - ¢L) R
(72)

N
YT o= gy -8 .

Therefore, on the assumption that the unknown function a is eigenfunc-
tion V(¢,%), the differential terms of the integrand in Eq. (20) are

expressed as

3V _ 1
( ﬁ )Q(m,n) - AL G=‘E U U=E U E(U) P(O) V(O!U) »
(KD,
\' 1
(35 -3 11 e@em vew
§3(myn) g=L,U p=L,U
here, ¢(L) = =1 and c(U) = 1. Using Eq. (73), the partial inductance
AMkikj(Qi,Qj) is given by
A (R, = ) N
Mkikj + 9,=L,U U, =L,U O, =L,U 11,=L,U
{E(Ul) e(uy) @o 0, (myny m',n')
1
+ (i) €(oy) Bcluz (myn; m' yn')
- T )
+ €(g,) (1) Yulgz (myn; m",m'")
+ £(g,) €(0,) 6U1U2 (myn; m',n')}vk_(al,ul) Ve (02505)
1 ]
(74)
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where

L el .
mynym' ,m'y = Aci)l Agbj ffj {. 12
Ty 040 P12

x e¢i' e¢j P(o;) P(o,) dX; dY, 4X, dY, , (75-a)
@?nm ') = et g j:ff

040 912
x e¢i- E,Q,j P(o,) Q(u,) dX, dy, 4%, 4y, , (75-b)

r

. . lfl
Y (mynym',n') = At A¢J j' j.
Ulo?_ 0v040 D12

x egi. e¢j Q(ul) P(o,) dX, ay, dx, dy, , (75-c)
i plelelel
5 (mynsm' ') = AL Mjfjff
HiM2 0704070 P12
x e 1" e, Q1) QW) dX, dY, dX, dyY, . (75-d)
o R . and & d td d th i f ti £
UIUZ BOIUZ Yuloz n UIUZ O no epen on e elgen UNncrLion o

eddy current and but only on the system geometry. We call these double
area integrals shape function between the finite element Qi(m,n) and
Q,(n'yn"). Although one must evaluate a great number of the mutual
inductance corresponding to the eddy current modes, the use of shape
functions (75) has an advantage to save the computational cost. That
is, once the shape functions between a set of tori are obtained by the
double area integral, then all of the mutual inductance can be easily
evaluated by the simple summations of the product of shape function and
eigen function using Eq. (74).

Since the current function, which is either even or odd with

respect to an equatorial plane, is supposed to be symmetric with
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respect to ¢ = 0 and periodic N, times in a toroidal directiom, Eq.
P ¢ q

{69) is rewritten as:

IzmsM
Ly N 12n=N
M = ) Loy B 000
i f; G o) Qj(m',n') i’]
Ismtem? (76)
My Ny ; Zéni_éj‘]’
= A (2,,8,) .
T ) 9@ n) Mkikj v

Eq. (76) holds for both parity parts of the current function with
respect to the equatorial plane. Furthermore, let us notice the follow—

ing relations of current functiom, i.e.

vim',n') = V(2M'i¢ +m',m")
g ' ' (g = Osuees Ny = 1)
= V{(2M 1¢ - m'+I,n") , (77
and
VEVER (') = VR ' ), (78-a)
LIS S (78-b)

By making use of these relations, we can redefine shape functions

eyen even even even
o {odd }, B {edd }, Y ke and & (6dq™) corresponding to the respec-
G109, T1Hy K19, HyHy
tive parity parts of current function. Here, two lines in the brace

of superscript demote the considered parity. Those can be shown for

both parity parts

eveny
odd o
(mynym' ,n')
919,
N¢*1
= . T Tty 4 k(myn oM, - m'41,m
124){(a0152(m’n’2M 1¢ +m',n') qglgz(w ny oM l¢ m'+1,m'Y))
¢
+ (o (myns2M'i, +m',-n'+1) + o x(mm; 241, - m'+1,-n"+1)) 1,

010, ¢ U310, ¢

(79-a)
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even
{odd !
Bcluz (mymsm',m")

N¢—l

+ (B 2*(m,n;2M'i

g1l ¢

even
{odd }

Y0, (mymsm',n')

N¢-1

il
t~1

. fz ' ! *
L {(Yulgz(ngn,ZM'1¢-+m Rz )-%Yuloz (m,

Yo

+1

.2Ml'-
(v 1Gz(m’”’ i

even
{odd !

