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An MHD equilibrium code (SELENE) and a stability code (ERATO-J) are
extensively used for the analvsis of ideal MHD beta limit of a tokamak
plasma. High efficiency is required for the analysis of experimental
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1. Introduction

One of the critical 1issues in a tokamak fusion research is to
improve the beta value of a plasma, where the beta is the ratio of the
volume-averaged plasma pressure to the magnetic pressure. The maximum
value of the beta in a tokamak plasma is theoretically evaluated by an
ideal MHD stability analysis and the results of the theoretical
prediction agree with those of experiments. A lot of calculations have
been carried out to assess the beta limit for the design of the next
step experimental device {1}. There still remain the differences in
the results given by different authors. In the international
collaborations for the design of a specific fusion reactor, such as
INTOR workshops {1}, it 1is necessary to clarify the cause of the
differences for the assessmenit of the data base. The enhancement also
is necessary to improve the design of fusion reactor {2}. In addition
the stability calculation is used to analyze the experimental data
{3}. For these investigation, high efficiency in CPU time and I/0 time
is required to carry out a lot of equilibrium and stability
calculations. In this report, we describe the methods of the
vectorization in SEIFENE and ERATO-J codes for the Fujitsu VP-100

computer as well as the hasic equations and numerical methods.

2, Fquilibrium Code SEILENE

2. 1 Basic Equations
In the axisymmetric toroidal system, the equilibrium magnetic field
B and current J .are written by the poloidal flux function ¥(R,Z) in the
cylindrical coordinates (R,Z,¢):
B = Vg x V¥ + FVp (1)
and
pod = AYYVe + VFExVe , 2)
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where

b= OV (TuRly = O (1 8Yy . 9%
_ LYY = RV - (VY/R) RaR (R aR) Y I 37
The equation for MHD equilibria, VP=JxB , can be reduced to the

Grad-Shafranov equation,

A= — R g —gg -1 %F—j = g(R.2¥) (in a plasma ) (4a)
and .

Ny = 0 {in a vacuum) {4b)
when the plasma pressure is isotropic and the function of 3. The

poloidal current function , F { F=RB,, B; :toroidal! magnetic field ) is

also the function of . The functions P and F are arbitrary in
eq.{4). The time-evolution of these functions are determined by a
transport process. For the MHD stability analysis, P and F are usually

given by using a simple model .

The shape of a plasma surface is specified by the functions,

R =Ry + acos{B+6 sinf) , (5a)
and

Z = kasin® , (Sh)
where Ry, Kk and a are the major radius of the plasma center, the
ellipticity and the minor radius, respectively. The parameter, &,
specifies the triangularity. The solution of the equation , A%y,=0,

gives the poloidal magnetic flux supplied by external coils (vacuum
field solution). The general solutions, [ y,; }. are used to control a
plasma shape. The vacuum flux is expressed by a linear combination of
the general solutions:

M
Yo = 2 Cidui . ®)

i=|
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The coefficients,{(;}, are determined so that the flux contour with
W+, = may pass the specified points on the plasma surface given by
eq. (BY, (Y:the solution of the Grad-Shafrancv equation, ,: flux at the
plasma surface). The condition that the contour with ¢+y,=y, passes

the specified points is too stringent for the coil systems in the design

of experimental devices. For this purpose, a least square error can be
minimized . :
EZZ}H!W+%h“%H2-FXbe=rMn:, (7
1 1

where {a;}, (b;} and I, are the weights and the currents in the external
coils. The Grad-Shafranov equation {eq.{4}) 1is solved 1in the
rectangular domain , R*, in the (R,Z) space (Fig.1). The poloidal flux
function, ¥, is arbitrary by a constant which is chosen as ¥.=0 at the
plasma surface, By using this condition and the Green’'s theorem, the
poloidal flux produced by a plasma current in a vacuum region 1is given
by

Yp (1) = gg_a Girory By® .2 ydl’ @)
where
B, = |Vv¥l /R . - Q)
Gror) = o= WRR/ k- (@A) — B, (10a)
and
_ ARR' (106

(R+R’ ¥ + @Z-7')
The functions K¢k) and E(k) are the first and second complete elliptic

integral, respectively. The Grad-Shafranov equation is numerically
solved by using iterative method. The methods are described in
2.2 The boundary condition for the n-th iteration is given on the

rectangular boundary, AR* , by using the solution at the (n-1)th step;
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VIORY) = (AR + YS(ARY) (11)

where ," 1is calculated by using the condition w*l+§:C;wM=O at the
specified points of the plasma surface. When the iteration converges,

the solution in an unbounded domain is obtained.

2 2 Numerical Methods

2 2 1 Nonlinear Eigenvalue Problem

¥When the inhomogeneous term in eq. (4}, g (R,¥ ), is glven as the
function of a normalized flux, ¥=1-%/¥ (=0 and Y : poloidal
magnetic - flux at the axis ), the semi-linear equation can be solved by

using the algorithm of the nonlinear eigenvalue problem

AN = AR, (in a plasma) (12a)
A =0 {(in vacuum) (12b)
with the boundary condition described in §2.1 . Equation (12} can be

solved numerically in a rectangular domain by using the double-cyclic

reduction method {4}. The eigenvalue at the n-th step, &%, is
determined by  A%= QAT DAY, The iteration converges when
| Ar— Al janaey . The value, ¥y, 1s obtained by a constraint :
I, = f&“f(R,@” Rz = given value (13}
or
- F ¢ dl | 4
Qp = or PRIV i¢:o = given value , (14)

where I, and gy denote the total plasma current and the safety factor at
the magnetic axis, respectively. This algorithm is useful when P and F

are given as the function of ¥ .
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2 2 2 Flux Conserving Tokamak (FCT) Algorithm

The Grad-Shafranov equation can be solved by specifying the
profiles of the adiabatic invariant, p(y), and the safety factor, q(y),
instead of P(y) and F{y) :

w@) = P& (i—‘/)r , (15)

o<

and

3y = L dr o F 4 dl
q{y) a2 dy o RZBP ’ (16)

where %, V and I are the toroidal magnetic flux, the volume surrounded

by a magnetic surface and the specific heat ratio I=5/3). This model
describes a non-dissipative transport system and 1s called 'Flux
Conserving Tokamak (FCT)" model {B}. By substituting eq. (15) into the
right hand side of the Grad-Shafranov equation {(eq.(4)), we have

