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The equations for ideal MHD equilibria with stationary flow are re-
examined and addressed as numerically applied to tokamak configuratioms
with a free plasma boundary. Both the isothermal (purely toroidal flow)
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i. Inmtroduction

At present contrclled thermonuclear fusion research is close to demonstraling
the feasibility of a fusicn reactor. 'Three large tokamak devices, TFTR, JET, and
JT-60, aim at break -even,. Those experiments are diagunosed and controlled by
utilizing codcs which arc based con various plasma models. Macroscopie models
describing equilibrium, stability and transport are amnong the most important ones,
Neglecting flow and assuming isotropic pressure yields the well-known
Grad-Schluter-Shalrancy equation. Ideal MIID stability of these conligurations is
considercd a necessary condition for successful ocperation o.f a tokamalk. Most
transport models also neglect [low in the basic equilibrium. Heowever, to achicve
adequate simulation, the flows should be taken into account. That flows are present

can be seen from the definition of the ecurrent in the two—fluid model,

jwen(vi—-ve) =—gnl {n:being the density and v:the velocity). Furthermere,
dissipative models require a f[low for toroidal equilibria. Pfirsch-Schluter
diffusion suslains such a pressure—driven f{low. If viscesity 1is included, the

neoclassical flows nearly follow the observed behavicur. Hcating powcr in the form
of neutral-beam injection substantially increases the plasma temperature,
Depending mainly on the injection apgle, this beam injeclion generates a flow in
both the toroidsl and the poleidal directions. The toroidal flow velocities can
become quite large, i.e. up to ion sound speed. The magnitude of the polecidal [low
is still not accurately determined. Poloidal f{lew is most 1il'{ely damped out,
thereby increasing transport. This eften leads to deterioratiocn of confinement.
Although the concept of ideal MHD equilibria with [low was oullined long ago.
it has not yet become a standard tool for interpreting experiments. Only recently
have eff{orts been made to study such configuraticns gquantitatively. Owing to the
high cost of new experiments it is desirable to include such models in the design

phase. 1In this paper we concentrate on equilibria with flow. The inertia term
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pu-Vy has to be taken inlo account in the momentum balance. For general {low the
temperature and density are mo larger constant on a flux surface. More accurate
measurements will substantiate this poloidal asymmetry, which can then be taken
inte account for stability and transport calculations.

So far only equilibria with a fixed boundary have been.reported. Here the
flows are built into the computaticg of configurations defined by experimental
and engineering needs, 1i.e. free surface equilibria. Instead of applying the
finite—element method, the finite-dilference scheme on a Cartesian grid is
implemented. This allows high computational efficiency. However, the inclusion
of poleidal flow substantially complicates the partial differential equation. As
a consequence, the very fast solvers cannot be used any more. The highly nonlinear
equations are solved iteratively. Solutions for paramcters within certain ranges
are achieved by applying a continuaticen methad.

The paper is organized as follows: the physical model and tbe equilibrium
equations are derived and discussced in Section 2. Seciion 3 describes the numerical
scheme for purely toroidal and for general [lows. DBoth approaches are pursued.
The results arc presented in Scetion 4. The discussion and conclusion are given

in Section 5.
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2. Physical model
We begin with the ideal single-fluid MHD cquations [or the density p, the

velocity u, the scalar pressure p and the magnetic field B:

continuity: =re + ve(pu)=0, (1)
momentum: p(—(%-*l~uvv)u=~‘~?p+-j><]3, (2}
Maxwel1-Ohm: 56?5’2 VX {uxi3y, (3)
Maxwell: v =0, (4)

JF=vXB. (5)

The absence of any dissipation is expressed by the conservation of the enirupy b
0 )
(a‘*‘&”v)s ={. (6)

The plasma is assumed to be an ideal gas, i.e.

p=Tp, (73
T being the temperature. The thermodynamic relations lead Lo the caloric equation
of state [ 1 ]

p=Se” (7a)
where 7 36 the ratio of the specific heats, which is taken as cqual to 5/3, as usual.
A macroscopic model incorporating dissipation as well as flow {see Kerner and
Weitzner {2,3) and references therein) shows that static equilibria and those with
purely toroidal flow comserve entropy. Furthermore, the temperature is constant
along B, i.e. constant on a fiux surface. In next order in a small expansion

parameter & there is poloidal flow, but this flow is within a magneltic surface,

and the temperature varies on a magnetic surface. In second order in ¢
perpendicular mass and energy transport occurs. Bence our flow model should
incorporate isotropic temperature , i.e. T=T(¥) (¥ : being the poloidal {lux), in

conjunction with purely toroidal flow and anisotropic temperature when poloidati
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flow is included. This peloidal flow, although small, is strongly coupled with
enhanced radial transport.

