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Fully reversed continuous cycling tests and tensile tests were
conducted on Hastelley XR at temperatures ranging from 600°C to 950°C
in alr. Fatigue life of Hastelloy XR depends on temperature. A series
of SEM cbservation revealed that transgranular fracture with evident
striation formation was dominant at temperatures below 800°C, while
intergranular cracking was found above 900°C.

These results suggest that creep mechanism takes place in the
fatigue behavior of this alloy above 900°C. Numerical analyses of
deformation behavior during fatigue and tensile tests were conducted
to interpret the experimental results. Conventional elastic-creep

constitutive equation gave a good prediction of this deformation process.
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i. INTRODUCTION

Development of the High-Temperature Engineering Test Reactor
(HITR) is now progressing in the Japan Atomic Energy Research Institute
(JAERI). The HTIR is expected to withstand an outlet gas temperature
of 950°C. This temperature is selected, as it is required for the
production of hydrogen by thermo-chemical water splitting process and
by steam reforming process., Therefore it must be the design tempera-
ture for internal insulation structure in piping, heat transfer tubes
and tube connecting manifolds of the intermediate heat exchanger.

A nickel base heat-resistant alloy called Hastelloy XR is going
to be used for these structures to cope with the very high design
temperatures. This is modified Hastelloy X alloy to resist corrosion
environment of HTTR helium gas(l).

In the above-mentioned structures, thermal loading is dominant due
to temperature distribution in the structures both in a normal power
operation and in a start-up and shut-down transient operation. It is
inevitable, therefore, that cyclic thermal stresses of about 20 to 100
MPa are induced in the structural materials: low cycle fatigue under
significant creep conditions would be one of the most important damag-
ing modes. Thus detailed examination of the behavior in low cycle
fatigue condition of Hastelloy XR becomes of great Importance.

Low cycle fatigue tests were carried out in air at temperatures
from 600°C to 950°C under a triangular strain wave form for Hastelloy
XR in the National Research Institute for Metals (NRIM) as a contract
research with JAERI. Tensile tests were performed in Ishikawajima-
Harima Heavy Industries Co., Ltd. (IHI). This report describes the
results of these test programs, where effects of temperature on fatigue
and tensile properties are investigated.

2)

A simple procedure proposed by Manson( is adopted to estimate
fatigue life. Stress-strain relation, namely, constitutive relation
under cyclic loading is discussed from the viewpoint of structural

design,
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2, TEST PROCEDURES

2.1 Material

Chemical composition and microphotographs of Hastelloy XR used are
given in Table 1 and Fig. 1, respectively. The material was subjected
to solution treatment at 1180°C for 50 min followed by rapid cooling.

ASTM grain size number of this material was 4.

2.2 Tensile test

Tensile tests were accomplished using specimens with 6 mm in
diameter and 30 mm in gage length. They were conducted at room tempera-
ture and over the temperatures ranging from 600°C to 950°C at every
50°C in air, using the test procedures described in JIS G0567(3).

Strain rate was kept at 0.3 %/min until 0.2 % proof stress was observed.

and then switched to 10 %Z/min in cross head speed.

2.3 Fatigue test

Low cycle fatigue tests were conducted on electro-hydraulic
fatigue testing machines. Profile of specimens are shown in Fig. 2.
Temperature of specimens was monitored by thermocouples. Deviation of
temperature from the aimed temperature was controllea within 5°C.

Total axial strain was controlled by using an extensometer, whose
2 tips of quartz glass bars were attached to the parallel gage section
of the specimens. Fatigue tests under fully reversed triangular wave
form were carried out at a strain rate of 0.1 %/s in air at temperatures

of 600, 800, 850, %00 and 950°C.
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3. TEST RESULTS

3.1 Tensile test

Tensile properties of Hastelloy XR are given in Table 2. Figure 3
shows temperature dependence of 0.2 % procf stress and tensile strength.
Variation of fracture elongation and reduction in area are shown in
Figs. &4 and 5, respectively.

Figure 6 shows nominal stress - nominal strain curves obtained.

Appearances of tensile specimens tested are shown in Fig. 7.