Ay oy Y d 2,y yro_ 1 5 dF
R;é,w o Gy M (4r S ) 2 F T (17

Thig equation is the combination of an elliptic partial differential

equation (PDE) and an ordinary differential equation {(ODE}. Equation
{17) can be solved iteratively by using the Grad-Shafranov equation and

the averaged equation on a magnetic surface {B6}:

4 (B> gfb) S % - <RBF | (18)
where
- 1i 3 3. - o QY 96 Xdl
<X> i&% A#ﬁir /j;fil 2r v B, - (19}

By using eqs. (15) and (16), eq. (18) is written as

1de

F d D o, {(P0a)
and

dy _ -2

av FR= >, {(20b)
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where
_ VRIS (/) 4 P <REST d)
D = 5 ) Al , o
R=> 4 KR > + <R
K - L’<R_2><ng> - D %% , (&)
: P
and
_ 1
. | 23}

412q
The boundary condition of eq. (20) is given by

x (4=0) = x(V=0) = 0 (Pdat)
and
_ > [0 -
x G <k V) = 42 [ a@dy | (24b)
¥
The nonliner equation can be solved iteratively :
1
F* = C exp( LD(P"H ) (25)
%0
and
. , _
2 = fo Fr<RZ>qV. (&)

The constant C is determined by the boundary condition (24b), The
iteration converges when
| (" /dY — AV VY < gy @7)

The averaged quantities on a magnetic surface, <X> , are obtained by
solving the Grad-Shafranov equation (PDE) and the right hand side of PDE
is obtained by using
dr
Fdw = -Feph 28)

and
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P W (29)

The ODE determines F(y)=RB, and the toroidal magnetic field at the
plasma surface, F;, changes from the specified value (the value of the
vacuum toroidal field ) due to the change in the pressure. To avoid
the jump of the téroidal maghetic field, the adjustment of the plasma
_surface is necessary such that

F@ery = | (F'@=1) = FO/Fl < e . (30)

Due to the medification of the plasma surface, the vacuum magnetic field
to control the plasma surface also should be corrected . The

alternative iteration of PDE and ODE converges when
Ey = max{| @' G @At @ .| v G- v @-)/V* I
P!
| (=5 &

where | denotes the step of the iteration.

-1
Clgd EE e @)

2.3 Critical Pressure to the Ballooning Modes and Local Interchange Mode
For a given P(y) and q(¥), the stability of the ballooning mode and
the local interchange mode are investigated. The equation of the high

mode number stability is given al a magnetic surface by (7},

St G hwiG = Fewic 2
where
N S PR A 2R F-A PN
f(y/ - '\/E‘V'd}‘z{i ’ ( B aw_L) It (33)
VAT _ F,dP 3z 0B
h) = G gy gy (2P B) — gy 5 2 ©4)
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_ 1 F I VY1? Bz e
{ — N
k) = oo (g 50 )b | (35)
I VAT
- T [} %
z{y?) fyo e y (36
B = (72 + vyl R, (37
g _ Vy-V
v  [VyIl &8

and N/a is the Jacobian. The boundary condition of eq.{(32) is given
by

Gly=—<=) = Gly=+e=) = 0 : (39)
When «°<0, a ballconing mode is unstable at a magnetic surface. The
marginal pressure, dP°/dy , is obtained as the "eigenvalue” by solving
the equation with «®=0. The alternative iteration of the
Grad-Shafrancv equation and the ballooning equation with @*=0 gives the
critical pressure (the beta limit) for a given q(y).

The asymptotic solution of eq.(32) is given by {7}

where
a=-1:/Ta=D, @1)
_ pedP/AY) (2 oqy . dP 5 PV
D (4E2dQ/dW){(P‘Q2+4I F)(uodw Q3 . )
+ 4752£,Q1 0% db p2q2) 42)
Q = FRB = o E%—S , 43)
Q2:§Z;<R48 2>=27!¢R483 , (44)
and
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Q = W<B = 2~”ff . (45)

The condltlon of a non7050111atory golution is D<1/4 which is the
stability criterion for the local interchange mode {the Mercier

criterion {(8}}

M=M+ M, + M >0, (46)
vhere
A (R I )
- - _,.dP, 2dg Ve Q-
M, = uodez uodw{thr &3 dw_(F Qe + 4z° ) , (48)
and
_ dP _ dP 2 2 o
Mo = ~(nog) s = = (mogp) 1P @Rs-@%) + 477Qs} (49)
The ballooning equation with «?=0 is solved in a bounded domain of
y, [0,2zN] , assuming yp=0 for a up-and-down symmetric case , where N
is the numbers of turns in the integration of the equation. The

marginal equaticn is solved numerically by using the Runge Kutta Method
or the matrix method with the boundary conditions

GO) = finite , (50)
and

G@2mN) =0 . (B1)
When the Mercier criterion is vioclated, the marginal equation has the
oscillatory solution and the boundary condition (51} can not be used.
In this case, the marginal pressure dP”/dy 1s obtained by using the

criterion of the local interchange mode:

uodP™ /chy = —{Co + A/CPHACICs )/ (2Cs) . (52)
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2.4 Structure of Code |
Figure 2 shows the brief sequence of SELENE code. In STEQU, the
initial equilibrium to increase the beta value is obtained by using the
nonlinear eigenvalue problem for a given PW) and F{®) in eq.{da).
Equation (12a) is solved by using the double-cyclic reduction method in
EQFDE. The right hand side of eq.(12a) is calculated in EQRCU. In
these procedures, subroutines, FEQBND and EQADJ, are called to adjust the
vacuum magnetic field or coil current so that the plasma surface may
pass through the specified points given by egs. Ba) and (Gb). The beta
value is increased by fixing q(¥) obtained in STEQU (FCT processes ).
The function, F{y), 1is calculated by solving an ordinary differential
equation eq. (18) in EQODE, The averaged quantities on a magnetic
surface are obtained in EQLIN. The critical pressure to the ballooning
modes is evaluated in BLPDS by solving the eignvalue equation, eq. (32),
for dP°/dy with «?=0. By using dP”/dy and q{3), the next step of

equilibrium is obtained,

2.5 Vectorization of SELENE Code

The computational cost of the original version is evaluated by
using a software, FORIUNE, which is offered by Fujitsu Ltd. Table 1

shows the result of the cost evaluation. Most expensive routines are
BLPDS, FLUX, EQPDE, and EQLIN.
(1) BLPDS

