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In this paper, an algebraic approach to derive a joint solution for
a six-link manipulator with a mechanical offset is proposed. Generally,
derivation of exact joint solutions for such a multi-Tink manipulator is
considered to be an extremely cumbersome problem and a practical approach
might be 1imited to numerical approximation based on linearization and
iteration. Compared with such a conventional method, the polynomial ex-
pression presented in this paper permits to determine all feasible solutions
of the inverse kinematics of the manipulator.

An algorithm of the solution for a six-Tink manipulator was implemented
in the computer code ARM3. Joint behaviors with the mechanical offset were

obtained with sufficient accuracies.

Keywords: Six-Link Manipulator, Mechanical Offset, Inverse Kinematics,

Computer Code ARM3
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1. Introduction

The study of kinematics of a robot manipulator is primari1y concerned
with the mathematical correspondence between the joint variables and Cartesian
ones related to a spatial linkage mechanism.(1)~(5) As a rule, the trans-
formation from the joint space into the Cartesian space, the so called

" direct problem " is unique and easy to compute even for a six-Tink mani-
pulator. On the other hand, though the solution of the inverse kinematics
regarded as a non-linear mapping from the Cartesian into the joint co-ordinate
space is one of the most important problem in the manipulator control, it is
often intractable to derive except by numerical method based on linearization
and iteration techniques ( for instance, Jacobian method ), which is currently
a most common way to derive the individual joint solutions given the posftidn
and orientation at the end-point of a manipulator.
Admitting that the inverse Jacobian method may be certainly sufficient
for practical purposes, however, this approach has intrinsic shortcom ngs
in the sense that a solution obtained is highly dependent on the initial data
{ i.e. initial guess values )} and a large deviation of the initial guess values
from the exact ones is not allowed in obtaining a reliable joint solution due
to the essential properties of linearization . Additionally, the problem of
singularity may be a serious obstacle to the execution of the inverse Jacobian.(s)
Thus, generic and explicit analytic solutions for this problem seem
impossible to obtain but for some special arm configurations, since kinematic
equations are composed of transcendental functions of multi-variables.
Considering such circumstances, we have previously introduced how to solve
the inverse problems from a different viewpoint apart from the traditional

linearization technfques.(s) Its underlying notion was to transform the kine-

matic relationships into a non-linear polynomial with a single angular variable.

T LA P————— S ———— -
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Since the roots of the equation are favorably correspondent to the
solutions of the joint angle, they give a clue to extract at the same time all
feasible solutions latent within kinematic relationships. In that sense, this
approach is helpful to study every possible configuration of arm.

So far, the validity and usefulness of this method have been verified in terms
of applying to a few different types of manipu]ators.(7)~(9)

The purpose of this paper is to extend the polynomial mode! so as to
apply to a six-iink manipulator having a mechanical offset and thereby to
obtain relevant solutions of the inverse kinematics.

In the sections that follow, we present a schematic of its algorithm

and several test calculations.
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2. Mathematical Model Description

2.1 Representation of Kinematic Equations

On the basis of the orthogonal co-ordinates systems assigned at indivi-
dual links of a manipulator, the kinematic relationships are first represented
as a function of the joint angle variables using a simple matrix operation.
By and large, the homogeneous matrix T;, which specifies the position and
orientation of the j th co-ordinate frame with reference to the supporting
base { i.e. world or absolute co-ordinates system ) is the chain product of
successive co-ordinate transformation matrices of A, represented by:

J

Ty =[] A 5 for = 1,2,..0,m. (1)

k=1

where A, is a 4 by 4 tranformation matrix relating the k th homogeneous
co-ordinate representation p, = (xk, Yis 2k 1)T to the k-1th one py_1 =
{(Xe_1> Yk-1s Zk-1s 17T, Namely, pp_1 = Ay Pg-

For a manipulator with six links { j=6 ), the location and orientation

of the end-point are determined in terms of six geometrical transformations

matrices.

This matrix Tg is employed so frequently in the analysis of a manipulator
kinematics. Figure 1 shows a sketch of the manipulator to be studied here.
Once the 1ink co-ordinate systems are established for each Tink, kinematic

equations in question can easily be developed using the A -matrix.



a, =700 (mm)
2,=500(mm)
A3+0,=350(mm)
d5=150(mm)
0g=280(mm)
b =115(mm)

-200<8, <200(deg)
- 30<8, <120(deg)

- 90<8,< 90(deg)

~180<8, < 180(deg)
- 90<85< 90(deq)
- 60<§, =< 60(deg)

5 =7
Link 6 .‘ .
GG 7 yG X 5
<2 S 5
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Now we enter the matrix calculation between individual link co-ordinates
systems. Throughout its derivation, the following assumptions and notations
are made.
{1) The connection between links { joints ) has only one degree of
freedom, either rotational or revolute.
{2) The motion of revolute or rotational joints around the z-axis
follows the " right screw rule " .
(3} A right handed system is used to represent the co-ordinate
system of each 1ink as shown in Fig.1.
{4) The symbols used throughout the derivation are :

(1} A transformation corresponding to rotations or revolutions

around the x, y, z axes by an angle &

(3)

(4)

(5)

(7)

M1 0 0 0
Rot(x,8) = 0 cosé =-sing O
0 sing cos® O
.0 0 0 1
cos6 0 sing 0
0 1 0 0
Rot(y,8) = -sin8 0 cos8 O
.0 0 0 1]
cosf -sing 0 O
Rot(z,8) = sing  cose O O
0 Q0 1 O
.0 0 0 1 |
(ii) A transformation representing translations by p, q, and r
along the x, y, and z axes , respectively
1 00 p
Trans(p,q,r) = 1 0g
0 01 r
0 0 0 1
(iii) Abbreviations
= : = 5j 3 .. = .+ 0.);
c; cosB.; g 519, ; Cij cos(Q1 eJ)
= 5 .+ 8,
5§ s1n(81 SJ)
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Concerning the linkage relation of the marnipulator depicted in Fig. 1,
the geometrical structure of the joint 1 through joint 5 is the completely
same as that reported in the previous ana1ysis.(7) Hence, no explanation of
their derivation on the individual co-ordinate transformation matrices from
the base to the fifth joint is repeated and only the result of each matrix
( Ay ~As ) is shown. Since the focus in the present study is put in the offset
mechanism between the link 5 and 6, the co-ordinate transformation matrices Ag

and Ag are newly described.