To compute axisymmetric equil-ibria, we work in the wusual cylindrical
coordinates r,8,z , with 6 being the ignorable coordinate. The stationary, 1.e.

&/9t=0, equalions read

(o) =0, (8)
p(uVyu=—vp+ (IXB)XD, ’ {9)
X (uxB)=0, (10)
B =0, (11)
(u-v)5=0, (12)
g =S (13)

The equations for egquilibria with flow were first derived by Zehrfeld and Green
[4]. Here we closely follow & more recent derivation by Ilameiri {6,6] used in the
finite—element code of Kerner and Jandl [7].

The magnetic [ield is represented as

B — vgxvp + Fvg, (14)
where $ is Lhe poloidal flux and F the poloidal current prefile. The continuity
equation is satisfied by

pu = VEXVA + pAvE. (15}
The Maxwell-Ohm equation

vX{uXB)=0
implies the existence of an electric potential uxX/=v¢. The projection along B
yields ¢=¢(¢¥), the @&-component uv9=0 and hence A=A(¥) and eventually the

$—component,

A FA? {16)
r er :

where the prime denotes the derivative with respect to the argument, i.e.
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_de
T dy

Introducing 2=¢ and ¢=~3', we obtain lor the velocity the representation

#(¥) ]
we —5=Bt rtR($)ve. (17
The flow is within a magnelic surface and may have a toroidal compenent. One
consequence of this is that T=T7(¥) in the torcidal [low casc, otherwise S = S(y)

We then recover ihe usual adiabatie equation
d d o
E(P/pr)=a"{-5:0,

The 6-componenl of the momentum equaticns causes the compouent of the velocitly
and the field to be restricted by the identity

F=[{1(p+ea/1ver? 1/ (1-0%/p), (18)
where I=/($) is a surface quaniity. In the case with no poleoidal flow, i.e.
@=0 , this identity gives F=F(¢$). The projection along B gives

*_ﬂ ﬁ_ﬁQL X Ly a7 1
H{y) = ZPEB 51081 + T-]S(V)'o . | (19>

where H=H (¥} is a free surface quantity. For T=1{¢) the third term on the right

bhand side is replaced by T lne. The ¥¢ —cemponent of the momentum equalion yields

@'y 2 . dd. 8, Fe\do 1.dd L dIl 1 _ydS_ .
v[(l o) v¢:|+ub’dw +p(we|2 LR b AL LI [ ety Wl (20)

inside the plasma, where the entropy lerm is replaced by

_ 14,87
(lnoe I)qu,J

if the temperature is constant on a magnetic surface, and

v (r P =0 (21)
in the surrounding vacuum. The shape of the plasma surlace is specified. The
vacuumn solution for the poloidal flux supplied by external coils together with
general vacuum solutions are used to control the plasma shape in the way described

in Refs. [8.,9). Together with the plasma cross—section we can specify the five
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surface functions ¢,2,/,H and § . The functions F and p arc, in gencral, not surface

quantities. Together with the partial differential equations (20,21) the two

algebraic equations (17) and (18) bhave to be satis{ied. Equation (19) contains
the infermation that p is a function of Iv$l?. To be morc precise, one has
p=p(r ¥ 1vgi%y. (22)

Closer inspection of the differential equation (20) reveals that the type of the
equation is delined by the second derivatives, i.e. by the term
v (1-@%/p)1781 7p] . (23)
Using the relation (22), it is seen that the highest derivatives are due to
(1-2*7p)ag+(9°/p" )vy-vp,

where
le'Vpx—ge—Vil}"Vr‘-i—pﬁvﬂa“Vt,’ﬁ+—-a'£'-—'vdf°vivy'}|2 .
or o Ategpl®

It is convenient to normalize the velocity along B (poloidal component} to the
poloidal Alfven velocity
A=0/./0 . (24)