HiHz2
N, -1
¢

= {(¢
i¢£O M

(mymsm',n’)

uz(m,n;&’\d”i +mi,n’y - tSU

¢

b
<

+ (& 2*(m,n;2M’i

+m!,-n'+1) - ¢
VRS M1

[ Uz

+m' - +1) - * ;O
m',-n I). Bdluz (m,ms i

i ZO {(Bgluz(ﬁan2M'i¢-Fm',n')ﬁ-Bgluz(m,n32M'i¢-—m’+jjn:))

-m'+1,-n"+I)) ),

¢
(79-b)

n_;ZM’icb-—m’ +1,n"))

~#m',-n'+l)—kyuloz*(m,n;ZM’i¢—-m’+1,-n'+1))},

(79-c)

meynsEM'L —m'+I,n!
Hz( ? ¢ 7))

*(m,n;ZM’i¢-m’+l,-n'+1))},

(79-d)

Where, gp%, U2¥ = L when Uz, Uz = U or 02%, 2% = U when 02, Uz = L.

The upper sign in brace of a right-hand side is for

the lower sign is for odd parity. Consequently, Eq.

in the following final form

1<m<H 1<m'sM! cven
J L Lan P71
) o m¢ 1<nsl 15n’<W {odd }

M, T T

ij i Qi(m,n) Qj(m',n')

even parity, and

{76) is rewritten

(Qi, Qj) . (80)
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EH 3'.0.

Here, AMy . iky (Qi,ﬂj) can be immediately obtained by substituting
Eqs. (79) lnto Eq. (74).

Now, letting MSys be the inductance matrix of the multi-torus
system, which has a structure shown in Fig. 8, consider a following
eigenvalue problem

SYSX = diag(A)X ’ (81)

here, A means the eigenvalue of eddy current in the multi-torus system.

& L ®
LK "XIKg of modal matrix of Eq (81) in the multi~

'XTK 4%

The solution V¥V ¢ R

of eddy current

"XK'*
mode on i-th torus together w1th the reduced modal matrix @.* £ RNl 1

torus system provides the eigen function W £ R i

of i~th torus alone. Here, N denotes the number of 1ndependent nodal
points and K denotes the mode number of selected eddy current after
mode reductlon on i-th torus. That is,

V. = oy, (4= 1seues N ), (82)

i i1 cond

* &
Ky xZKq

here, W g R is a following submatrix meaning it is a modal

matrix only of i-th torus taking @ as a representative basis

¥1
Y2

¥ = . (83)

cond -

Now, we can simulate the transient eddy current in a general multi-
torus system by the linear combination of sclutioms of the first order
ordinary differential equations, which is in the same form with Eq. (6).

When the electromotive force £ on k—-th mode is applied by a transient

k

current source J(t)}, £, 1is represented

k

ek = Sk J(ty , (84)

where { ) means time differentiation of ( ). The time independent

constant S  denotes the mutual inductance between k-th eddy current

k
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mode in the multi-torus system and a current-controlled coll system.
Here, the coil system is supposed to be axisymmetric and to be sym—
metrically arranged with respect to an equatorial plane of the multi-
torus system. Therefore, the vector potential due to unit current of
the axisymmetric coil system has only a toroidal component Aé(ﬂ) on
i-th torus

Ai(s?,) = ¥ Q) Aim in 9 0nm) (85)

1=L,U

Where Ai(T) is the corresponding nodal value of vector potential. On
the other, suppose that the current function W?(¢,2) in the finite
Qi(m,n) is described in terms of four vertices WE(O’U) (o,u=L,U} in
the similer form to Eq. (70). Putting Fq. (85) and the current func-
tion W§(¢,R) into Eq. (23), we can obtain Sk in the following concrete

form as:

Tzm=M
cond Isn=N

S, = 4N ) ¥ ¥ )

i=1 @, (myn) o=L,U w=L,U 1=L,U

W) Kgp Ay(D) VW (86)
here
. Ll
Xyp (57) = Ap*t f/ r, P(0) Q(1) dX dY . (87)
040

XOT(m,n) does not depend on the eigen mode of eddy current but only on
the geometry of considered system. Although one must evaluate a great
number of the mutual inductance Sk’ the use of shape function (87) has
an advantage to save computational cost. Once the shape function are
obtained by the area integral (87), then ome can easily evaluate all
of the mutual inductance Sk by the simple summation of Eq. (86). Eq.
(86) holds for both parity parts of current function with respect to
the equatorial plane. In the case that an usual vector potential can
be decomposed into its even parity part and odd parity part, the even
parity part of current function couples only with the odd parity part

of externally applied vector potential, on the contrary, the odd parity
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part of current function couples only with the even parity part of the
vector potential.