A, = Rot(ze,0,)Trans(0,0,a:)Rot(ys, - 3)

c; -51 0 O 1 0 0 O 0 0 -1 O
_ sy ¢ 00 /o 1 0 01'/01 0 O
0 1 0/'0 01 a il 0 0 0]
0 0 1/ \0 00 1/%% o0 0 1/
/c1 s, 0 0y /0 0 -1 0 0 -s; -cp 0\
- S1 C1 0 0 0 1 0 - 0 C1 -51 0 (8)
0 1 a; 1 0 0 0 1 0 0 a
0 0 1 g 0 1 0 0 0 1
A, = Rot(z,,82)Trans(a.,0,0)
cz ~Sp; 0 asce
- S2 Ca 0 axs» (9)
0 1 0
0 1
Ag = Rot(zz,ea)Trans(aa,0,0)Rot(yg,%J
/Ca -s3 0 0\ /1 0 0 a 010\
S3 cs; 0 0O 01 0 0O 1 0 0O
0 1 0 0 01 0 -1 0 0 0
0 0 1 0 0 0 1 0 0 0 1
Cia '53. 0 ascs 0 0 1 0 0 -53 C3 azCjy
- Sj3 c3 0 aszs; 0 1 0 0 - 0] Ca Sz Qa35;3 (10)
0 1 0 -1 0 0 0 -1 0 0 0
0 0 1 0 0 0 1 0 0 0 1
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T
+
1l

Rot(z3,84)Trans(0,0,au)Rot (ys , - 5)

/cl. -sy, 0 0O 1 00 0 0 0 -1 0\
- | S+ ¢y 0O 0 01 0 c1{/0 1 0
0 1 0 0 0 1 a, 1 0 0
0 0 1/ %0 00 1 00 1
0 -s, ~c, O
- //O Cy -~sy O (11)
1 0 0 ay
\ 0 0 g 1

(1) Ag-matrix

From the illustration
of Fig. 2, the upward and
downward movement of the
wrist parts, are realized
by the combination of :
a rotation around the z4-
axis by the angle ¢+ , a

translation by az along the

Xg-direction, and a rotation

around the xj-axis by - 90(deg).

Hence, we obtain a new co-ordinate

Fig. 2  Schematic of Link 4 to Link 5

system (xg, yg, zg) and Ag-matrix.

As = Rot(zu,es)Trans(as,0,0)Rot(Xu,-'%)
cs =55 0 O 1 0 0 ajg 1 0 0 0
= Ss C500 0 1 0 O 0 0 1
0 0 1 0 00 1 0 0 -1 0 0
0 0 01 0 0 0 1 0 0 1
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/Cs -s5 0 ascCs 1 0 0 /Cs 0 -S5 dasCs

- l Ss Cs 0 dgSs 0 1 0 = Sy 0 Cs 4dsSs (12)
\ 0 0 1 0 0 -1 0 O -1 0 0
0 0 O 0 0 0 1 0 0

(2} Ag-matrix

5 Referring to Fig. 3, a geomet-

O rical description includes :
- a rotation ( i.e. left and right
7 ~
/ h movement } of & in the final joint,

Z
7Y

\\\\ ///1<::: a translation by b along the negative
N | o . :

| \*“XS direction of the zg-axis corresponding

Nt

| to the mechanical offset and further-
|

more, a translation by ag along the
;:j>/ tast link with an end-effector { or
hand ).

Thereby, the hand co-ordinate

;Yc

X6
_ system (xg, yg, zg) is assigned at the
Fig Schematic of Link & to Final
Link 6 with End-Effector base of the end-effector.
A; = Rot{zs,0¢)Trans{0,0,-b)Trans(ag,0,0)
/CG-SSOO\/l(]OOlOOaG
_/ss ¢ 00l 010 O 010 0
0 0 10,0001 -b/to o0 1 0
0 0 0 1// 0 0 0 1 0 0 0 1
Cg -Sg 0O aeCs
_ I 'se ¢Cs 0 asSe (13)
0 1 -b
0 0 1

Now that we specified the individual A-matrices for a serial link

manipulator, six chain products of these homogeneous transformations

are postmultiplied successively. In other words,

787
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0 -s; ~cyp O ¢ -5, 0 azce
- 0
AIAZ - 0 Ci Si1 Sa Cs 0 daz252
1 0 g a; 0 0 1 0
0 40 0 1 / 0 0 Q 1
-$15 =%5;C2 =Cy =8253S2
S2C CiC -5 daC
( 2C1 1C2 1 2C152 (14)
Co -5 0 dzCotay
\ 0 0 0 1
A1AzAs
-$3152 -S51C2 -C1 =a3S5:152 0 -S3 C3 4a3Ca
$2C1 €Ci1Cz =53 d;C152 0 Ca S3 d3zCjy
0 -39 0 daCotd; -1 § 0 0
§] 0 0 1 0 0 0 1
//Cl $15253-53C2C3 =-5152C3-51C253 -235152C3-2351C253-d25152
- ( S1 =S5253C1%C1C2C3 $,C1C31C1C253 2352C31C3ta3CC253+a2€152
\ 0 ~£253-52C3y C3C3-5253 A3CC3-835253tazCota;
v\ 0 0 1 /
/c1 -SiCas =S1S23 -6351523-625152\
= | S1 CiCag CiSz23 83C1523ta,C152 \ (15)
L0 -S23 Cas d3CzstazCatay
\ 0 0 0 1
A1Az AR,
/cl -51C23 -5,S23 -83%51523-325152 0 -sy =C4
- Si CiC23 CiS23 83Cy1533ta2C152 0] Cy =5y 0
-Sz23 Cz23 dszCzztasCatay 1 0 0  as
0 0 0 1 0 O 0 1
-51S23 =54C1-51C4C23 =-C1Cu+S53SyC23 -2451523-8351523-325152
_ | C1S23 -S154%C1C4C23 ~-S51Cy-C2C2354 auC1523+a23C1523+a2C152
\ Cas -CyS23 SyS23 auCpatasCaa¥daCotay
0 0 0 1 /
(16)



A1AZA AL A
-51523 ~S4C;-51C4C23
C1S23 =~S315.TC1CyC23

\ C2s3 =CyS523

\ 0 0

cs 0 =-S5 asCs

o -1 0 0
0 0 0 0

~51{S23C5+C4C2355)-5455C1
Cl(C5523+C455C23)'515455

ss 0 Cs dsSs
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-C1Cs+5154C23
-51C4-C3C2354
SuSz3
0

Ci1Cu-5154C23

-4451523-8351523-d25152
24C1523133C1523+32C352
dyCpataszCpztazCarta,
1

$155523-54C31C5-51C4C23Cs5s

S9C4+C1C2354 ~C152355-5154C5+C1CuCs5Co3

C23Cs5-Cy4 52355 -SuS23 ~C2355-CuS523Cs
0 0 0
-as(C5523+55CQC23)Sl“assssqcl-(aa+aq)51523-625152
as(C5523+55C4C23)C1-65555451+(aa+au)C1523+320152 (17)
asCsC23-asSsCuS23+(as+ay)caatazCatan
' 1
Ts = A1A2A3A4A5A5
tir tiz Tisz Tis
tar taz tas taw (18-a)
tyr tzz tsz  tay
0 0 0 1
where
ti11 = -51(523CsCs+C23C4CsSs+CszuSs)+C1(Cu56'C65455)
12 = 51(32355C5+C23C45555—C23058u)+C1(CuCé+Sussss)
tis = 51(S2355-C23C4Cs5)-C1C55u
tiy = -s1[a@s(S23C5Ce+C23CHCeSs+C235456 ) +D(S5523-CuCsCas)
' +a5(523c5+c23c455)—F(a3+au)523+a232]
+C1lae(CySe~54S5Cs ) ~asSuSs+bsyCs]
tyy = Sl(ChSG‘SMSSCG)+C1(523C5C6+C23C4C655+5235456)
22 = 51(C4C6+545555)“C1(SzaSsCS+C23C45555'CzaSqu)
t23 = -5154C5-C1{S2355-C23CuCs)

