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1. Introduction

The ideal MHD beta limit is used to determine the beta limit of a
reactor plasma. A lot of calculations have been carried out to assess
the beta limit {1} . The results are approximately described as a
simple scaling law {2} i.e, B(%Z)=gl, MA)/a(m}B,(T) , where I,, a and B;
are the total plasma current, the horizontal minor radius and the
toroidal magnetic field strength at the center of the plasma, and g is a
constant of 3-4. The difference in g is considered to be due to the
difference in the parameters 1in the calculations, e.g. the modes.
profiles and plasma shapes. In the international collaboration for the
design of a specific fusion reactor, such as INTCR workshops, it is
necessary to clarify the cause of the differences for the assessment of
the data base. If the difference comes from that in the definition of
physical parameters or the numerical accuracy, the data base makes us
confused. Benchmark calculations and the documentation of numerical
codes are the first step to assess the data base which are presented by
each delegation. In this report, we present the description of the
equilibrium (SELENF40) and stability (ERATO-J) codes in JAERI and
propose the data sets for the benchmark calculation on the ideal MHD
beta limit.

2.Fquilibrium calculation
2.1 Basic equations
In the axisymmetric toroidal system, the equilibrium magnetic field

B and current J are written by the poloidal flux function ¥(R.Z) in the
cylindrical coordinates (R.Z,p):

B = Vg x V¥ + FVo (1)
and

uod = AMyVe + VFxVo , 2)
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where

"\‘_;—

A = RV - <w/R2>—R (%a—\" + g;.

The equation for MHD equilibria, VP=JxB , can be reduced to the

@)

Grad-Shafranov equation,

2
AYW o= - B % - é %F;— = g{R,¥) ({n a plasma ) (Aa
and
Ay =0 (in a vacuum) , (4b)

when the plasma pressure is isotropic and the function of W, The

poloidal current function , F ( F=RB,, B; :toroidal magnetic field ) is

also the function of 1. The functions P and F are arbitrary in
eq. (4). The time-evolution of these functions are determined by a
transport process. For the MHD stability analysis, P and F are given

by using a simple model which is shown in §2.3.

2.2 Plasma shape and boundary condition
The shape of a plasma surface is specified by the functions,

R =Ry + gcosiB+5'sing) , (Ba)
and

Z = kasin@ , (%b)
where Ry, « and a are the major radius of the plasma center, the
ellipticity and the minor radius, respectively, The parameter, §°,
specifies the triangularity. The solution of the equation , Ay,=0,

gives the poloidal magnetic flux supplied by external coils (vacuum
field solution). The general solutions, { y,; }, are used to control a

plasma shape. The vacuum flux is expressed by a linear combination of
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the general solutions:

M
b= 2, Cove &)

i=l
The coefficients, (C;}. are determined so that the flux contour with
Y+yy=ys may pass the specified points on the plasma surface given by
eq. {5}, (¥ the solution of the Grad-Shafranov equation, ys: flux at the
plasma surface). The condition that the contour with ¥+y,=ys passes

the specified points is too stringent for the coil systems in the design

of experimental devices. For this purpose, a least square error can be
minimized :
E = Yol (b dimdsi 12+ LIE = min o, )
t i

where {a;), {b;} and I, are the weights and the currents in the external
coils. The GCrad-Shafranov equation {eq.(4)) 1is solved 1in the
rectangular domain , R*, in the (R,Z) space (Fig.1). The poloidal flux
function, ¥, is arbitrary by a constant which is chosen as ,=0 at the
plasma surface. By using this condition and the Green's theorem, the
poloidal flux produced by a plasma current in a vacuum region is given
by

Y (r) = 99 G By R 2L @)
=
where
B, = V¥l /R . Q)
Glr,r) = —El; JRR/ k- [(@K2KK) — EGR} (10a)
and
k = 4RR’ {(10b;

®R+R 2 + @-7')%
The functions K(k) and E(k) are the first and second complete elliptic

integral, respectively. The Grad-Shafranov equation is numerically
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solved by using iterative methed. The methods are described in
§2.3. The boundary condition for the n-th iteration is given on the

rectangular boundary, 8R* , by using the sclution at the (n-1)th step;

YV (3R*) = %" (AR") + ¥ (3R, (11)

where ,° 1s calculated by using the condition ﬂP‘V+§;(LU@t:O at the
specified points of the plasma surface. When the iteration converges,

the solution in an unbounded domain is obtained.

