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This report presents a vector formulation of manipulator kinematics
which is different from the homogeneous co-ordinate transformation method
now widely used to describe the kinematic relationships befween links in
a robot manipulator.

The fundamental concept of the present description is to express the
motions of individual links as those of spatial vectors in a fixed ref-
erence co-ordinate system and to obtain a resultant vector using rotation
operators. With this idea applied to a six-link manipulator, the kinematic
equations were obtained in the completely same form as those derived by the
conventional co-ordinate transformation.

The advantages of this method are :

1} derivétion process is easy to understand intuitively.

2) calculation is much simpler than that by co-ordinate transformation.

Keywords : Kinematics, Vector Approach, Rotatfon Operator,

Homogeneous Co-ordinate Transformation
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1. Introductory Remarks

The co-ordinate transformation method is now widely used for the
purpose of describing complex relationships between the links of a robot
manipulator. The position and orientation of the manipulator end can be
determined by execution of successive multiplication of the transformation
matrices A from the base of the manipulator to the end, Tink by link, relating
to a fixed reference co-ordinate system.(l)’(z) According to this method,

a co-ordinate system for each link must be specified in advance. However,

its assignment is not unique, but highly dependent on the analyst's intention.
The main reason for it is that the essence of the homogeneous transformation
method is principally put on relative transformation between the co-ordinate
systems.

Viewed in our intuitive understanding of manipulator motion in co-ordinate
system, itris generally easier to discuss its motion in.a fixed co-ordinate
system rather than in a system which moves together with it.

Motivated by this fact, we attempt here a derivation of the kinematic
equations from the different angle. The basic concept of the present descrip-
tion is to express the motions of individual links as those of spatial vectors
in a fixed reference co-ordinate system and to obtain a resultant vector using
~rotation operators. Moreover, it is intended to find out the intrinsic-
nature of kinematic relationships between 1inks in the course of obtaining
the equations in question, which may facilitate analytical treatment of the
kinematics and dynamics of a robot manipulator.

In the next section, a detailed explanation is given as to how the

kinematic equations are obtained.
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2. Derivation of Kinematic Equations(3)'(4)

The major aim in this section is to introduce a vector formulation for
obtaining the kinematic equations of the robot manipulator. The first part
of the section is devoted to the notion of the space vector approach based on
rotation operators and te its examples applied to simple 1ink mechanisms, while
the second part is devoted to an expression of the kinematic relationships
for a six-link manipulator. Throughout the process of derivation, the char-
acteristics of this method is demonstrated in comparison with that. of the
previous one. |

To begin with, we have to turn our attention to the point that the'
movement of individual 1inks can be represented in terms of that of position
vectors taken relative to a fixed cartesian space. To show this, we briefly
touch upon a fundamental concept of space vectors out of necessity for
deriving fhe kinematic equations.

Consider now a right-handed rectangular coordinate system Zy (xo,yo,zo).
By a right-handed system we mean that the coordinate axes ére such that if the
positive xg-axis is rotated by 90{deg) to coincide with the yg-axis, this
rotation would advance a right-handed screw along the positive zp-axis.

The unit vectors in the positive directions along the axes from the origin
are denoted by i,j and k. If r is a vector with the initial point 0 and the
terminal point P(x,y,z), then it is described as :

r = xi+yj+zk=1{(x,y, z )7 (1)
where the superscript T means transposition.
The vector r is called the position vector of the point P in a three dimen-
sional space.

Suppose that this space vector r is changed into another vector v in
terms of a certain transformation { for instance, a rotation }, which may
be thought of as an "operator” acting on the vector r. This situation may

be conveniently written in the form
_ ~2—
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r = Hr (2)
where the symbol H is a transformation matrix { usually 3x 3 square matrix )
of the position vector defined in Cartesian co-ordinates. When expressed in
this manner, we can interpret that the vector r is transformed into r by the
operator H. 'We shall mention_about this in more details.

