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Problems in MHD stability calculations by ERATO code are deécribed;
which concern convergence property of results, equilibrium codes, and machine
optimization of ERATO code.

It is concluded that irregularity on a convergence curve is not dut to a
fault of the ERATO code itself but due to inappropriate choice of the equili-
brium calculation meshes. Also described are a code to calculate an equilibrium
as a quasi-inverse problem and a code to caleulate an equilibrium as a result
of a transport process.’ Optimization of the code with respect to I/0 opera-
rions reduced both CPU time and I/0 time considerably. With the FACOM230-75
APU/CPU multiprocessor system, the performance is about 6 times as high as with
the FACOM230-75 CPU, showing the effectiveness of a vector processing computer
for the kind of MHD computations. This report is a summary of the material

presented at the ERATO workshop 1979 (ORNL), supplemented with some details.
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1. Introduction

Since the ERATO codel) was adapted for the FACOM230-75 computer
system of JAERL in March 1978, MHD stability of several tokamaks and
problems on ERATO itself are being studied intensively. As well-known
the FRATO code analyzes linearized ideal MHD stability by solving a
1arge—stale general eigenvalue problem of matrices which are derived
from Lagrangian of an axisymmetric toroidal plasma by using the finite
element formulation. Some basic properties of the method were remarked
and standard procedure to carry out a series of stability analyses was
proposed by the original author éf the codel). There are, however,
many problems to be solved if one is to carry oﬁt detailed analyses
under various conditions.

Among the problems the most basic and important omne is concerning
convergence property of a solution. In some cases required number of
computation meshes for beta optimization analyses is larger than that
used previously by Gruber et al.2) Moreover, the convergence property
of the stability calculation seems to depend on mesh number of equilib-
rium calculation. '

Concerning choice of classes.bf equilibria problems on an interface
between the equilibrium code and stability code are also Important.
Especially, analyses of stabilities of equilibria which are reached by
tracing realistic transport process are desired. Stability criterion
of a high toroidal mode number instability had better be checked in the
interface routine as it is rather difficult to calculate this mode in
the ERATO code.

Improvement of ERATO or exfension of function of the code are
interesting. Among them stability analyses of equilibria with external
poloidal field coils are urgently necessary to investigate positicnal
instability of the JT-60 tokamak. But this problem is outisde of the
scope of this report.

From the viewpoint of cost of stability analyses, optimization of
the code with respect to an individual computer system is necessary.

As for this problem the following improvements or studies were carried
out.,
(1) Improvemént of I/0 routine (system program).
(2) Optimization of the code for FACOM230-75 APU (Array Processing
Unit).

(3) Test runs of the code in various computer systems, (FACOM230-75,
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230-75 APU, M-200; HITAC M-180, M-180 with IAP (Integrated Array
Processor); IBM 360/168, CDC 7600; Data of the test runs will be

reported elsewhere).

In section 2 the convergence property of the ERATO calculation is
described with a recomendable procedure to determine a converged growth
rate. Concerning the interface between the equilibrium and stability
codes, the equilibrium code SELENE, high-n ballooning stability code
BOREAS and 2D tokamak code APOLLO which gives ballooning stable equi-
libria are described in sections 3, 4, and 5, respectively. Section 6
describes several topics on the optimization of the ERATO code with
respect to a computer system. Optimization of the 1/0 routine of the
FACOM 230-75 computer and optimization of the ERATO code for the APU are
main topics of this section. Section 7 is devoted for summary and

discussions.

2. Convergence Study
2.1 Procedure of the convergence study

First we summarize the procedure of the convergence study briefly.
As for the relation between Nw and Ny, we chose same number both for Nw
and for NX. In ref.l, NX = NW + 1 is recommended but in our calcula-
tions (Ny = NX) cases gave better or almost same convergence properties
as compared with (NX = Ny + 1) cases. -Anyway the differences were
slight. Usually we started calculations from N = My = Ny = 25 case,
And the next calculation is carried out by increasing the mesh number
N by one and using the growth rate of the last step as the guess value
of the next step. Finally growth rates for 14 different mesh numbers
are computed (N = 25, 26, -----, 36, 37)(Fig.l). Necessary number of
data points for a complete convergence curve seems to depend on classes
of equilibria. Actually such a largé number of data points as 14 is
not always necessary. Often it is possible to save the cost of compu-
tation by reducing the number of data points if one knows well the con-
vergence property of the solution for the class of equilibria. We
analyzed the stability limit of the JT-60 plasma for Bp 2 1.8 by cal-
culating growth rates for only 5 points (N = 25,26,27,28,34) and

obtained satisfactory results (Fig.2).
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FACOM 230-75 computer and optimization of the ERATO code for the APU are
main topics of this section. Section 7 is devoted for summary and
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As for the relation between Nw and Ny, we chose same number both for Nw
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tions (Ny = NX) cases gave better or almost same convergence properties
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are computed (N
data points for a complete convergence curve seems Lo depend on classes
of equilibria, Actually such a large number of data points as 14 is
not always necessary. Often it is possible to save the cost of compu-
tation by reducing the number of data points if one knows well the con~
vergence property of the solution for the class of equilibria. We
analyzed the stability limit of the JT-60 plasma for Bp % 1.8 by cal-
culating growth rates for only 5 points (N = 25,26,27,28,34) and

obtained satisfactory results (Fig.2).
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2.2 Problems on the convergence study

During the convergence studies for gseveral series of stability
caleulations the following problems were found.
(1) Slight convexity of the convergence curves

We plotted the data points in the vZ - 1/N? plane, where Y is the
instability growth rate. If the convergence is quadratic, the curve is
expected to be a straight line. However, the data points are not on
the straight line but on a slightly convex curve in this plane

{see Fig.l).

(2) Convergence properties of low-growth-rate mode

It is rather difficult to determine a converged value of a small
growth rate and there are several problems concerning low-growth-rate
modes .

i) Computed growth rates of a fixed boundary mode differ consid-
erably among results for different size of fitting area In the
vicinity of the magnetic axis.

ii) The convergence property of the fixed boundary mode is not
quadratic. The data points scatter considerably around the
quadratic convergence line (Fig.3).

iii) Even if it is small the growth rate of a free boundary mode
does not depend on the size of fitting area for R, .. 2 1.15
and the convergence is quadratic (Fig.4).

iv) When the shell is located very close to the plasma surface
(Raxt < 1.15) the convergence of the free boundary mode is not

quadratic and the extrapolated value (Ragt = 1.0) from these

data does not coincide with that of the fixed boundary mode.