The subroutine, BLPDS, solves the critical pressure due to the
ballooning modes by using the Runge-Kutta integration and the shooting
method. In the original version, the integration is carried out on
each magnetic surface and we have no vectorized procedure in this
routine. Figure 3 shows the source program for the shooting method.
When the shooting is unsuccessful, a jumping out of the DO loop

occurs. The eigenvalue, FAC, is obtained by using the bisection
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method. When the solution has a zero point, the pressure gradient 1is
reduced in the block of the statement number 40. If the solution tends
to diverge. we can increase the pressure gradient in the block of the
statement number 30. For the vectorization of the integration and the
bisection method, we solve the equations simultaneously on maghetic
surfaces. The vectorized version of source program is shown in
Fig.4. As the shooting is not successful on every magnetic surface we
use a list vector to  specify the equations to be solved
(ISNDB4,ISNIB3-155 in Fig.4). If a solution is out of a certain range
{G<0 or G>10), the number of the magnetic surface is eliminated from
the list vector. ¥hen the initial value of the eigenvalue is not good
approximation, the shooting fails of success on many surfaces and the
vector length becomes short in the DO loop {ISND3) | The computational
cost, NL, in the integration is shown in Fig.5 as the function of the
vector length, where N and L. are the steps of integration along a
magnetic surface and the vector length, respectively. The
computational cost for 1.>7 is larger than that for L=7, where [=7 is
the break-even vector length between scalar and vector calculation on
VP-100. The efficiency, a=(vector processing speed}/(scalar processing

speed), can be expected to be, a~2, if we use scalar calculations for

LY. We specify the scalar calculation for the short vector case by
using *VOCL [OOP, SCALAR.
(i) FLUX

In this subroutine, the poloidal flux at the boundary of the
rectangular domain given by a plasma current is calculated by using
eq. (8). In the original version, the poloidal flux at a specified
point is obtained in the function subroutine (Fig.6). We vectorize
this procedure by introducing DO loop for the points on the rectangular
boundary in Fig.1 The vectorized subroutine is shown in Fig.7.

(iii) FQLIN

In this subroutine, the averaged quantities on a magnetic surface
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are calculated. The crossing points between a magnetic surface and the
rectangular meshes change on each surface. The points increases as a
magnetic surface becomes close to a plasma surface. The integrations

along magnetic surfaces can be vectorized by using the method of the
list vector.
(iv) EQPDE
This subroutine is already vectorized in the original version, In
a special case which never occur in this code, several statements become
recursive. The special case is omitted by using #VOCL LOCP, NOVREC.
The vector length changes from NR to 2 in the double cyclic reduction
method, where NR is the mesh numbers in the R direction and is usually
taken NR=179 or 257. Other algorithm, e.g. FACR method {4} should be
used to avoid the reduction of the vector length.
In the SELENE Code, four types of vectors appears:
Type A : Vector length is long, <50, and main procedures are
consist of simple arithmetics.
Type B . Vector length changes from a long one to a short one.
Type C : Short vectors are included
Type D @ Vector length is long but IF statements are included.
The efficiency is defined by {9},

P=1/{1-Y vi+y =), (53)
i T :

where v; =costxvectorization rate and is given in Table 1 and «; is the
ratio of the vector processing speed and the scalar processing speed.
Ve assume the values of { @; } as in Table 2 for each type of vector
length. In SHLENE, the predicted value of P is about 3. When the
mesh points are NRxNZ = 120x65 , the computational times are shown in
Table 3 for the original version, the vectorized version with the scalar
computatidn and the vector calculation. The vectorized version takes
more computational times than the original version, when the computation

is carried out in scalar. This is mainly due to the list wvectors in
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BLPDS and EQLIN. The guess value of P agrees with the ratio of the

scalar and the vector processings for the vectorized version.
3. Stability Code ERATO-J

3.1 Basic Equation
The stability of the ideal MHD modes is studies by minimizing a
l.agrangean {10},
L =W + W — W, (54)

W, :lzfpd%[q+ - ¢)doxn) 12 + TP V-¢12

— 2in-¢1%Woxn) - By Voim) ,Q = Vx (£xBy) (55).
wv:lzj;d%wmz, (56)
and |
Wy = %fd3:cpo!§'2 . (&7
o

Here ¢ is the displacement of the fluid element, n is the unit vector
normal to the equilibrium magnetic surface (n=Vy/| Vi 3, and pg is the
mass density. The quantities with a subscript O denote ones in an
equilibrium. The perturbation of the vacuum energy in eq. (73) is given
by using the vector potential, A, and the boundéry conditions for ¢ and

A are given by {10}

—{n-¢)By at the plasma surface , (58)

nx4

and
nx4d =0 at the conducting shell or infinity. {8538
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nxA4
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nx4 =0 at the conducting shell or infinity. {859
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The weakly unstable MHD modes localize near the rational surface where
q(y) takes a rational number. For the accurate calculation of the
eigenvalue, «° , and the eigenvector, it is necessary to use a flux
surface coordinate, (y,%.¢), where y is the azimuthal coordinate. In
the axisymmetric system, the equilibrium quantities are independent of o
and the Largangean can be written in the form of the single summation

with respect to the toroidal mode number, n,

L=YLo, ®0)

and

EW.x,®) = ) € hxde™ : ®1)

The Fourier-component, &.(y,x), is written in the contravariant form :
§n = REX{VyxVo) + RPVVexVy + R°YBy . ©2)

3.2 Numerical Methods

The details of the numerical methods of the stability code, ERATO,
is described in Ref. {11}. Here, The most important procedures in the
FRATO-J code are described, i.e. the mapping from the (R.Z,p) coordinate
to the flux coordinate, (,%,¢) and the eigenvalue solver.

The azimuthal coordinate, yx, is defined by

L = [_dl di
o /B, +a/gBp

vhere N/a is the Jacobian of the flux coordinate system. One of the

with 2r = (63)

typical coordinate systems is given by
)

Vo - A 64)

In this coordinate system, the angle between the toroidal and poloidal

magnetic field lines is constant on a magnetic surface:
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R#

L]
"':;t

B* R
where Bf and B* are the contravariant components of the magnetic

I'\L‘i

2 (©65)

field. This coordinate system is called "a natural coordinate system”.

For the mapping, the trace of the magnetic surface and the
numerical derivatives with the high accuracy are inevitable. In the
ERATO-J code, the 3rd order or the Bbth order spline interpolation is
used in the {R,7) space. The magnetic surface is traced by solving the

equation of the magnstic field line:

dR 1 ay  dZ _ 1 8y 6)

dil VYl 87z 7 odl T Vel oRrR "’
where d! is the elemant of the arc length along the magnetic surface.