We: introduce the notation

. 8p

-t 25

? alvyl? (25)

a=2A%0/p (26)
and obtain for the terms with second derivatives (17A2)4w+1/20v¢'vlv¢|2 or, in

more detail,

(1-A%ap’ )P 4200 ¥ 9 o+ (1-A%a9® )Y s (27)
As shown in Rels. [4,5), the quasilinear partial differential equation (20) is
elliptical if

o=A*s38, (28)

where the plasma beta is defined as f=vp/{yp+B%). Since the transport estimates
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given above .imply small poloidal flow, we shall .not be concerned with flows in
the hyperbolic domain A*>§. For small poloidal [low velocities satis{ying eq. (28)
the differential equation (20) is strictly elliptic. There are then no sdditional
difficulties in solving the algebraic equations (18) and (1%) , as can be scen from
the theory of implicit functicens. Care must be taken, however, that the choice
of the free functions does not restrict the solvability. The entropy S especially
is an unusual profile funetion. It is therefore eliminated by the transformation

used in Ref. [6]

p=5'"7p, =510, $=5'%9. ' (29)

The eguations using the [act that B=8, w=S1?y  and  H=ISY" read

F=( [+R&siva1? y/ (1-0%/5), (186)
- &3?‘ 2 .EJ?’ Y "yl
= ~ —_ + e
= zsz P I A {19y
0y ey | s pdd s B Fé\dB L ppdl  dil. |
v[(lf - Jivel V¢]+u By * p(weiz + - )(M HTOUT o b o =0 (200)

A soluticn of eqs.(i8b) — (20b), i.e. S=1, together with lour arbitary functions
@,0,/ and ji generates with the transformation (29) a family of new equilibria

with profiles S=S(¥)
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3. Numerical scheme
3,1 Purely Toroidal Flow
Owing to the level of complication, the solutions for purely toroidal and for
general [low arc treated separately.
The temperature is a surface guantity, i.e. T=T'(¥) is used instead of the
entropy. The pressure is then given by p=T{¥)es. For zero poloidal flow ©=0
eq. (18) gives F=F(¥). The Bernoulli-type equation (19} reads

Q% ()

H(v)=- 2lvgl?

+7(#) Inp.

If we introduce

Hy= 2 v in7 and =L, (30)
we obtain
o
H +—"—= In
o(#) o I p
and further
p=exp(Hot 2 /219817, (31)

The differenlial egquation reads

? 2 dF Ry dRq  dly | .
v(ivei vy ) +ive I PO +p[ o dp Ty |0 (32)
or
dF  op
v[|v3|9w]+|vszW+W=0.

This equation together with the vacuum equatien has the form of the Grad-Schluter

-Shafranov equation with arbitary profiles F,2y,Ho and a f[ree function T=T(¥) in

the transformation (30). We normalize the flow velocity to the ion sound speed
v,l=rp/o=T (here y=1) (33}

and obtain for the normalized toroidal flow

Demgi=T @Ry, (=g
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where the normalization length Iy is chosen ms the radius of the magnatlic axis,
Ry=R,. For a given profile f;t the function £2; is then
Qg:;t/ﬂu. (34)

We further define

P[)“EHO
and get
P=Po (et (35)

For a specified plasma shape the equilibrium has to satisly

7 9
_q.'_[__/rz P

V(Vd'/rz):—-F —=r=g in the plasma domain I (36.a)

v(w/r”).:o in the vacuum with $=¢f. on &r. (36.4)
The equations are scolved in a rectangular domain where the currents in external
coils are adjusted to satisfy $=¢%, on 9 at given (herc [ive) [ixed points. The
system {(36) is nonlinear and hence an iteration method has te be used . Here the
usua! Piccard iteration is applied. To avoid the trivial solution $=0, an eigenvaluc

ig introduced. The numerical scheme is then

(v /ey =2""tg(r 9"} inplasma (37.a)
v(v"/ 1) =0 in vacuun (37.5)
p=1, on oI, {(37.¢c)

where the profile functions in the inhomogeneous term g are given as a function
of the normalized flux ¢ , E:(l}’-'ﬁs)/(l}’g*?ﬁs) , with ¢,,4g the poloidal flux
on the surlface and axis, respectively ($,=0) . The system {(37) is solved
numerically in a rectangular domain by using the double-cyclie reduction me thod
(10]. The eigenvaiue A is determined at the n-th step by A (/9 YA, where
the value of #$; is obtained by the constraint that either the total torcidal current

or the toroidal ecurrent on axis, this being equivalent to specifying the safety
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factor on axis gy , match a given value. The iteration converges when the change
is smaller than a prescribed tolerance, i.e. A" A" N/A%<e  and Ity li<e