2.3 Numerical Methods
2.3.1 Nonlinear Eigenvalue Problem

When the inhomogeneous term in eq.{4), g R,V ), is given as the
function of a normalized flux, y=1-v/% (=0 and ¥y : poloidal
magnetic flux at the axis ), the semi-linear equation can be solved by

using the algorithm of the nonlinear eigenvalue problem :

O = AFRYY) (in a plasma) (12a)
A =0 {in vacuum) _ : (12b)
with the boundary condition described in §2.2 . Equation (12) can be

solved numerically in a rectangular domain by using the double-cyclic

reduction method ({3}. The eigenvalue at the n-th step, A", is
determined by "= (¥ " AT The iteration converges when
| A"-2"!| /A"<g; . The value, Yo, is obtained by a constraint :
I, = f Af (R, dRAZ = given value (13)
or
_F db | . .
W = 5= Pp U] 'w=0 given value , (14)

where I, and qp denote the total plasma current and the safety factor at
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the magnetic axis, respectively. This algorithm is useful when P and F

are given as the function of E .

2.3.2 Flux Conserving Tokamak (FCT) Algorithm

The Grad-Shafranov equation can be solved by specifying the
profiles of the adiabatic invariant, p(y), and the safety factor, qiy),
instead of P(y) and F&) '

u@) = PE) (3—;’)r , (15}

and
m = 1 dj = F -—g—’i— M
9 = 123 - =P (16

where ¥, V and [ are the toroidal magnetic flux, the volume surrounded
by a magnetic surface and the specific heat ratio I=5/3). This model
describes a non-dissipative transport system and is called “Flux
Conserving Tokamak (FCT)" model {4}. By substituting eq. (19) into the
right hand side of the Grad-Shafranov equation (eq.{4)}, we have

1oas, ., dV d 2,0 ¢ _ 1 dF

This equation 1is the combination of an elliptic partial differential
equation (PDCE) and an ordinary differential equation (CDE). Equation
(17) can be solved interatively by using the Grad-Shafrancv equation and

the averaged equation on a magnetic surface {5}:

d 2. dvVy _ _dP  _poop dF
(B> F) = -m G - <RBFE, (18)
where
o oy f Xdl
X = Lm | Xebx /fA Fr=en PP 19)

By using egs. (15) and (16), eq. (18) is written as

== =-D , 20a}

e L Y o €
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and

dy _ .2 , .

dv-FR >, 20b ;
where

_ vRE> dK/d) + P P <RI sy o -
D = -z -2 , - 7 ’ 217
RZ> + VKR> + pgl<R">F2
K = v<R™*><B%> 2r é% , - (22)
p

and

y = -1 @3)

47-q

The boundary condition of eq. (20) is given by

x (=0) = x(V=0) = 0 (24a)
and

_ 0 _
x G=1) = x (V=V) = 4n2 ﬁ Q@)ty (24b)
YO
The nonliner equation can be solved iteratively :
; ‘
= Cexp(~ [ DE ) (25)
1o
and
4 2

v = [ PR (6)
The constant C is determined by the boundary condition ({24b). The
iteration converges when

| (dy/dY — dy™dvy/ (e /dvy < €y RtAP.

The averaged quantities on a magnetic surface, <X>> , are obtained by
solving the Grad-Shafranov equation (PDE) and the right hand side of PDE
is obtained by using
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F% = -F°D : 28
and

dp _ d dyyr N

dw d’-’;"J (IJ( dv) ) . (29)

The CDE determines F{y)=RB; and the torcidal magnetic field at the
plasma surface, F;, changes from the specified value (the value of the
vacuum toroidal field ) due to the change in the pressure. To avoid
the jump of the toroidal magnetic field, the adjustment of the plasma
surface is necessary such that

Er(6r) = | F(p=1) - F)/Fsl < ef . (30)

Due to the modification of the plasma surface, the vacuum magnetic field
to control the plasma surface also should be corrected . The

alternative iternation of PDE and ODE converges when
Ex = max{| @' @)= @@L | VE@-VET@OAVEE)|

pl gpl-l ! . !
(G )/ =S/ < @)

‘where ! denotes the step of the iteration.