(3) Resonance-like phenomenon observed on the convergence curve

Fven when the data points are almost on a gquadratic convergence
line, sometimes, there appears a rescnance-like phenomenon and data
point for a certain mesh number differs considerably from the value
which is evaluated from the convergence curve datermined by the other
data points (see Fig.5). This phenomenon, sometimes, occurs at several

mesh numbers simultaneously and in this case the convergence curve looks

very irregular.
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2.3 Explanation of the phenomenon or solution of the problems

As for the phenomenon or problems described in the previous sub-
section the following explanations or solutions are possible.
(1) Slight convexity of the convergence curves

The convergence property of results is very sensitive to the mesh
number of the equiiibrium calculation, When one chooses different mesh
number of the equilibrium calculation for every data point on the
convergence curve -according to the "Ny = 6N¢" law, one could not attain
a quadratic convergence. Quadratic convergence is realized only when
the mesh number of the equilibrium calculation is fixed constant and
that of the ERATO calculation is varied (Nr 3_6Nw). The change of the
convergence property due to the change of equilibrium mesh number is
clearly seen in Fig.6.

Necessary mesh numbers for the equilibrium and stability calcula-
tions are dependent on classes of equilibria and alsc on an instability
mode number. In a certain case (n = 1, Bp 1, B=1.59 7, qq = 1.0,
q, = 3.34) calculations with large mesh numbers (N = 40,45,50) were
carried out by using the FACOM M-200 computer system installed at IPP
Nagoya. In this case mesh numbers for the equilibrium calculation are;
'Nr = 400, N, = 200. The computed data points are very well on the
quadratic convergence curve which is extrapolated from the data points
with Ny < 37 (Fig.7). Therefore, it may be safe to say that by using a
suf fisiently large equilibrium mesh number and varying the stability
mesh number for a fixed equilibrium meshes a quadratic convergence

could be attained for low mode number instabilities.

(2) Convergence properties of low-growth-rate modes

Problems i)- ii) described in 2.3 seem to indicate that non-
quadratic behavior of the convergence of the low-growth-rate mode is
attributed to the computational error due to inaccurately represented
equilibrium quantities, especially, those near the magnetic axis. It
seems rather-difficult to avoid these problems by increasing the
accuracy of the ERATO calculation itself. Therefore, it is recommend-
able to investigate the lower-growth-rate mode by extrapolation with
respect to some parameters, such as the position of the shell, and
50 on.

On the other hand the problem iv} is due to the inaccuracy of

evaluation of Green function in the vacuum region. This may be solved
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by improving the evaluation procedure of vacuum contribution but it has

not been tried yet.

(3) Resonance-like phenomena observed on the convergence curve
The cause of the phenomena has not been cleared. Features of the
phenomena are,
i) This phenomencon occurs only at the limited data points
(N = 29,30,35,37 in the case of Bp = 1.0).
ii) This phenomenon is more remarkable for an equilibrium with a
flat current distribution.
iii) TFor different equilibrium meshes the growth rates differs each

other at the resonance mesh number (Fig.5).

We conjectured that this phenomenon was caused by a certain mismatch of
the equilibrium and stability mesh numbers and we neglected the data

points where the resonance-like phenomena occured. By neglecting these
data points the other data points are usually on a quadratic convergence

curve.

3, SELENE — Equilibrium codes

Tt is necessary to calculate the MHD equilibrium for the stability
analyses with high accuracy near a magneticmaxis and in the outer region
of a torus where magnetic surfaces are closely located, because conven-—
tional numerical codes for equilibrium calculation are formulated on
the basis of square meshes in a r-z peloidal plane but the stability
calculation in the ERATO code is carried out on square meshes in a
{-x plane. To avoid this discrepancy we developed a new equilibrium
code in which the structure of meshes in a r-z plane are corrected
during iterations so that the ¥ value of a certain mesh is always same
and the magnetic axis is always on a mesh point. The algorithm to
solve the Grad-Shafranov equation is, in principle, the usual solution
method of a partial differential equation by the finite element method.
The complementary azimuthal function x(r,z) to Y(r,z) is obtained by
the usual contour integration along a constant-y line.

Up to now two kinds of fixed boundary versions which use above
scheme are completed. One (SELENE20) solves the equation as a mon-
linear elgenvalue problemB) and the other (SELENE30) solves it under
the flux-conserving (FCT) conditiona). A free boundary version which

solves the equation on a conventicnal mesh structure (SELENE4Q) is also
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by improving the evaluation procedure of vacuum contribution but it has

not been tried yet.

(3) Resonance-like phenomena observed on the convergence curve
‘The cause of the phenomena has not been cleared. Features of the
phenomena are,
1) This phenomenon occurs only at the limited data points
(N = 29,30,35,37 in the case of Bp = 1.0).
ii) This phenomenon is more remarkable for an equilibrium with a
flat current distribution.
i{ii) For different equilibrium meshes the growth rates differs each

other at the resonance mesh number (Fig.5).

We conjectured that this phenomenon was caused by a certain mismatch of
the equilibrium and stability mesh numbers and we neglected the data
points where the resonance-like phenomena occured. By neglecting these
data points the other data points are usually on a quadratic convergence

curve.

3. SELENE — Equilibrium codes

It is necessary to calculate the MHD equilibrium for the stability
analyses with high accuracy near a magnetic axis and in the outer regiocn
of a torus where magnetic surfaces are closely located, because conven-
tional numerical codes for equilibrium calculation are formulated on
the basis of square meshes in a r—-z poloidal plane but the stability
calculation in the ERATO code is carried out on square meshes in a
-y plane. To avoid this discrepancy we develcped a new equilibrium
code in which the structure of meshes in a r-z plane are corrected
during iterations so that the Yy value of a certain mesh is always same
and the magnetic axis is always on a mesh point. The algorithm to
solve the Grad-Shafranov equation is, in principle, the usual solution
method of a partial differential equation by the finite element method.
The complementary azimuthal function ¥(r,z) to Y(r,z) is obtained by
the usual contour integration along a constant-y line.

Up to now two kinds of fixed boundary versions which use above
scheme are completed. One (SELENE20) solves the equation as a non-
linear eigenvalue problemB) and the other (SELENE30) solves it under
the flux-conserving (FCT) conditionA). A free boundary version which

solves the equation on a conventional mesh structure (SELENE40) 1is also
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used and completed. The interface between the SELENE code and the
ERATO code has not been completed, but the smaller number of meshes
than the conventional ones is expected to give the highly accurate

numerical equilibrium.