The differential equations (&B) are solved by using the 4th order
Runge-Kutta method. Along the magnhetic surface, the derivatives of
Y(R,Z) are calculated by using the two dimentional spline function.

Discretization of [, in the (), x) plane and the variation with
respect to lead to the generalized eigenvalue problem {11}

Ax = «Bx ®7)

, where A is a symmetric matrix and B is a positive symmetric matrix.
The minimum negative eigenvalue gives the growth rate, F:N/:;§. The

eigenvalues are classified into four classes, the fast wave modes, the

Alfven wave modes, the slow wave modes and the unstable modes. There
appear the continuum spectra in the Alfvén and slow wave modes. In
Fig.8 the schematic distribution of the eigenvalues is shown. The

unstable modes are located below the origin of the continuum spectra.
The matrices A and B have the structure of a block diagonal and each
block is consist of a sparse submatrix with the band width of 7
{Fig.9). The overlapped block corresponds to the radial component X.
This structure of the reflection of the ideal MHD approximation, which
contains the radial derivatives only in the radial component. The size

of the block is 8V, + 8 and the matrices A and B are consist of N,
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blocks, where N; and N, are the numbers of the radial and the azimuthal
meshes, respectively. In usual calculation, the meshes of N;=N,=100
are used and the size of the matrices A and B beccmes 8N, (N,+1) = 60600
with the band width of 808. Taking account of the structure of the
spectrum and .the sparseness of the matrices, we use the inverse
iteration method with the shift of the origin to solve the eq. B7) :

Stepl  Az=(4-woBla=(w’— wy? )Bx (68)

Step? Initial vector xg

Step3  Solution of Ax**! = Bx*

Step4 Normalization to x*"BxF*i-i

Step5 If max|x,;*'-x;*!>¢ then go to step3

StepB w2:w032+ (e Ay / (R Bkt Ly |

¥We can hold the sparseness to solve the linear simultaneocus equation,
eq. (68), by using Scott’'s algorithm {12}. The combination of the
.submatrices corresponding to the V and Y components leads to the
following linear simultaneous equations in a block:

AZ1 + AsZo + AxZs = Ui {69)

< previous block> + AzTZ| + AgZo +AsZl3 = Us {70)

ATZt + As'Zo + AgZs +<next block> = Us, (71)

where Zi=(Y, V), Z> = X; and Zz = X . [Equation (69) is separated from
the previous and the next ©blocks and Z; is expressed by
Zy = ArY Uy — AsZ> — AsZ3) . Substitution of Z; to egs.(70) and (71)

gives 2x2 block simultaneous equations
<previous block> + AiZ» + AsZz = 0> 72>
As'7> + AeZ3 +<next block> = 05 , (73)
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where
AL = Ad — AAAs, B

A5 = As — AT47MAs,

A5 = As — ATA 43, Ts = U5 — A3TA MU

Uz — AUy,

{14

(75)

(76)

Elimination of Z- in egs. (73} and (74) gives the last overlapping block

Zz = A7 (e - AsZyy

s

AsZ3 + <next block> -

(7

(18’

(19)

80)

The subblock Az becomes the new overlapping block in the next block.

The inversion of a matrix is expressed by the LU decomposition and the

sparseness of the matrix can be held. In this algorithm only the

overlapping block becomes a dense matrix.

The solution of the linear

simultanecus equation is obtained by using a forward and a backward

substitutions.
Forward substitution :
b=l - ATAv'Y,

Us = Us - A3"A7 Uy,

Oy = U5 — 4s — A A 'AA' D

Replacing Uz of the next block by {5 .

81)

82)

(83)

84)
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Backward substitution :

73 = A 'y (85)
Zp = A - As — AA'A) Z3) (86)
Zy = ATNW - AsZy 437y (87)
Replacing 73 of the previous block by Z; . 88)

3.3 Structure of ERATO-J Code

The ERATO J code is consist of four modules, i.e. ERATOS, ERATOZ,
ERATO4 and FRATOS. In ERATOS, the main procedures are the mapping of
geometrical quantities from the rectangular meshes to the ¥ and x meshes
and the construction of matrices A and B. ERATOZ solves eq.(&B) to
obtain the perturbation of the magnetic field in the vacuum region. In
ERATO4, the eigenvalue problem (67) is solved. This module takes more
than 80% of the computational time and the vectorization of this module
increases the efficiency of the FRATO-J code. ERATOS is used for -the
summary - and the graphic plot of the results. In Fig.10 the brief flow
of FRATO4 is shown. Fach block corresponds to each step in §2.3. In
each block, several subroutines are called. The tree structure is

shown in Fig.11.

3.4 Vectorization of ERATO4
In the inverse iteration method, three kinds of vector éalculations
appear
(i) SAXPY ‘' y =y + ax {als scalar) ,
(ii) SDOT : 8=y
(111} SXYPZ @ Z; = Z; + xiu;
The cost of these calculations are about 92% of the whole arithmetics.

The original version of ERATO4 was developed by Scott and Gruber (12}
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for CRAY-1 computer, The names of the arithmetics are those of
mathematical subroutines in CRAY FORTRAN. For other computers than
CRAY, the subroutines written in FORTRAN are prepared. In Fig.12 those
subroutires are shown. In VP-100, the subroutines SAXPY and SXYPZ
cannot  be vectroized because the compiler assumes the cases of NY=0 and
NZ=0. The cases never occur in ERATO and we can force the
vectorization by using *VOCL LOOP, NOVREC. As these subroutines are
very short, we expand the procedures to the upper level of routine where
the subroutines are called. The expansion reduces the CPU time by 18%
in scalar calculations. Table 4 shows the cost each routine, C, the

relative rate of the vectorization in a routine, V, and the rate of the

vectorzation, ©v=CV, for the decomposition of a matrix A. The types of
the vector and typical vector length are also shown. The forward and
backward substitution use about 7% cost. The rate of the vectorization

is summarized for the type of the vector in Table 5. Assuming the
efficiency parameter, «, as shown in Table B, we predict the total
efficiency P~3 through 4. The dependency of P on meshes obtained in
YP-100 is shown in Fig.13.