Although a suitable numerical method such as Gauss-Legendre
quadrature form is most commonly used to carry out the integrals (75)
and (87), the following conventional method is available if the finite
element Qi(m,n) is sufficiently small comparing with the size and radius
of curvature of the torus and the finite elements concerned are kept
away from the other. 1In that case, the variables of integrands except
for the interpolation function (71) can be approximated to be constant
as ;, 5, §¢ and éR in the respective rectanguler finite element, so

that Egqs. (73) and Eq. (87) are respectively rewritten in the following

simple forms

a5 memsm',nty = A hgd —2 G ;" e j o (75-a')
L2 b pr, ¢ 9
i 7 .r-l - -
By, (omsmsn’) = Ag7 ag] e v (75-b")
1H2 4p12 ¢ QJ
i i T
Y, o (m,yum',m')y = AL A¢J — e ve . . {(75-c")
Hate By, L@
§ . Gmmgmtaat) = artagd e T eE L, (75-d")
Hatz 4, A8
and _
ik
= i 1

Throughout the paper, the multi-torus system is assumed to be
arranged symmetrically with respect to an equatorial plane. Therefore,
formulations to solve a general eddy current preblem have been present-
ed separetely for the individual parity part of current functiomn, since
both parity parts decouple with each other. To the contrary, if the
considered system is arranged asymmetry then both parity parts must be

treated simultaneously because they couple with each other.

5.3 Introduction of an external coil system

If there exists Nc voltage-controlled coil systems in the

oil
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considered multi-torus system, the circuit equation is governed
*
together with the K eigen modes of eddy current obtained in the

previous subsection as follows:
M  + RX = E . (88)

HK*+N i1 s : .

Where X & coll is the current vector including Ncoil voltage-—

controlled ceoil systems, which is represented by

T T.T
X = (x y ) s (89)

K+ | .

here, X € R is a current subvector of the eddy current modes in the

multi-torus system and y € Reoil j¢ the current subvector of voltage—

‘ *

controlle% coil systems. K denotes the total number of eddy current

cond (K# N n11) ¥ (K¥ N 611)

modes as & K.. M, Re R
i=1 i

and resistance matrices, respectively, which are given as follows:

are the inductance

[ 2 m; - m
{ 0 :ll rlNcoil
o
M = 0] ?\K.k Wk = Mgk (90=-a)
coil |
L:----M
k\ rlNcoil
1
Sym. \\ﬁ
) Syt Neoil
f 1 h
v 0
N 0
O \\
Ro= 1 (90-b)
R
1\ 0
0 AR
0 .
k coil
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In which, mkn means the mutual inductance between k-th eddy current
mode and n-th voltage-controlled coil system Mnn' denotes the mutual
inductance between n-th and n'-th voltage-controlled coil systems.

E e RK*+NC°il is the electromotive force vector. Let g_ € Aeoil gng
e, ¢ RNCOil be the electromotive force of veltage-controlled coil
systems due to the externally applied vector poutential and the veoltage
source of voltage-controlled coil systems, respectively. Then E is

represented by

€y } %
: '
E = 1
€ | ‘ (91)
£ + e J}N.
c c coil

Now, the resistance matrix (90~b) 1s already diagonalized, so that

one can easily obtain the following eigenvalue problem

M W diag(T) W , (92)

]

here M is real symmetric and positive-definite
_ 1
M = R®MR?Z . (93)

Let ¢ be the modal matrix of the eigenvalue problem (92). Then, k-th

eigenfunction Wk is described by

k -3 =
W = @R? @)k . (94)
Here, the subscript ( )k denotes k-th column vector of the matrix ( ).
The electromotive force vector E' for the newly obtained eigen modes

is given
E' = & R2E . (95)

So far, the circuit constants are supposed to be time-invariant,
therefore, the finite element circuit method is not applicable to the
time-variable problem. However, we frequently encounter a time-
variable eddy current problem in tokamak, where the plasma resistance
changes every moment during a plasma discharge. In spite of the
restriction, if a time varying electrical resistivity is given, one
can simulate the transient eddy current including the time-variable

coil system by use of the approximation descretizing a time interval
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into a set of finite time domains. The detailed discussion on the

approximate method is described in Appendix C.

5.4 Resultant magnetic field

In this subsection, a magnetic field due to eddy current is
described. Fig. 10 shows the concept of magnetic field structures
relevant to parity of the eddy current. Since the assumption of even
parity of current function in the toroidal direction, the magnetic
field structures shown only by the subfigures (a) and (b) are discussed
in the report. The odd parity part of current function with respect to
the equatorial plane produces the magnetic field perpendicular to the
equatorial plane. On the contrary, the even parity part produces the
magnetic field tangent to the equatorial plane.