2 4 Critical pressure to the ballooning mode and local interchange mode
For a given P(y) and q¢}), the stability of the ballooning mode and
the local interchange mode are investigated. The equation of the high

mode number stability is given at a magnetic surface by {6},

d dG . _ .2 3
W Flu) dy * h{y)G = ok (y)G , (32)
where
_ 1 | VY12 3z .\
fy) = ;\/EIVWJJIZ{I + ( B aw.l_)} ’ 33)
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) = et - (S 22 )y, (35
2(y) fJ L9E g (36
B=(F2 + |V ww%/R?- , | (37
i - 1% -

and N/E is the Jacobian. The boundary condition of eq.(32) is given
by

(y=—o2) = Gy=+==) = 0 (39)
When «?<0 , @ ballooning mode is unstable at a magnetic surface. The
marginal pressure. dP”/dy , is obtained as the "eigenvalue” by solving
the equation with «2=0. The alternative iteration of the
Grad-Shafranov equation and the ballooning equation with «2=0 gives the
critical pressure {the betailimit) for a given q(y). ‘

The asymptotic solution of eq. (32) is given by (6}

Gliyl—=) ~ (L), (40)
where
«=-L:/TA-D, (41)
taa | (P (n - 53 )
+ 47:2%3&: g dP p2q2) 42)
Q = g—};wzap% = o1 %fpg : (43)
@ = %<R-4B 25 . 2156 i (44)
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and

dv -2 . dl
By> =2z . (A5
d“,v Bp {45

The condition of a non-oscillatory solution is D<1/4 which 1is the

Q& =

stability criterion for the local interchange mode (the Mercier

criterion i7})

M=M+ M, + M, >0, (46 ;
where

M, = L@2dd2 - ¢ 47)

g 4 dw ¥

M= - = i aSla - —(F-Qz - a?dyy (48)
and

My = ~(mE)20s = - (X ) @a-q%) + 478 (49)

dy dy

The ballooning equation with «*=0 is solved in a bounded domain of
y, [0,2rNj , assuming yp=0 for a up-and-down symmetric case , where N
is the numbers of turns in the integration of the equation. The

marginal equation is solved numerically by using the Runge Kutta Method
or the matrix method with the boundary conditicns

G(0) = finite , (50
and

G(2zN) = - (51)
When the Mercier criterion is violated, the marginal equation has the
oscillatory soclution and the boundary condition {B1) can not be used.
In this case, the marginal pressure dP”/dy 1is obtained by using the

criterion of the local interchange mode:

uodP™ /chy = —(C2 + A/CR+4CIC3 )/ (2C3) . (52)
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2.5 Data set for benchmark calculation
2.5.1 Definition of Parameters

In this section, the basic parameters used in the equilibrium
calculation are summarized

(1) Geometrical parameters (Fig.2)

Aspect ratio @ A = Ry/a (53
Ellipticity : k = b/a (54)
Triangularity @ 8= A/a {55

(2) Physical parameters

F d!

Flux safety factor :q = 5 g ﬁqﬁ@aﬂ‘ (58)

Current safety factor :q = ﬁ%%?%%%} (57
(a=o/D/m , D : Area of cross section )
Q2 = %ﬁ%’% | (B8)
Qi3 = ;J}—iﬁ—@) (29)

(k=(1+x%)/2)
where By 1is the vacuum toroidal magnetic field at R=R; and Z=0.
Beta value : B: = 2upP/By® (P = f PdSJ:/f &Bx) (80)
Poloidal beta value : By = 4ug[Pdx/ (Roiuol, (4)}%) ®B1)
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tﬁ 2 _I ‘—‘A ’\ . ;
T ©2;
dl
i
: 2V d . P \
Shear : 5= & 5 (= g ﬁ = o/ V/2TRy ) 63)

Local poloidal beta value @ « = el deyA/VVEszo

oy
i
(= oRomoE/ (- 90)%) (64)
Averaged parallel current :
<J - B> F dP 1 dF .
Iy = .82 _  _f df L ar \
R 5N <B>dy b A ©5)

2.5.2 Descriptions on Equilibrium Code
In Tables 1 and 2, numerical methods and parameters used in the

equilibrium code are summarized.

