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Nonlinear MID calculations of the m/n=2/1 free-boundary kink mode in a
cylindfical tokamak are carried out by taking account of the parallel
diffusion of resistivity. The “wvacuum bubbles” inside the plasma are
formed for q; a little smaller than 2. When 1.75<q,<1.9 for qp/9,=0.5
( gy is the safety factor at the magnetic axis and q, is that at the plasma
surface ), the plasma column shrinks with the elliptic deformation, the
value of q, 1s decreased in time, the plasma becomes stable against the
m/n=2/1 mode, and finally damping oscillation 1is observed. Interaction
between the plasma and material limiter causes the shrinkage for all the
unstable values of q,. When qo is nearly equal to or larger than unity,
the plasma shrinks rapidly and q, can be reduced less than unity below
which the m/n=1/1 kink mode becomes unstable. This plasma shrinkage is a
candidate of the major disruptions in the tokamak discharge with q, less or

equal to 2.
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1. INTRODUCTION

In the tokamak discharges with g, nearly equal to 2, some major
disruptions are observed which limit the maximum plasma current{1.,2]
The m/n="/1 tearing mode ( m and n are the poloidal and toroidal mode
numbers, respectively ) is considered to play an importnat role 1in this
major disruption process. This disruption process has been studied by
numerical calculations (3,4,D] . The m/n=2/1 free-boundary kink mode 1is
also considered to play an importnat role in the major disruption. The
following scenario has been supposed: The plasma deforms elliptically due
to the growth of the kink mode and the deformation is saturated by the
negative surface current. With the dissipation of the surface current due
to the plasma-limiter interaction, however, the deformation continues to
grov and the current disruption is caused (6,7} . In this report, we
demonstrate a new scenario of the disruption by means of numerical
calculations of the m/n=2/1 free-boundary kink mode, where the resistivity
evolution including parallel diffusion is considered. In section 2, basic
equations are described. The linear stability of free-boundary kink mode
including resistivity equation with finite x; is analysed in section 3.
The results of nonlinear evolutions are shown in section 4, and summary and

discussion are given in section 5.

2. BASIC EQUATIONS

As basic equations, we employ the single-helicity reduced set of
resistive MHID equations of a low beta cylindrical plasma including the

resistivity evolution equation:

3V, .
at/n = L‘I”)@] m/n + Z Z nir'/n'Jm"/n" — Evamoano . (1)
'm=u'+m"n=n'+n"
I (0,830 + (8d) i @)
a—g-”%ﬂ = (1% am —&1 (Vi ¥ +K1ADw/m 3)
Urm/'n = A{I}m/n , (4}
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In the tokamak discharges with q, nearly equal to 2, some major
disruptions are observed which limit the maximum plasma current (1,2}
The m/n=2/1 tearing mode ( m and n are the poloidal and toroidal mode
numbers, respectively ) is considered to play an importnat role 1in this
major disruption process. This disruption process has been studied by
numerical calculations (3,4.,5) . The m/n=2/1 free-boundary kink mode is
also considered to play an importnat role in the major disruption. The
following scenario has been supposed: The plasma deforms elliptically due
to the growth of the kink mode and the deformation is saturated by the
negative surface current. With the dissipation of the surface current due
to the plasma-limiter interaction, however, the deformation continues to
grow and the current disruption is caused {6,7] . In this report, we
demonstrate a new scenario of the disruption by means of numerical
calculations of the m/n=2/1 free-boundary kink mode, where the resistivity
evolution including parallel diffusion is considered. In section 2, basic
equations are described. The linear stability of free-boundary kink mode
including resistivity equation with finite k; 1s analysed in section 3.
The results of nonlinear evolutions are shown in section 4, and summary and

discussion are given in section b.