- Co?side? a cylindrical coordinate system (R,Gtz). Letting Ai =
(A;R, Ais, A;Z) (i=1l,.ee, N ) and AkJ = (0, Aﬂs, 0) (3= lyeuns
Ncoil) be the vector potential due to the k-th eigen mode on the i-th
torus and on the j-th voltage-controlled coil system, the vector
potential Ak of the k-th eddy current mode in the multi-torus system

is given by

cond . Ncoil

— 1 j
Ao = 1 AE T AT (96)

Bk = ¥V x Ak . (97)

j k
Ai is easily represented by making use of the vector component Wj of

the k-th eigen function as follows:

k H
. U, W, '
AJK(R,Z) = —OZ—FJ— 2] ﬁ{(%—k)K(k)—%E(k)} , (98)
h,=1

where h, denotes the axisymmetric loop of the j—th voltage-controlled
coil system. (RC,ZC) is a coordinate of the hj—th axisymmetric loop.
K and E are the respective complete elliptic integrals of modulus k.

k is defined by



JAERI-MB86— 0985

4 R R
ko= < _ (99)
2 2 .
(R + RC) + (Z ~ ZC)

A; is now given by

. U J.
A; . J‘ 2 45, . (100)
S

Here, the integral is all over the torus Si' p is the distance between
an integral point on Si and the space point (R,0,7Z). Jik is expressed
by Eq. (15) in terms of the k-th eigen function of eddy current on the
i-th torus W k In the cylindrical coordinate system, each component

of Ak are represented

k
Al Ho 1 awi .
kR(R,e’Z) H (bi 1 _F?)_ { 82: Sln(e - ¢)

k
M, gp i i
- T @ cos(8 - ¢)} d¢~ di , (101-a)

, k
A . L {awi 8
ke(Rse!z) - Z’T—T i Ri ? EY) COS( - Cb)
3Wik dr ii
+ 55 4@ sin(6 - ¢)} d¢™ d , (101-b)
i _ e 1 i dz i i _
AkZ(R,B,Z) = fl le = e 4 de* dat . (101-¢)

Now, we here discuss a symmetry and periodicity of vector poten-
tial. It is evident that the vector potential £q. (96) is periodic in
% l(b, Nq) (1¢+1)] (l¢’ = Dyeess N¢' - 1),

which is same periodicity of the multi-torus system. Furthermore, the

8 direction with an interval [

radial component AkR and axial comgonent AkZ of vector potential are
1¢+

N

both odd with respect to § = 7 because of the summetry of
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current function. But the component along O-direction is even with
(2i4t1)

N

in the multi-torus system is decomposed inte odd and even parity parts

respect to both of 0 = é% i¢ and . When the current function
with respect to the equatorial plane, the parity of vector potential
is classified as Table 1. From the above-mentioned, it is sufficient
to evaluate the vector potential in a range only of § = [0, ﬁ%'] and
Z 2 0.

Since the individual torus is divided into finite elements, the
area integral given by Eq. (101) can be rewritten in the discrete form.
Now, introduce the shape functiomns Ecu(m,n), wgu(m,n) and wou(m,n),

which are denoted by

1r1
_ 1 i e
Ecm(m,n) = J;J; 5 {r; 847 (W) P(0) sin(0 - &)
. dr.
- MY ) QW _i cos(8 - ¢y} dX dY (102-a)
as
1 i
w(m(m,n) = KJ; ry {ri Ap™ e(u) P(0) cos(B -~ &)
. dr,
+ AR e(o) Q@) i sin(8 - $)} dX dy , (102-b)
dg
7—1 Azl dri
ngu(m,n) = j:)o e (o) Q(u);;ih ax dy . (102-¢)

Where, X and Y are the respective local coordinates in the finite
element (m,n), which is already given by Eq. (72). Then Egs. (101)
become to be the following summation over the finite elements on the

i=-th torus

. g
i k .
(R,0,2) = -~ ) ) Y £ (mam) WU (oW (103-a)
AkR ol Qi(m,n) g=L,U u=L,U o +



Ao (R,6,2)

A.Lj;Z(R,e,Z) =

Ho
47

= Ho
4
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) P ) W, (1) Wik(c,u), (103-b)
Qi(m,n) 0=1,0 1u=L,U H

I Z X Wgu(m,n) wik(c,u). (103-¢)
Qi(m,n) o=L,U u=L,U

k
where Wi(U,u) denotes the nodal value of the k-th eigen function on

the vertex (o,u) of the finite element Qi(m,n). The summation for the

finite element is all over the i-th torus.