3.1 Numerical method
The Grad-Shafranov equation which describes the axisymmetric

toroidal equilibria is given by

A*IP = —Uorjq(r:w) ’ (l)

3 32
5“; + 322 . (2)

¥ = 8
A or

H |

In the fixed boundary problem, the boundary conditions are

=
I

¥

., (a given constant) at a magnetic axis (3
axis
and

D=0 at a plasma surface . (4)

For the finite element formulation of eq.(l), we adopt the functional

I, for the equation as follows.

n+l 2 nt+l 2
L(¢“+l) = —f rdrdz{(% %Dr——) + (% i‘gz—)

v

n n+l}

RIS AT , (5)

where the index n means the iteration step. By using an appropriate

set of basis functions, the functional 1 (eq.(5)) is represented by M

+
parameters (wg l, ————— w§+l) where M is the number of the node points.

From eq.(5) simultaneous linear equations with respect to w2+l is
immediately derived, that is,

Alpn+l - bn , (6)

where twn+l = (wg+l’ ————— w;fl) and the matrix A is the finite

. %
element representation of the operator A .
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In SELENE20 the current distribution is determined so that wn may

be wax1s <Y < 0, that is,
ety - R _;_,;d_
and
A0 _'l__kn—l . (8)

The parameter kn.corresponds to the eigenvalue of the eq.(l). The
function p(¥) and T(Y) are given a priori or by the results of the
transport codes. In SELENE30 Je is determined under the flux-conserving
condition where the profiles of p(y) and the safety factor (q(¥)) are

given, that is,

n 1 _ndm :
Jc,,(r,lb)=rdw(w) U_O_TEIP_ R (9)

) |
™ - arteh G (10)
and
e gl di /§ 19k ’ (an
Ty

where %%'15 obtained by solving the surface-avaraged Grad-Shafranov

equation simultaneously,

d_<|MJ_|2>ni‘ii]__._§P__ d 9 vy (12)

The boundary conditions (3) and (4) are also used for eq.(12)
(W(v=0) = waxis and w(V=VmaX) =0).
The overall iteration procedure is summarized as follows.
STEP1l : Prepare initial meshes '

STEP2 : Calculate j?(r,¢n)
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STEP3 : Sclve eq.(6)

STEP4 : Move mesh points on the constant { lines

<+
STEPS : if |r2x%s - Taxisl > € or |Ki+l - A"| > e' (SELENE20), or
n+l n dﬂn+ dyn :
- > — T
|t oeis = Taxis| 7 € T I S| > €' (SELENE30),

then return to STEP2

STEP6 : Fnd of iterations and calculations of metrices

3,2 Numerical results

For an example of calculations, we show the finial meshes which
represent the constant Y lines in Fig.8. Figure 9 shows the conver-
gence of the eigenvalue (X) in SELENEZ20. From this figure we find
the guadratic convergence of X versus 1/N, where N = N¢ = NX, and Nw

and N. are the number of the division in the radial and poloidal

X
direction. For the check of the accuracy, we compared the magnetic
3
shear (S = —-%$ [Tﬁ(l/rlvwl)dk] / (%%—) } between the analytic (A = <,

E = 1) and the computed (A = 10,20, and 40, E = 1) cases for the
parabolic current distribution (Fig.10), where A and E are the aspect
ratio and the elliptiecity of the poloidal cross-section. Both results
coincide in very high accuracy. The CPU time required in FACOM 230-75
versus the number of the division (N = N¢ = NX) is shown in Fig.l1l.
In this figure the expected CPU time in CDC 7600 is also shown.
4. BOREAS — the localized mode analysis codeﬁ)
The ERATO code is useful for the analyses of the low mode number
stabilities (n = 1-5, n: the toroidal mode number). ©On the other hand,
the code for the analyses of the high-n mode is complementally
necessary. The criteria for the stability of the high-n mode are the
Mercier criterion and one for the high-n ballooning mode. These
criteria are checked in the BOREAS code, The ERATOl module will be’
replaced by the linked module of the SELENE and BOREAS with the rou-
tines for the calculation of the metrices. All metrices used in the
ERATO are calculated in the present version of the SELENE and the cal-
culation of "the Array EQ" in the ERATOl has not been completed yet.

4.1 Numerical method

For the analysis of the high-n ballooning mode, we use the energy

6)

integral given by Conor et al. By Fourier-transformation of the

normal displacement X = erEw the potential energy is written as
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STEP3 : Solve eq.(6)

STEP4 : Move mesh points on the constant § lines

STEPS @ if |r2§%5 - rgxisl > € or |Az+l - An| > g¢' (SELENE20), or
n+l n di n+1 dyn
— > — ]
|raxis raxisl e or | dv av | > &' (SELENE30),

then return to STEP2

STEP6 : End of iterations and calculations of metrices

3.2 DNumerifcal results

For an example of calculations, we show the finial meshes which
represent the constant ¥ lines in Fig.8. Figure 9 shows the conver-
gence of the eigenvalue (A) in SELENE20. From this figure we find
the guadratic convergence of A versus 1/N, where N = NW = NX, and Nw

and N. are the number of the division in the radial and poloidal

X
direction. For the check of the accuracy, we compared the magnetic
3
shear (8§ = - %ﬁ-[T§(l/r|le)d£] / (%%-) } between the analytic (A = =,

E = 1) and the computed (A = 10,20, and 40, E = 1) cases for the
parabolic current distribution (Fig.10), where A and E are the aspect
ratio and the ellipticity of the poloidal cross-section. Both results
coincide in very high accuracy. The CPU time required in FACOM 230-75
versus the number of the division (N = Nw = NX) is shown in Fig.1l.
In this figure the expected CPU time in CDC 7600 is also showm.
4. BOREAS — the localized mode analysis codes)

~The ERATO code is useful for the analyses of the low mode number
stabilities (n = 1-5, n: the toroidal mode number). On the other hand,
the code for the analyses of the high-n mode is complementally
necessary. The criteria for the stability of the high-n mode are the
Mercier criterion and one for the high-n ballooning mode. These
criteria are checked in the BOREAS code. The ERATOl module will be
replaced by the linked module of the SELENE and BOREAS with the rou-
tines for the calculation of the metrices, All metrices used in the
ERATO are calculated in the present version of the SELENE and the cal-
culation of “the Array EQ" in the ERATOLl has not been completed yet.

4.1 Numerical method

For the analysis of the high-n ballooning mode, we use the energy

6)

integral given by Conor et al. By Fourier-transformation of the

normal displacement X = rBPEw the potential energy is written as
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(13)

(14)

(15)

w1 dﬂ], (16)

(17)

(18)

where J is the Jacobian and XO ig the fourier coefficient of X. All

av
quantities except J'w 30 dn are periodic in 2m with respect to 7.

