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A MHD equilibrium code in which current sources are specified
instead of toroidal field function or safety factor has been developed.
This code is appropriate to self-consistent analysis of neoclassical
current effects (bootstrap current and neoclassical conductivity) in the
plasma sustained by the ohmic current. The code can be also applied to
equilibrium and stability analysis of tokamak plasmas with non-ohmic
currents driven by extermal sources (NBI/RF-wave) and with neoclassical

current effects.
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1. Introduction

Calculation of MHD equilibria of tokamak plasmas is the first
step of both theoretical and experimental research of controlled
thermonuclear fusion by tokamaks. It is necessary for MHD stability
and confinement studies, and is also indispensable for design of
tokamak devices. Therefore various numerical methods of
computing MHD equilibria of tokamak plasmas have been devised
and many equilibrium code have been developed to use for the
particular purpose mentioned above [1,2,3,4,5,6].

MHD equilibrium in axisymmetric toroidal configurations
such as tokamaks are described by a semi-linear elliptic partial
differential equation for the poloidal flux function yw known as the
Grad-Shafranov equation. This equation has two source terms : the
pressure p and the toroidal field function F , both of which are
functions of only v . Soiving the equation requires specifying p and
F with appropriate boundary conditions. The equation can be also
solved by specifying the safety factor insteéd of F according to the
flux conserving tokamak (FCT) algorithm [7]. With this algorithm
high beta equilibria are easily computed. It is widely used in MHD
stability analysis because the safety factor which plays an
important role in the stability theory is prescribed. However neither
toroidal field function nor safety factor are quantities measured
directly in tokamak experiments. Therefore in MHD analysis of
experiments the function F is fitted, for example, by using
polynomials to reproduce the magnetic data in many equilibrium
codes [8].

For confinement of a tokamak plasma the toroidal current
must be supplied by external sources. The transport theory shows

that the current sources produce the surface average parallel

fli
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current. Generalized Ohm's law relates the parallel current to the
inductive electric field driving the ohmic current and to
pressure/temperature gradients (thermodynamic forces) [9,10,11].
The currents driven by non-ohmic external sources (NBI/RF wave)
are also given as the surface average parallel current [10,11].
Therefore calculating MHD equilibria by specifying the current
sources (surface averaged parallel currents) together with
generalized Ohm's law may be considered to provide a useful means
for theoretical/experimental study of confinement of tokamak
plasmas. It enables to compute MHD equilibria sustained by the
ohmic current from only measured quantities such as
density/temperature profiles, one-turn voltage and effective Z (Zeff)
without using the ambiguous quantities F. It also enables the self-
consistent study of neoclassical current effects on MHD equilibria
(bootstrap current and neoclassical conductivity), which get
renewed attention recently [12,13], and that of a steady tokamak
sustained by non-ohmic currents with the help of appropriate
current-drive theory [14,15,16].

The paper is organized as follows: the basic equations for
tokamak MHD equilibria specified the current sources are derived
in Section 2. In Section 3, a numerical scheme to sol{/e them self-
consistently is presented. The scheme is applied to high aspect ratio
circular tokamaks to validate it in Section 4 and summary is given
in Section 5. SI unit is used throughout this paper except

temperature measured in ev.
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2. Basic Equations
2.1 Parallel Current In a Tokamak Plasma

In an axisymmetric toroidal configuration such as tokamaks,
equilibrium magnetic field B is represented by a- stream function
(poloidal flux function) w as

B =V xVy+ FVp , - (1)
and F = RB; (B;:toroidal magnetic filed) is the toroidal field
function. Here the usual cylindrical coordinate system (R, Z, ¢) is
employed. Force balaﬂce equation, Vp =J xB , yields a second order
elliptic partial differential equation, known as the .Grad-S_hafranov
equation (yp,: permeability of vacuum) [1, 2] | |

A*y =R pojy . (2)
with

A*w=—+— . | (3)
The toroidal current jy is given by

. epdp 1 dF
Rig Rdw qudw

Rjg=0 , in vacuum,

in plasma, (4)

b

and F and pressure p are functions of only w. To solve Egs.(2) and
(4) the functions, p and T, have to be specified with appropriate
boundary conditions. The equatidns can be solved by specifying the

safety factor

F dl _

b'y using the flux conserving tokamak algorithm [7]. Here Bp is the
poloidal filed and dl the line element of the contour line of y = const.
Many equilibrium codes so far solve the Grad-Shafranov equation

by giving the pair (p, F) or (p,q). However neither the toroidal
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function F nor safety factor ¢ are quantities measured directly in
experiments. Transport theory shows that the surface average
parallel current is related directly to measurable quantities such as
the inductive electric field, density and temperature.