Furthermore, we can redefine the shape function by making use of

the symmetry and periodicity of current function in a toroidal

direction and the parity with respect to the equatorial plane, that is

{igzn} N¢_l 2Ti 2Wi¢
ggu (m,n) = 'E {gUU (—srjg+ﬂﬂ,n)-%60*u( o, n)
1¢=O ol ol
2Wi¢ 2mi
g C ot D)+ e e, ) (104-a)
¢ ¢
[evemy N¢_l 27i 2mi
wgfﬁl(mn)=.:_ mml(N¢+mﬂﬂ+wa(N¢—mH,n)
1¢—0 ¢ ol
2mi 27i
t (g a ot D) =Wy -, -n+1)) 1, (104-b)
¢

b

{eveny Nyt 27 2mi
odd _ o ¢
ou (m,n) = '%" {wcu ( N -+m,n)-+wc*u { N m+l, »n)
1¢—0 ¢ ol
2Ti 2mi
Vg (T;i by ntD) + N¢¢—m+l, )Y}, (104-c)
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where g%, W% = L when o, = U and g%, u* = U when o, = L. The sign in
brace of a right-hand side must be taken "+" and "-" for the shape
functions of "even parity" and "odd parity", respectively. Introducing

Eq. (104) into Eq. (103) leads to the following simple forms

even 1smsM
iloga * Y, s .
Ar (R,8,72) = I ¥ ¥ ¥
Qi(m,n) o=L,U0 u=L,U
{even} {even}
£y Oy w0 oy (105-a)
even 15ms
SV Wy I<nsm

8,00 ®82) = = ] Lo

Qi(m,n) o=L,U 1u=L,U

{eVeD.} {even}
dd k ‘odd
Wy % ey w0 e, (105-b)
. 1SmsM
{&veny u, I<nsW

i odd
o = = ) )
Qi(m,n) o=L,U u=L,T

>
N
S~
‘:‘xl
‘.GD
™~
g
i

{even} { even}

odd k "odd
wGU (m,n) Wi

(o,u) . (105-¢)

Lastly, magnetic field due to eddy current is described by putt-
ing Eq. (105) into Eq. (97). Now, we make use a box-shaped finite
element  obtained by descretizing the three-dimensional space (R,9,Z)
into finite elements as shown in Fig. 1l1. Supposed that Ak(R,B,Z) in
the finite element § can be expressed in terms of the interpolation

function P(0), Q(W) and R(T)
AR9,Z) = 7} )} PO Q@ RM AL0WD ,  (106)
o=L,U p=L,T T=L,U .

where, Ak(O,u,T) is a nodal value of the vector potential on the vertex
(Go,U,T) of the finite element {?. The interpolation functions are

respectively approximated by

-—41—
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P(L) = 1-2X, POy = X ,

QL) = 1-1Y%, Uy = Y , (107)

R(LY = 1 -V, R(U) =V .

in which, ¥, Y and V are the following local coordinates

X = = (R-R)
AR R s

Y = & (0-0) (108)
AB L ?

Vo= & (z-2z)

T AZ L *

Introducing Eq. (106) into Eq. (97) leads to the following equation as:

Bp®®2) = 1 11 (g s PO R(D A0,

¢g=L,U u=L,U 1=L,U

- 2 €D P(0) QMW Ay (o) (109-a)

1
B, .(R,0,Z) = y Y (5= (1) P(o) Q) (T,1,T)
kb 0=E,U u=L,U 1=L,U Az AkR

- £ £0) QO R(D AL (0,11 (109-b)

1
B, (R,8,Z) = ) y L {E P@+e)) Q) R(T) A (0,1,7)
kZ o=l,U u=l,,U 7=L,0 = 0

- s EG) P(O) R(D) AL (0D (109-c)

At a center of gravity (RC,BC,ZC) of the box-shaped finite element {I,
Eq. (109) becomes
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1 1
B, = — ) Y Voo 5= e(w (0,1,T)
kR b oot L, v 1,y P Sz

A SO N CRIN, ) R 10-2)

1 1
B, = — 1 ¥ Y {5 e A (0,1,
ke b oL, peL,u t=L,u A7 fir

fﬁ e{0) Akz(c,u,T)} s (110-b)

=
1]

Loy 11« 2—11{; +e(0)) A (0,1T)

kZ o=L,U u=L,U 1=L,U

Tos €0 A (@D (110-¢)
C

6. Concluding Remarks

In order to develop a2 numerical code for solving the general eddy
current problem in a multi-torus system, the formulations based on the
finite element circuit methed, which has been applied to a relatively
simple system so far, are given and described in detail. It has been
anticipated that the practice of eddy current analysis in the multi-
torus system considerably enlarges its computational scale comparing
with the actual capacity of computer., Therefore, the investigation
has been perfermed taking sufficient care of the problems in what
follows.