The equilibrium with flow 1s computed by a continuation method using &
paramecter a,, 05¢,$1 . A static eguilibrium is started with and the [low is added

in steps R'¢=a.82; with e,—1

3.2 General Flow

For poloidal flow the temperature is no longer a surface qﬁantity and the
caloric equation P=Sp” has to be used. The density @ has also peloidal dependence
anrd has to be determined numerically from eqg. (19b), whereas the poloidal current
function F is merely replaced according to eq. (18h). It is obvious thai an
improper cheice of.thc shape and the proflile functions é,f),]’ﬂl and 7 will cosiderably
restrict the numerical scolution for .; Let us introduce normalized quantities,
using the sound velocity, eq. (33), and the Alfven velocity

vh=B"/p, _ ' (38)

- _up_ /o8 _ (39)

TV

» g ?JTEN.EQ

uerﬁg—ﬁ. {(40)
Note that

P=p". | - (41)
To make the connection to experimental data cleare.r, we intfoduce a refercnce line

in the plane 2z=C based on a nested set of magnetic surfaces with the value #g

on axis and ¢, on the plasma surface following Semenzato et al. {11]

CR={r,z : r=rr(¥),z=zp($)=0 ; 'PE[%,'l’S]}- : : (42)
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A profile function f can then be defined by

Sr(@)=f(ra(¥),za(P)) (43)
and in dimensionless form if fp=0

[=1(r. 2/ I o (44)
The pressure is a profile fuuction well studied in f-optimization computaltions.
A maximum value can be obtained by evaluating the ideal ballooning mode equation
for every magnetic surface as was done by Tsunematsu et al. (6). Since neutral beam
heated plasmas cannot exceed the ideal MIID stability A-limilt, FPp is obviously
as one of our profile functions, which then {ixes ;JnﬂPH“T. From eq. (19b) we
obtain for the pressure

P=(pli—1/2 &'/p Bz+1/2:;r?‘f.!2)-€~1;g. . (45)
From the deposition profiles for the neutral beams one can get estimates for the

poloidal and toreidal flows L':SB and llg , from which Pand 2 are evaluated

é:(ﬁﬂ)R'\/;’E, (46)
Q=(ug) o T PR/ Ry (47)

The remaining input functions are chosen by the values of 1J and F on the refercnce

line
ESYORYIOR TR RS VTR (48
9 BiR\Vg i s/ H T"'l 2 e/R

and with given Fgp , from which the function [ 1is then obtained ,

_ [+Rp(ug) p(un) (7 Pr)'? | I+Kn
1—(ug)’ 1-(uo) i

Fg

the equation for F in dimensionless form is

T+ Ky

Pk

(49)

The remaining algebraic equation for P then vields
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2;’2(571*1)/(T'-l):252[(&B)ﬁ(%g')ﬁ‘F(&a)?z(?z"l)]“(L:iB)?{(—gf)z B . (50)
Let us now consider the case of purely toreidal flow, where

p e (ug) A1) (r 1)+

For the plasma shapes with up-down symmetry considered here we. obtain on the
reference line r’2zi and hence the algebraic relation can be scolved for p. Since
the toroidal flow is not further restricted, an improper choice of the relerence
line may yield negative values toc large for r?-1 , allowing nc real roots for
2 ! It is also obviocus that eg.(50) can be solved for ¢ when the condition for
ellipticity is satislied, i.e. A*=p.  The plasma boundary is a surface of zero
pressure and hence ¢ and £ must also vanish there. When k is deflined as

k=(1—éz/;)/ra and the remaining terms in eq.{(20b) by G, the system to be solved

eventually takes the form

rivikvg)=G(r,z) in I (51.a)

rivevy/ri)=0 in vacuum (51.6)
with

P=ct on 3. ‘ (51.¢)
This nonlinear equation is again sclved by iteration . The first solution was

obtained by applying the finite—element method; see Kerner, Jand!l (7] and Semenzato
et al. [11). The Piccard iteration uscd in both cases is