Referring to Fig.1, let the position vector r rotate by @ in a counter-
clockwise direction around any vector a. The resulting vector r* can be
written with the following notation.

r* = Rotla, @) r. (3)
Rot{a,8) denotes the general rotation transformation matrix (3 x3) corre-
sponding to the operator H.

In this paper, an application of the rotation operator is limited to
the special types of vectors from a practical point of view, because normal
types of arm of most of existing manipulators
usually have rotational, revolute or trans-
Tational joints with joint axes either per-
pendicular or parallel to each other.

That is to say, these joint axes are con-
sidered parallel with any of rectangular
reference co-ordinates axes ( xg,yg O Zg )
connected to the base except for special cases.

Thus, a rotation or a revolution around each

jaint axis is equivalent to that of any of

unit vectors i, j and k. This assumption is

Fig.1 a rotation of a position vector ¥ nat only adequate for practical purposes, but
around any vector also contributive to simplification of calcu-

Tation of rotation operators.

Now, we shall explain this method by some simple examples.
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Figure 2 shows a linrkage mechanism with two degrees of freedom. Suppose

that the reference co-ordinate system Zy is fixed to the base and having its
origin at 0. The position and orientation of the respective links are con-
sidered with reference to this co-ordinate
system. As shown in this figure, the posi-

tive direction of revolution or rotation

axes coincides with that of unit vectors k

and i, respectively. We refer to a dir-

rected 1ine segment along each 1link as a

1ink vector, whose magnitude corresponds

to the tength of the link.

In order to establish the basic equa-
tions, angular displacements are given in Figfz 2 simple Tink mechanisn with 2007
turn from a joint 2 near the endpoint B of the open 1ink.

At first, we rotate by 62 around the ys-axis concerning the joint 2
with the consequence that a 1ink vector AB results in a vector ABy by the
following linear transformation. That is,

ABy = Rot(i, 8 2)AB - (4)
After the end-point B moved to the point By in the space { i.e., vector AB
moves to AB; ), a revolution of a vector OA + ABy (=0By) by 81 around the

zo—axis brings :

Rot(k, 8 1) 0By
Rot(k, 6 1) OA + Rot(k, & 1) AB)

0B,

H

0A + Rot(k, 8 1)Rot(i, 82) AB (5)
where Rot(k, @ 1)0A = OA is obvious since a vector OA and the unit vector k
are in the. same direction.

Given the constant link vectors OA and AB in Eq.(5), that is to say,

0 0
OA =10 land AB =10 |,
4 ap
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we obtain the positioh(xz ,¥p ,Zp )} of the link end in the three dimensional

space, namely

X 0 ¢;p =5 0411 0 O 0 95159
‘y2 = [0 +. Sl Cl 0 0 C2 —52 0 = "32C152 {6)
22 a=l 0 0 1 0 52 C2 az al+a2c2

Here, the notations s;, ¢

S

i» Sij and ¢y mean sin@ i, cosf i, sin(@i+6 1), and
cos( 8i+8;), respectively.
On the other hand, the orientation

tranformation from the base to endpoint

is represented by the product of two

rotation operators.

{ The explanation is given later. )

Rot(k, 8 1 DRot(i, 8 2). (7)

Next, we proceed to the case of a

linkage mechanism with three joints

as shown in Fig.3. A rotation { by the

angle 83 around the ygp-axis, equivalent
to the direction of the unit vector j )
Fig.3 a simple 1ink mechanism with 3-DOF of the final 1ink BC, produces a space
vector BCy
BCy = Rot(j, 6 3) BC. (8)
Then, a rotation and a revolution of the remaining §, and 61 bring the
following results. namely,
ACy; = AB + BCy,
ACo = Rot(i, 8 2) ACy
= Rot(i, §2) AB + Rot(i, & 2)Rot(j, 63) BC, (9)
0Co = OA + ACy,
0Cy = Rollk, 8 1) 0Cz
= Rot(k, 8 1) 0A + Rot(k, & 1DRot(i, 82) AB +

Rot(k, 8 1)Rot(i, 8 2)Rot(j, @3) BC. (10)
_5._
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From the vector 0C4, we can obtain the Jocation at the end of the
link in the fixed space.EO.