{a) Mode reduction of eddy current without destroying accuracy of
computation.

(b) Good performance of multiple integrals. Otherwise, a great deal
of computational cost should be indispensable.

For the purpose (a), the eddy current in a multi-torus system is

firstly expressed in terms of the basis of eigen function, which is

localized only on a individual torus. Next, a set of the domimant
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1 1
B = z E E { & AL E(u) (OsHsT)
kR 4 c=L,U u=L,U0 T1=L,U RCAB Akz

- e ALGaLD) (110-a)

1 1
B -— ¥ ¥ b {5 e GRS
ke 4 oof,v uL,u t=L,u 2% i

L) AL GmDY (110-b)

=]
Il
|

LT 1 g ) A

kz ¢=L,U yu=L,U t=L,U

1
R A8
c

e (1) AkR(U,u,T)} . (110-¢)

6. Concluding Remarks

In order to develop a numerical code for solving the general eddy
current problem in a multi-torus system, the formulations based on the
finite element circuit method, which has been applied to a relatively
simple system so far, are given and described in detail. It has been
anticipated that the practice of eddy current analysis in the multi-
torus system considerably enlarges its computational scale comparing
with the actual capacity of computer. Therefore, the investigation
has been performed taking sufficient care of the problems in what
follows.

(a) Mode reduction of eddy current without destroying accuracy of
computation.

{(b) Good performance of multiple integrals. Otherwise, a great deal
of computational cost should be indispensable,

For the purpose (a), the eddy current in a multi-torus system is

firstly expressed in terms of the basis of eigen function, which is

localized only on a individual torus. Next, a set of the dominant
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modes 1s individually selected from the entire modes of eddy current
by eliminating the uncontrollable and higher modes. Validity of the
idea depends on the fact that the uncontrollable-higher mode of eddy
current usually decouples with the controllable mode, that is, any
external electromotive force can not affect the unceontrollable-higher
mode, For the purpose (b), the shape function is introduced to avoid
a reckless practice given by Eq. (74) paving for a great deal of
computational cost.

‘In the paper, each torus conductor is supposed to be infinitely
thin although the thickness of torus components in an actual tokamak
device is finite. Our hypothesis requires a moderate variation of
the externally-applied field comparing with the skin time Tskin of the
conductor. To avoid this restriction, it becomes to be necessary to
take three-dimensional eddy current problem for the finitely-thick
conductor into account. Although the procedure stated in the paper is
applicable to three dimensional problem with a finite thickness of
conductor, it seems to be difficult to get the results with good
accuracy because of the restriction of computer storage and computing
time. Even though a torus conductor is assumed to be infinitely thin,
our procedure to evaluate the eddy current in a multi-torus system is
regarded as one of the realistic and effective approach in the general
eddy current problem in tokamaks. The method can provides the three-
dimensional solution in a multi-torus system neglecting a detail of the
penetration of induced eddy current into conductor. From a veiwpoint
of control analysis of tokamak equilibrium influenced by the eddy
current field, the method described in the paper is considered to have
the advantage that the eigen mode of eddy current provides a linear
control model of the lumped parameter system after combining with the
equation of plasma motion. On the other hand, the finite element

5,6) 8,9) are not directly

method or the finite difference method
applicable to the plasma control problem with a help of the linear
control theory in the lumped parameter system, since these method are
basically for the problem governed by a partial differential equation.
In the design studies of JT-60 tokamak, the use of numerical code
EDDYMULT has demonstrated that our procedure is effective in the
general eddy current problem in the multi-torus system including most
of the main étructural components such as a ﬁacuum ﬁessel, toroidal

.. 15,16
magnets, support structures and pocleoidal field coils > ).
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weven wodd
AR odd even
RO odd even !
I
AZ even odd

Parity of wvector potential with respect to the
equatorial plane of the multi-torus system,

W denotes a current functiom.
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U = const.

W = const.

Fig. 1

Current function V on a conductor S and coordinate
system (u,v,w). The conductor S lies on the

C is a simple closed boundary.

coordinate surface w.