The current in an equilibrium plasma is

J=J, +JyB/B , (6)
J1=BxVpiBZ (7)
and the parallel current
Fdp 1 dF
Jiyy=-g55--—"—8, 8
/ Bdy pmody (8)
can be rewritten as
Fdp B2  <jB>
Jyp=-7 1- B. 9
/ Bdl,u[ <BZ>]+<BZ> (%)

Here <X> denotes the flux surface average [9] :
2z 2n
X 1 — —
o= | gdlf | gdi= _[x/gxda/ f\/gde, (10)
J‘ p J P 0 0

with 8 being the poloidal angle of a flux coordinate system (y, 6, ¢ )
and
Vg = [(VyxV0 ) V] 1 - (11)

The first term of Eq.(9) is the Pfirsh-Schliiter return current which
flows automatically to maintain the charge neutrality condition on
each flux surface and the second term, which is divergence-free, is a
unidirectional parallel current necessary to maintain the
equilibrium parallel momentum balance along the magnetic field
[17]. For confinement of tokamak plasmas this current must be
supplied by external sources. Equations (8) and (9) give the
equation for FdF/dy tepresented by the pressure and surface

average parallel current :



JAERI-M 88-207

P [FZ dp B>
dy = MOl gs gy <BZ>]'

Therefore the Grad-Shafranov equation can be solved by specifying

(12)

the surface average parallel current <J-B> with the pressure ; in this
method the function F is obtained by solving the ordinary

differential equation, Eq.(12). From Eqs.(6), (7) and (9) the toroidal

current Jjg reads :

2
o meo. _ pdp . Bi <J-B> |
Jjop=Rj-Vo = Rdw[] 2t s B (13)

2.2 Generalized Ohm's Law

The flux surface average parallel currents are determined by
the thermodynamic forces (electric filed and pressure/temperature

gradients) according to the neoclassical transport theory [10,11]
<J-B>=<JB>g + <IB>p + <J-B>g (14)

where <J-B>fg is the ohmic current, <J-B>p the bootstrap current

and <J-B>g stands for non-ohmic currents driven by external

sources. The ohmic current is driven by the inductive electric filed :

neeltee
<JB>f = oNC<BE>= -—m—"'ANc<E-B>, (15)
e

where opnC is the neoclassical conductivity which reduces to the

classical Spitzer conductivity (Z;: charge number of the ion)

o nee’tee3.252,2 + 1.417;
OSpitzer = meZi  Z12 + 1.41Z;

(16)
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when the trapped particle effects are not considered. In Eq.(15) 754

{(a=e,i) 1s the Braginskii Coulomb collision time :

1 4 ngeq? InA
Taa 3-\/;mavm3 dme,l’

(17)

viq the thermal velocity defined by vyq = \fZTa/ma and InA the

Coulomb logarithm (g, : permittivity of vacuum). Other notations are

standard. For a plasma in a stationary state, the flux surface
average parallel electric field <E-B> is expressed by the one-turn

voltage Vy [18]:
<EB > =<B-V¢> V] /2rx . (18)

The non-ohmic currents <J-B>g may be computed from the

distribution function of electrons or fast ions given by the theories

on current drive [15,19]. The bootstrap current is expressed as [11]

<JB>p = -F pe(L€3]Ap + Le32AT, + Li32ATi ), (19)

g4, o tid,
p= dy’ npe ZTe dy npi,

Te_dl;/ne' TI-Z]Tedlynl’ (

where pg = 1.60 x10-19 n,T 4 (a = e, i). The coefficients L€37, L€37
and Liz2 as well as Ay, are expressed by the dimensionless

friction matrix clements /;;¢ and the dimensionless viscosity matrix

(18]
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Lé3zp = [y8(u3€ + 1) - ual(ln€ + ue€)jiD
L€32 = (3¢ 115¢ - ua€l6)D

(21)
Lizp = “L3 781558 ppl (g (pzi+lagb)-(120)2]

ANC = (3¢ + 16D,
D = (1€ + 1;,8)(p3€ + 1p2€)

The viscosity matrix fudj (a =

definite matrix [K4] *:

Hr =Ky,
M2 =512 Kyp- Kpp,
p3= 2514 Kypp - 5 Kpp+ Koz |

- (g€ +1128)2

¢, i) is computed from the positive

(22)