3.2 Fatigue test

a) Fatigue 1life

Table 3 shows fatigue test results obtained in this test program.
Definitions of stress range A0, total strain range AEt, plastic strain
range AEP and elastic strain range Aee are shown in Fig. 8. Cycles to
failure Nf is defined as the number of cycles to complete separation of
the specimen into two parts. AC in the table is the value at a cycle
about 1/2Nf. Plots of total strain range, plastic strain range and
elastic strain range vs. cycles to failure are given in Fig. 9., In the

figure, regression curves are given as follows:

be_ = CeNER® (1)

be = cpngkP (2)
_ _ ke kp

Aet = Aee + Ae:p = CeNf + CpNf (3)

where exponents and coefficients of the equations are summarized in

Table 4,

b} Variation of stress range

Figure 10 shows variation of stress range during cyclic straining.
It can be seen that Hastelloy XR shows cyclic strain hardening behavior
at 600°C, but the change in stress range during testing decreases at
test temperatures above %00°C. The dependence of stress range on the
total strain range decreases with increasing test temperature. This
can be seen more apparently on cyclic stress strain curves shown in
Fig. 11, based on values at 1/2N¥f, where monotonic stress-strain curves

of tensile tests are shown also.
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4. DISCUSSIONS

4.1 Temperature dependence of fatigue life

Figures 12, 13 and 14 show AEt—Nf, Aee—Nf and Aen—Nf relation-
ships, respectively. 1In Aseme relationship, fatigue life decreased
with increasing temperature. The temperature dependence of Aeean
relationship is more remarkable than that of AepuNf relationship.
Temperature insensitivity of Ac _-Nf relationship has been pointed out
for Hastelloy X(4). °
Figure 15 shows Aat-Nf relationship of Hastelloy X and XR of

references (4), (5), (6) with the present data. There is no clear

difference between them.

4,2 Observation of fracture surfaces

Figure 16 shows microphotographs of the fracture surface of the
fatigued specimens. Evident striations were observed at the specimens
fatigued at 600 and 800°C. TFor the specimens fatigued at 850°C,
intergranular facets were observed at the limited region near the
specimen surface but the transgranular fracture mode was dominant as
a whole. On the other hand, the intergranular fracture mode was
dominant at 900 and 950°C.

Figure 17 shows fatigue cracks observed at the cross section of
the specimens fatigued at 600 and 800°C, where typical striations were

formed as stated above.

4,3 Crack propagation

As each striation is formed at every strain cycle, it is possible
to know the crack propagation rate dl/dn by measuring the spacing of
the striations. The relation between d1/dn and the crack length 1 (mm)
is shown in Fig. 18. The crack propagation rate is expressed as

follows:
dl/dn =4 17 (4
where A and Y are constants which depend on test conditions and

materials. The value of A gives the crack propagation rate at a crack

length of 1 mm. Four values of A obtained from Fig. 18 for Hastelloy XR
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are plotted in Fig. 19 with the data of austenitic stainless steels
obtained at room temperature, 450°C, 600°C and 700°C(7). The value of
Y is about 1.3 for both materials of Hastelloy XR and austenitic
stainless steels. These results suggest that the crack propagation
mechanism of Hastelloy XR at temperature below 800°C would be the same

as that of austenitic stainless steels.

4.4 Estimation of fatigue life from tensile properties

Manson proposed the universal slope method to estimate the low
cycle fatigue 1ife from the results of tensile tests(z). According to
the method, the relation between the total strain range and the
fatigue life is given by

AE = (3.5 oB/E)Nf'U-12 + p%-% Nf-0-8 (1)

where the unit of strain is mm/mm and

GB : tensile strength (MPa)

E Young's modulus (MPa)

D : fracture ductility evaluated from the reduction in area as
In(100/(100-y))

Y ¢ reduction in area (%)

In equation (I}, the first term gives the elastic strain range AEe as
a function of tensile strength and the second term gives the plastic
strain range Asp as a function of fracture ductility.

For high temperature tests, equation (I) is modified as
e = (3.5 op/E)(5NE) ~°* 1% 4+ DO f(oNE) 700 E (11)

or in the case of creep effect and oxidation effect being remarkable, it

is modified as
he, = (3.5 cB/E)(loNf)""12 + D% 8¢1oNE)0-° (III)

In equations (IT) and (III), fatigue lives are estimated as 1/5 and

1/10 in comparison with life by equation (I), respectively.