Fig. 2 Multi-conductor system with hole and electrlcal cut ¢,
Conductor S; lies on the coordinate surface w'. The curvi-
linear coordinate system (ul,vi,wl) is defined separetely
corresponding to the individual conductor. (ul,vl) denotes the
two dimensional orthogonal coordinate system on Sy.
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Avi{4) ]

k (m ,n} | - Qi)
e | aiefl v V)
AvH{1) 4 AvH(2)
— — Vi ul (V) ulw
Autl) [AuT(2)
Urin-r U}n U;nﬂ

Fig. 3 Partition of the conductor S into finite elements 94 (V)
(v=1,2,3,4). There are four rectanguler finite elements in
the finite element circuit §. (m,n) corresponding to the node
(m,n), where these are numbefed in a counterclockwise sense.

V = const.

/

V=const.

Fig. 4 Boundary conditions in conductor surface S bounded by
dcout, ¢in and 3¢in mean the hole and the electrical
cut, respectively. On the outer boundary 3COUL, V can
be zero because an arbitrary constant can be added to V.
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Fig. 5 Multi-conductor system symmetric with respect to

Fig. 6

a common symmetric plane I, which is given by the
coordinates ul=0 (1=1, 2, ..., Negnd)-

Z4

Multi-torus system. {(¢,2) is a two-dimensional
orthogonal coordinates on the torus S. (r,t,z)
and (x,y,z) are the usual cylindrical coordinates
and a Cartesian coordinate system, respectively.
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diag (Ay)y (my o) | (m

1 ItNC-OTId )

(my )" diag (\,)f == l(m,

+Neond

T .
M Neond M2 leong |~ 101090 o

Fig. 8 Structure of the inductance matrix in the multi-torus system.
Ai denotes the eigenvalve of eigen mode on the i-th torus
conductor. (mi ) means a submatrix of mutual inductance

L]
between the eigen modes on the i-th and j-th torus.

X=0 X=1

VIL,U) V{U,U)
p=u B !
0 0 (m,n)

Al Q(m,n) 2
I VL, L) V(U,L)
p=L - . Y=0
AP

Fig. 9 Finite element {i(m,n) corresponding to the node
(m,n), the nodal wvalue of current function V{og,u)

on the vertex {(o,u) and the local coordinate (¥,Y).
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Parity of eddy current (illustrated by a thin arrow)
and structure of its corresponding magnetic field

(a thick arrow). The magnetic fields of subfigures
(a) and (b), only of which are discussed in the
paper, couple with the axisymmetric poleidal field
coils. The eddy current with a parity of subfigure

(d) can interact with toroidal field coils.
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Box-shaped finite element { in the cylindrical
coordinate {(R,E,Z). X, Y and V are the respective
local coordinate in the finite element. Eight

node indices are given by (o,u,T) (T,u,T =L, U).
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Appendix A. Quadruple integral including a singular point

Here, we will carry out the following integrals including singular

points
bra b
Sy, = f[. [. s (A.D)
JoJo 0
ra b «
5, = j. jﬁ ?% dxidyidx.dys . (A.2)

It is well known that if one can find an analytic function g{xi1,X2,V1,

v2), which satisfies the equation

3%g 3%g
£ , = + , )
(Xl sK2 Y1 YZ) aXlBXz ay18y2 (A 3)
then, the following relation helds
T
/J J| famdyidedy, = g dly - dly . (A.4)
YO Y Q170

Where, the right-hand side of Eq. (A.4) is a double line integral, and

d@i+d%z =dxidxz+dyidyz. The analytic functioms are obviously

g1 = - f%-{4(X12'+X22) + (ya2-vy1)? + Txixz}
(A.5)
X /(Xz-X1)2 + (yz-vy1)? for Eq. (A.1) ,
and
1
gz = - 3 (2x1 +x2) ‘/(XZ—XJ.)Z + (y2 ~y1)?
(A.6)

for Eq. (A.2) .
Using these functions g; and g2, the double line integral given by

the right-hand side of Fq. (A.4) can be straightforwordly performed and

the respective results are expressed as:



JAERI—M86 — 096

51 = %%—as +-% a’p? +<£§ b®
o (A At 4+ 22 2b2+_—-b)1/ (A.7)
15 90
1 so-1b 2 3.2 .. -1a
+ 3 a’d sinh 2 + 3 a“b 51nhm L

So = -a* - ab® + (aa-Fabz) Ya? + b2
(A.8)