. 10 —_
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taw = S1[as(CyS6-Sy4S5Ce)-as5SuSstbsycs]tci[as(s23csCe
+C23C4CsS5+C2a545¢ ) Has(S23Cs+C23CuSs)+b(S2355-CyCsCa3)
+{as+ay )s23+az52)

ts1 = C5CeC23-CuCS5S23~-5456523

32 = -Cs5C2356%CuS556523-54523Cs

Tia = -S5C23-C4CsS2s

tae = as(CSCeCzs-SsszacuC6-5455523)+as(CsCza-CuSSSza)

+b{co355+C4Cs523 ) H(aztaq )CastazCata,

From this representation, we can cast the position and orientation at
the end-point of a manipulator with reference to the base co-ordinate
system,

In passing, such kinematic relationships between links can elegantly
be derived using another concept based on a spatial vector and rotation

operator.(lo)

711,7
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2.2 How to Solve the Inverse Problem

This section presents an algebraic approach to derive a consistent
joint ang]e salution given the matrix T¢ of a manipulator with mechani-
cal offset. A transformation of kinematic expression into a non-Tinear
algebraic equation, the solutions of this decision equation, and a

determination of joint angle variables will explained in due order.

2.2.1 Transformation into a Polynomial

Consider the matrix Tg to be of the form:

/noa

X X X px
n o a p noaop
Te = y ¥ ¥yy =< ) (18-b)
n, 0, a, p, 0001
0 0 0 1

In Egq.(18-b), the left upper 3 by 3 matrix is a rotation matrix
made with orthogonal unit vectors - n, 0, and a. As depicted in Fig. 3,
n is the approach vector of the hand, which indicates the xg-direction.
0 is the siiding vector of the hand, which indicates the direction {i.e.
ys-sense) of the finger motion as the finger opens and closes. On the
other hand, a is the normal vector of the hand {i.e. in the z -direction).
Assuming a parallel-jaw hand, it is perscendicular to the fingers of the
manipulator. p is the position vector describing the location of the
hand in the Cartesian space.

Equating the corresponding elements of the matrix T¢ in Eq.(18-a)
and Fq.{18-b), we cbtain kinematic exrcressions of the manipulator given
in Fig. 1; where each component of Tg in Eq.(18-b) is postulated to be

known.
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nX = -Cp(S1S23Cs +5S4S5C1 +5155C4Cza) + Se(C1Cy - 5154C23) (19)
ny = Cg{C1C5523 - S154Ss ¥ C1C4C23Ss) + S{S1Cy +C1C23Sy)
n, = Cs{CsC23 - C4SsS23) - SuS23Se (21

0, = Ce(CaiCy - 5154C23) + Sa(51523C5 +5455C2 +S155CuC23)

o, = Ce{S1Cy +€3C2354) - Sg(C1C55235 - S15455 + C1C4C2355)
0Z = -Cg{suS23) + Se{CySs5Sa3 - CsC23) (24)
@, = 5155523 - 51C4Cs5C23 - C1C554 (25)
ay = C1C4Cs5C23 - C1S5523 - 5154Cs - (26)
a, = -{cyCsS23 +C2355) (27}
Px = ~25Cs(S1523Cs5 + S4S55C1 +5155CuCz3) + 85S6(C1Cy - S154C23)
-a5(C551523 +5455C1 +5155CuCs3) - (@3 +as)S1523
~3251S2 - b(S155523 - S4C1Cs - $31C4Cs5C23). (28)
Py = a5Ce(C1C5523 - S1545s + C1C4C2355) + agSe{S1Cu + C1C2354)
+a5(CsC1523 - 515455 +C1C4C23S5) + (@s +au)C1523
+2552C) - b{C1C4C5Co3 - C155523 - S154Cs) (29)
PZ = agCg{Cs5Caa - CuSsS23) + As(-54523)Se +as5(Cs5C23 - S5523Cu)
+(as + a5 )Ca3 ¥32C2 + @1 +b{C23Ss ¥ C4C5523) (30)

Here, the Tast term in Pes P. and PZ is a portion caused by the offset
structure. Egs. (25} through (27) are uniquely determined from the
orthonormal co-ordinate relation, that is a = n x 0. Now, we introduce
the following parameters in view of the apparent features of the equa-
tions (19) through (24).

A = S,5,3C5+54,55C; +5155C,Caa {31)
B = ciCy - $154C23a (32)
C = C1C5S23 - 515455 +C1C4C23S5 (33)
D = 5,Cy +C1C2354 (34)
E = CsC23 - C455533 (35)
F = -5,553 {36)
d; + ay = sy _ (37)
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Consequently, the original equations (19) to (24) are simplified as

follows.
-Acg + B sg = Ny
Ccg +Dsg = ny
Ecg + F 54 = n,
Bcg +Asg = 0y
O cg - C 56 = oy
Fcg - E sg = o,

Similarly, the position vector in Egs. (28), (29) and {30) is

represented by:

U M T
| |

= -3gCeA +a55¢B - asA-~a3451523 - 225152 -bax
a6CsC +ae5¢D +asC +234C1523 +3252C1 - ba

agCel + agseF + asE +asycoz +ascy +a; - baZ

(38)
(39)
(40)
(41)
(42)
(43)

(44)
(45)
(46)

As can be noticed from Egs. (38) through (43), each parameter defined
in Egs. {31) to (36) can be represented by a trigonometric function of

only cg and sg. Namely,

-Nn.Cg+0._5
x76 " Fx76

Cé

+
nxSG Ox
n Cg -0 5S¢

Y y
N Sg+0 Cg
Y Y
nZCG - 0255

s I 3 S v B s B v« B Y

+n_s
OZCS nz 6

From the equations (44) and (45), we obtain

P C1+P S = acmcy+n sy) + as(-Acy +Csy)- bla,cy +ays;)

On simplification, we have

(px-asnx-+asA-+bax)c1 = (asny-kasC -py-bay)sl R

L T T T ]
[S 25 I & o I < Y

N = O W 0O ~
b i S N I )

(53)

(54)
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Py - ashy, +ash + ba

hat is, tang, = S = X x _ XX +asA
that 1 anti = o asny+asc-py-bay asC - YY
as50_Sg - ash_Cg + XX
i asnxcs - a50x56 XY (55)
y Y
where XX = p_ - agn, *+ ba
{ X X X (56)
YY = - + b
Py = dshy, ™ B3y
_t+2
Let tan%—s- = t, Then cs = %—;—E{ , Sg T T% and tanfg = 1—%—5
By substituting them into Eq. (55), it holds so that
2t 1-t?
aso, (12 |- (55 ru
tang; = 1%z 5T
asny (—1 n tz) - asoy(l +t2) - YY
X +2ago t+x t?
- yn-2a50xt+ypt2 (57)
n Y p
where x, = asn, + XX )
X = -asn, + XX
n X (58)
= - + YY
Y, (asny )
_yn = asny - Yy J
From Eq. (46) we have
Pz-a5n2~a1 +baz = agE +azuCoa +32C2 )
= as(nzce - 0255) + a3uCz3 TA2C2 | (59)
ascsinz-oztanes) - 2Z + azyCaz = -d3Cp.
where 2z = p, - 8N, - ay + I::aZ J

And also Eq. (44) x {-s1)} + Eg. (45) x c; reduces to
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aSCG{(nycl"nxsl) + (slox-oycljtaneﬁ}

-{-p,s1tpcitas(nsi-n Cl)-b(axsl-aycl)}'*aauszs= -azs;  (60)

Y X Y

As described above, we have obtained two principal equations (59)
and (60) from kinematic equations.