PRV (R (PTTY)=ATIG (2, 90T (52)
As discussed above, the sccond-order derivatives are not consistently treated. Here
we apply {inite differences based on eq.(27). The divergence term in eq.{51) is
then approximated by

A (P (BT (1-AT) e =G, 2,97, (52
where

a=1-A*+ap?,,
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b-2a¥ ¥ ,.,

e=1-A"+ay’,,

_ ALr?
L S| P 7
Byt Bi/(1-A")-rp/A

with
Ar=d? o= (updh/e

and

P:;rpw
For zero parallel flow , i.e. A=0, the usual 4" operator is recovercd. The flact
that a,b and ¢ are diflerent functions of r and z prohibits the use of the fast
double—cyclic reduction methed implemented f[or toroidal flow. The rather
artificial operator splitting in the form of Refs. (7,113,

(1-A%y PP (vp/r? ) evgev (1-A7),

yielding the iteration

A'cp"“-—"_:lF[G(r,z,iP"u-V;'f"'V(l—-Az)] (53)
is not applied here . Centered finite differences lead to a system of lincar

equaticns with block-tridiagenal struciure. This system is solved by standard block
LDU decompesition. An eigenvalue & is introduced in eq.(52) such that gg assumn.s
a prescribed value. The equilibrium with flow is again computed by using the
continuation method. First the static case is solved, then toroidal flow is taken
into account by increasing the parameter . from zero to one, 0sa.,=1. Finally,
parallel flow is switched on by increasing the second parameter 0=ap=l. The
iteration is terminated if the change in the sojution ¥ is smaller than a desired
tolerance
1 =" ti<e or 1AP=A"N/A"<e .
This procedure guarantees solution of the highly nonlinear, guasilinear differential

equation for certain parameter ranges.
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4. Resulis
{A) Purely Toreidal Flow

Thisl version of the code is suited to computing tokamak equilibria with
temperature being constant on a [lux surface and with poloidal flow damped dut by
enhanced transport. Some results have been evaluated analytically (IRels.
(12,13) ) and computed numerically (Refs. (7,14,15] ). The results presented here
are different since the free—boundary problem including plasma and vecuum in
conjunction with external coils is solved.

To validate the code, the first application is cases trcated by Kerner and Jandl

{7]. The plasma--vacuum Iinterface is defined as

r=Rg+a cos[8+8 sin d], (B4}
z=K sin @,
with up—down symmetiry imposed and 0=8=zx. The chosen parameters for the aspect

ratio Hgp/a=3., the elongation K=2.5 and the triangularity &=0.45 are difficult
to match since cur boundary is fixed by only f[ive points. The resulting plasma
contour is consequently different. - We therefore somewhat relax the data to
Rg/a=3 with [=3.2, K=2.0 and &=0.25. The dependence of the sclution on the
mesh size is analyzed for K=1.0 and p':—Z,FF’:-i-O.S'Iifj and Raﬂu’=fl.0 with

R,9,=1.0 and £=0. Quantities relevant to the numerical accuracy are the value

of the safety factor on the surface, g, the value of ¥ on axis, %y, and the
position of the magnetic axis fl,. The safety factor is unity on axis, go=1.0.
Quadratic convergence is [ound without and with flow, as is shown in Fig.l. The

position of the magnetic axis is already determined accurately by a very coarse
mesh. Such convergence is also found for other profiles. For fixed profiles
p'=-2,FF =-0.5'R}, R.9=-1, and gp=1.0 the shift of magnetic axis with
increasing flow velocity is plotted in Fig.2. The elongation varies from K=2

te K=0.5. The shift is more pronounced as the elongation of the plasma becomes
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smaller. This is in agrecment with the findings of Rel. (7). It 1is, however,

observed that the pressure strougly increases with £y (sec eq.(33}). Since the

w

toroidal currcnt on the axis is kept [ixed, the value for beta poloidal, #r, i
changed, and eventually completely differenl {(here more peaked) current profiles
evolve with a smaller £ value.