XO as

and

where Xy
N is the number of mesh points.

the minimum eigenvalue (A

dX

By using the finite hybrid element method and expressing —ﬁgAand

Xy Ky 7
dn Ny TNy
< = 2ty
0 7 )

min

) of the matrix A.

is the nodal value at a mesh point on a magnetic

(19)

(20)

(21}

(22)

surface and

The minimum value of W is given by

If Apip 18 negative,
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the plasma is ballooning-unstable. The matrix A is a tridiagonal omne

so that Amin

is obtained very fast by using the usual bisection method.
4.2 Numerical results

The computed Ayi, gives the pessimistic value as so in the ERATO
code, but it remarkably does not seem to change the sign as N > «.
The convergence property is shown in Fig.12. Though this property has
not been theoretically proved yet, we can determine whether the plasma
is stable or unstable without extrapolation with respect to N, if our
conjecture is correct. As an application of the BOREAS code, we tested

several classes of equilibria by using the INTOR parameters (A = 4.2,

E = 1.5),

2 2
Class 1: p = Bypy LG-Up) - 5 [Q=0) - (9,) )

D R T RN eIk S SN A S N CX
o (P —wb)—l
Y = —“m—‘L— , (24)
(Wp—Vm)
dT _ o2 1y dp
T a = Ro (1/85-1) a (25)
()0 (27)
Class 2: p = — , 27
IPm wb
daT _ g2 -1y 9
T35~ Ro (1/85-1) a0 . | (28)
Class 3: = EL 2 - Ei 3
top=5¥ 3V , (29)
T % = aRY? + o : (30)

Results are summarized as the figure of the critical beta value (B.)

versus the poloidal beta value (Bp) in Fig.13.
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5. APOLLO — 1-1/2 dimensional tokamak code

The plasma equilibrium depends on the plasma parameters which
evolve according to the transport processes, and this evolution of the
magnetic geometry affects the plasma transport. This process is
especially important in a tokamak with finite beta value and/or non—
circular cross-section. To solve this problem, the consistent treat-
ment of the plasma transport and the MHD equilibrium is required7)’8).
The APOLLO code has been developed to study this reciprocal relation
between the plasma transport and the MHD equilibrium., One of the main
aspects of this code is to give the realistic (or non-intuitive)
equilibrium configuration for the MHD stability analysis.

The basic structure of the APOLLO code is the combination of the
transport step and equilibrium step and these two steps are solved
alternatively. In the transport step, plasma parameters are advanced
in time for the fixed magnetic geometry. Using the fact that all
transport processes along the magnetic field advance faster than those
in the radial direction, the problem is reduced to the ]-dimensional

problem. Choosing the toroidal flux function (¥) as the radial co-

ordinate, the transport equatiomns to be solved are

5 v, , 3 8v

5{'[ne Eil + gi'[ax Fe] =85 s (31)
3.§_ ov.5/3 Ex_z/a_iﬁ @E 5 _

30, Av,s/3, Bv2/1d v 5 _

7 At [Pi (ax) ] + (ax) aX {BX [qi + 7 Tiri]} Q:L , (33)
3, .3 " 3 <[y/r]®>

at pO - X u.<r_2>2 (@i)z B-X [ Q‘L BPO]} ’ (34)

Q ey ax
and
p = _ L (35)

where v(¥) is the volume contained by the x-surface, and the angular
bracket < > denotes the surface avaraged quantity. S is the particle

source and the Q's represent energy source or loss due to the chmic
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heating, injection heating, radiation and charge exchange processes.
The particle flux T and the energy flux qe 1 depend on the transport

9)

model and on the geometric factors .

5.1 XNumerical method

This system of transport-equations is solved by the finite element
method and the implicit time-integration scheme. The former makes it
easy to introduce variable mesh without reducing the accuracy, while
the latter guarantees the numerical stability.

In the equilibrium step, the Grad-Shafranov equation

* oo 2dp _ 4T 36
is solved by using the SELENE30 under the adiabatic conmstraints, which
require that the following quantities must be conserved:

3 2>
u) = p(w)(§$)5/3, qy) = T 8$ (;W)Z and P~values at the magnetic

axis and the plasma surface. These constraints can be insured by
solving the surface-avaraged equilibrium equation

g, N el o~ I €2)

av' ~ " Mo dy dys 1% '<r 2> av

2
&
for given boundary values of Y. The combined system.of eqs.(36) and
(37) gives the solution by the iteration., Since we have to calculate
several tens or hundreds of equilibria in one. transpert simulation,
the equilibrium solver with high speed and high accuracy is required.
For this purpose, we developed two kinds of equilibrium modules. The
one, SELENE30, solves the fixed boundary equilibrium by using the
variable meshes. The other module, SELENE40, solves the free boundary
equilibrium. The basic procedure of this module is the combination of
the Buneman solver of the Poisson type equation with the method of the
surface Green function. Both equilibrium medule include the ballooning
code (the BOREAS or the BALOON code) and automatically checks the
ballooniﬁg stability of the high-n mode,

5.2 Numerical results

Figure 14 shows an example of the results of -analyses of balloon-
ing-stable equilibria. This result is obtained by using the APOLLO30,
which is the combination of the SELENE30, BOREAS and the simplified
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one—fluid transport module. Figure 15 show the result by using the

APOLLO40, which simulates the process of the FCT heating.

5.3 Interface with ERATO

In the APOLLO code p(y) and q{(y) (or p(x) and q(¥) are calculated
on the meshes Y = wl’ ————— , wN' The number of the mesh points for the
equilibrium calculation in the APOLLO is usually Ny = Ny = 15 (SELENE30)
or N. = N, = 64 (SELENE40Q). This number is too small to insure the
accuracy for the stability analysis using the ERATO code. The recalcu-
lation of the equilibrium is, therefore, necessary by using a large
number of mesh points for the given p(¥) and q(§) by the APOLLO.

The relation between the ERATO code and our SELENE and BOREAS code

is summarized in Fig.l6

6. Machine Optimization

Distinctions of the ERATO job are as follows;

i) A very large amount of I/0 operations are required as compared
with amount of other arithmetic operations performed on a CPU.
Necessary 1/0 time is too large for a standard Fortran-supplied
1/0 routine of a general purpose computer to process a lot of
large ERATO jobs smoothly during regular service of a computer
center.

ii) Necessary CPU time rapidly becomes large if higher resclution
of results and calculations of higher mode number instability

are required.

In order to overcome the first difficulty the standard Fortran-supplied
I/0 routine was replaced by a specially developed "non~buffering I1/0
routine"” written in Assembly language. As for the second point we
optimized the ERATO code for a vector processing computer, FACOM 230-75
APU (F230-75APU hereafter: APU = Array Processing Unit) and run the code
on the F230-75APU/CPU multiprocessor systemlo).