In a similar manner as was described in these two examples , we can
apply this inductive method to a six-link manipu]atof given in Fig.4.
The derivation {s started'with a rotation expression of the sixth joint.
By this rotation around the yy-axis by 5, a link vector EF representing
the final 1ink is moved to EF; in the space.

EFy = Rot(j, 8 6)EF. (11)

Proceeding to the 5th rotation axis, we take DF; as a vector sum of DE
and EFy caused by above rotation. A transformation of this vector DF,
holds that:

DF 4

L

DE + EFy,

DF, = Rot(i, 65) DF1
Rot(i, 85)( DE + EF1 )

Rot(i, 85) {DE + Rot(j, 6 6)EF}

fl

Rot(i, 8 5)DE + Rot(i, d 5)Rot(j, 6 6)EF. (12)
That is, an expressioﬁ was given here which describes the end-point of the
manipulator moving from the point F to F, in terms of angular displacements
of 66 and 8 5.

In succession, a revolution { by 64 around the zj-axis ) of the joint 4
yields a new vector CFj, which is established using a revolution transformation
of the sum of the 4-th 1ink vector CD and DF, obtained above.

CFy

CF3 = Rot(k, 8 4) CFp - = Rot(k, 84) ( CD + DF2 )

Rot(k, 8 4) CD + Rot(k, 8 4)Rot(i, 85)DE +

Rot(k, 8 4 )Rot(i, 8 5)Rot(j, 8 §)EF. (13)
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Since CD is clearly parallel to the unit vector k, it is possible to
describe as Rot(k, &§4)CD = CD.  As such, a vector CF3 offers the lTocation -
of the hand, given three joint angles @ 5,9 5 and 6 §.

Furthermore, continuing similar operation for the joint axis located at the
point B, we can obtain-a new vector BF,, which is made by a rotation { by
the angle g3 ) around the xy-axis.

BF, = BC + CFg,

BFy = Rot(i, @3)BF; . = Rot(i, 83)( BC + CF3 )

Rot(i, 83) BC + Rot(i,83) CD +

Rot(i, @ a)Rot(k, 8 4)Rot(i, § 5)DE + _
Rot(i, 8 3)Rot(k, 6 $IRot(i, 8 5)Rot(j, 8 §)EF. (14)

Up to here, we gave four angular displacements for deriving the trans-
formation equations. For the remaining two, the position of the hand arising
from a displacement of the joint angle g9 is first expressed in terms of
the following space vector Afg.

AF 4

]

AB + BFq,

n

AFg = Rot(i, 02) AFs = Rob(i, 62) ( AB + BF4 )

Rot(i,@2) AB + Rot(i, 8 2)Rot(i,83) BC +
Rot(i, 8 2)Rot(i, 63) CD +
Rot(i, & 2)Rot(i, 8 3)Rot(k, & 4)Rot(i, 0 5)DE +
Rot(i, 8 2)Rot(i, 8 3)Rot(k, 8 4)Rot(i, 8 5)Rot{j,86)EF.  (15)
In this case, the product Rot(i, & 2)Rot(i, @ 3) of two rotation operators
is sfmp1ified by Rot(i, 82 + €3) because the manipulator joint axes NO.2 and
NO.3 are parallel to each other as seen in Fig.4.
Finally, by a revolution { by 81 around the zg-axis ) of the first link
connected to the supporting base, we can obtain the position vector OFg de-

scribing the co-ordinate of the hand with respect to Zj.
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OFg = OA + AFg,
OFg = Rot(k, 81) OFs = Rot(k, 81) ( 0A + AFs )
= Rot(k, 8 1) 0A + Rot(k, 8 1)Rot(i, 8 2) AB +
Rot(k, 8 1)Rot(i, & 2)Rot(i, 6 3) BC +
Rot(k, 8 1DRot(i, 6 2DRot(i, §3) CD +
Rot(k, 8 {DRot(i, 6 2)Rot(i, 8 3)Rot(k, & 4)Rot(i, 8 s)DE +
Rot(k, 8 1DRot(i, 8 2)Rot(i, 6 3)Rot(k, & ¢ IR0t (i, & 5)Rot(}, 6 6)EF