Table 1 _Procédure and numerical method

Procedure Numerical method
Plasma shape 6 points fitting in egq. (D).
9 =0, 7z, 0.5x=0.15, 0.257, 0.5z
Trace of contour Liner interpolation in{(R,Z)
plane
Interpolation Cubic spline function

& derivative

Numerical integration Trapezoidal rule
PDE Double cyclic reduction
ODE Trapezoidal rule
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Table 2 Parameters of numerical calculation

Variable Contents Yalue
NR Mesh points in R =207
NZ Mesh points in Z 129
NY Numbers of contours 101
N Numbers of turns 10

in ballooning equation

£3 Convergence in Nonlinear 1073
eigenvalue problem

£y Convergence in CDE 10°°

£F Convergence in volume 1074
control

£y Convergence in FCT _ 1073
calculation

2.6 Example of equilibrium

For the stability calculation, we use four kinds of up-and-down
symmetric equilibria with A=4, Ry=4, a={, x=1.6, & =0.3 (6~0.3), gqp=1.1
and g,~3.1 and 3.2 . The profile of the safety factor is obtained by
using the algorithm of the nonlinear eigenvalue problem with the
following profiles of dP/cy and F{dF/d)

LGy =B - P2 G

chy

and
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odF —. 2,1 dP —.
F=— () == Ro- (= — Dug—- ) . (B7;
@ v (81 MOy ¥ 18

The vacuum toroidal magnetic field is chosen as B;;=5.5 at the center of

the horizontal midplane. By fixing g{") obtained from the profile (8
and (67 with #;=0.001, the pressure is increased in FCT sequence.
Table 3 shows the parameters {(j1.j2) and the profile of P{}) in the FCT

sequence.

Table 3 (jl, j2) and pressure profile

Data 1 Data 2 Data 3 Data 4
(Ji »J2 ) 2.3, 2.0) | 2.3, 2.0) [(1.15, 1.0} |{1.15, 1.0)
Q0 1.1 1.1 1.1 1.1
Calculated q, 3.12 3.12 3.20 3.20
Pressure P1 P2 P2 P3
{xg = 0.95)

Pl : P) = Pp(1 — 0.2y —2.86%" +1.8/°)

P2 . The marginal pressure, P{}))*= —:[O (e /dyydy . to the
ballooning mode. o

F3 : The marginal pressure with the form factor,
SGy = 2/{1+expT/x0)%) .

The pressure is increased by using the profiles shown in Table 3 with
the increment of AB~0.2 % . In the cases of P2 and P3, the increment
of the pressure is given by using the marginal pressure profile of the
former step :

prt o, grely et gty Lopry ©8)
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PGy o= Co PPl G, (69}
and
n-1 __
Cr = _@BM_/_\B ‘ (70

This procedure is not a complete optimization with respect to the
ballooning mode but the FCT sequence by using the nearly marginal
profile of the pressure. The iteration with Cp=1 in eq. (B3) gives the
optimized beta limit for a given g-profile. In Fig.3 to Fig.B8 (which
correspond to from Data 1 to Data 4, respectively), subfigures <(a)-{j)
show the following quantities:
(a) Contour of equi-y. The symbol, %, denotes the position of a null
point.
(b) Contour of equi-J,.
(c) Plasma pressure, P({R,Z=0).
(d} Safety factor, q(R,Z=0).
{e) Toroidal current density, J,(R,Z=0).
(f) Safety factor, q(y).
(g) Pressure gradient dP/cdy. The broken line shows the marginal
pressure gradient, dP™/dy .
(h) Diamagnetic current density, F{dF/cy).
(i) Averaged parallel current density.
(j) Stability diagram in S-a plane. The right side of the curve is a
stable regicn of the ballooning mode. The broken 1line denotes
the marginal line obtained by using dP™/cy .
These figures show the quantities at the nearly beta limit due to the
ballooning mode. In Table 4, the beta limit due to the ballooning mode
and other quantities are summarized.
For Data 1 and 2, the shear is weak near the magnetic axis and the
numbers of turns for the integration of the ballooning equation should