In this section we describe the process how the ERATO code was
optimized with respect to the 1/0 operations and the effectiveness of

parallel processing for the ERATO calculations which was investigated by

using the above F230-75APU/CPU multisystem.
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6.1 Optimization of ERATO with respect to 1/0 operations

The ERATO code was adapted for FACOM230-75 (F230-75 hereafter)
computer system of JAERI from the code writtem for CDC6600 computer
system at EPF-Lausanne. Characteristics of the F230-75 system, and
differences between the F230-75 and CDC6600 computers are summarized in
Appendix A with some remarks concerning adaptation of the code.
(1) Standard problems for test runs

Four Lkinds of matrices are prepared for test calculations.
Parameters which characterize the matrices are summarized in Table 1.
The matrices of the case 1 are those for a stability analysis of an
analytically obtained equilibrium. This case is provided by ERATO as a
standard test case (NTCASE = 1). The matrices of the cases 2,3 and 4 are
those for a stability analysis of a numerically obtained equilibrium
(NTCASE = 3). These three cases are different in the size of the matrices.
In the I/0 optimization only the cases 1 and 2 were tested. Table 2
summarizes CPU time and I/0 time for the cases 1 and 2 before the opti-
mization.. From this table it is easily seen that most of CPU and I/0

times are both spent in the ERAT04 module.

(2) Idle time of the I/0 control

As shown in Table 2 the I/0 time spent in the ERATO4 module for the
case 2 calculation is about 453 sec. This value is fairly large as
compared with the CPU time. In this test case matrix data of 122,081 KB
are transferred between the main and disk memories and, consequently,
transfer rate of 269 KB/sec is attained. This fact indicates that the
I/0 channel of the F230-75 system is very inefficiently*) used in the
ERATO calculation and.there is much idle time in the I/0 control of the
system because the maximum transfer rate of the disk memories (F479B2 .
and F1771D) is 806 KB/sec which is by far large compared with the actual

transfer rate.

%) The inefficiency of the I/0 channel of the F230-75 system for the
ERATO4 calculation is attributed to a large number of BACKSPACE operation
of the digk files. 1In order to perform backward substitution appearing
in the inverse iteration loop, one should read one block of matrix data
as one logical record from a sequential file, which required to perform

a sequence of three operatioms, '"BACKSPACE, READ, BACKSPACE". If the
logical record size exceeds the size of a track, the standard Fortran

I/0 routine always checks if the data are transferred correctly, which
increases the I/0 time by a factor of about 3.0. Therefore, it is
recommendable to avoid the BACKSPACE operations as far as possible.
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(3) Optimization of the I/0 process within the framework of a
Fortran program
Because the length of the sequential data is fixed constant in the
ERATO4 module, even in the Fortran framework it is possible to remove
the BACKSPACE operations as follows,
i) Preparation of as many sequential files as the number of blocks
of a matrix ‘
. Obviously the BACKSPACE operation is not necessary in this
case, by reading data of different blocks from different files.
ii) Use of random access files
This method is also effective because the number of READ
operations is by far larger than that of WRITE operatioms and

necessary time for opening files is negligible.

(4) An Assembler I/0 routine

As shown later the above methods are effective to reduce I/0 time
of the ERATO jobs. However, necessary time for calling the Fortran I/0
routine cannot be neglected and there is room to reduce the 1/0 time
much more by using a specially developed Assembler I/0 routine. Because
the Fortran I/O routine is general-purpose one it provides various kinds
of error check routines. But we are concerned only with the case where
a large number of matrix elements are transferred between the main
memory and work files, and in this case a specially developed single-
purpose I/0 routine is helpful to reduce the I/0 time. Actually '"End of
Cylinder" check which is issued at the changeover from a cylinder to
another adds to the I/0 time. By omitting this check the T/0 time is
reduced considerably. For this purpose the Fortran I/0 routine was
replaced by an Assembler (FASP language) I1/0 routine which has the
following features.

i) This routine does not use the Fortran I/0 buffer. Data arel
transferred between user specified arrays and disk memories
directly.

ii) A head of a record is always written from the head of a
cylinder. Length of command chaining should not exceed 19

tracks.

(5) Measurements of processing time

The results of the measurements are summarized in Table 3. By using

the Assembler I/0 routine both CPU time and I/0 time are reduced.
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Especially, considerable reduction of the T/O time is observed. For
detailed information effects of the improvement on basic I/0 operaticns

are summarized in Appendix B,

6.2 Optimization of the code for FACOMZ30-75AFPU

F230-75APU is a high speed vector-processor developed after demand
for high speed array manipulation. The F230-75APU is always operated
as an additional processor to a F230-75 computer system. That is, the
general purpose processor F230-75CPU and additional processor F230-75APU
form an "asymmetric multiprocessor system'.

In Appendix C a brief explanation of the F230-73APU is presented.
The description of the software gystem for the APU-CPU multiprocessor
system, especially, on the AP-Fortran and its optimization are presented
in Appendix Dll’lz).
(1) Automatic optimizations by the AP-Fortran and manual optimizations

In order to demonstrate the effectiveness of the parallel processing
in the F230-75APU sufficiently, much more extensive optimizations of
the code is generally required in addition to those by the AP-Fortran.
Essential points required for the optimizations are as follows.

i) Rewriting of a Fortran source program to a vector-processor
oriented form

First, the sequence of data should be carefully rearranged,
which, sometimes, requires alteration of algorithms. In the
ERATC case, the Gauss elimination method used for the matrix
decomposition was replaced by the Choleski method (see Appendix
E). After this change of algorithm slight reduction of CPU time
was observed for the calculation by F230-75CPU. The effect of
the change is by far large in the case of APU-CPU multiprocessor
system.

Secondly, as in the APU-CPU multiprocessor system 1/0 chan~-
nels are connected only to F230-75CPU the I/0O operations inter-
rupt a continuous flow of vector operations. Therefore it is very
important to collect the I/0 operation flows and vector processing
flows separately in the program, though there i1s no room in the
ERATO case. Because of a similar reason the scalar calculation

fiows and those for the vector calculations should be separated.

ii) Efficient use of vector registors (Vector temporary)

In F230-75APU there are 1792 W vector registors (Vector
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temporary). To use these vector registors very efficiently as
working registors is the most essential point how to optimize the
program for the F230-75AFPU.

Parts of the above optimizations are performed by the
AP-Fortran but the level of the optimization is not, in general,

satisfactory.

(2) Performance of F230-75APU for the ERATO job
The proéessing time of ERATO by the F230-75CPU and F230-75APU is
- summarized in Table 4 and Fig.17., The data of the table indicate that
the overall performance ratio of F230-75APU to F230-75CPU for the ERATO4
module is 2 ~ & (OPTO) and 3.4 ~ 5.5 (OPT2). In Table 5 the performance

ratios are presented for basic arithmetic operations separately.