2. BASIC EQUATIONS

As basic equations, we employ the single-helicity reduced set of
resistive MHD equations of a low beta cylindrical plasma including the
resistivity evolution eguation:

“—“awm/_n = [({,9)] a/n T Z Z ‘ nw'/n‘Jm”/n" — E"&y06m0 > (1

at m=@ +m n=n'+n’

aUm/n

at = [U,d] n/n + [‘I"!J] w/n s 2)
anm/'n . - _
at in®] m/n Kl [VHT],\I‘] m/n +KiAnm/n y 3

Um/n = My s (4)
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Jm/n = A\I"m./n . (\5)

o : Y o X' '
‘X,Y) rin = Z Z n {Xm’/n'_—uuﬂ/_n*ﬁ - m'/n'_a}L> ’ ®)

m=m +m' ‘n=n'+n'’ T ar
where ¥,,, 1s the helical poloidal magnetic flux, &,, the stream function,
Tm/n  the resistivity, J,,, the current density,'U@m the vorticity, EY the
electric field at the wall, and &;; is the Kronecker’s delta. In these
equations, the uniform plasma density 1Is assumed, and the time is
normalized by the poloidal Alfven tramsit time T, =B:;/»/pR (B; is the
toroidal magnetic field, p the plasma density, and B the major radius;.
Other normalization factors are NGER/(Bth} for i and VG;R/(BtRZ} for k;

The resistivity is assumed to follow the same equation as that for the

electron temperature. The parallel diffusion coefficient of resistivity,
Kil s and perpendicular one, k; , are assumed to be uniform for
simplicity. The parallel gradient of »n 1is defined as (Vin dn/m
= (0, ¥] pn - To calculate the free-boundary problem, we use the

"pseudo-vacuum” model, where the vacuum is replaced by the plasma with high
resistivity. This method has been successfully applied to nonlinear
simulations of free-boundary modes [8,9] . The above set of nonlinear
equations 1s solved by the predictor-corrector time integration scheme.

The diffusion terms in eqs.{1) and (3) are approximated by the implicit
representation. These implicit parts of nonlinear calculation spend
almost CPU time of the computer. The equation for resistivity, eq. (3},
including the diffusion term 1is solved by a mapping method which is

described in ref. (8]
3. LINEAR STABILITY ANALYSIS
In this section, we investigate the effect of parallel diffusion on

the linear stability of free-boundary kink mode. From eqs. {1)~ {6), the

following linearized reduced sel of resistive MHD equations is derived,

AD = _ mdJeg y
Y A = FAY r dr ¥ ’ (7 J
Y"I" = “F@ + nqu‘I} + nJeq ] (8 }
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SOV, = m_' . ,aYm,‘/n” n ) ,aXm"/n” N
[X?YJ m/n = m:mzm"n=nz+n,' r <Xm /n ar Ym /n ar ) ¥ (61

where ¥,,, 1s the helical poloidal magnetic flux, &,,, the stream function,
T/ the resistivity, J,s,, the current density,‘U,,./,t the vorticity, E* the
electric field at the wall, and &;; is the Kronecker's delta. In these
equations, the uniform plasma density is assumed, and the time is
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toroidal magnetic field, p the plasma density, and R the major radius’.
Other normalization factors are ~/pR/(B:b°) for n and ~/pR/(B.R2) for iy
The resistivity i1s assumed to follow the same equation as that for the

electron temperature. The parallel diffusion coefficient of resistivity,
Ky » and perpendicular one, k; , are assumed to be uniform for
simplicity. The parallel gradient of »n 1s defined as Viumasm
= (V] wm - To calculate the free-boundary problem, we use the

"pseudo-vacuum” model, where the vacuum is replaced by the plasma with high
resistivity. This method has been successfully applied to nonlinear
simulations of free-boundary medes {8,9] . The above set of nonlinear
equations is solved by the predictor-corrector time integration scheme.

The diffusion terms in eqs. (1) and (3} are approximated by the implicit
representation. These implicit parts of nonlinear calculation spend
almost CPU time of the computer. The equation for resistivity, eq.(3),
including the diffusion term is solved by a mapping method which is

described in ref. [8]

3. LINEAR STABILITY ANALYSIS

In this section, we investigate the effect of parallel diffusion on
the linear stability of free-boundary kink mode. From egs.{1)~ (6}, the

following linearized reduced set of resistive MHD equations is derived,

- - _ mdJeg /
AP = FAV ar ¥, {7
ﬂ]"'IJ = “F@ =+ nqu,'IJ + T}Jeq + <8 }
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oy = _ MGk meq ‘an
YN rdr¢+n"F{rdrqf Fn ), 9}