4 Summary and Discussions

¥We described the methods of vectorization in the equilibrium code
SELFNE and the stability code ERATO-J. In SELENE cecde, we use the list
vector to vectorize the integrations of the ballooning equation on
magnetic surfaces. However, in BLPDS, the integration with the vector
length of less than 7 takes a third through a half of the computatiocnal

time. This 1i1s one of the reasons that the enhancement of the
efficiency is limited by 2.5 through 3. In the ERATO-J code, only
ERATO4 was vectorized. The vectorization has been already done and the

main effort was made for the analysis of the cost and the type of the

vector. Due to the vectorization of ERATO4, the relative computational

i 19 o—
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for CRAY-1 computer, The names of the arithmetics are those of
mathematical subroutines in CRAY FORTRAN. For other computers than
CRAY, the subroutines written in FORTRAN are prepared. In Fig.12 those
subroutines are shown. In VP-100, the subroutines SAXPY and SXYPZ
cannot. be vectroized because the compiler assumes the cases of NY=0 and
NZ=0. The cases never occur in ERATO and we can force the
vectorization by using =*VOCL LOOF, NOVEREC. As these subroutines are
very short, we expand the procedures to the upper level of routine where
the subroutines are called. The expansion reduces the CPU time by 18%
in scalar calculations. Table 4 shows the cost each routine, C, the
relative rate of the vectorization in a routine, V, and the rate of the
vectorzation, v=CV¥, for the decomposition of a matrix A. The types of
the vector and typical vector length are also shown. The forward and
backward substitution use about 7% cost. The rate of the vectorization
is summarized for the type of the vector in Table 5. Assuming the
efficiency paramcter, o, as shown in Table 5, we predict the total
efficiency P~3 through 4. The dependency of P on meshes obtained in
VP-100 is shown in Fig.13.

4 Summary and Discussions

¥We described the methods of vectorization in the equilibrium code
SELENE and the stability code ERATO-J. In SELENE ccde, we use the list
vector to vectorize the integrations of the ballooning equation on
magnetic surfaces. However, in BLPDS, the integration with the vector
length of less than 7 takes a third through a half of the computational

time. This 1is one of the reasons that the enhancement of the
efficiency is limited by 2.5 through 3. In the ERATO-J code, only
ERATO4 was vectorized. The vectorization has been already done and the

main effort was made for the analysis of the cost and the type of the

vector . Due to the vectorization of ERATO4, the relative computational
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time in ERATOS increases. The vectorization of the procedures for the

mapping described in §3.2 18 required.
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Table 1 Cost and relative rate of the vectorization in each
routine
Original Ver, Vecborized Ver,
Cost (%) Y-rel (%) Cost (%) | V-rel (%)
BLPDS 31.3 0.0 33.9 84.58
FLUX 19.2 0.0 18.0 99.93
EQPDE 18.4 30.69 17.3 97.18
FQLIN 14.0 0.0 15.0 95.42
FQRBP 5.0 99.94 4.7 99.94
EQADJ 2.4 99.94 1.8 09,94
EQRCU 2.1 89.89 1.9 03.39

Table 2 Types of vectors and efficiency parameler, o

Routine v{%) type o

BLPDS 0.287 C 2

FLUX 0.180 D 10

EQFDE 0.168 B 10

EQLIN 0.143 A 15
others 0.080 - 15
Total 0.85
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Table 3 CPU time and relative efficiency

Original (Scalar ) Vectorized (Scalar) [Vectorized{Vector)

Time

251 .63 sec 317.33 sec 106.58 sec

Ratio

1 1.26 0.42

Table 4 Cost and vectorization rates, V-ral and v in FACMAT

cost V-rel v type L
FACMAT

AL BCOM 0.4 0.98 0.4 B N-1

[BODSL 14.1 0.74 10.4 C 7

UBDSOL 8.5 0.67 5.7 C 7

ODTMLT 13.4 1.0 13.4 A N
CALD 4.8 0.8 3.8 B N-1
CACAZ 17.9 1.0 17.9 B N-+1
LTRDSL 19.9 0.97 19.83 B N—1
UTRSCL 12.8 0.97 12.2 B N—1

Total g1.6 - 83.1 - -
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Table © Types of vectors and efficiency parameter «.

procedures for

are included

In v, the

the forward and backward substitutions

Type v o
A 17.9% 15
B 55.7% 10
C 17.8% ~2
D 0.3% 10
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Fig.1 Rectangular domain for Grad-Shafranov equation.
Boundary condition is given on 4R"
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;
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EQCHK

3

!

Vacuum solution
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boundary value
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toroidal current
boundary value
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FCT condition eq.(27)

Convergence of metrics eq.(31)

Fig.2 Flow of SELENE Code
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SUBROUTINE BLPDS(NB}

DPR=DPBL(NB)
1U=0

1L=0
FAC=PBL(NB)
CONTINUE

15=1

Js=1

$=0.
CZ=1./COE1C(1)
CY=-FACXCOES5 (1)
2=1.

Y=0. :

DO 20 J=2,KSMAX
10=1

Yo=Y

czo0=CZ

cyo=Cy

IS=15+1

JS=JS+1
IF(IS.GT.ISMAX)IS5=2
$=5+DS§
PHI=COE7C(I5)+AVCOE7*S
PHIZ2=PHI=PH!

CZ=1_/¢COE1(IS)Y+COE2C1ISY=xPHL2)
CY=FACx{(-COES(ISY+COE6(IS)*PHI)

DSH=D.5+DSS
DDS=DSH+DSH
D=1.-DDS*CIsCY

Z=((1.+DDS*CZ*CYOI*Z0+DSHA(CZ+CZ0)xYD) /D
¥Y=((1.+DDS«CYXC2Z0I) «YO+DSH2{(CY+CYOI x20)/D

IF(Z.LT. 0.)G0TO 40
IF(Z.GT.10.2G60T0 30

CONTINUE

FU=FAC

1u=1

IFC(IL.NE.OQXGOTO 50
FAC=FAC+0.5
IF(FAC.GT.100.3G0T0 60
GOTD tO

FL=FAC

IL=1

IF(IU.NE.O0)GDTO 50
FAC=FAC~-0.1
IF(FAC.LE.O0.1)GOTO &0
G070 10

ER=DABS ((FL~FUX/(FL+FU})
FAC=0.52(FL+FU)
IF(ER.GT.EGBL)GOTO 10
PBL(NB)=FAC(

RETURN

END

Fig.3 Original version of BLPDS

00010000
ISN=0001

ISN=0015
ISN=0016
ISN=Q017
ISN=0C18
ISN=0019
ISN=0020
ISN=0021
ISN=0Q022
ISN=0023
ISN=0024
ISN=C025
ISN=0026
ISN=0027
ISN=0028
ISN=002¢%
ISN=0030
ISN=0031
ISN=0032
ISN=0033
ISN=0034
1SN=0035
ISN=0036
ISN=0037
ISN=0038
ISN=0039
ISN=0040
ISN=0041
ISN=0042
ISN=0043
ISN=0044
ISN=0045
ISN=0044