be increased. In the present calculation, the marginal pressure is
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obtained by using eq. (52), when the Mercier criterion is violated.
However., it dces not affect the beta limit too much because of a small

volume of this region.

Table 4 Beta limits and other related quantities.

Data 1 Data 2 Data 3 Data 4
Bs %) 3.0 4.3 4.1 3.5
B 1.2 1.6 1.7 1.5
I, (MA) 5.5 5.8 5.4 5.3
gg %) 3.0 4.2 4.2 3.7
Q1 1.97 1.€2 2.02 2.04
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3. Stability calculation
In this section, the ideal MHD stability of the n=1 external kink

mode is studied for the four cases of equilibria described in §2,

3.1 Basic equation _
The stability of the ideal MHD modes is studies by minimizing a
Lagrangean {8},
L =W + W — Wy, (71)

W, =12/;d3x[|q + o) oxn) 1% + TPV -¢ 12

— 2in-¢1%UJoxn) - By- Von) B = Vx (§xBy) {2
Wy :%_[Vd3xlvai2 , (73)
and
Wy = %—,fdsxpoi g% . (74)
o]

Here ¢ 1is the displacement of the fluid element, n is the unit vector
normal to the equilbrium magnetic surface (n=Vy/1Vy! ), and py is the
mass density. The quantities with a subscript O denote cnes in an
equilibrium. The perturbation of the vacuum energy in eq.(73) is given
by using the vector potential, A, and the boundary conditions for ¢ and
4 are given by (8}

nxA4 —{n-¢By at the plasma surface , (75)

4l

and
nxd =0 at the conducting shell or infinity. {76)

The potential energy of the plasma motion, eq. (72), can be written in
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the other form {2},

W, = lzfd%:{ Q - --—5'V:,,P°Bo]3 - —J‘f"f‘)sto-Q + TPy v-¢l?
Bp* Ba
— 2¢- VPt Ko| (77>
where
xp = Bux (BoxV PPo+Bi)) xBy 78"

2302
This form is wused in the analysis of the driving mechanism of the
instability. The first term in eq. (77) works as the stabilizing term
due to the bending and the compression of a magnetic field. The second
term and the fourth term are the destabilizing terms due to the current
and the pressure gradient and they are called the kink and the ballooing
terms, respectively. The weakly unstable MHD modes localize near the
rational surface where g(y) takes a rational number. For the accurate
calculation of the eigenvalue, «° , and the eigenvector, it is necessary
to use a flux surface coordinate, (w,x,¢),‘where ¥ 1s the azimuthal
coordinate. In the axisymmetric system, the equilibrium QUanties are
independent of ¢ and the Largangean can be written in the form of the

single summation with respect to the torecidal mocde number, n,

L=YL., (79
and
EW,8) = Y g (w.xe’™ | (80)
n
The Fourier-comporent, £,{(¥,x), is written in the contravarient form :
£, = RX(VxxVe) + RPVVoexVy + RPYBy . (81)

3.2 Numerical method
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The details of the numerical methods of the stability code, ERATO.

is described in Ref.{10}. Here. one of the most important procedures
in the ERATO-J ccde is described, i.e. the mapping from the {R.Z.z
coordinate to the flux coordinate, j,x,¢). The azimuthal ccordinate,

X, 1s defined hy

with or = p—dt 82)

{
dl
X = e
5 »/gB, INET:N

where N/E is the Jacobian of the flux coordinate system. One of the

typical coordinate systems is given by

@ZHPB_Z_ 83)
In this coordinate system. the angle between the toroidal and poleoidal

magnetic field lines 1s constant on a magnetic surface:

B . A9F _ iy

B* Re
Where B®* and B* are the contravarient components of the magnetic

, (84

field. This coordinate system is called "a natural coordinate system”.
For the mapping, the trace of the magnetic surface and the
numerical derivatives with the high accuracy are inevitable. In the
ERATO-J code, the 3rd order or the Hth order spline interpolation is
used in the (R,7Z) space. The magnetic surface is traced by sclving the
equation of the magnetic field line:
R __1 9y dZ_ __1 3y (85)
dl [Vy !l a3z ' dl |Vl R
where dl is the element of the arc length along the magnetic surface.

The differential equations (85) are solved hy using the 4th order
Runge-Kutta method. Along the magnetic surface, the derivatives of
Y(R,Z) are calculated by using the two dimentional spline function.

Figure 7  shows the convergence of the squared growth rate, yzz-wz/mAz,
with respect to the mesh size, Ny, and N,, where wiZ=Fo?/ (wopoRyt)  and
Fo= F{3=0). The broken line denotes the case of the linear
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interpolation and the finite difference approximation of  the
derivatives. This approximation does not give the quadratic
convergence of yg with respect to mesh size. Tne 3rd order
interpolaticn as well as the trace by using the Runge-kutta method gives
the quadratic convergence {(the solid line;.

The mesh accumlation is efficient to describe the ideal MHD modes
near the beta limit. In the ERATO-J code, the weight of the mesh

accumlation is given by

=1+
Zl*us si f /W) ©
where S=NA; . The mesh point in s 1is obtalned by W;=W(s;} (¥;:

; (88)

equi-distant mesh in W space).
3.3 Data set for benchmark calculation

In Table 5, the parameters used in the stability analysis are

shown.
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Table 5 Data set for ERATO-J

Parameter Contents Value
- Coorinate Natural in x
s=vV' ¥
N; . mesh numbers in s 101
N, mesh numbers in 81

{only upper half plane)

Ci eq. (86} 1.0
W eq. (86) 0.1
Sy eq. (86) 0.9
£ Convergence of o 107
in the eigenvalue
solver
n Toroidal mode number 1
Reall Position of Conducting co
Wall

3.4 Growth rate and beta limit
The stability of the n=t external kink mode is studied for the four

classes of equilibria (Data 1 - Data 4) described in §2.6. Figure 8
shows the squared growth rate, 72=—aF/UA2, as the function of §, for the
Data 1. The beta limit is (;~3.8% . Figs. 9-11 shows {(a) the safety
factor as the function of s:wﬁf , (b) the eigenmode X({s,¥=0). (¢} the
eigenmode‘ V{s,y=0) and {d) driving terms averaged on a magnetic
surface. The symbols 4, K and B denote the bending of the magnetic
field, the kink term and the ballooning term given in eq. (77),
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respectively. In Table 8. the growth rate and the beta value are

summarized for Data 1.

Table 6 Squared growth rate and 3; for Data |

aQ

Be (%) ¥ By I, MA) Qi mode

4.80 | 3.28x107 1.77 5.68 1.90 Fig.11
4.60 | 1.92x10% | . 1.71 5.66 1.91
4.40 | 9.98x10™ 1.65 5.63 1.92
4.20 | 4.21=x10™ 1.59 5.80 1.92
4.00 1.18x10™ 1.52 5.58 1.93 Fig.10

3.80 1.45x107° 1.48 5,55 1.94 Fig.9

The operator in the ERATO code has a branch of a continuum spectrum in
the vicinity of «®=0. The eigenfunction of the continuum spectrum has
the singularity at a rational surface. Due to the discrete space in ¥
and y, the continuum spectrum appears in the unstable. side by a
numerical reason. Therefore ,when the sharp peak in the eignmode, V,

localizes with a few meshes, a plasma is considered to be marginally

stable. Figs.9 (¢} and {(d) show the structure for a nearly marginal
state. The growth rate is v2=-u®/wi®=1.45x107 . This result
indicates the o-stability criterion {11} with ¢®=1.0x10°. For Data 2,