The matrix elements Kjj valid in all collisionality regimes and

arbitrary plasma cross section can be obtained approximately by a

rational combination of its asymptotic forms in various collisionality

regimes [10,11]:

1

*

We omit the superscript "a" denoting the species hereafter
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gK/P
Kii = . 23
! (1+2.92v ! KﬁB)(l+ . Kifp) -
) *
Drataa KUP 60);afaa KUPS

Here g, is the ratio of the average fraction of trapped particles to

that of circulating particles :

gt = fi'fe, (24)
i
3<B2> AdA
- _ 25
Je = 4B max? L: N1-ABIBmay > (23)

0

The quantities w;4 is the average transit frequency of the species a

defined by [20]
1 Via

Ot = vra< @B>:R0q , (26)

where Rjis the position of the magnetic axis. The collisional

parameter v is given by

= 8t < 1 S <>
T 2.92"\gB " <(B-VBIB)?>"

(27)

The matrices KB, KP and KPS for electrons and ions are given in

ref.[11] and summarized in Table 1 with the friction matrix

elements /;;4. The three collisional regimes for each species can be

seen from Eq.(23) :

Pfirsh-Schliiter regime

Plateau regime « 1 (28)
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. 1 1
Banana regime : : —_—
Otataa

Equations (2), (4), (12) and (14) form the basic equations for
MHD equilibria specified the current sources. Equations (19) and
(20) make it possible to evaluate self-consistently the neoclassical
effects on tokamak plasmas with finite aspect ratio, arbitrary cross
section for all collisional regimes., By being composed with the
theories on current drive, equilibria in a steady state with the non-

ohmic currents and the neoclassical effects can be calculated .
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3. Numerical Scheme

The basic equations are solved numerically by iteration for
prescribed density and temperature given as functions of
normalized ¥ (¥ = (waxis - ¥V Waxis) - Zeff is assumed to be uniform
for simplicity. The Cartetian coordinate is implemented. The partial
differential equation, Eq.(2), is solved in a computational box which
contains the plasma (Fig.1). At each iteration step vacuum field
solutions {solutions of A* w = 0) are added to the solution of Eq.(2) so
that the plasma surface (y = 0) may pass the specified fixed points
(semi-fixed boundary method). Analytical vacuum field solutions
are used, which are expressed by the associated Legendre

polynomials. The boundary values are loaded on T through Green's

theorem :

w(R,Z)= [ G(R, Z : R*, Z*)Bp(R*, Z*)dI, (29)

where G(R, Z : R*, Z*) is the Green function of the operator A* [2] and
dl is the line element of the contour line of w = 0. Equation (5) is
approximated by standard S-points finite-differences and the
boundary value problem of Dirichlet type is solved by Double Cyclic

Reduction(DCR) method [21] ; the number of grid points of R and Z
must be 2V + 7 . The toroidal current Jg is loaded on the (R,Z) grids ,

according to Egs.(4) and (12), from dp/dw and FdF/dy assigned on
the y grids by using a linear interpolation.

On solving Eq.(2), the constraint that the total toroidal

current. [, takes the given value is imposed. For a plasma sustained

by the ohmic current, the constraint reads
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_ L [(dp<Bp> |

1 VL 1 <BA>
Iohm = QEJGNC < ;{—2- <32>dV’ (31.b)

1  (<JB>pgs 1

IBS:}:; KF<;€§'>dV‘ (31.¢)

The one-turn voltagel VL. is determined such that /p may be equal
to the prescribed value, and then the parallel current is updated to
cbmputé FdFidy .for next iteration thfough Eq.(12). For a plasma
with the externally driven current, the strength of the source
(power of NBI/RF wave) is determined from the constraint,

On computing bootstrap current and neoclassical
conductivity, several surface average quantities are needed. To
obtain them we construct the flux coordinate system .(1;/,9,¢) where

the poloidal angle 6 and \/E are

_2Z 1y | 32

9_LJ, (32)
L

\/Q:ZKBP . (33)

Here L is the total length of the contour line, v = const. . In a flux

coordinate system, <(B-VB/B)2> |, for example, is expressed as

2r
J(agB/B 121N gde
BVB, 0 -
<tpF>= o . (34)

j\/gde
0
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We obtain poloidal angle € and a quantity X on each flux
surface when drawing a contour line. We interpolate X onto uniform
spacing 0 grids with periodic spline functions. We can compute the
values of dX/dé as well as X on the uniform grids of 6. The
trapezoid formula is used in integrating along the 6 coordinate.