6.3 Summary on the machine optimization

The main part of the ERATO code is an extremely I/0-dominant program
but a general-purpose computer system installed at a usual scientific
computer center is not designed to handle such an extremely I/0-dominant
job. Therefore, turn around time for such a job 1is considerably pro-
longed on a standard general purpose computer system. However, as far
as the data format and amount of the transferred data are fixed as in
the case of ERATO, one can write an efficient 1/0 routine in the EXCP
level (most primi£ive 1/0 control level) by using the Assembler. We
succeeded in reducing the I/0 time of ERATC by the specially developed
Aésembler T/0 routine. This fact indicates importance of analysis of
task distribution for the concerned code and the effectiveness of the
machine optimization for a large-scale general-purpose computer system.

Because of the regularity of its array data ERATO is one of the
best codes that can run very efficiently on a vector processing computer.
By using the F230-75APU/CPU asymmetric multiprocessor system performance
ratio of F230-75APU up to 6 was proved aé compared with the job optimized
for the F230-75 CPU computer system. In summary in order to demonstrate
the ability of a super high speed vector precessing computer very'effec-
tively the most important points are, i) appropriate restructuring of
the program, which may be possible only by profound understanding of
used algorithm, and ii) efficient use of high-level machine-dependent
optimization functions of the vector compiler, which was partly shown
effective by the AP-Fortran of the F230-75APU.

By the study in this report we consider the effectiveness of the
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vector processing computer are proved in the field of MHD analyses and

a larger vector processing computer with higher performance is desired

in the near future.

7. Summary and Discussions

In this report we have described several topics on the ERATO code

itself.

Results of stability analyses by ERATO are described elsewhere.

From the descriptions in the previous sections matters to be attended

and problems to be solved are sammarized as follows,

i) Convergence study:

1

For n = 1, 2 mode calculation stability mesh number up to

~37 is usually necessary. Equilibrium mesh number should be
fixed to attain a straight convergence.

To obtain a converged value of a low growth rate mode extrapo-
lation from higher growth rates is efficient.

To neglect the resonance-like phenomenon it is recommended

to calculate as many data points as possible.

ii) Interface between equilibrium and stability code:

1

As the convergence property of the code is influenced by
choice of mesh number and accuracy of the equilibrium code,
an equilibrium code with high accuracy is required. For
this purpose we developed a equilibrium code SELENE. Bﬁt
the interface is not completed.

Auxiliary codes (BOREAS, APOLLO) for the equilibrium code to
be used for the ERATO calculation are prepared. But the

interfaces are not still completed.

iii) Optimization of the code with respect to computer systems

1

Optimization of I/0 routine (system routine) was carried out.
By this optimization both CPU time and I/0 time are reduced
considerably. The reason why a very large factor of improve-
ment is attained is that the ERATO calculation is an I/0
bound job and a general-purpose computer system is not in the
standard option designed to deal with such a large-scale I/0
bound job as the ERATO calculation.

Optimization of the ERATO code for a vector computer has been
tried by using FACOM230-75APU. It was confirmed that factor

of about & could be gained in CPU time by compared with



JAERI-M 8616

vector processing computer are proved in the field of MHD analyses and

a larger vector processing computer with higher performance is desired

in the near future.

7. Summary and Discussions

In this report we have described several topics on the ERATO code

itself.

Results of stability analyses by ERATO are described elsewhere.

From the descriptions in the previous sections matters to be attended

.and problems to be solved are sammarized as follows,

i) Convergence study:

1

For n = 1, 2 mode calculation stability mesh number up to

~37 is usually necessary. Equilibrium mesh number should be
fixed to attain a straight convergence.

To obtain a converged value of a low growth rate mode extrapo-
lation from higher growth rates is efficient.

To neglect the resonance-like phenomenon it is recommended

to calculate as many data points as possible.

ii) Interface between equilibrium and stability code:

1

As the convergence property of the code is influenced by
choice of mesh number and accuracy of the equilibrium code,
an equilibrium code with high accuracy is required. For
this purpose we developed a equilibrium code SELENE. But
the interface is not completed,.

Auxiliary codes (BOREAS, APOLLO) for the equilibrium code to
be used for the ERATO calculation are prepared. But the

interfaces are not still completed.

iii) Optimization of the code with respect to computer systems

1

Optimization of I/0 routine (system routine) was carried out.
By this optimization both CPU time and I/0 time are reduced
considerably. The reason why a very large factor of improve-
ment is attained is that the ERATO calculation is an I/0
bound job and a general-purpose computer system is not in the
standard option designed to deal with such a large-scale I/0
bound job as the ERATO calculatiom.

Optimization of the ERATO code for a vector computer has been
tried by using FACOM230-75APU. It was confirmed that factor

of about 6 could be gained in CPU time by compared with



JAERI-M 8616

FACOM230-75CPU.

In summary it seems that almost all the computational problems
concerning the ERATO calculatiom will be solved by a small progress of
the computer technology. However, it seems necessary to investigate
extensively the equilibrium codes and their interfaces to the stability

code in order that the ERATO code may contribute more and more the

tokamak research.
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Table 1 Data concerning ERATO4
MESH
CASE NUMBER Matrix Size | Size of a Block | No. of Iterations
Ny | Ny
1 f14l1s 1376 128 6
2 24125 3796 208 7
3 37 1 37 8512 304 3
4 l49 49 14800 J 400 1
Table 2 Execution time of ERATO on F230-75 CPU system
(0S-MONITOR VII, FORTRAN-H OPT2)
CASE 1. Nw = 14, NX = 15, No. of Iteration = 6, NTCASE = 1
| Job Step CPU Time 1/0 Time*
{
—
{  ERATOL 2.552 5,196
|~ ERATO2 0.043 0.090
| ERATO3 6.211 6. 444
' ERATO4 34,630 86.471
ERATOS 0.906 3.543
CASE 2. Nq) = 24, NX = 25, No. of Iteration = 7, NTCASE = 3
Job Step CPU Time 1/0 Time*
ERATOL 6.384 17.608
ERATO2 31.883 0.448
ERATO3 25.306 25.050
ERATO4 182,090 453,492
- ERATO5 2.456 9.962

*) "I/0 time" of F230-75 system is the accumulation of time intervals
between the instant when "Start I/0" command is issued and that when
"Channel end" command is executed. Hereafter we use "1/0 time" as a
characteristic quantity to indicate the 1/0 performance of each program
in a multiprogramming computer system.