In the next application we aim at reproducing a realistic configuration with
torgidal flow present. Let us first consider the equilibrium without [low, as
shown in Fig.3. The pressure p{r,z=0) , the safety factor g(¢¥) , the flux
function ¥(r,2z=0) , =and the two—dimensional flux and pressure contours are
-displayed. The total beta is f=3.3 % and the poloidal beta §;=1.5. Next we
introduce a flow profile £y together with a pressure functlion p[](_ﬁT’):E’HO, which
generate the same total pressure on the line =z=0. Two branches feor the flow occur
as shown in Fig.4, which are defined by fitting the total pressure for r=2H, and
for rzR, , respectively. When the velocity profile which increazses with ¥ s
chosen, high beta equilibria are generated. The profiles displayed in Fig.b yield
an equilibrium with g=6.4 % and #;=1.40 and those displayed in Fig.6, one with
g~9 % and F;=1.24 . Clearly the total pressure and current proliles become
broader. The shift of the pressure maximum becomes more pronounced than the shift
of the magnetic axis. Since the flow is larger outside the plasma, the temperature
and the szfety factor become hollow in the centre. Hollow dischanges are therfore
caused not only by impurity accumulation at the centre bul alsu by beam deposition
localized near the plasma edge. These equilibria will certainly have unfavourable

stability behaviour. It is quite unlikely that the flow maximum near the plasma

edge will be sustained for a long time. More likely the discharge will quickly

decay. When the neutral—-beam energy is depcsited mainly st the centre of the
plasma, velocity profiles such as displayed in Fig.7 develop. 1n this case the
torcidal [low and also its derivative vanish at the wall. For mass f{low with
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maximum velocity of half the second speed, r}tzO.S , the equilibrium shown in
Fig.7 is obtained. 7The g8 values are £=5.3 % and §;=1.7. A class of equilibria
can be generated with the samec global properties, dilfering only in the flow
profile. This implies quite diffcrent &' profiles. This property can Pe used
to monitor the siope of the safety factor or of the torcidal current locally.
Thereby, the stability of localized ideal MID modes (ballooning modes) may be
favourably inflluenced. This may allow improvement of the performance of

neutral—-beam—-heated tokamaks towards higher beta values.
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5. Conclusions

Tokamak devices aiming at break-even are becoming guile costly owing to the
large plasma volume and the large emount of sdditional heatling required. Realistic
simulation of tokamalk plasmas is therefore becoming essential. The macroscopic
‘behaviour of the toroidal configuration has to be studied quantitatively. Static
equilibria evaluated by numerically solving the Grad-Schluter equation provide
knowledge about the magnetic surfaces. At high plasma pressure, however, the
simulation of the pressure and the density becomes poor since the poloidal
asymmetry of these guantities is neglected. More refined models are becoming
necessary. Lspecially in the case of substantitial neutral-beam heating, the flow
of the plasma should be taken inte account. Two such models are prescnted here.
.The first mode] assumes the temperature to be comstant on a flux surface and is
suited to simulation when the poloidal rotation is damped out by enhanced transpert.
This model does not introduce additicnal difficulties for its numerical solution.
We have compuled realistic, high~beta equilibria. If the injection gcnerates
maximum [low at the outside of the plasma, discharges with hollew profiles occurec.
On the other hand, profiles with the maximum flow velocity inside the plasma yield
smoocth equiiibria. The free prefile functions can be adjusted to reproduce measured
data such as density and pressure. The contours of constanl pressure do not coincide
with those of constant peloidal flux. The variation of pressure and density on a
flux surface is of the order of the inverse aspect ratio. Nalurally, it also depends
on the flow velocity.

It is observed that the current and safety factor can be changed locally while
keeping the global properties of the configuration constant. Neutral-beam-heated
equilibria with [low can thus have improved stability properties, especially with
respect to the balloening and tearing modes. For zero mass [low the linearized

ideal MHD equations yield a self-adjoint operator for the stability analysis.
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The energy principle utilizes this property as well as the numerical schemes.
For finite flow the stability operator is no longer self-adjoint. The stability
analysis therefore becomes considerably more involved, especially for toroidal
geometry. So far only the effect of rigid toroidal rotaticn on ideal ballconing
modes has been studied (Refs. [6,16] ). The eguilibrium flow can lead 1o an
unstable continuous spectrum (IRefs. (17,18] . One therelore has to expect
additional instabilities, which may counteract the stabilizing effcect on localized,
static modes. In some cases, however, these new instabilities may have only small
growth rates and may nct be essential.