The integrand of Eq.(25) becomes singular when A =1. To get
numerical accuracy the independent variable A is transformed to u
by

A = tanhpu (0 <u<pmax) (35)
and trapezoid formula is employed for integraing Eq.(25).

The initial solutions of yw and F are the Solov'ev equilibrium
[22] and the value of F in the vacuum region. The iteration is
terminated when the changes in the solutions y, FdF/dy and Vj are
smaller than a desired tolerance §:

lyn+1 -yl < 6,

WFdFidy)n+1 - (FdFidynll < § (36)

pn+l - ypnl < g,
where superscript n denotes the number of iterations and Hf(x)ll =

maxlIf{x)l .
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4. Results for High Aspect Ratio Circular Tokamaks

The numerical scheme is applied to high aspect ratio circular
tokamaks (HARCT) with the ohmic currents to validate it. The
parameters of the plasma are : the major radius Rpyyj = 1.0 m, the
minor radius a = 0.2 m, the vacuum toroidal filed at the plasma
center B;g = 4 T and the total toroidal current I, = 200kA. These
parameters yield equilibria with g4 =4 for By << I, where qq is the

safety factor at the plasma edge and By is the poloidal beta defined
by By = |pdV/(Rmajiolp?). The hydrogen plasma (Zeff= I) with

Te(¥) = Ti(¥)is assumed for simplicity (¥ : normalized ). The
profiles of density and temperature are given by the function ( f

stands for density, n, or temperature, T )

d
Z%: C(¥- Ph)H1-P). (37)

Here ¥, is so determined that the peak position ¥, of the profile

takes the prescribed value and C is computed from the values of fat

the magnetic axis, fp, and at the plasma edge, f; . For the present
case ¥p = 049,00 =2,ny = 175 x1020 m3, ng = 1.75 x 1018 m3, T
= 2kev and T4 = 20 ev.

The number of grids points on the (R,Z) coordinates are Ng x

Nz = 513 x 257 ; for the flux coordinates Nq)xNg =41 x81 ; tpax In

Eq.(35) is 6 and the number of points for the numerical quadrature

is Ny = 101 : § = 10-4 is taken as the tolerance in Eq.(36).

In HARCT limit, f; and vs at the radius r can be approximated

as

£ = 146\ e, (38)
vk = 3'3/2(1-].46\/;) ; (39)
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with & = r/Rp. Figure 2 shows f; and v+-! computed from the code

(solid lines) and from the Eqs.(38) and (39) (dotted lines). The
agreement between them is excellent for € < 0.1 . The code yields
the correct behavior of f; and v+-! near the magnetic axis. In Fig.3
the neoclassical current coefficients, L€3;7, L€32 and Li32, (Fig.3(a))
and ANcC (Fig.3(b)) are shown as functions of ¥ (solid lines). The
HARCT limits are also shown for comparison by dotted lines. The
agreement is again excellent. The transition region between the
banana regime and the platcau regime is near ¥ = 0.65 for the
présent case (the region near the magnetic axis is intrinsically in
Pfirsch-Schliiter and plateau regimes). Smooth transition of the
coefficients from the banana regime to the plateau regime is
obtained. The coefficients, L€37 and Li37 have negative values and
same order absolute values to L€3; which means that the bootstrap
current is mainly driven by the density gradient. The neoclassical
(.:ondu.ctivity (Fig.3(b)) is about 60 . 70% of the Spitzer conductivity
in the almost regions. When ¥ approaches to the magnetic axis the
conductivity tends to OSpitzer rapidly due to mainly disappearance
of trapped particles. Figures 2(a) and 3(b) indicate that it is
important to take account of the finite aspect ratio effect for 4 < 5.

The HARCT approximation, Eq.(38), overestimates f; and
unde.restimates oN(C. This will cause errors in the estimation of Zoff
in the analyses of MHD equilibria of tokamak experiments.