Table 3

(a) Sequential file (FORTRAN I/0 library, the original program)
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Execution time of ERATO I/0 procedure

(b) Distributed sequential files (FORTRAN I/0 library)
(c¢) Direct access file (FORTRAN I/O library)
(d) Distributed sequential files (Assembler I/0 routine)

CASE 1.

CASE 2.

I/0 in ERATO3

I/0 in ERATO4

CPU Time I/0 Time CPU Time I/0 Time
(a) 0,322 6.444 3.232 86.471
(b) 0.322 6.444 3.301 65.785
(c) 0.322 6. 444 3.253 75.595
(d) 0.058 6.697 0.141 42.631

I1/0 in ERATO3

T/0 in ERATO4

N
- CPU Time 1/0 Time CPU Time I/0 Time
(a) 1.224 25.050 16.070 453.492
{b) 1.224 25.050 15.571 318.150
(c) 1.224 25.050 15.588 307.021
(d) 0.074 26.658 0.394 194.776
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Table 4 Execution Time of ERATO4 on FACOM230-75APU/CPU system

CASE 1. No. of iteration = 6, I/0 Time = 42.631 sec.
Task Switching = 538 Times

Compiler CPU Time (sec)
FORTRAN—H(OPTZ) 19.761
AP~FORTRAN(OPTO) g 564 (9:389 on AP Task)

(0.175 on CP Task)

(5.711 on AP Task)

P__ .
AP-FORTRAN (OPT2) 5.885 (3.174 on CP Task)

CASE 2. No. of iteration = 7, I/0 Time = 162.981 sec.
- Task Switching = 1030 Times

Compiler CPU Time (sec)

FORTRAN-H(OPT2) 126.542

(42.965 on AP Task)
AP-FORTRAN{OPTO) 43,391 ( 0.426 on CP Task)

(27.513 on AP Task)
AP-FORTRAN(OPTZ) 27.938 ( 0.425 on CP Task)

CASE 3. No. of iteration = 3, I/0 Time = 208.531 sec.
Task Switching = 835 Times

Compiller CPU Time (sec)

FORTRAN-H(OPT2) £76.499

(134.386 on AP Task)

AP-FORTRAN (OPT0) 135.108 ( 0.722 on CP Task)
. ( 89.714 on AP Task)
AP-FORTRAN(OPT2) 90.435 ( 0.721 on CP Task)

CASE 4. No. of iteration = 1, 1/0 Time = 267.465 sec.
Task Switching = 605 Times

Compiler CPU Time (sec)
FORTRAN-H (OPT2) 1402.960 B
|
(350.512 on AP Task)
AP-TORTRAN(OPTQ) 351,327 ( 0.815 on CP Task)
(252.421 on AP Task)
L_éP—FORTRAN(OPTZ) 253,297 ( 0.876 on CP Task)
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Table 5 Execution time of Choleski-decomposition and Inverse-iteration
CASE 1
CPU Time (sec)
Ratio
FORTRAN-H(CPT2) | AP-FORTRAN(OPT2)
Choleski-decomposition 13.833 3.343 4.14
j One Inverse-iteration 0.912 0.237 3.85
L
CASE 2
- CPU Time (sec)
) Ratio
FORTRAN-H(OPT2) | AP-FORTRAN(OPT2)
Choleski~-decomposition 97.400 17.340 5.62
One Inverse-iteration 4,018 0.831 1 4.84
CASE 3
CPU Time (sec)
Ratio
FORTRAN-H(CPT2) | AP-FORTRAN(OPT2)
Choleski-decomposition 449,631 68.103 6.60
One Inverse-iteration 12.790 2.392 15.35
CASE 4
CPU Time (sec)
Ratio
FORTRAN-H(OPT2) | AP-FORTRAN(OPT2)
Choleski-decomposition 1339.842 214.096 6.26
| One Inverse—-iteration 29.013 5.116 t 5.67
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Example of resonance-like phenomenon
The number of the equilibrium meshes 1s Ny = 224 and N, = 112.

The mark @ shows the growth rate in the case of N, = 223 and

N, = 111
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lines denote the extrapolated ones.
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Appendix A  FACOM230-75 System and Adaptation of ERATO from CDC6600

A.1 The characteristics and performance of FACOM230-75 computer

system are as follows,

CPU cycle time : 90 ns
Buffer memory size 1 2 or 4 kw

access time : 90 ns/2 word
size : 64 kw (min.)/1024 kw (max.)

Core memory
memory cycle time : 1 us/2 word

Bit pattern : 40 bit (36 data bit + 4 flag bit)

Operation time

[ addition-subtraction 108 ns

Fixed point multiplication 450 ns
1 division 2250 ns
addition-subtraction 360 ns

Floating point multiplication 540 ns
division 1350 ns

Gibson mix. 267 ns

Operating System : MONITOR VII
Program language used for ERATO adaptation : FACOM FORTRAN IV

Compiler : FACOM FORTRAN-H

System configuration of FACOM230-75 in JAERI Computing Center is shown

in Fig.Al.

A.2 Adaptation of ERATO from CDC6600 to FACOM230-75
In order to adapt ERATO from CDC6600 to FACOM230-75, the feollowing
alterations are necessary.
(1) Explicit initialization of local and common variables to zero.
(2) Matching of numbers of actual and dummy arguments of subroutines.,
(3) Alteration of floating variables, constants and built-in
functions to double precision.
(4) Adjustments of addressing shifts in equivalenced real and
integer arrays caused by the alteration (3).
(5) Alterations concerning character handling in LABRUN

(LABEL1 ~ LABELS).
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Appendix B Timing of Basic I/0 Execution Processes (WRITE, READ,
BACKSPACE)

Execution time of basic I/0 processes is measured by using the
following simplified I/0 programs. Total amount of transferred data is

36.36 MB.

(a) Sequential File (FORTRAN I/0 library)

DIMENSION A(161600)
DO 10 I = 1,50
WRITE(1) A

10 CONTINUE
REWIND 1

*
CPU Time E Time

WRITE x 50 4.869 33.820

DO 201 =1,50

READ (1) A READ X 50 4.378 96,328

20 CONTINUE
DO 30 T = 1,50
BACKSPACE
READ(1} A
BACKSPACE

30 CONTINUE

BACKSPACE
READ x 50 5.338 286.201
BACKSPACE

(b) Direct Access File (FORTRAN I/0 library)

DIMENSION A(161600)
DEFINEFILE 1 (700,2894,U,IX)

WRITE (1VIX) DUMMY .
X = 1 CPU Time E Time
DO 10 1 = 1,50
WRITE (1VIX) A File Open
10 CONTINUE (Format WRITE)
IX = 1
DO 20 I = 1.50 : WRITE X 50 14.133 | 95.007