_ 1., \ /
F = a(m—nq; , (10)
where q is the safely factor, subscript "eq’ means equilibrium quantities,
and the time derivatives  are replaced by the growth rate, v. The
perpendicular diffusion 1s negligibly small in general. Since the

singular surface ( F=0 ) does not exist in the plasma region for the kink
mode { q,<m/n ), y¥ = -F® holds and eq. (9) becomes

k) F mneq ): \
(1+ y)(7’7+rdr‘1’ X0 . an

This relatior implies that the parallel diffusion scarcely affects the kink

mode in the linear stage. Numerical ecalculations of the eigenvalue
problem support above prediction. Figure 1 shows the linear growth rates
of m/n-2/1 free-boundary kink mode versus q, for various values of x|

The ratioc of the plasma radius, a, to the wall radius, b, 1s ¢/b=0.66.

The resistivity, Neq(r),» 1s 1inversely proportional to Jeq (1) with

neq(O)zlo‘6 and 1eqb)=1. The profile of current density is chosen as
Jealr) = [ Jeq(@) = Jeqg®) }{ 1 = (/@ }2 + Jq (b)), (12)

for 0=r=a , and Jog () = Jeq(b) = Joq(0)eq (0)/neq(d) for a<r=b .  The

ratio, qo/4.. 1is 0.5 for this current profile, and the value of J,q(0) is
determined by the value of qq. The relatively large value of the linear
growth rate at ¢,=2.0 1is attributed to the finite plasma resistivity near
the singular surface and the growth rate of the kink mode 1s smoothly
commected to that of the ’“surface tearing mode” in the g,>2.0
region (10] . The parallel diffusion of resistivity becomes very
important in the nonlinear phase, especially in the phase of the

interaction between plasma and limiter.
4. NONLINEAR CALCULATIONS

In this section, we carry out nonlinear calculations of the m/n=2/1
free-boundary kink mode for the cases (4.a) without a limiter and (4.b)

with a limiter. The initial profile of current density is given by
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ym= - By g p By gy ©)
F = é(mfnq) , (10)
where q is the safety factor, subscript "eq’ means equilibrium quantities,
and the time derivatives are replaced by the growth rate, 7. The
perpendicular diffusion is negligibly small 1in general. Since the

singular surface { F=0 ) does not exist in the plasma region for the kink
mode { q,<m/n ), y¥ = -F® holds and eg. (9) becomes

\!2 —
(1¢’<-F )(yn+1‘9—”—eq¢)=o. (113

N4 rodr
This relation implies that the parallel diffusion scarcely affects the kink
mode in the linear stage. Numerical calculations of the eigenvalue
problem suppori above prediction. Figure 1 shows the linear growth rates
of m/n-2/1 free-boundary kink mode versus g, for various values of kj

The ratio of the plasma radius, a, to the wall radius, b, 1is a/b=0.66.

The resistivity, Neq (r)» 1s 1nversely proportional to Jeq(r) with
7kq(0):10'6 and neq(b)=1. The profile of current density is chosen as

Jog (1) = { Jeq0) = Jeq(®) }{ 1 = (r/a)*® 1% 4+ o (h), (12)
for O=r=a , and Joq(r) = Jeq(®) = Jeq(OMeq(0)/Meg(b) for a<lr=b . The

ratio, qu/Q.,.» 1s 0.5 for this current profile, and the value of J, (0} is
determined by the value of qp. The relatively large value of the linear
growth rate at q,=2.0 1is attributed to the finite plasma resistivity near
the singular surface and the growth rate of the kink mode 1s smoothly
connected to that of the ’“surface tearing mode” in the g,>2.0
region [10] . The parallel diffusion of resistivity becomes very
important in the nonlinear phase, especially in the phase of the

interaction between plasma and limiter.
4., NONLINEAR CALCULATIONS

In this section, we carry out nonlinear calculations of the m/n=2/1
free-boundary kink mode for the cases (4.a) without a limiter and (4.b)