From here on, we will make further simplification so that these
equations might be unified into one single mathematical relationship.
To keep the two expressions short, at first, let us introduce the
following notations ¢ and n.

P o= ascstnz- oztanes) -2z ,

and (61)
n = asce{nycl-nxsl-r(slox-oycl)tanes}

-{-szl'*Py61'+as(nx51-nycl)-b(axsl-aycl)} (62)

That is, Egs. (59) and (60) are rewritten as:
Yy + 83yCz3 = ~-a202 (63)
n + a3uSyz = -d25;3 (64)

Adding the square of Eq. (63} and Eq. (64), we obtain the following
simple form,

, (65)

P2+ n? - a = -2a34(YCca3 +NS23) l

2
dp - d3q

where a

After this, expressions of ¢ and n in terms of 85 are similar to that
of the reference (7).

From the marked similarity in subsequent derivation, we come to a
conclusion that manipulator kinematic relationships having an offset
mechanism can be represented by means of a single polynomial as in the
previous model. That is the key point in the present paper. In order
to compute real roots of this algebraic equation as exactly as possible,
the Bairstow's numerical technique(ll) was used in the computer code.

(see Appendix 1)
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2.2.2 Determination of Articulated Variables

(1) Calculation of 8s
Once the desired solutions t are found from the algebraic equation

a joint angie B¢ can easily be calculated.

That is, tan %? =t

thus, we have
Bg = 2 tan_‘1 t. (66)
Corresponding trigonometric function is
S = sinfg
‘Cg = COSHg

Using these values, we can determine the parameters A to F given
by Eqs. (47) through (52).

(2) Calculation of 8,
let

X1
and Yl.

X+ a5A
asC - YY ,

then, Eq. (55) reduces to

Xp+c¢1 = Yy +s; (See Eq. (56) for XX and YY)

Thus, 8, = tan‘l(éiJ (67)
1
§51 = Sinel
C1 = C0S80;

(3} Calculation of 8.5
From Eq. (65), we have

P2+n®-a = -2a34(Ucas ¥11S23)
= -2a3u/9% +n? sin(Ba3+e) .
where £ = tan *(Y/n), a = a22 - az4> (68)
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Thus, we have
sin{0z3 +¢)

13

(¢ +n?-a)/-2a3./0% +n?

i\/l - S'iﬂz(eza +E) .

cos(B,3 +¢)

Sin(eza + E)

Hence, tan(Bys +e) = m
/ o
2 2 2 2 i
or 625 = tan/ +H{y?+n® - a)/(-2a5u/P% + %) } —tanfl(%) (69)

/

\ 2
N L (02 42 - a)/ (2250 07 F2))

Sz3 = Sinezs

Casz COSng
(4) Calculation of 6,

Making use of Eqs. (32) and (34), ¢, and s, are described as
follows.

Beciy +D 5,
(-B s1+D c1)/czs (c23 # 0)

Cy

Sy

if c.3 = 0, we use Eq. (36) to determine ss.

or Sy = -F/sq;
Thus, we have

4 tan‘l(gf} . (70)

(5) Calculation of 6s
By Eq. (31) x ¢y - Eq. (33) x s,, we obtain

H

ss = {Acy - CS1)/ss

- + -
{ca( nCs t0,86) - si{n

\Co -OySs)}/Su (sy #0) (71)

On the other hand, Eq. (31) x s, + Eq. (33) x c; leads to

C5523 t S5CyCoz = A §1 +C ¢y . (72)
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In the case of su. = 0, Eq. {95) x cp3s - Eq. {35) x s,4 results in
S5 = {cp3(A sy +C cy) - E sz3t/cy . (73}
By making Eq. (73) x s,3 + Eq. (35) x cps, it holds that

c: = (Asy +Ccy)sas ¥ E Cas - (74)

Hence,

8% tan‘l(%f) (75)

(6) Calculation of 5,
Egs. (59) and (60) give:

= - - + - Ce - -
ca = {p,-asn, -ay+ba, -as(n,Ce-0,5)-azucazl/az

Sz Cy- nxsl)Cs

{-p 51+ P,C1 +§s(nxsl - nycl) - b(a,s1 - aycl) - as(ny

- 35(510X"0y01)56'-33u Sz2st/az

Therefore, we have

9, = tan‘lﬁgf) . (76)

(7) Calculation of 6,
From the calculation of 823 and 6;, we can obtain

03 = 823 = 62 (77)

_ 19_
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3. Test Calculations

As the embodiment of the algorithm mentioned in the preceding section,
the computer code ARM3 was developed in order to leave much of the computa-
tional drudgery to a digital computer., In this section, the validity of its
mathematical model or approach is verified by means of several test runs.

Now, in giving the motion schemes of the finger tip of a manipulator,
the spatial trajectory is considered such that it follows a straight Tine
or a circle or some other specific curves. As the simulation of a simple
manipulator task, it may be sufficient to consider the first two specifica~
tions - straight line path and circle. Here we investigate behaviors of joint
angles corresponding to these two motion schemes.

At the outset, one approximation of a simple straight 1ine with the
initial point A and the terminal point B is made in terms of points with n
equi-distant spaces on this path segment. They start at the initial point
( N =0 ) and end at the n+1 th point { N = n ). The position and orientation
at each point along the trajectory is determined by means of a linear inter-
polation technique, respectively. In addition to this straight Tine trajectory,
we are now in a position to reproduce individual joint angles corresponding
to the circular motion of the finger tip. For convenience sake, the circle
is assumed to be in any of xy-plane, yz-plane or zx-plane,

As with a 1ine approximation, the circumference is approximated in terms
of n points with equal intervals. For a circle with a radius r, centered on M

(X

c» Yoo Z.), the equation can be written as follows :

c* ~C

X = Xc + rcos
y = Yo * rsin ( a circle on the xy-plane,
z=1 located at z = 7. )
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X = Xc
y =Y. + rcos @ { a circle on the yz-plane,
z=172.+rsin ¥ lTocated at x = X. )
X = XC + rcos ¢
y =Y. ( a circle on the zx-plane,
z=17.+rsin 2 Tocated at y = Y. )

where do=d2n/mk {(k=1,...,n)

n : the number of points present on the circumference

In every case tried here, the orientation of the finger tip was kept
unvaried during a movement. The calculated result of each joint is repre-
sented as the angular displacement from the home position ( &: ,i =1,

...,6 ) of the manipulator shown in Fig. 1.