3 and 4, the squared growth rates and the beta values are shown 1n
Tahles 7, 8 and 9, respectively. The mode structures near the heta
limit are also shown in Figs.12 to 17. The beta limits due to the

ballooning mode and the kink mode are summarized in Table 10.
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Table 7 Growth rate and 3, for Data 2

Be o) ¥ B I, (MA: an mode
470 | 2.78x10™ 1.75 5.66 1.91
4.50 | 8.13x107 1.69 5.63 1.2
4.31 | 2.24x107 1.83 5.61 1o Fig.13
4.12 | 8.91x10P 1.57 5.59 1.93 Fig.12
Table 8 Growth rate and 8, for Data 3
B (%) ¥ Bi I, MA) | au mode
3.9 | 8.08x10" 1.64 5.33 2.02
3.73 | 2.91x10™* 1.57 5.30 2.03
3.83 | 4.24x107 1.50 5.28 2.04 Fig.15
3.34 | 4.06x107° 1.44 5.25 2.05 Fig.14
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Table @ Growth rate and j3: for Data 4
B (%) ¥ B I, MAY | an mode
3.72 | 8.06x10" 1.57 5.38 2.03
3.53 | 2.91x10™ 1.50 5.28 2.04
3.34 | 4.53x107 1.43 5.25 2.08 Fig.17
3.14 | 9.45x107° 1.36 5.23 2.08 Fig.16

Table 10 Beta limit due to ballooning mode and kink mode

Data Bz %) gg (%) By (%) gk (%)
Data 1 3.0 3.0 3.8 3.8
Data 2 4.3 4.2 4.2 4.1
Data 3 4.1 4.2 3.4 3.5
Data 4 3.5 3.7 3.2 3.4
4. Summary

In this report, we described the basic equations and the numerical
ideal MHD beta limit of a tokamak
We also propose the data set for the benchmark calculation on
the beta limit of INTOR plasma.
In Data 1

strong near the plasma surface.

methods for the analysis of the
plasma.
We chose four classes of equilibria.

and Data 2, the shear is weak near the magnetic axis and is
In Data 1, the pressure 1is increased

by fixing the profile which is close to the optimized one near the



JAERI-M B86-172

Table 9 Growth rate and 3; for Data 4

Be ) 'a B; I, (MA) qJ maode

3.72 8.08x107F 1.57 5.38 2.03
353 | 2.91x10™ 1.50 5.28 2.04

3.34 | 4.53x107 1.43 5.25 2.05 Fig.17

3.14 g 451078 1.38 5.23 208 Fig.16

Table 10 Beta limit due to ballooning mede and kink mode

Data Be (%) gz (%) Bk (%) g (%)
Data 1 3.0 3.0 3.8 3.8
Data 2 4.3 4.2 4.2 4.1
Data 3 4.1 4.2 3.4 3.5
Data 4 3.5 3.7 3.2 3.4
4, Summary

In this report, we described the basic equations and the numerical
methods for the analysis of the ideal MHD beta limit of a tokamak
plasma. We also propose the data set for the benchmark calculation on
the beta limit of INTOR plasma. We chose four classes of equilibria.
In Data 1 and Data 2, the shear is weak near the magnetic axis and is
strong near the plasma surface. In Data 1, the pressure 1s increased

by fixing the profile which is close to the optimized one near the
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magnetlic axis. The kink limit is greater than the ballooning limit.
In Data 2. the pressure is increased by using the marginal pressure at
each iteration step. The two limits coincide with each other. In
this case the toroidal current density has a finite value at the plasma
surface., but the averaged parallel current density is small. For Data
3. the kink limit is smaller than the ballooning limit mainly due to the
weaker shear near the plasma surface, By the reduction of the pressure
gradient near the plasma surface, two limits become closer. For the
data base assessment in the international collaboration. it is necessary
to compare the results in wider range of parameters and to summarize
them from the physical point of view.
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Fig.! Rectangular domain for Grad-Shafranov equation.
Boundary condition is given on 3R

Fig.2 Definition of geometrical parameters.
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