with a limiter. The initial profile of current density is given by
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eq. (12 { qo/9s 1 1-0=0.5 ) except the calculation for Fig.4 { initial values
of g, and qp are 1.85 and 1.2, respectively ). Total plasma current 1s
assumed to be constant in time. The resistivity at t=0 is determined as
n(r=E*/J{r) with n(O)le‘6 and n{bd=1.. We choose, 1in the following
calculations, the initial plasma radius. ag, as an/b=0.66. The parallel
diffusion coefficient, kK, 1is set 10?7, and Ki:10'8. The nonuniformity of
17 on a magnetic surface disappears within the time interval of about 0.1
due to the diffusion of anlOz. This value of k. corresponds to the
following actual parameters; toroidal magnetic field B;=4 T, major radius
R=1 m, electron temperature T,=1 keV, and plasma density n=10% m™3.
Number of Fourier components, M, and radial meshes, N, ., are typically M=10
and N, =200.

4.a Case without limiter

The nonlinear evolutions without limiter are studied at first for
various initial vwvalues of qu=q,(1=0): (@) qun=1.72, (b)) qp=1.8, ()
an =1.85, ({d) g -=1.9, (e) q¢ =1.99 and () gy =2.0. Figures 2 and 3 show
the time evolutions of ¥-contour for g, =1.85 and g.,n=1.95 ., respectively.
The bold line in the figure represents crowded resistivity contours which
correspond to the approximate position of the plasma surface. For
gn=1.85, the elliptic deformation grows with the shrinkage of the plasma
column { 0O<i{<112.5 ). Since the plasma current is constant, this
shinkage makes q, value small from 1.80 to 1.25, and the plasma becomes
linearly stable against the m/n=2/1 kink mode. Finally the damping
oscillation of the shrunk plasma is observed {( t>112.5 ). The shrinkage
of the plasma column is caused by the following processes. An p-contour
in a resistive plasma crosses V-contours near the plasma surface due to the
convection, and the plasma periphery connected with the vacuum region is
drastically cooled by the parallel thermal conduction. It is to be noted
for the case of k;=0 that the plasma area is conserved and the saturation
state with elliptic deformation can be realized (8] . On the other hand,
for larger q, Vvalue {( gu=1.95 ), the "vacuum bubble” is formed by the
free-boundary kink mode, as shown in Fig.3, even for such a decreasing
current profile ( qu/q.!=0=0.5 ). The hot plasma flows cut into the
"pseudo-vacuum” region along the magnetic fild line and the vacuum region

penetrates into the plasma to form the “vacuum bubbles”. It was shown by
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Rosenbluth et al. that the saturation state of the ideal kink mode 1s the
elliptic deformation for the parabolic current profile (11} . The ~“wvacuum
_ bubble” was found to be formed by the surface tearing mode in a resistive
plasma for qu>2 and qQy/ql =0=0.9 8] . The bubble formation by the
free-boundary kink mode for the initial condition of @.,=1.85 and qy=1.2 has
been found by Dnestrovskii et al. using the “heating’ model for the
transport of u» in which the convection of plasma boundary 1s not
considered [9) . We perform the calculation for the same initial values
of g, and qp as theirs { the initial current profile,
J(r):J{O}{l—{r/a)644}2, is different from theirs ), and observe the "vacuum
bubble” larger than theirs (See Fig.4). This difference may come from the
models for the transport of n.

Figure 5 shows cross-sectional shapes of final stage of evolution for
various q. values with the same current profile of eq. (12}; (a-c) shrunk
plasmas  with elliptic deformation and damping oscillation, and (d-f)
plasmas with bubbles. The radius of each shrunk plasma with circular
cross section is 0.95ay for (a), 0.85a; for (b), and 0.80qy; for (c). The
transition from the formation of “vacuum bubble” to the shrinkage with
elliptic deformation occurs between the g, values of 1.85 and 1.90 for
this current profile. The current profile determines this transition
point, but the detailed mechanism or the criterion of this transition is

not clarified yet.