= Ry + Ry + Ry + Rg + Rg + Rg. {16)
Where

Riy = Rot(k, 8 1) 0A = UA, (17}
Ry = Rot(k, 8 1)Rot(i, 6 2) AB, _ | {18}
Ry = Rot(k, 8 1)Rot(i, & 2)Rot(i, 63) BC

= Rot(k, 8 1)Rot(i, 82 + 813) 8C, {19)
Ry = Rot(k, @ 1)Rot(i, 8 2)Rot(i, 8 3)Rot{k, 8 4) CD

= Rot(k, 6 1JRot(i, 82 + 83) CD, (20}
Rg = Rot(k, & 1)Rot(i, 8 2)Rot(i, & 3)Rot(k, 8 4)Rot(i, 8 5)DE

= Rot(k, 8 1)Rot(i, 82 + 8 3)Rot(k, 8 4JRot(i, 8 5)DE, (21)
Rg = Rot(k, 8 1)Rot(i, & 2)Rot(i, 6 3)Rot(k, § 1)Rot(i, 8 5IRot(j, 6 §)EF

= Rot(k, 8 1)Rot(i, 82 + 8 3)Rot(k, 8 4)Rot(i, 85)Rot(j, 8 s)EF.

{22}
Now, concrete forms of Ry [ i=1,2,...,6 } will be given.

Ry is a vector produced by means of a revolution &t of the first link vector

0A. { see Fig. 5.a )

7 C]. -Sl 0 0 0
Ry =1s; ¢ Off0 | =| O (17]
0 0 1|3 aj

Ro is a vector produced by means of a revolution 81 and a rotation g2 of the

second 1ink vector AB. { see Fig. 5.a )
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¢; =syp Ot 0 0Oy 0 805157
Rz = 51 Cl ono C2 —52 0 = —32C152 (18)’
0 0 140 52 C2 32 62C2

Ry is a vector produced by means of a revolution €1 and rotations 62 and 63

of the third 1ink vector BC. ( see Fig. 5.a )

Cl -Sl ol L 0 0 0 6351523

' ’

R3 = Sl Cl oHa C23 -523 0| = -a3c1523 (19)
0 0 1 0] 523 523 53 63C23

R4 js a vector produced by means of a revolution 81 ; rotations &2 and 8 3
and a revolution @4 of the fourth link vector CD. ( see Fig. 5.a )
¢ -sp Off1 0 0 |lcy -sq4 Of] O 4451523
Rg = |5y ¢y O|0 cp3 -sp3(|sa €4 Oy O|=| -a4c1Sy3 (20
0 0 ][0 sp3 €31 O 0 1}|ag 3473
Rg is a vector pfoduced by means of a revolution §1; rotations g, and &1 ;
a revolution 8 4and a rotation 85 of the fifth 1ink vector DE.

¢y -sy Opf1r 0 0 [lcg -s4 04|11 O a({| O

Rg = |sy ¢y O}0 cp3 -Sp3(fsq4 €4 O[]0 cg -sg|| O
0 0 1O 553 cp3il 0 0 1110 sg cgf|ag
agsg{cysq*tsicqcpaltags sp3cs
= [agsg(s)54~C1C4Cp3)-25C 5523 ' (21Y

a5(c5Cr3-C45553)
Rg is a vector produced by means of a revolution & 1; rotations g and €3 ;
a revolution @ 4 and rotations 85 and 8¢ of the final Tink vector EF.