ISN=0047

ISN=0048
ISN=0D49
ISN=QO05¢
ISN=0051
ISN=0052
ISN=0053
ISN=0054
ISN=0055
ISN=0056
ISN=0057
ISN=0058
ISN=005%
ISN=0Q06C
ISN=0061
ISN=0062
ISN=0063
ISN=0064
ISN=0065
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SUBROUTINE BLPDS(NB)

V-LENGTH

LENGT=7

IVMAX = NB

DO 100 1=1, IVMAX
IVL(1) = 1}
FAC(1) = PBL(I}
IgcI> = ¢
ILCLY =0

CONTINUE

D0 200 K=2, IVMAX
ID=IVL(K)
CZ(ID)Y = 1./COE1(1,}D)
CYCIDY=-FACC(ID)*COE5(1,1D)
2¢1D»=1.0
Y(1DY=0.

CONTINUE

IVEMAX=TVMAX

DO 250 13=2, IV¥MAX
IVL¥ECIZ)=IVL(13)

CONTINUE

LC=1

DO 350 13=2,IV¥MAX
ID=IVL¥(13)
1SCID) =1
5(iD)=0

CONTINUE

DD 3000 J=2, KSMAX
LC1=1
LLA=1
LEB=1

IFCIV¥MAX .GE. LENGTY THEN = —=weo—- judement of vector length

LOQP-NOVREC
DO 1000 1=2, IV¥MAX
ID=IVL¥CI)

ISCIDY=1IS(ID)Y+1
LFCESCID) .GT ., ISMAXY ISCID)=2
I0=2¢1D>
Yo=Y (1D
C20=CZ(ID)
CYo=cycin?
SCIDY = SCIDY+DSS1CID)
PHI=COE?7(IS(ID),ID)+AVCOE7(IDY=5(1D)
PHIZ2=PH]=PHI
CZ(ID)=1,/(COELCISCID},IDY+COE2CISCIDY,EDI%xPHI2)
CYC(IDY=FACCID)» (~COESCISCID},ID)+COEG(ISCIDY-ID)Y%PHI)
DSH=0.5=0S51CID)
ODS=D5SH2DSH
D=1.-DDS*xCZCIDY2CY(ID)
ZCIDY=((1.4DDSCICID)2CYD) 2204+
DSH#(CZC(IDY+CZ0DY£YD)/D
YOID)=((1.+DDS*CY(IDY*CZ0)=Y0+
DSHeCCYCIDI+CYOYXZ0) /D

Fig.4 Vectorized version of BLPDS

00020000
IS5N=0001
00162010
ISN=0023
00164010
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00240003
ISN=0031
ISN=0032
ISN=0033
ISN=0034
ISN=0035
ISN=0C36
ISN=0037

ISN=0038
ISN=003%9
ISN=0040
ISN=004]

ISN=Q042
00370003
ISN=0043
ISN=0044
ISN=0045
ISN=0046
ISN=Q047

00430008
ISN=0048
ISN=0049
1SN=0050
I5N=0051
ISN=0052
00490003
ISN=0053
ISN=0054
00520003
ISN=0055
ISN=0056
ISN=0057
ISN=0058
ISN=0059
ISN=0060
ISN=0061

ISN=0062 .

ISN=0063
ISN=0064
ISN=0065
ISN=C066
ISN=0QD67
ISN=0068
ISN=0Q69
00680003
ISN=0070
00700003
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-~IF(ZCIDY.LT.0.)  THEN oo for unstable case

LCA=LCA+1
LLICLCAY=1D

=—---1F€(Z(ID).GT.10.0 .CR. [} .EQ. KSMAX) THEN

Lce=LCB+r for stable ca
LLaLe|) =10 case

—————— IF(J LLT, KSMAX) THEN --— for futher steps

LCt1 = Le1+1
LZ(LC1)=1D {see DO 1050)

+Y0OCL LDOP,SCALAR

——————————————— DO 1001 =2, LV¥MAX

ID=1VL¥C1}

ISCID)I=ISCIDY+1
IFCISCIDY .GT.ISMAX) (SCIN)=2
T0=2C1D}
YO=Y(ID)
Ca0=C2¢ID?
CYO=CYC(ID)
SCID) = SCIBY+DSS1CID)
PHI=CODE7CISC(ID) ,ID)+AVCOEZ C(ID)*S(ID)
PHIZ=PHI*PH1
CZCIDY=1_/(COEL1{ISCIDY LD +COE2CISCID) ID)£PH1Z2Y
CYUIDI=FACCIDY*(-COESCISCID)ID)4COEGCISCID) 1DY*PHID)
DSH=0.5%DSS1(1D}
DDS=DSH=DSH
D=1.-bDS*CZCID)»*xCYC(ID)
Z{IDY=((1.+DDS*CZ{(ID)Y*CYO)Y2Z0+
DSHx(CZC(ID)+CZ0>*Y0)/D
YOID)=((1.+DDS*CY(ID)*CZ0}xYO+
DSHx(CYCID)+CYODY*ZO)/D
~=~LF{ZCIDY . LT.0.> THEN
LCA=LLA+]
LL1CLCA)=]ID

----1F(Z(ID).GT.10.0 .DR. J.EQ.KSMAX)> THEN
LCB=LCEB+1
LL2CLCBY=1D

—————— IFC) .LT. KSMAX) THEN
’ LC1 = LC1+1
L2{LC1)=1ID

+Y0CL LODP-SCALAR

DO 1008 1=2,LCA
1D=LL1CI)
CFLCIDI=FACCID)
ILCID =1
IFCIUCIDY .NE.O) GO TO 50
FACL{ID)=FACCID)-0.1
IF(FAC(ID).LE.O.1) GO TO 1008

18N=0071
1SN=0072
ISN=0073
ISN=0074
ISN=0075
I1SN=0075
ISN=0077
I15N=0078
1SN=0079
ISN=C0BO0
ISN=0081
ISN=0082
ISN=00B3
ISN=0034