(I) Sample Problem 1
(a) Horizontal movement of a downward directed end-effector
( see Fig. 4 )
(b} position co-ordinate of the initial point A
( -0.10,0.35,1.63 ) ( m in unit )
{c) position co-ordinate of the termiral point B
( 0.10,0.35,1.63 ) ( m in unit )
(d} the number of points ( position numbers ) = 41

(e) direction cosines

n, = 0.0 ny = 0.0 n, = 1.0
0y = 1.0 ; o‘y = 0.0 ; 0, = 0.0

(f) convergence condition

EPS = 1074, Epsl = 10°3
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As can be noticed in Fig. 4, each configuration of the manipulator is
identified using a special symbolic mark such as circle, cross and triangle.
The positions described with the same symbol are indicative of the respec-
tive origins ( i.e. the spatial positions of individual joints in the six-
link manipulator } of seven link co-ordinates frames given in Fig. 1.

Now, the calculated joint angles under the above motion scheme are de-
picted in Figs. 4.1.1 through 4.6.1. In the first example applied, fourty
one intervals { 4.88 mm each ) were assigned between the initial and terminal
points. For the two kinds of solutions of ¢ in Fig. 4.6.1, the remaining
joint angle solutions had six possible combinations as designated by the sym-
bols Gy through Gg. In these curves, groups G, and G4 indicate the complete
solution curves corresponding to the line motion of the finger tip from the
starting point to the end, where the variation width of each joint angle is

tabulated as follows.

6y Gy
¢1( deg }: -3.14 7 3.14 -12.22 = 12.22
¢ p{ deg ): 13.09 7 13.33 72.54 ( nearly const. )
¢:{ deg }): 71.20 7 74.78 -74.78 7 -73.07
¢4 deg ): -29.96 7 29.96 -12.22 © 12.22
£r5( deg ): -87.87 7 -83.69 0.51 ©  2.27
?a( deg ): -29.81 7 29.81 -0.11 © 0.1

| Speaking of characteristics between the two, we notice that the varia-
tion of the finger tip ( 6« ) in G, was significant, reflected in the value
of the angle ¢ ;.

In the calculations of the angle ¢ 1, a phase difference of +180(deg)
relating to the group G, has brought another groups Gy and G3, both of which
terminated at the position number 21 due to the mechanical upper limit of

as can be demonstrated in Fig. 4.4.1, however.

— 24 _

P
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After passing this point, groups Gg and Gg showed up as new curves to meet
the lower 1imit of &: in place of Gy and Gi.

In order to investigate the features of angular behaviors between a me-
chanical offset and non-offset structure, comparisons were attempted by adding
Figs. 4.1.2 through 4.6.2, which are indicative of analytical results without
the offset mechanism. For the identical spatial movement of the finger tip,
the number of real roots of a polynomial ( i.e. ds ) was the same between
the two cases. And the entire joint response had almost the same trends,

although their differences were identified to some extent in magnitude.

(I1) Sample Problem 2
{a) vertical movement of the finger tip ( see Fig. 5 )
{b} position co-ordinate of the initial point A
( 0.00,0.43,1.35 ) { m in unit )
(¢} position co-ordinate of the terminal point B
( 0,00,0.43,1.55 ) ( m in unit )
(d) the number of points { position numbers } = 40
(e) direction cosines

n, =0.0 ;n 0.0

X

1.0 ;n

1]

y

o, =1.0 ;o0 0.0 ;o 0.0

X z

A
(f) convergence condition

EPS = 1074, £psl = 1073
Secondly, vertical movement of the finger tip with a constant orientation
is treated. The results of the present test runs are shown in Figs. 5.1.1
through 5.6.1. As seen, no desired joint solutions were found at the first
portion of the interval AB due to the prescribed mechanical constraints of .
After a position advancement of 7.5 cm in the z-direction, there existed

feasible solutions to the end.

_25_,
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For a single solution of 9 = (0, the remaining joint solutions
possess three curves Gy, Gy and G, which were determined from the possi-
bility of #: within the operation range. Notice that the graph Gy was
unavailable before the condition of the lower Timit value -30( deg ) of ¢ :
was satisfied.

In a similar manner, results without the present offset model are
demonstrated in Figs. 5.1.2 through 5.6.2. In this case, there existed
complete solution sets Gy and G, to meet the specified conditions of indi-
vidual joints, Including the partial solutions, the absolute values of solu-
tions curves Gy, G and Gy were small through the available intervals, as

compared as those of the offset model.

(III)  Sample Problem 3
{a)} movement along any line trajectory ( see Fig. 6 )
(b) position co-ordinate of the initial point A
( -0.25,0.65,1.30 ) { m in unit }
{c) position co-ordinate of the terminal point B
{ 0.10,0.70,1.55 ) { m in unit )
(d} the number of points ( position numbers } = 50

(e) direction cosines

It
[}

0.0

n

X 0.0 ; n

y 1.0 ; n

Z

0.0 ;o0 1.0

X : 0.0 : 0

‘y 3
(f) convergence condition

0 z
EPS = 1074, EPS1 = 1073
In the successive computation, the orientation of the finger tip is
given so that joint 1 or joint 4 may revolve by -90(deg)} around the z-axis.
With this sense maintained, the finger-tip of the manipulator moves at
intervals of 8.6 { mm ) between the two points { a distance of about 43 cm )

in the work space.
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Calculated results of the ARM3 are shown in Figs. 6.1 through 6.6.
A complete solution curve G, was obtained as a simulation for the above
motion scheme. The remaining two solution graphs G; and G3 are the partial

solutions feasible found in the caiculation process of 7.

(IV) Sample Problem 4
{a) circle movement on the xy-plane ( see Fig. 7 )
{(b) position co-ordinate of the center boint M
{ 0.15,0.20,1.68 ) { m in unit )

(¢} a radius of circle r =0.10 { m )

{d) the number of points = 60

{e) direction cosines
ne = 0.0 3 ny = 0.0 ;n,=1.0
0y = 1.0 oy = 0.0 ; 0, = ¢.0

{f) convergence condition
EPS = 1074, EPS1 = 1073

Figures 7.1 through 7.6 show behaviors of individual joint angles
while the finger-tip of the manipulator moves along a circumference on the
xy-plane. Needless to say, a determination of reasonable solutions with a
constant orientation is quite dependent on the input data associated with
center point M or radius. In some cases there exist a number of feasible
angular solutions and in other cases inconsistent solutions. Shown is only
one example of them,

At the present sample calculation, a circumference was divided into 60
segments and we have obtained three feasible solution groups - G;, G, and Gj.
Seeing the computed results of s and & ¢, plotting curves Gy and G, were in

complete agreement., ( see Figs. 7.5 and 7.6 )
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In addition to these three complete solution sets, the calculation
predicted two partial solutions. Behaviors of the partial solutions were

omitted to avoid the complicatedness.