In the sccond model the peloidal flow is kept finite, yielding & poloidal
dependernce for the temperature. The resulting quasilinear differential equation
has different properties compared with the static case. Only for small poloidal
filow is the equation elliptic. The numerical scheme propcsed in the paper is
different from the finite—element method used earlier. Thus, our method will
substantially difler in the iteration scheme. We intend to implement this version
soon. In our opinion, equilibria with [low should be used in transport simulation.
Especially, the poleidal asymmetry of density and pressure is esscntial lor correct
understanding. In additien, the finite [low may substantially change the radial

transport.
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The energy principle utilizes this property as well as the numerical schemes.
For finite flcw the stability operator is no longer self-adjoint. The stability
analysis therefore becomes considerably more involved, especially for toroidal
geometry. Sc far only the eflect of rigid toroidal rotation on ideal balleooning
medes has been studied (Refs. (6,163 ). The equilibrium flew can lcad to an
unstable continuous spectrum (llefs. (17,181 ). One thercelore has to expect
additional instabilities, which may counteract the stabilizing effect on localized,
static modes. In some cases, however, these new instabilities may have only small
growth rates and may nct be essential.

In the second model the peloidal flow i{s kept finite, yielding & poloidal
dependence for the temperature. The resulting quasilinear differential eguation
has differeni properties compared with the static case. Only for small poloidal
flow is the equation elliptic. The numerical scheme propesed in the paper Iis
different from the finite—element method used earlier. Thus, our metlhod will
substantially differ in the iteration scheme. We intend to implement this version
soon. In our opinion, equilibria with [low should be used in transport simulation.
Lspecially, the poleidal asymmetry of density and pressure is esscntial for correct
understanding. In addition, the finite [low may subsiantially change the radial

transport.
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Fig.l Convergence study: The dependence of relesvant parameters on the mesh size
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Fig.2 Shift of the magnetic axis D=R,(08)/R,(0)-1 with increasing flow velocity.
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Fig.3 Static eguilibrium with the surlface defined by eq. {54) and

Rgfa=3.0, K=1,and §=0.25. The safety {actor q=q(-v-5-). the total pressure
p=plr,z=0) (Fig.5(b)} and the [lux ¥=¥(r,z=0) (Fig.5{c)) =re displayed
together with the contours ol constant fiux (Fig.5(d)} and pressure

(Fig.5{(e)), which coincide for this case.
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Fig.5 Egquilibrium with toroidal [low. The pressure function po(¥) has lo be

reduced by the factor 0.7 (Fig.5(a)) end the flow Gg(E) by 2/3 {Fig.5(b}):
the toroidal [ield F(#%) is unchanged (Fig.5(c)). The safety lactor g has
a dip (Fig.5(d)). The total pressure p=p(r,z=0) (Fig.5(e)} and the pcloidal
Cflux ¥=¢(r,z=0) (Fig.5([)) are displayed as functions of r in the midplane

2=0. The contour liunes of constant flux and pressure do not ceincide.
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Fig.6 Equilibrium with toloidal [low. The pressure py f[low and poloidal eurrent
profiles are the same as for Fig.5; pu(ag) has to be multiplied by 0.565(0.75).
The salety [actor now has & pronounced dip {Fig.6(e)). The total pressure
p=p{r,z=0) (Fig.6(b)) =and the poleidal flux ¢=¢(r,z=0) {Fig.6(c)) are
displayed as functions of r in the midplane 2=0. The contour lines of constant

flux (TFig.6{d)) and pressure (Fig.6(e}) do not coincide.
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Fig.7 Equilibrium with tlcroidal flow. The po(¥) and F(¥) profiles are the same
as f[or Fig.6; the flow has to mﬁltiplied by the factor 0.5 (Fig.7{a)). The
safety factor ¢ is a smooth function (Fig.7(b)}. The total pressure
p=p{r,z=0} (Fig.7{c¢)) and the polcidal fl;\xx $=¢(r,2=0) (Fig.7(d)) are
displayed as functions eof r in the midplane z=0. The contour lines of

‘constant Flux (Fig.7(e)) and pressure (Fig.7(l)) do not coincide.