4.b Case with limiter

In this subsection, the effect of the limiter on the nonlinear

evolution 1is studied. We assume, for simplicity, that the plasma is
surrounded by the limiter for all poloidal and toroidal angles. The
limiter radius, b;, is chosen as b;/ap=1.03 for all cases. The value of

ki in the plasma region is 10% , while that in the wvacuum region is set
107 for numerical reasons. Other parameters are the same as those for
the case without the limiter.

Figure 6 shows the time evolution of V-contour for g,=1.85,where a
row of small rectangles denotes the limiter position. After the plasma
surface touches the limiter (#>55) the plasma is shrinking as the
ellipticity is increasing. When the plasma becomes stable against the
m/n=2/1 mode at t=87. the plasma is detached from the limiter and the
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damping coscillation begins. Figure 7 shows the time evolution of magnetic
energy of each mode, where the damping oscillation of magnetic energy 1is
observed after the plasma is detached from the limiter { t>87 ). The
mechanism of this phenomenon is essentially the same as the phenomena
without limiter for g.u<1.8S. In Fig.8 {(a), the time evolutions of g, and
the internal inductance, l;, for the cases with { solid line } and without
( broken line ) the limiter are shown, where [; = f (V2SS / (VISES (8
is the plasma area and a denotes the plasma surfaces) and its initial value
is 1. The final value of q, is about 1.3 and that of [; is about 0.7,
respectively, for both cases with and without the limiter. In the
shrinkage phase with the constant total current, the values of qp is
unchanged in contrast with the decrease of q, value, the positive skin
current flows near the plasma surface, and the value of l; becomes small.
The calculation results for the plasma with higher q., values, i.e.
qu0=1.95~2.0 , are much interesting. The phenomena are quite different
from the results without the limiter. Since the separatrix always crosses
the limiter, the "vacuum bubble” cannot be formed and plasma periphery 1s
cooled as the same as the case of qu=1.85. The time evolution of q,
value for qun=1.95 is shown in Fig.8 (b), where the solid curve denotes the
case with the limiter and the broken curve denotes the case without the
limiter. The q, value in the saturation state without the limiter 1is a
little higher than initial value, while it becomes nearly equal to ! for
the case with limiter. It should be noted. however, that the numerical
results here are obtained from the single-helicity calculations, and in an
actual plasma with gq, less than unity, the most dangerous m/n=1/1
free-boundary kink mode becomes unstable, which can easily lead the current

disruption.

4.c Negative surface current

Figure 9@ shows the time evolution of the maximum value of negative
surface current near top or bottom of plasma poloidal plane in Fig.6.
This is the same calculationas in Fig.8 (b), that 1is, qm 1s chosen as
1.95. The negative surface current developed to suppress the instability
does not disappear in spite of the interaction between the plasma and
limiter, but even grows rapidly during the contact and disappears suddenly

when the plasma reaches the stable state and is detached from the limiter.
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This fact is different f{rom the prediction of Kadomtsev (6] or
Zakharov (7! , but it is plausible that this negative surface current 1is
required to stop the plasma motion at the limiter position while it 1is

unstable state. Almost the same result is obtailned for gu=2.0.
5. SUMMARY AND DISCUSSION

The final states of nonlinear m/n=2/1 free-boundary kink mode
evolution without the limiter are classified into two cases, i.e., the
stable state of shrunk plasma and the saturation due to formation of
"vacuum bubbles”. When the plasma is surrounded by the limiter placed near
the plasma surface, the plasma shrinks and goes into the stable state for
all the unstable values of gy (1.75<qn<2) for qu/qu!:==0.5 . Figure 10
is the stability diagram in the {(q..93/9. ) plane for approximated current
profile to thal realized in the nonlinear calculations with the limiter,
wvhere the hatched region denotes the unstable one. The +trajectories of
go=const. for g =1.85 and g, =1.95 are also depicted, which correspond to
the results of nonlinear calculations. In this stability calculation, the
plasma radius 1is determined from the condition of constant total current,
that is, a=ap~/qQa/qq With ay/b=0.66. It is easily seen from the figure
that higher g4 values for the same qp/q., value reslut in lower q, value in
the final stable state. Final q, values of nonlinear calculations for
both ¢q. <cases are shown in the figure by open squares. In fig.11, we
show the calculated linear growth rates versus qo for gg=1.90 with
constant go, unstable region of which is shown in Fig.l10. As q, decreases
with decreases of plasma radius, a, and internal inductance, l;, the linear
growth rate increases once and decreases suddenly leading the plasma to be
stable state. This is consistent with the energy evolution of m/n=2/1
mode for g =1.80 shown 1in Fig.7. Because of its inertial effect, the
final g, values decrease lower than the marginaly stable values. When the
value of q, becomes near or less equal to one, the most dangerous m/n=1/1
free-boundary kink mode becomes unstable and causes the major disruption
easily.