(V) Sample Problem 5
(a) circle movement on the zx-plane ( see Fig. 8 )
(b) position co-ordinate of the center point M
( -0.10,0.60,1.40 ) ( m in unit )
0.12 { m )

]

(c) a radius of circle r

i

(d) the number of points 60

(e) direction cosines

0.0 ; ny, = 1.0 ; n, = 0.0

= 0.0 ; 0y = 0.0 ; . 1.0

(f} convergence condition

Ny

o
[}

Ox

£Ps = 1074, Eps1 = 1073

Finally, computed results of individual joint angles for the sample
problem 5 are demonstrated in Figs. 8.1 through 8.6, which are solutions of
the inverse Kkinematics corresponding to a circular trajectory drawn in the
zx-plane, As exemplified in figures, any group of angutar solutions was not
sufficient for reproducing the entire circular motion. On inquiry of solu-
tion behaviors, we found that there were no relevant solutions between the
two points (-0.19, 0.60, 1.33 ) and { 0.00,0.60, 1.32 ) along the circumfer-
ence, This is merely responsible for the restraints of the angle & 3. Provided
that this angle was set to any 'value larger than the prescribed one 90 (deg)
of the mechanical upper 1imit, groups G, and Gg would have completed a single
feasible curve. Further, it is possible to unify groups Gy and G4 into a con-
tinuous curve seemingly by widening the specified range of both ¢ {and 23,
with the consequence that we will obtain another profile of joint angles { ¢ 1

Tt ).
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4., Concluding Remarks

Using the present algorithm, the inverse problem of a manipulator with
a mechanical offset was solved successfully for most cases given and complete
angular behaviors were obtained with sufficient accuracy.
Throughout the previous and present results, we have been broadening the
domain of application for the method. Its advantage lies in the capability to
obtain exact solution behaviors of the non-linear system composed of joint
variables. In particular, as exemplified in the test calculations, the present
polynomial method is useful in determining all feasible joint configurations
corresponding to the same position and orientation of the finger tip in the
actual work space. Since the proposed method has been developed yet for general

cases, generalization of the concept remains as a future problem to be studied.
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Appendix 1. Qutline of Bairstow's method

We use Bairstow's iterative method to find an approximation to
a quadratic factor of a given polynomial

n n-1, .. a3 =0 (1)

f(x) = agx + a;x

Let Q{x) = x* + px + g be any guadratic polynomial with real

coefficients, Then

f(x) = {x* + px + q)Qu(x) + Rx + S

where a quotient Q;(x) = buxn_2 + blxn-3 .o b o

Additionally, assume Q (x) = (x* + px + q)Q.(x) + Rx + §,

i} (3)
where Qa(x) = coxn 4 + clxn 5 + ...+ a4
Thus, we get:
= = - w
bO a s by a pbo
b, = a, - pb - qb {k = 2,3, ..., n)
kT % T PPkar T %2 X (4)
CO = b0| Cy = bl - pbO
Ck = bk = pck-l - qck_z (k = 2,3, ..y n_l) j
Using the coefficient relations in Egs.(1l) to (4), we have
R=b 4, S=b, +pb (5)
R=Chge S =0 ¥ Pl (6)

Suppose that XQi(x) divided by (x* + px + g) gives R*x + S*
as the remainder.

or
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xQ1(x) = Qa{x)(x* + px + q) R*x + S*

= (x? + px + q)xQa2(x) + Rx* + Sx

i

(x* + px + q)xQ2(x) + Cn_3x2 + (cn_2 + pcn_3)x
= (x2 _
(x* + px + q)(xQ2(x) +c, _3) + ¢ ox - ac 4 (7)
Hence, we obtain
R* = “n-2
S* = Che3 @

(8)

]

“h-1 bn—l TPC 2 }

On the other hand, if we differentiate Eq.(2) with respect to

p and g, we have

2 ——
_(x + px + q) 3]] 5D ap

xQ; (x) o, _ R &S 1

: 9
Ql(x)=-(x2+px+q)%"xg—§'%J ’
From these ﬁqs.(B), (6), (7) and (8),
%g = R¥=-c |
g%.= -§* = "(Cn~1 - bn-l tpc, 2) r (10)
%% = -R=c 3
R R CHPIUL RS J

If Q(x) = Q'(x) = (x* + p'x +q') is a factor of f(x), R and S

in Eq.(2) must be zero.

i.e., R(p,q) = 0 }
(11)
S(p,q) =0

Suppose that Q(x) is an approximation to Q'(x); then, p and q are

assumed to have approximations to p' and q', respectively.

7537,
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or p + ap

o
i

H]

q * 2q
Therefore,

R(p + ap, q + 4q)

i}
[an]
—_

(12)

I
[am)
—
¥

S(p + 2p, q + 2q)

Expanding in Taylor series and truncating after the first-order

terms, we get:

R{p,q) + EB'AP + EB'Aq =0 L

ap 9 (13)
as as _
S(p,q) + 3R 2Pt 3q aq = 0 J
Solving Eq.(13), we find that:
_ Rech o =S¢ 3 . b 12 " Pptn-3
R - I
Cn2 " %n-1"%n-3 Cp-z T Gpe1tbne3 N (14)
S mRee B - baChg
49 = 5 = A
®h-2 7 “n-1"%n-3 “n-2 T Sp-1"%n-3 :
here c 2.2 ¢ A0
whe n-2 n-1"n-3
(15)
“p-1 = “p-1 " o1

Now we can replace p by {(p + ap), and q by (g + 2q}, and repeat the

above procedure.
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Appendix 2. Input Data Formats

The current code written in FORTRAN 77 is operational on the
FACOM-380 computer. In this section, the input data requirements
are presented in the form necessary for computer execution from

TSS terminal.

Record 1  TITLE (A50)* = Title of problem

Record 2 NDEL (1*4)

Position numbers between initial and
( NDEL > 0 ) terminal position.

I1f NDEL = O, Record NO.7 through MO0.9
are neglected, because a point inter-
polation is not used.

Record 3  EPS{ R*8 )} Convergence condition related to the

determination of a quadratic factor

( X2 +px+q)

EPS1(R*8) Check of the validity of the calculated
joint angles.

Joint angles solutions are substituted
into the components of the Ty matrix
and compared with the given data.

MC(1*4)

Index of the trajectory
0: simulation of straight line
1: simulation of circle on the xy-plane
2: simulation of circle on the yz-plane

3: simulation of circle on the zx-plane

*) () denotes the type of variable.