Cl ~Sl 011 0 )] C4 -5 ojl1 O 0 C6 .O 56 0]

-

RG = Sl : Cl offo C23 —523 Sq C4 .0 0 CS -55 0 1 0 0

(]

0 0 1 0 523 C23 0 1 0 55 CS —56 0 C6 36
agsglcycq-51C354 148505 sglc syts cacpz s Crsyy)

= 3656(51C4+C1C2354)—65C6(55(—5154+C1C4C23)+C1C5523) (22)

96(5452356"C5¢6C237C4C655523)
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O  Base 0 Base

Py VIO

— 6
OFG = ERI W=F€OT(k1,91)R0T(i,92+93)ROI(k,94)x
i=| , \
Rot (1,65 ) Rot (], 0 ) {EF+ no)
Fig.5.a A resultant vector OFg Fig.5.b Orientation vectors at the
produced as the sum of initial and terminal points

six link vectors

._11_




JAERI-M 86-122

Hence, OFg is expressed as follows.

OFg =. Ry + Ry #+ Ry + Rg + Rg + Rg
3656(C14751C2354 ) +agCq S51c1 5475104 p3)¥51C553 )4
a555(slc23c4+c134)+a5c551523+(a3+a4)slsz3+a25152
=1 agsglsicateicoyss)-agegisgl-sysqteycacpy)tercgsyy)e | (16)
8555(51547C1C4023)-25C1 C55p3 (ag*rag)cysp3-a501 57

a6 (5452356 C5C5C03-CaCsS 5593 a5 c5c3-Ca55523)+

(ag+aglcogtascytay
in this way, we have obtained a resultant vector Ofg, issuing from
the origin 0 in the reference co-ordinate system 20, as the sum of six
spatial vectors Ry, Rp,...,Rg, each of which indicates the position made by
rotational or revolute motions of all joints located before its own link.
Now, we turn to a determination of the orientation at the hand {i.e.,
at the end-point of the manipulator). Let the orientation be ny initially
at the pdint F. When the initial point F is moved to Fg by the angular
displacements of each joint, we define its orientation ( at the point Fg )
with a vector n.. Referring to Fig.5.b, the relation including the position
vector OFy and orientation vector ny holds :
OF6 + Ny = Rl + R2 + R3 + R4 + RS +
Rot(k, 0 {)Rot(i, B2 + 6 3)Rot(k, 8 4DRot(i, & 5)Rot(j, 6 6)  EF + no )
| (23)
Using Eqs.{16) through (23), we obtain the follewing description with
respect to the orientation :

Rot(k, 8 1DRot(i, 82 + 83)Rot(k, 8 4IRot(i, 8 5)Rot(j, 86) no

ne =
Ty 9% x A
=l ny oy a1 {24)
nz OZ az
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where
Ny = C6(C1C4-515493) 561545501 75)55C4¢2351523¢5)
Ny = cgl51C4+C1Cp354)¥56(C1C5573-5)5455+¢14C355)
N, = $4523%56(C5C23C455523)
0x = ~CylcySq¥s caCoz)sysgsys
0, = cgl-5154%C1C4Cp3)-CyS5503 (25)
0z = €4%5523%55¢23
ay = spleycqmsy54Co3)¥cg (545501 +5155C4Cp3%5]5p3¢5)
ay = sgl51c4+C)Cp354)-cglC]C55p375)5455+¢) C4¢p355)

a7 = 5452356%06(C50237C455523)

As a result, the product of the above five rotation operators Rot(k, 8 1),
Rot(i, 82 + €3)sRot(k, 8 4)Rot(i, 8 5)and Rot(j, @) expresses the orienta-
tion at the end-point with respet to the reference co-ordinates.

For'instanée, suppose that ng 1s the unit vector k with a description of
n0=(0,0,1)T. Substituting it into Eq.{24), we obtain ni in the form of
( a

)T, which means the direction cosine of the hand related to the

)T

x:3y»>3z

zo—axis. Likewise, nt=( Oy10y:0; )T and ( MysNysNg are indicative of the

direction cosines relating to yy and x5 axes, respectively.