JAERI — M 87114

Equation (1) is written for Hastelloy XR at each test temperature

as follows:

Ae = 1.2INF7°+ 1%+ g5NETO-S at 600°C (5)
e = 0.89NF 912 4 12oNF"0-6 at 800°C (6)
e, = 0.73Nf"%-%2 4 135NF~0¢¢ at 850°C (7
fe = 0.59NF %22 1+ 134NF-0+6 at 900°C (8)
be = 0.47NF~0*12 4 13oNF~0-6 at 950°C (9)

where the unit of strain is %. The curves for these equations and
equations (II} and (IIL) are shown in Fig. 20 with the fatigue test
data. It can be seen that test data lie between equations (1) and (II)
at 600°C and between equations (IT) and (III) at test temperatures
above 800°C. Lives estimated by the Manson's method are compatible

with the experimental results.

4.5 Analyses of stress strain relations

The result of SEM observation suggests that typical creep effect
is contained in the fatigue behavior at the strain rate of 0.1 %/s at
temperatures above 900°C. The change in the stress range during
cyclic straining also shows different tendency around this temperature.
Hastelloy XR shows strain hardening behavior at 600°C, but the change
in the stress range decreases as the test temperature increases. The
stress range is almost stationary at temperatures above 900°C., The
dependence of the stress range on the total strain range decreases,
too. It is probable that the stress range is not determined only from
the strain range without knowing the strain rate, as the creep effect
is significant,

To examine this observation, numerical analyses of monotonic and
cyclic deformation behavior were performed for fétigue and tensile
tests data, respectively, using elastic-creep comstitutive equation.

(&)

Creep equation of Hastelloy was used in the analyses where creep

strain €. is expressed by Garofalo's equation, as
_'rt .

£ =c 1 - + c
c 1 ( e ) min,t

(10)

where £1 : primary creep strain
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€ . ¢ minimum creep strain rate

min

t : time

T : coefficient depending on stress

The results obtained were as folows:
a) Montonic behavior
Figure 2] shows nominal stress vs. nominal strain relation

(9

obtained by FEM model where finite deformation theory in which the
co-rotational rate of Kirchhoff stress and the rate of deformation are
used .and strain hardening rule is taken into comnsideration. Good
agreement 1s obtained between numerical znalysis and experimental
results at 900°C and 950°C. It should be noted that plastic strain is
not considered in numerical analyses and only elastic and creep
effects are assumed. Decrease of nominal stress succeeding to the
peak stress is a result of adopting finite deformation theory.

b) Cyclic behavior

Cyclic behavior was simulated using the same constitutive
equation. Calculated stress during cyclic straining is shown with the
experimental result in Fig. 22. Figure 23 shows the hysteresis loops
where small strain thecry is adopted. The values of calculated stress
amplitude are 222 MPa and 172 MPa at 900 and 950°C, respectively, for
a strain range of 0.5%. These values are somewhat larger than those of
the test results shown in Fig. 10.

Numerical analysis was done also for temperatures below 850°C,
but good accordance with the experimental results was not obtained.
The results are consistent with the anticipation that creep effect is
remarkable in the fatigue and tensile tests at temperatures above
900°C under the strain rate of 0.1 %/s, in the present wbrk. Similar
gtrain rate dependency is pointed out also for Inconel 617(10) for
tensile properties at elevated temperatures.

From the viewpoint of structural design, it may be said that at
temperatures above 900°C, the constitutive equatiomn where elastic and

creep deformation mechanisms were assumed, would be enough wvalid for

broader loading conditions up to a strain rate of 0.1 %/s.
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5. CONCLUSIOCNS

Fully reversed continuous cycling tests were conducted on
Hastelloy XR at temperatures ranging from 600 to 950°C in alr at a

strain rate of 0.1 %/s. Conclusions obtained in these tests as follows:

(1) Hastelloy XR showed almost the same fatigue life properties as
those of Hastelloy X.

(2) Fatigue life of Hastelloy XR depends on the temperature condition
and fatigue llfe decreased as temperature increased. The tem-
perature dependence of Age—Nf relationship was more remarkable
than that of AEP—Nf relationship.