It can be concluded that the condition, gy< 1, is required to pass the
dangerous zone of @,=2 in tokamak discharges, because, by the interaction

with the limiter, q, decreases nearly equal to 1 for go> 1 and the m/n=1/1
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growth rate increases once and decreases suddenly leading the plasma to be
stable state. This is consistent with the energy evolution of m/n=2/1
mode for gy =1.85 shown 1in Fig.7. Because of its inertial effect, the
final g, values decrease lower than the marginaly stable values. When the
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easily.
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with the limiter, g, decreases nearly equal to 1 for go> 1 and the m/n=1/1
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kink mode is destabilized (this boundary is shown by a dotted 1line in

Fig.10). - The condition of @< 1 for realization of low q, (qs< 1.5)
discharges is the same as that in Ref.{9) , but the mechanisms are
completely different each other. The calculations for the plasma with

qq0->2 and dependency of the nonlinear behavior on k, are now being carried
out and the complete results of nonlinear m/n=2/1 free-boundary mode
including the ’surface tearing mode” (8,10] will be  presented

elsewvhere,
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FIG.1 Linear growth rate, v, versus safety factor at the plasma surface
qe for various values of parallel resistivity diffusion coefficients ki
for current profile; Jr)=JO)(1-(r/a)®®?. Parameters are chosen as
a/b=0.66 and n(b}/n(0)=106. Values of k, are 10°,10° and 10° from top to
bottom, respectively.
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FIG.5 Final states of ¥-contours and plasma surface for current profile;
J{(r)=J (0)(1-{r/a)*® ¥ with various qm values, (@) g =1.75, (b) qu=1.8,
(€) qgu=1.85, ) qu=1.9, (&) qu=1.9 and () qgu=2.0. Elliptic
deformation of plasma surface at about maximum magnetic energy state for

cases of plasma shrinkage. (a)~ {(c), are also shown.
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FIG.'7 Time evolutions of magnetic energy of each mode for gu,n=1.85 with
limiter. Bold line, shown upper side of figure, denotes the time duration
when the plasma contacts with limiter. Mode numbers are m/n=0/0, 2/1,

4/2,...., 20/10 from top to bottom, respectively.
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10 T Y

surf.

FIGC.9 Time evolutions of maximum value of negative surface-current near
top or bottom of plasma poloidal plane in Fig.B6. This is the same
calculation as in Fig.8(b}. Bold line, shown upper side of figure, denote
the time duration when the plasma contacts with limiter. Broken line

denotes result without limiter.
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FIG.10 Stability diagram of m/n=2/1 free-boundary kink mode for
approximated current density profile to that realized in nonlinear
calculations. Hatched region denotes unstable one, and two broken lines
of trajectory correspond to nonlinear calculations with limiter for
Q0 =1.80 and g, =1.95. Black and open squares denote start and final
positions, respectively. Trajectory of qun=2.0 {(g;=1.0) 1is shown by
dotted line. Plasma radius is determined from condition of constant total

current, i.e., a=ag+/qa/que With ap /b=0.66.
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FIG.11 Change of linear growth rates along trajectory for g =1.90 with
constant qp, unstable regin of which is shown in Fig.10. Current density

profiles are determined from following formula,

i (ry=jol - (r/ap)®% Y+ dexp (-2( (r-a+p)/v)2) ] {1- (r/a)’}2.

Height of skin current, A&, is determined from condition of constant total
current for fixed position of skin current, p=0.1ag, and width of that,
v=0.0bag . Value of v, which denotes current gradient near plasma surface,

is chosen to be several ten.