ISN=0085

ISN=00D86
QaB70003
ISN=0087
ISN=00838
00900003
ISN=008%9
ISN=0090
ISK=0091
ISN=00%2
ISN=0093
18N=00%4
ISN=00%95
ISN=0096
ISN=0097
1SN=0098
ISN=0099
I1SN=0100

ISN=0101

ISN=01C2
ISN=0103
01060003
ISN=0104
01080C03
ISN=0105
ISN=0106
ISN=0107
ISN=0108
ISN=0107
ISN=0110
1SN=0111
ISN=0112
ISN=0113
ISN=0114
ISN=011%
ISN=0116
ISN=0117
ISN=0Q118
I5N=0119

ISN=0120
01250003
01260003
ISN=0121
ISN=0122
ISN=0123
ISN=0124
ISN=0125
ISN=0126
ISN=9127
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GO TO 110
ER=DABS(CFLOIDI-FUCIDI I/ CFLCIDI+FUCID) D)
FACCIDI=0.52CFLCIDI+FUCID))
IF(ER.GT.EGBL) GO TO 110

G0 TO 1008

LC=LC+1

L1(LCy=1D

T 1008  CONTINUE

+VQCL LOOP,SCALAR

51

111

-------- b

-=-700 C

------ 0o

-~800 CON

RET
END

DO 1011 I=2.LCB

o=t

FUCIDI=FACC(ID)

Iu(Iny=1

IF(ILCIDY.NE.O)Y GO 10 51
FACCID)=FAC(LID)+0.5
IFCFACCID).GT.100.) GO TO 1011
GO TO 111
ER=DABSC(FLCID)-FUCIDIY/CFLCIDY+FULCIDI )
FACCID)=0.5+(FLCID)+FUCID)?
IF(ER.GT.EGBLY GO 7O 111
GO TO 1011
LC=LC+1
L1CLCY=1ID

------------ 1011  CONTINUE

IFC(LC1 .EQ@. 1) GO TO 3500
JV¥MAX=LC1

---00 1050 I2=2, LC1 . construction’ of list vector

IvL¥cI2)=L 2012}
CONTINUE

3500 IFCLC.GT.1) THEN

0 700 I=2, LC
IVL(I)Y = L1(1?
ONTINUE

IVMAX= LC
GO 10 2500

800 1=2, NB

PBLCIY = FACC(I)
IF(DGRL.LE.O.AND.PBLCI).LT.1) GBL{1)=1.
TINUE

URN

ISN=0128
1SN=0129
1SN=0130
I1SN=0131
ISN=0132
ISN=0133

ISN=0134
ISN=0135

01420003
014630003
I5N=0136
ISN=0137
ISN=0138
ISN=0139
ISN=0140
ISN=0141
ISN=0147
ISN=0143
ISN=0144
ISN=0145
ISN=0146
ISN=0147
ISN=0148
ISN=0149
ISN=0150

01590009
ISN=0151
1SN=0152
ISN=0153
ISN=0154
ISN=0155

ISN=0156

01930003
I5N=0157
ISN=0158
ISN=015%
ISN=0160

ISN=0161
ISN=0162
I5H=0163
020100C03
ISN=0164
ISN=0165
ISN=0166
ISN=0167

02060003
02070003
ISN=0168
LSN=016%
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Fig.5 Computational cost (arb. unit) vs. vector length in BLPDS

C=========================-_—===============a=:-_--_-=============:===========00020000