Figures 4 and 5 illustrate contour lines and torcidal currents
in fhe midplane ( Z = 0 ) of the equilibrium without neoclassical
current effects (classical equilibrium) and with the neoclassical

effects (neoclassical equilibrium), respectively : for the classical

equilibrium, 1,4, = 199.0 kA, Iy = 1.0 kA, VL = 0.417 volt, By =
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1.52, wgxis = -4.15 x 102 weber, qy = 1.0 and g4 = 4.55 ; for the
neoclassical equilibrium, I pm = 96.3 kA, Ips = 1028 kA, Ips = 0.9
kA, VI, = 0.275 volt, By = 1.77, waxis = -3.54 x 102 weber, qy = 1.5

and g = 4.60. The broad current profile of the neoclassical
equilibrium produces the contour lines enclosing larger volumes
than those of the classical equilibrium and then higher By, higher g,
and a smaller value of wgyis.

The neoclassical current effects cause different current
profiles from those of the classical equilibrium. The ohmic current

for the neoclassical equilibrium (dotted line in Fig.5(b)) has a

peaked profile in accordance with the profile of oy in Fig.3(b). The
value of I, for it is about half of that for the classical equilibrium
but the one-turn voltage does not reduce so much due to the
reduction of the conductivity. The bootstrap current has a hollow
profile which is one of the typical features of the neoclassical
equilibria. The large bootstrap current and the reduced ohmic
current give rise to the safety factor with a high g, and a flat g
profile (Fig.6). It is seen from broken lines in Figs.4(b) and 5(b) that
the pressure contributions to the toroidal currents, the first term of
Eq.(13), show the typical feature of return currents ; it is positive
for R > R, and negative for R < Ry (R, : position of the magnetic axis).
Volume integration of them almost cancel to remain small

diamagnetic currents.
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5. Summary

A numerical scheme for self-consistent calculations of MHD
equilibria specified current sources has been presented. The scheme
employs the surface averaged parallel current on computing
equilibria instead of the toroidal field function or safety factor., The
scheme has been applied to high aspect ratio circular tokamaks with
the ohmic current. It has been shown that both the neoclassical
conductivity and the bootstrap current can change the current
profiles substantially. It indicates the importance of the self-
consistent calculation of neoclassical equilibria. Self-consistent
calculation also makes it possible to analyze the neoclassical current
effects on MHD stability. The code can be applied to equilibrium and
stability analysis of tokamak plasmas with non-ohmic currents and

with neoclassical current effects.
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Table 1 (a) Friction matrix elements for electrons and ions.

(b) Matrices KB, K¥ and KPS for electrons.

(c) Matrices KB, K and KPS for ions.

(a) . :
111 Z -Z]
l12 3Z1/2 -3Zy/2
121 3721/2 0
122 \2+13Z1/4 V2 |
for electrons
v collisionality KB KFP KFS
K11 0.53 + Z; 3.54 (3.0244.25Z2)/D
K12 071+2Z; | 10.63 | (12.43+20.13Z1)/D
Koo 1.59+27; | 42.54 | (58.65+101.06Z1)/D
D = 2.23 + 5.327Z1 + 2.40Z;2
for ions
(c} collisionality KB KP KPS
K1 0.53 3.54 3.02/2.23
K12 0.71 10.63 12.43/2.23
K22 1.59 42.54 58.65/2.23
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Fig.1 Computational box containing plasma (). Boundary values
on I are loaded by applying Green's theorem along the plasma

surface Fp.
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Fig.2 Fraction of trapped particles f; (a) and collisionality

parameter v«-I (b) for a high aspect ratio circular tokamak

(HARCT) computed from the code (solid lines) and from HARCT

limit, eqs.(28) and (29) (dotted line).
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Fig.3 Neoclassical current coefficients for HARCT obtained form the

code (solid lines) and form the HARCT limit (dotted lines).
(a) Bootstrap current coefficients L€3;, L€32 and Lizo.

(b) Neoclassical conductivity coefficient Ay ¢ and ONC/OSpitzer -
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Fig.4 Equilibtium with no neoclassical current effects (classical
equilibrium).
(a) Contour lines of poloidal flux function y. wgxis =
4. 15x102weber.
(b) Toroidal currents in the midplane (Z = 0). Solid line is for
total current, dotted line for ohmic current and dashed line
for pressure current composed of Pfirsh-Schiiter current

and diamagnetic current.
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Fig.5 Equilibrium with neoclassical effects (neoclassical
equilibrium).
(a) Contour lines of poloidal flux function w. wgy;s =
-3.54x10-2weber.
{b) Toroidal currents in the midplane. Solid line is for
total current, dotted line for ohmic current, dashed line

for pressure current and dot-dashed line for bootstrap

current.
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Fig.6 Safety factor ¢ for the neoclassical equilibrium (solid line) and
the classical equilibrium (dotted line).