- 3a% sinh™l 2 - 3222 sinn™t 2

While, if the finite element §I; overlaps {iz, the double area
integral including the singular point P12 = 0 is expressed in terms of
S1 and $2, which are given by Egs. (A.7) and (A.8). In this case,

Eq. (56) can be approximated as follows:

1T
’b

—
H |
2

arbrarb
([Jl- P(\Q&wdydxdy,
/ 12

jOJOJOJO

2 3 _
Aop = A T R

o
L&

A
VI

o _ dri dr» dZ1 dZs
Ay =Uqgy a5, T an, at, (4.9)
afb
X f Q(v)Q(“) dx dY dX dY .
at? joio H

By putting Egs. (A.7) and (A.8) for the double area integrals in Eq.
4.9, A%U (=1, 2, 3, 4) are evaluated immediately.
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"structural controllability"

Appendix B. Mode reduction and
Here is shown the investigation of the mode elimination technique
with the help of "structural controllability" of a time-invariant
Systele), which is familiar in the field of linear control theory.
For the purpose, we use the following representation called an inter-

mediate standard form, descriptor form, or semistate equation as:
KX+AX=BuUu , (B.1)

Here (K,A,B) denotes a "structurized system'". Now, let classify X as
X1, X2 and X3. Where, X, indicates an equivalent class of controllable
state variable coupled with X, but X3 and X: 1s an equivalent class of
state variable coupled with X1 and decoupled with the input. Lastly,
X3 indicates an equivalent class of uncontrollable state wvariable
decoupled with X; and X2. Then, a directed graph G(K,A,B) can be
drawn in Fig. B.l. One of the necessary condition of (K,A,B) struc-
tural contreollability is

(a) (K,A,B) is irreducible.
or

{b) Node xi is accessible in the directed graph G(K,A,B).
In our case, the equivalent class X3 is structurally uncontrollable,
Moreover, since all of the members of X3 are asymptotically stable,
therefore, X3 may be eliminated from the entire system if the initial

states of X3 are zero.

X3

Fig. B.l Directed graph G(K,A,B)

_57”_
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Appendix C. Approximate method for the eddy current problem with

time-variable parameters

The paper has described the eddy current problem with time-
invariant parameters. In the appendix, the procedure based on the
finite element circuit method is extended to the eddy current problem,
where the electrical resistance of voltage-controlled coil system is
time-variable and the variation is also known beforehand.

Let divide a time into a set of finite time intervale [Tk, Tk+1]
(k =0, 1, ... ) as shown in Fig. C.1. Here, the change of coil
resistance R(k) in a time interwval [Tk, Tk+1] can be well approximated
to be constant. Consequently, the procedure mentioned in the paper
for the time-invariant parameter preoblem is available to the individual
time interval, where the solution of eddy current is given by Eq. (8).
It is obviocus that the initial wvalue EQ (tl) in the time interval
{Tk, Tk+l] is the terminal value gﬁk (tf) in the previous time inter-
val [Tk—l’

eigen modes of eddy current in respective time intervals are different

Tk]. However, one must notice that the basis vectors of

each other because the coil resistance changes as time interval. Now,
* . X 4 ,

we represent a linear transformation Q € R(k Meoi1) (K™Neoi1) of

basis wvectors from the tlme intervals [T , T ] to [T k’ Tk l] Let
-1 k K*N.oi1 k-l M

Ek (tf) and £ (ti) € R coil pe the termlnal vector of eddy current

in the time interval [T T ] and the initial vector in the time

k-1°*

interval [T ] each of whlch is respectlvely defined in terms of

K Tkl
the basis of each time interval. Then, E (ti) is represented

k k-1
£°(t,) =q £ () . ©.1)

For more explanation, consider the circuit equation (88). By solving
those respective eigenvalue problems for the time intervals [Tk-l’ Tk]

and [T ], the linear transformation Qk can be given as:

k* Tkl

—_ T 1. =
Qk = @k (R{Y/R(k-1))%= @k_l . (C.2)
Where, Ek denotes the modal matrix of the eigenvalue problem (92)
corresponding to the time interval [Tk, Tk+l]’ and R(k) is the
constant resistance matrix (90-b) of the time interval [Tk, Tk+1]'

By successively using Eq. (C.2) for time intervals, we can simulate
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the eddy current in the multi-torus system including the voltage-

controlled coil system with time-variable resistance.

F———— e —————
F— e ——————— el

—
g-‘
F
P
~
=
o+
L

—~Y

T Ty+1
(ti) (1f)

Fig. C.1 Division of a time into a set of finite time
intervals. The continuous change of the electric

resistivity is approximated by the descretized ones.