FUNCTION FLUXC(R,Z,R0,20,CO,N) ISN=000D1

FLUX=0. ISN=0005

———————————— §------D0 10 M=1,N ISN=0006
S X=R*RO{M) ISN=0007

$ XX=6_2X/((R+RO(MI D222+ (1-70(M))Ixx2) 1SN=0008

S I=1.-DTAB*DLOG(1.-XX) ISN=0C09

S IFC(I.GT.NTAB}GOTO 20 ISN=0010

] D=(XX-XTABC(I)}/(XTAB(I+1)-XTAB(I})) ISN=0011

S CFLUX=FLUX-CO(M)*DSQRT(XI*(FTABCI)+Da(FTABC(I+1}-FTAB(I})) ISN=00C12

S GOTO 10 ISN=0013

20 CONTINUE ISN=0014

) FLUX=FLUX-CO(M)=DSQRT(X) «xFLUXQG(XX) ISN=0015
_______________ 10 CONTINUE . ] ISN=0016
RETURN ISN=0017

END 1SN=0018

Fig.6 Original version of FLUX
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C:::::::i‘::='_'=====::2:===='_‘==IZ£===:====EE::::::=====Ht:=======t:==::==!:
SUBQQ?TINE FLUX{R,Z,R0,20,C0,N,IM,NR,LS,1E) ?ggzggg?
IMM=1M 1SN=3030
NRR=NR . 1SN=0031
———————————— V------D0 600 K=1S5,1E 1$N=0032
v IMM=IMM+NRR ISN=0033
v PSICIMM)=0.00 15N=0034
———————————— V--600 CONTINUE ISN=0035
cc 00520026
———————————— §------D0 10 X=1S,IE : 1SN=C036
IMM = IM + NRR«(K-IS5+1) 1SN=0037
5 LFLAG=0 1SN=0038
xyOCL LOOP,NOVREC 00560027
2-——-- - V----—- DO 100 M=1.N ISN=003%
2 v X(MY=R(K)*RO (M) : ISN=0040
2 v XX CMY=4 . X (M) / CCRCKI+RO(MI I xx2+ (Z(K)-Z0 (M) ) xx2) ISN=0041
2 v 1(M)=1.-DTAB*DLOGC].-XX(M)) 1SN=0042
2 v IFCI(M) _GT_NTABY IFLAG=! ISN=0043
mmm ¥~100 CONTINUE ISN=0044
¢ 00630026
R T T o IF{IFLAG._EQ.1) THEN ISN=0045
2 *\VOCL LODP.,SCALAR 00650024
2 B DO 101 M=1,N ISN=004¢&
203 hm—m—m—m - IFCI(M) _GT.NTABY THEN ISN=0047
234 XXF=1.-XX(M) ISN=0048
23 4 XL=DLOG(1./XXF) : ISN=0049
23 4 XKE=AO+XXF* CATHXNF&A2) + (BO+XXFe(BLI+XXF*B2)) 2XL ISN=0050
234 XE=COF+XXFx(Cl+XXFxC2)+ XXFe(DL+XXF£D2) *XL 15N=0051
2 3¢ FLUXOF=( (1. -XX(M)/2.)*XK-XE)/(PI=DSQRTCXX (M) D) ISN=0052
23 4 C++ PSICIMM)=PSICIMM) -CO(M)»*DSQRT (X (M) «FLUXO (XX (M)) 00730029
2 34 PSICIMM)=PSTCIMM) -CO(MY«DSQRTC(X (M) ) xFLUXOF ISN=0053
3 S S END IF ISN=0054
2 b 101 . CONTINUE ISKN=0055
2
2
2 *\VOCL LOOP,NDVREC 00760132
2 3---m--m- e bt D3 102 M=1-N ISN=0056
I B Vommmmmm o - IFCICM) .LE.NTABY THEN I5N=0057
2 3 4 v D=CXX (MY -XTABCI(MI) )/ (XTABCECMI+1Y-XTABCI(M))) ISN=Q058
2 3 4 v PSICIMM)Y=PSI(IMM)-CO{(M)=DSQRT (X (M)} ISN=005%
2 34 v R *(FTABCIC(M)Y+Dx (FTAB(L (MY +1)~-FTABLI(M)I)) 00760632
23 4-————- Yoo - END IF ’ ISN=0060
A V-102 CONTINUE ISN=0061
2
2
R §ummmmm ELSE ' I5N=0042
2 +y0OCL LOOP,NOVREC 00761028
2 3---—--—- I DO 103 M=1,N I5N=0063
23 v D=(XX(MY-XTABCI(MI)I D/ CXTABCI (M) +1)-XTABLI (M)} 1SN=0064
23 v PSICIMMY=PSICIMM)-COCM)*DSQRT(X(M)) : I1SN=0065
23 v R . #(FTABCI(MI ) +Dx CFTABCI (MY + 1) -FTABCLI(M)) ) 00756028
2 4——mm——— - ¥-103 CONTINUE 15N=0066
2
2
pmmmmmmm oo §------ END IF ISN=C067
¢ 00780026
------------ $--10 CONTINUE ISN=0068
RETURN ISN=0069
END ISN=0070

Fig.7 Vectorized version of FLUX
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iteration loop
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LDLT decomposition
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convergence check

Flow of ERATOQ4



MAIN ———=- EIGVAL-——---~ SET3
+==VEKIT =-——=- INFORM-=-~—xTIME
I +—«CLOCKM
I +—=DATE
+-—-I10DSK4
+=~FACMAT~~=== ROMAT -=—--- IDDSK4
1 +==FACBND--~~xDABS
I +~-~FIXSQ
I +=—ALBCON==——— CONCOL---~=MAXO
I 1 I +-xMINQ
I I +=--LBDDSL-—~==MINO
I I +-—UBDSOQL-—~-xMINQ
I b +--0DTMLT
I +~-=CALD ----zxDABS
1 +==CACAZ2 —--==— LTRDSL
1 I +=-UTRSOL
I +--PUTHAT
I +-—-I10DSK4
F==XFIX —==-- BACSUB-==-—- GETHMAT
I I +--UTRSOL
1 I +--0FDMLT
I I +-—LBDODSL~—~~xMINO
I I +——UBDSOL-~==-=MINO
I I +—=0DTMLT
I I +--0FD2MT
I I : +-=LTRDSL
I +-=DSQRT
I +==CNVRGE----=DABS
+==BMULT --=—- BBMULT=-==—~ I0DSKS
I +--DBKMLT
I +=-—-BLKMLT
I +=-=BKTMLT
+-—-FREDUC---~~ GETMAT
I +=-—-LBDDSL-=---x=MINO
I +--UBDSOL--—-=MINO
I +--0DTMLT
I +-~LTRDSL
I +-—UTRSOL
1 +-—-0D2TMT
1 +-~0FDMLT
+--BACSUB----~ GETMAT
I +--UTRSOL
I +--0FDMLT
I +--LBDDSL--——=MINO
I +--UBDSOL--~=-%=MINQ
I +-—0DTMLT
1 +==0FD2MT
I +—-LTRDSL
+=xDSQART
+~~CNVRGE~---=DABS
+==EIGEN ===-- BEMULT-==-- I0DSK4
I +--DBKMLT
I +-—BLKMLT
I +-=-BKTMLT
+--10DSK4 -
Fig.11 Tree struncture of ERATO4
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SUBROUTINE SAXPY(N, A, X, NX, Y, NY)
IMPLICIT REAL+B(A-H,D-2)
DIMENSION XC(1), Y(1)}

C THIS SUBROUTINE COMPUTES ¥ = Y + AxX.

C

IF (A.EQR.0.0DO .0OR. N.LE.O) RETURN
Y(1y = YC1) + AxX(1)

IF (N,EQ.,1) RETURN

NM1 = N - 1

———————————— §------DO 10 1=1,NM1

(b}

€ THI
C

(c)

o
C TH1
C

YCI®NY+1) = YOIxNY+1) + AxX(L£NX+1)
CONTINUE

RETURN
END

FUNCTION SDOT{(N, X, NX, Y, NY)

IMPLICIT REAL*xBC(A-H,0-1)

DIMENSION X(1)., ¥<(1)
S FUNCTION COMPUTES THE INNER PRODUCT OF X AND Y.

sSDOT = ¢.obO

IF (N.LE.O) RETURN

SDOT = X{1X=Y (1)

IF (N.EQ.1> RETURN

NM1 = N - 1
-~DO 10 1=1-NM1

SDOT = SPOT + XCI=NX+1)*Y(I®NY+1)

CONTINUE

RETURN
END

SUBROUTINE SXYPZI(N, X, NX, ¥, NY, I, NI
IMPLICIT REAL#B(A-H,0-1}
DIMENSION X{1), Y(13, Z2(1)

S SUBROUTINE RETURNS I = ZI + Xx¥ (ELEMENTWISE).

IF (N_LE.O) RETURN
I¢ty = 2401y + X(1y=¥<(1)
IF (N.EQ.1> RETURN
NM1 = N - 1
-D0 10 I=1,NM1
CZCIENZ4+1) = ZC(I*NZ+1) + XCI&NX+1)«Y(I=NY+1)
CONTINUE

RETURN
END

Fig.12 Subroutines for vector arithmetics {a) SAXFY,
(b) SDOT and (c) SXYPZ.
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Fig.13 The ratio of CPU time in scalar and vector
calculation vs. mesh numbers for ERATO4