Record 4~,Record 6 ----

Record 4 DATA(1,4,1)

DATA(Z2,4,1)

DATA(3,4,1)

Record 5 GET{'Al')

JAERI-M 86-180

Initial point data or center of circle ----

P ( R*8 )
*
Py( R*8 )
P, R*8 }
Option of
lol
Ill
izl

It

Initial position of x-direction
of the manipulator hand ( m ) or
x-coordinate at the center of
circle trajectory { m )

Initial position of y-direction
of the manipulator hand ( m )} or
y-coordinate at the center of
circle trajectory {( m)

Initial position of z-direction
of the manipulator hand { m ) or
z-coordinate at the center of

circle trajectory ( m }

orientation calculation

: user specified
: Rol1-Pitch-Yaw transformation

: Return to the initial stage Record 1

( re-trial of input data )

excepting the above letter ( default }

: Euler transformation

Notice that this data is regarded as to be dummy in case of circle.

Only the next data correponding to GET='0' of Record 6 is required.

Record 6

(i) If GET = '0', then

DATA(1,1,1)
DATA(2,1,1)
DATA(3,1,1)
DATA(1,2,1)

NX{R*8)
NY (R*8)
NZ(R*8)
OX(R*8)

n

x-component of approach vector n
y-component of approach vector n
z~component of approach vector n

x-component of sliding vector o
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(i1)

(iif)

DATA(2,2,1)

DATA(3,2,1)
If GET = '1',

WI(R*S)

Wz(R*S)
W3(R*8) =

The direction

DATA{1,1,1)

n

DATA{2,1,1)
DATA(3,1,1)

il

i

DATA(1,2,1)

DATA(2,2,1)
DATA(3,2,1)

JAERI-M 86-180

OY(R*8) = y~-component of sliding vector o
QZ(R*8) = z-component of sliding vector o
then

Rotation angle about the z-axis (deg)
Rotation angle about the y-axis (deg)
Rotation angle about the x-axis (deg)
cosines are calculated as follows.
COS W1COS W)

sin wWicos wy
-sin wy

cos wisin wysin w3 - sin wycos wy
sin wysin wysin wy + cos wycos wj

cOos wzsin W3

If GET = Euler option, then

wllR*S}

Wz(R*S)

W3(R*8)
The direction

DATA(1,1,1)

1]

DATA(2,1,1)

DATA(3,2,1)
DATA(1,2,1)

DATA(2,2,1)

DATA(3,2,1)

Record 7~Record § ----

Record 7

DATA(1,4,2)

Rotation angle about the z-axis (deg)
Rotation angle about the y-axis (deg)
Rotation angle about the z-axis (deg}
cosines are calculated as follows.
COS W{COS W,COS W3 - sin wysin wg
.sin W1COS WpCOS Wg + COS Wysin wg

-sin WoCOS Wy

-COS W1COS WpSin wy - sin wycos ws
-sin wcos wpsin wy + COS W COS Wiy

sin wpsin wa

Terminal point data or radius ----
= Px( R*8 ) = Terminal position of x-direction

of the manipulator hand { m )} or

radius of circle ( m )
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Record 8

Record 9

(1)

(i)

JAERI-M 86-180

Successive data s regarded as dummy in case of circle.

DATA{2,4,2)

DATA{3,4,2)

GET('Al")

If GET = '0',
DATA(1,1,2)

DATA(2,1,2)
DATA(3,1,2)

Ll

DATA(1,2,2)

H

DATA(2,2,2)

DATA(3,2,2)
If GET = '1',

Wl(R*B)

Wz(R*B)

W3(R*8)

The direction

DATA(1,1,2)
DATA(2,1,2)

1]

DATA{3,1,2)

= Py( R*8 ) = Terminal position of y-direction
of the manipulator hand { m )
= P,( R*8 ) = Terminal position of z-direction

of the manipulator hand { m )

Option of orientation calculation

= '0' : user specified

= '1' : Rol1-Pitch-Yaw transformation

= 'z' : Return to the initial stage Record 7
( re-trial of input data )

= excepting the above Tetter { default )

: Euler transformation

then

NX{R*3) = x-component of approach vector n
NY(R*8) = y-component of approach vector n
NZ(R*8) = z-component of approach vector n
OX(R*8) = x-component of sliding vector o
0Y(R*8) = y-component of sliding vector o
0Z(R*8) = z-component of sliding vector o
then

Rotation angle about the z-axis (deg)
Rotation angle about the y-axis {deg)
Rotation angle about the x-axis (deg)
cosines are calculated as follows.
COS W(COS Wy

sin wycos Wo

-5in W2



(i1}

DATA{1,2,2)

DATA(2,2,2)
DATA(3,2,2)

JAERI-M B6-180
cos wlsin wzsin Wy - sin WoCOS W3
sin wlsin wzsin W3 + COS W COS Wg

cos wzsin w3

If GET = Euler option, then

Wl(R*s)
Wz(R*S)

W3(R*8)

The direction

DATA(1,1,2)
DATA(2,1,2)

1]

DATA(3,1,2)

DATA(1,2,2)
DATA(2,2,2)

DATA(3,2,2)

Rotation angle about the z-axis (deg)
Rotation angle about the y-axis (deg)

Rotation angle about the z-axis {deg)

cosines are calculated as follows.
COS W1COS WpCOS Wy - sTn wysin wy
sin'wlcos WpCOS Wg + COS wlsin W3

-sin WpCOS W3

-COSs W1COS W2$1n W3 - Stn WICOS W3

=-51n WICOS w251n W3 + Co0Ss WICOS W3

sin wzsin W3



Appendix 3.

(1)

JAER[-M 86-180

Sample probTlem 1

INPUT === TITLE

R e} I T L
+
L
+

BENCH MARK 20 +++

List of Input Data for Sample Problems

E ++++++rrdddtrsttttbttt

+
+
+

B R L LR L L L X T A AT T ey

INPUT --= N
N =2a=> 41
INPUT --- EPS , EPS1
EPS === 1.000000-04 EPS1 =o=
MC Ot STRAIGHT LINE
1 ¢ CIRCLE € X-Y PLANE )
2 : CIRCLE ( Y=-2 PLANE )
3 : CIRCLE C Z-X PLANE )
MC ===> 0
---------- INITIAL  POINT =-wme——mee
INPUT === PX : PY ¢ PZ
PX ==» -1.,000000-01 PY ==> 3.500000-01
KEYIN 0 : USER SPECIFIED
1 ¢ ROLL-YAW-PITCH ANGLE
7 1 RE-TRIAL
DEFAULTS : EULER ANGLE

DIRECTION CALCULATION OPTION » @

INPUT --- NX » NY » NI
NX =a=> 0.0 NY =a> 0.0
INPUT --- 0X ., OY , QZ
ax ==> 1.00000D+Q0Q gy ==>» Q.0
---------- TERMINAL POINT ==m==mm==m
INPUT --= PX * PY @ PZ
PX ==> 1.0c00Q0D~01 PY ==> 3.500000-01
KEYIN Q ! USER SPECIFIED
1 ¢ ROLL-YAW-PITCH ANGLE
I : RE-TRIAL
DEFAULTS EULER ANGLE

DIRECTION CALCULATION QPTION = O

INPUT -=- NX ., NY , NI
HYX ==> (.0 NY ==> .0
INPUT === 0OX , QY » 02
OX ==> 1.000000+0Q0Q 0y ==» 0.0

PZ

NZ

1.00000D-03

am)y

1.631000+00 ¢ M )