In closing this section, the results derived by means of the co-ordinate
transformation method are given to compare with those by the present method.
Referring to Fig.6 with the link co-ordinate systems, the location and orien-
tation at the end-point of the manipulator with respect to the base co-ordinate

are represented by the components of matrix Ts-

]

Tq A1A2A3A4A5"5

t1n Y2 Y3 tie
= | ter t22 to3 tag (26)
t3) t32 t33 t3a
o 0 0 1
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0 Base

Fig.6 Link co-ordinate systems specified in the homogeneous

co-ordinate method
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where, A1 = Rot{zy, 8 1+7/2)Trans(0,0,a1)Rot(xp, m/2)
Az = Rot(zy, 8 2)Trans(0,a2,0)
Az = Rot(z2, 8 3)Trans(0,a3,0)Rot(x2,- 1 /2)
Ag = Rot(zs, 8 ¢)Trans(0,0,a4)Rot(x3, 7 /2) (27)
Ag = ROt(ZA;G 5)Trans(0,as,0)Rot(ys, m/2)
As = Rot(zs, 0 )Trans(0,as,0)Rot(2s5, 1 JRot (x5, m/2)

t11= -Cg{5154Cp3-C1C4)-Sg(5155C23C4+C1S45551523C5)
tay = Cg(C1Cp354*5164)+561c100304557515455+C1C5573)

$4523¢6-56(C5C23-C452355)

(s
(%]
—

!

t1p = -cglsjcpacqteysylsysyass

tpp = cplcycp3cs-5154)-C152355

t32 = C4C5523%7Cp355

t13 = -56(5154C23-C1C4)+C6(5155C23C4+C15455+51523C5) (28)

Tty = sglcycpgsgtsycg)-clc)Cp3esss-515455%C1CESp3)

t33 = $452356%C4(C5C23-C452355)

t1a = agsglcycg-s1cp35g)+agep(splcysgtsycqcyzltsCpspalt
agsg(s1Cp3CqtCysq)tagcysysoztlagtagts)sp3tags) sy

tog = agSgls1C4*cyCo3se)-agcg(sg(-5154%c)CqCo3)4C CESp3)*
ags5{5154-C1CqCp3)-a5C CrSp3-(agtag)eysyy-ascysy

tag = ag(5459356+C5CEC23-C4Ca55523)+a5(C5C3-Cq5553 )%
(ag*taglcpgtapcytay

Comparisons made between FEgs.(16) through (25) and (28) resulted in the

complete agreement of the kinematic representation. Accordingly, the present

approach is also useful to derive the kinematic equations of a manipulator.
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3. Concluding Remarks

In place of the traditional co-ordinate transformation method, a fofmu—
lation based on the space vectors was introduced here to derive the kinematic
relationships. between 1inks. The present method, when applied to an articu-
tated manipulator kinematics; is effective only when rotation or revolution
axes of individual joints are either perpendicular or parallel to any of the
reference coordinate axes xp, yg and zg. Of course, it is possible to establish
an expression for an arbitrary arm configuration at its home position, but the
computation becomes more or less cumbersome since the geperal rotation trans-
formation around any vector is needed.

The basic features of the present method are :

{1) Derivation process is easy to understand intuitively.

(2) An aspect of the motion of each 1link made by angular
dfsp]acements can be illustrated clearly.

(3) The calculation is comparatively simple. { for orthogonal types of
joint structures )

{(4) No assignment of the co-ordinate system on each link is required.
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3. Concluding Remarks

In place of the traditional co-ordinate transformation method, a formu-
Jation based on the space vectors was introduced here to derive the kinematic
relationships between 1inks. The present method, when applied to an articu-
lated manipulator kinematics, is effective only when rotation or revolution
axes of individual joints are either perpendicular or parallel to any of the
reference coordinate axes Xgs Yo and zy. Of course, it is possible to establish
an expression for an arbitrary arm configuration at its home position, but the
computation becomes more or less cumbersome since the general rotation trans-
formation around any vector is needed.

The basic features of the present method are :

{1} Derivation process is easy to understand intuitively.

{2} An aspect of the motion of each link made by angular
displacements can be illustrated clearly.

(3) The calculation is comparatively simple. { for orthogonal types of
joint structures )

(4) No assignment of the co-ordinate system on each link is required.
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