0.562 | 95.660

READ (1YIX) A
20 CONTINUE READ X 50 3.639 95.672

(c) Sequential File (Assembler I/0 Routine Programmed on EXCP-level)
DIMENSION A(161600)

DO 10 I = 1,50 ) —

CALL ERTOUT (1,4,161600) CPU Time E Time
10 CONTINUE '

CALL ERTRWD (1) WRITE X 50 0.270 96 .042

DO 20 I = 1,50

CALL ERTIN (1,A4,161600) READ x50 0.052 ' 54.773

20 CONTINUE
* Elapsed Time
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Appendix C  FACOM230-75AFPU

The FACOM230-75 Array Processing Unit (APU) is a special purpose
high-speed scientific computer with parallel processing architecture.
It can perform up to 22 MFLOPS (Million Floating Operations per Second)
for addition, inner product and summation. The ratioc of gross process-—
ing speed to FACOM230-75 CPU are 5 to 10 times in average and 30 times
at its maximum. The FACOM230-75APU employs the same device technology
as the FACOM230-75CPU.

Characteristics of the FACOM230-75APU/CPU multiprocessor systems
are as follows,

1) The CPU and APU share the main memory and form an asymmetric
multiprocessor system.

2) The APU uses vector instructions to perform high-speed parallel
processing of fully pipelined data access and arithmetic
operations.

3) Various kinds of functions are made available by changing a
descripter of a vector instruction.

4) High speed data access 1s made possible by use of the 1,792
words vector register. _

5) The APU also has high-speed scalar operation capabilities

provided by the 2 kW buffer memory and 256 general registers.

The characteristics and performance of FACOM230-75APU are sum-
marized in Table Cl. System configuration of FACOM230-75APU/CPU in
FUJITSU Computing Center (at Kawasaki, Japan) is shown in Fig.Cl.

Performance ratio of APU/CPU for elementary operations in ERATO4 is

shown in Fig.C2,
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Appendix D Software systems of FACOM230-75APU

(L

(2)

(3)

In this Appendix we describe APU MONITOR, AP-FORTRAN and APTRAN,
The APU MONITOR is a system program belonging to the MONITOR VII.
The APU MONITOR controls APU task independently from CPU unless
communications between APU and CPU occur., Multiprogramming of
APU jobs is made available by the APU MONITOR. '

The AP-FORTRAN provides extended FORTRAN functions to facilitate

the vector operations. Examples of vector operations are shown

~in Table D1. Optimizations by the AP-FORTRAN are also shown in

Table D2.
The APTRAN is a debugging utility which translates a source

program written in the AP-FORTRAN to that written in a standard
FORTRAN.
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Appendix E Optimization of the Subroutine CALD

Inp the subroutine CALD, matrix decomposition algorithm is altered
from Gaussian elimination method to Choleski method. The essentials
of these two methods are shown as follows,

(1) Decomposition by Gaussian elimination
LA = DU J u,, = 1
ii
Lu,,=0 for 1> j
1]

(—-for i=1, n-1
i — for j = i+l, n

; [—*for k= 4i+l, n
‘ a(new) _

: L - .
| i 813 (ay /a;4) 245
} d,. = agl?ew)
I 11 11
u,, = ag?ew) /d, .
ij ij ii

- (2) Modified Choleski-decomposition (Crout-method for Symmetric Matrix)

A =100t .. =1
11
L., = for 1 <]
ij
~— for 1 =1, n
i1 =1
i-1
dii = %41 7 kil Yk ik

for j = itl, n
i-1

2ii = (ay; ‘kil Lk Fsik d /444

Execution times for matrix decomposition on CPU task are improved as

{Gauss) (Choleski)
case 1 : 18.916 ———s 15.032 (sec)
case 2 : 133.617 > 98,911
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Table Cl. The Characteristics and Performance of FACOM230-75APU

Machine Cycle (Basic clock for pipeline) : 90 ns
: Highspeed CML (Current Mode Logic) 3 ns
Elements NTL (Non Threshold Logic) 1 ns
IC memory , 1. 14 ns
2 kinds { 5. 35 ns
Instruction buffer 8 word
Buffers Data buffer 256 kw = 3
Buffer memory 2 kw
Resist Data register 256
€gLSLETS Vector register 1,792 word
_ 1. Addition pipeline
Operation pipeline 3 series 2. Multiplication pipeline
3. Logical operation pipeline
Addition 22  MFLOPS
. . Multiplication 11  MFLOPS
Vector operation time e g
(Floating point, single precision) Division 1.2 MFLOPS
? Inner Product 22  MFLOPS
Summation 22  MFLOPS
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Table D1  Examples of vector operations
Instruction Calling Procedure Definition
m
Summation S = VSUM(B(x)) §= I bi
i=1
m
Inner Product S = IPD(B(%),C{(x)) §= ¢ (bi,c )
i=1
Average AGx) = AVRG(B(%),C(#)) |a, = 3 (by¥cy)
m
Comvolution Product | A(%) = CVML(B(*),C(*)}) |[a = ¥ (b,,c,, .
. j? i+l
j=1
{ Maximum S = FMXV(B(x)) S = max(bi)
1gign
Table D2 Optimizations by the AP-FORTRAN
Level
Function of Optimization
OPTO | OPT2
(a) Machine independent cptimizations
Adjustment of types of constants in a mixed operation | Yes Yes
Inline expansion of a statement function Yes Yes
Alteration of powers tb multiplication Yes | Yes
Alteration of devision to multiplication No Yes
Optimization of a logical IF statement Yes Yes
Optimization of arrays in 1/0 statement Yes | Yes
Common expression elimination No Yes
Invariant instruction movement No Yes
Inducticn variable optimization No Yes
Register saving optimization No Yes
. (b) Machine dependent optimizations
Descriptor optimization No Yes
Instruction scheduling No Yes
APU/CPU communication optimization No Yes
Others Yes ! Yes
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Nov. 1979
Description of the Computing Facilities
of Japan Atomic Energy Research Institute
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Fig Al System configuration of FACOM 230-75 in JAERI Computer Center.

PR



JAERI-M 8616

MEM MEM MEM MEM
256 KW 256 KW|. 256 KM 256 KW

~ N/

CPU MCU Il —APU

—— o — — — — i —— — — — — —

1/0 Group

_ DISK DRUM
x4

(200 MB)
x24

= Y
szl

r
|
I
|
I
|
!
I
|
I
I
!
|
I
|

Fig.Cl System configuration of FACOM 230-75 APU/CPU in the FUJITSU

Computing Center (at Kawasaki, Kanagawa~ken).
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Fig.C2 Performance ratio of APU/CPU for elementary operations in

ERATO4.