1.00000D+00

C1.631000+00 ( M )

1.000000+00




(2)
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Sample problem 2

INPUT ~-- TITIE

4+ rrbeb bbbttt T I T L E ++++++++t+rtbb bbbttt

5
+ +++ BENCH MARK 3D +++

-

+
+
+

O R P A R O o o o i 0 TR P SR SR

INPUT —-- N
N === &0
INPYT =--- EPS , EPSI1
EPS a==> 1,000000-04 EPS1 =a=>
MC 0 ! STRAIGHT LINE
1 ¢ CIRCLE ( X-Y PLANE )
2 ¢ CIRCLE ( Y-Z PLANE
3 ¢ CIRCLE ( Z-X PLANE

ML s==> 0
---------- INITIAL  POINT =—m—mm—eee-

INPUT --- PX ! PY : P2

PX ==> 0.0

KEYIN 0 t USER SPECIFIED
1 ¢! ROLL-YAW-PITCH ANGLE
Z ¢ RE-TRIAL
DEFAULTS * EULER ANGLE

DIRECTION CALCULATION OPTION = 0

INPUT --- KX , NY , NI
NX ==> 0.0 NY ==> ~1.000000+Q0
INPUT --- 0X , OY , 0

0¥ ==> 1.000000+00 DY ==»> 0.0

---------- TERMINAL POLNT ==--m=—ee-

INPUT === PX : PY : P2
PX ==> 0.0 PY ==> &4.30000D0-01
KEYIN 0 : USER SPECIFIED
1 ! ROLL-YAW-PITCH ANGLE
I ¢t RE-TRIAL
DEFAULTS : EULER ANGLE

OLRECTION CALCULATION OPTION = 0
INPUT =-~-= NX , NY , NI

NX ==> Q.0 NY =a> 1.00000D+00

INPUT --- 0OX , 0¥ , 01

ax ==> 1.,000000+00

4,61__

PY ==> 4.,30000D-01

1.0000C0-03

Pl ==>
NI ==>
01 ==>
P1T ==>
NZ =m>

0% ==>

1.35100D+00 ¢ M )

1.55100D+00 ( M 2
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(3) Sample problem 3

INPUT ~-= TITLE
bbbttt bbb Ebt e T 1 T L E +4+++++4+bdbi bbbt i it
+ +
. 4. +++ BENCH MARK & +++ +
+ i +
O L R N N N R R N N R R s ]

INPUT --—- N

N =) 50

INPUT --- EPS , EPS1

EPS ===> 1.000000-04 EPS1 ===> 1.00000D0-03
Mc : STRAIGHT LINE

o]

1 ¢ CIRCLE ( X-Y PLANE )
2 @ CIRCLE ¢ ¥Y-Z PLANE )
3 ¢ CIRCLE { 2-X PLANE )

MC ===> 0
—————————— INITIAL  POINT ~=——m-———m

INPUT -=~- PX : PY @ PL

PX ==> -2.500000~01 PY ==> 6.500000-01 PZ ==> 1.30000D+400 { M )}

XEYIN 0 : USER SPECIFIED
1°: ROLL-YAW~PITCH ANGLE
1 ! RE-TRIAL
DEFAULTS ! EULER ANGLE

DIRECTION CALCULATION COPTION = 0

INPUT === HX , NY , NI

N{ ==> 0.0 NY ==> 1.00000D+00 NI ==> 0.0

INPUT --- 0X , OY , 01

ox ==> 0.0 gy ==> 0.0 01 ==> 1.00000D+00

1.550000+00 ( M )

n
n
v

PX ==>» 1.000000D0-01 PY ==> 7.000000-01 Pz

KEYIN 0 ! USER SPECIFIED
1 ¢ ROLL-YAW-PITCH ANGLE
7 ¢ RE-TRIAL
DEFAULTS EULER ANGLE

GIRECTION CALCULATIOM OPTION = O

INPUT === KX , NY , NI

NX ==> 0.0 NY ==> 1.000000+0Q NZ ==> 0.0

INPUT --- 0OX , OY , Q1

OoX =m> Q.0 gy ==> 0.0 0% ==> 1.00000D+00




{4)

INPUT === TITL
L e LR s
+
+ +++

+

CIRCLE CASE 1

JAERI-M 86-180

Sample problem 4

E
++++ T I T L

4+

E +4dt+btbdtttttttsdts

+
+
+

R o B O e  E L L L LTy e

INPYUT === N
N ===> 40
INPUT --- EPS , EPS1
EPS  ===> 1.00000D-Q4 EPST  ===>
MC 0 : STRAIGHT LINE
1 @ CIRCLE C X-Y PLANE )
2 ¢ CIRCLE ( Y-Z PLANE )
3t CIRCLE ¢ Z-X PLANE )
MC  ===> 1
------- CENTER OF CIRCLE  —-—====
INPUT === PX : PY : PIL
PX ==> 1.500000-01 PY ==> 2.00000D-
INPUT --- NX , NY , NZ
NX ==> 0.0 NY ==> 0.0
INPUT --- 0X , QY , 0Z
0X ==> 1.000000400 0Y ==> 0.0
------- RADIUS ——————-
RADIUS ===> 1.00000D0-01 ¢ M }
INPUT === NX , NY , NI
NX ==> 0.0 NY ==> 0.0
INPYT --- 0X , OY , 0Z
0X ==> 1.00000D+00 OY ==> 0.0

1.00000D-03

o1 PZ ==>
NZ ==>
gi ==>
NZ ==>
07 ==>

1.680000+00 ¢ M )

1.00000D+00

1.000000+00



(5) Sample problem 5

INPUT ---

JAERI-M 86-180

TITLE

++tttttrrbrbrr bbb+ d T

+
+ F+F
+

CIRCLE CASE

2 —++4

T

L E #++++++trttrdtsdtrt+

+
+
+

B A R S ol R T P M A A A A A AP A T Srararary

INPUT === N
N === a0
INPUT --- EPS , EPS1
EPS ===> 1.000000-04& EPS1 ===>
MC Q STRAIGHT LINE
1 CIRCLE ¢ X=Y PLANE
2 CIRCLE ( Y~Z PLANE ?}
3 CIRCLE ( ZI-X PLANE )
MC ===> 3

INPUT === PX : PY : PIZ
PX ==>» -1.00000D-01 PY
INPUT --- NX , NY , NI
NX ==> Q.C NY
INPYUT ---— 0OX , 0OY , CZ
ax ==> 0.0 oy
------- RADIUS
RADIUS ===> 1.,20000D0-01
INPUT === NX , NY , NZ
N¥X ==> 0.0 NY
INPUT =--- 0OX , QY , QZ
ax ==> 0.0 gy

CENTER OF CIRCLE

=> 6.000000-01
=> 1.00C00QD+00C
=> .0

Mo

1.00000D0+00

PL

NZ

0z

NZ

1.000000-03

1.40000D0+00 ¢ M )

1.00000D+00

1.000000+0Q0Q