(3} A series of SEM observations revealed that the transgranular
fracture mode with the evident striation formation was dominant
at temperatures below 800°C, and intergranular cracking above
900°C. '

(4) The change in the stress range during cyclic straining showed
different tendency at these temperature ranges. Hastelloy XR
showed cyclic strain hardening behavior at 600°C, but the change
in stress range during cyclic straining decreased with increasing
test temperature. The dependence of stress range on the total
strain range disappeared. These results suggest that creep
effect plays an important role in the fatigue process for tem-
peratures above 900°C at a sirain rate of 0.1 #/s.

(5) Numerical analyses of deformation behavior during fatigue and
tensile tests were conducted to interpret the experimental
results.'

Conventional elastic-creep constitutive equation gave a good

prediction of this deformation process.
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Table 1 Chemical composition of Hastelloy XR used

wt.%

C ‘ Mn ‘ 5i ’ P I 5 ‘ Cr ‘ Co ’ Mo W ‘ Fe [ B l Al I Ti [ N

0.0SIO.QSEO-30‘0-005[0.001‘22;03‘0.06‘9.17‘0.46118.24‘0.001'0-05’0.0510.001

Table 2 Tensile test results

Temperature | Yield Tensile | Elongation | Reduction
stress stress in area

(°C) (MPa) (MPa) (%) (%)
325 716 49.0 60.0

R.T. 323 712 48.7 60.6
323 712 49.0 - 60.2

600 212 : 540 53.3 53.6
212 . 542 52.0 50.7

650 203 531 . 50.3 | 49.6
203 532 50.3 . 57.0

700 205 482 55.7 ; 54.7
203 484 53.0 58.6

750 196 424 58.7 66.3
200 420 50.7 67.1

800 196 363 63.3 75.5
203 365 56.0 74.7

850 175 295 6l.7 80.6
179 290 64.7 80.7

900 12 | 223 61.0 80.3
130 228 65.3 . '80.0

98 177 67.3 78.4

930 96 176 | 71.0 80.6
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Table 3 Fatigue test results

Temperature Aeg beg heg Ag N¢

°C) (%) (%) (%) (MPa)
‘ 1.33 0.68 0.65 | 1091 577
' 1.05 0.43 0.62 988 894
| 0.80 0.23 ; 0.57 952 1819
600 f0.70 0.18 0.52 884 2599
b 0.69 0.12 0.57 906 4636
0.55 0.06 0.49 808 8434
0.50 0.04 0.46 | 787 18016

i
i

1.04 0.64 0.40 @ 586 560
0.71 0.37 | 0.34 547 1138
0-66 0.31 = 0.35 544 1088
800 0.49 0.19 0.30 500 2193
0.42 0.11 0.31 466 | 4202
0.34 0.06 0.28 426 | 18803
0.33 0.04 0.29 422 31428
1.92 1.57 0.35 491 290
0.98 0.69 | 0.29 455 710
850 0.69 0.42 0.27 446 1250
0.48 0.24 0.24 409 2060
0.39 | 0.10 0.29 350 5807
0.30 i 0.06 0.24 | 299 16396
1.94 1.67 0.27 365 163
0.99 0.72 0.27 343 930
900 0.69 0.46 0.23 352 1450
i 0.49 0.29 0.20 377 1708
| 0.40 0.19 0.21 346 1 3584
0.31 0.10 0.21 334 . 5832
1.9 1.73 | 0.21 273 229
0.98 0.79 , 0.19 259 890
950 0.70 0.52 : 0.18 284 1285
0.49 0.32 | 0.17 268 | 2922
0.40 0.23  0.17 289 | 4092
0.30 0.12 0.18 293 5436
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Table 4 Exponents and ccefficients of regression curves

Temperature | De, = deg + de = CNKe + cprkP
°¢) Ce ke - Cp kp
600 1.18 -0.096 | 124. ~0.829
800 0.576 | =-0.072 33.5 | -0.655
850 0.472 | -0.070 | 157. -0.831
900 0.424 | -0.084 | 109, ~0.780
950 0.286 | -0.061 | 142. -0.786

100 ym

Fig. 1 Microphotograph of Hastelloy XR used
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Fig. 16 Microphotographs of fracture surfaces of fatigued specimens
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